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ABSTRACT 

The solution of a contemporary large-scale linear, integer, or mixed­

integer programming problem is often facilitated by the exploitation of 

intrinsic special structure in the model. This paper deals with the problem 

of identifying embedded pure network rows within the coefficient matrix of 

such models and presents two heuristic algorithms for identifying such 

structure. The problem of identifying the maximum-size embedded pure net­

work is shown to be among the class of NP-hard problems; therefore, the 

polynomially-bounded, efficient algorithms presented here do not guarantee 

network sets of maximum size. However, upper bounds on the size of the 

maximum network set are developed and used to evaluate the algorithms. 

Computational tests with large-scale, real-world models are presented. 
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1 . INTRODUCTION 

The success of mathematical optimization and the increase in size and 

speed of digital computers have led to the formulation of very large and 

complex systems as mathematical programming models. The direct solution of 

the associated linear programming (LP) problems using the classical simplex 

method is often prohibitively expensive, if not impossible in a practical 

sense. 

Large-scale models are predominantly characterized by sparse coeffi-

cient matrices and inherent special structure. If speci al structure can be 

identified, it can often be used to reduce the apparent problem monolith to 

components of more manageable size, or to admit enhancement of solution 

procedures. We are concerned with structures which can be used in factoriza­

tion algorithms, for which all simplex bases share a common structure under 

row partition, and with structures which invite decomposition. The details 

of actual exploitation of special structure, once identified, will not be 

discussed here (e.g., see [6], or (7]). 

Useful factorizations (even for a subset of columns) include simple 

bounds, generalized (upper) bounds (GUB), and embedded network rows, among 

others. Simple bound rows have only one non-zero coefficient. GUB refers to 

a set of rows for which each column (restricted to those rows) has at most 

one non-zero coefficient. Embedded network rows refers to a set of rows for 

which each column (restricted to those rows) has at most two non-zero coeffi­

cients of opposite sign. If the non-zero coefficients in the embedded network 

rows are restricted to at most one +land one -1 in each column, then the 

structure is referred to as an embedded pure network (NET). 

Various methods are available to identify and exhibit special structure 

in the coefficient matrix. These range from simple permutation of rows and 



columns to full (linear) transformations of the coefficient matrix. An 

intennediate method allows simple scaling (multiplication by a non-zero con­

stant) of each row and/or column. Generally, entire transformation methods 

are used in an attempt to convert the complete coefficient matrix to one having 

a very special structure, such as a node-arc incidence matrix for a network. 

Partial transformation methods look for large subsets on the coefficient matrix 

which exhibit the desired structure, with the implicit presumption that large 

subsets are more efficiently exploited than small subsets. 

Much of the computational improvement of the specialized simplex algo­

rithms is obtained when logic can be substituted for arithmetic in simplex 

operations. This is most conveniently accomplished when the coefficient 

values in the special structure set are restricted to 0, ±1. This restriction 

can be satisfied by considering only subsets of the coefficients with intrinsic 

0, ±1 entries. In practice, however, it is often possible, through row and/or 

column scaling, to induce the desired 0, ±1 values. For simple upper bounds, 

row scaling will suffice. GUB sets can be converted with row and column 

scaling (except that columns corresponding to integer variables are not cus­

tomarily scaled). To produce pure network rows, however, the scaling problem 

is non-trivial due to the existence of two non-zero coefficients in many 

columns as well as the requirement that unit elements in the same column be 

of opposite sign. 

The use of GUB has received much attention since the concept was 

introduced in 1964 by Dantzig and Van Slyke [4]. Some form of GUB has been 

implemented in many commercial LP systems, though restrictions on what consti­

tutes an admissible (i.e., implemented) GUB set vary. Work has been done in 

the automatic identification of GUB sets [2], [9]; computational results on 

large-scale problems indicate that this is not only feasible, but can be 

extremely advantageous [3], [14]. 
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Although some elegant work has been done in the theory of entire 

conversion of a linear program to a network problem {[1], [11]) 1 few practical 

results have been achieved which reliably identify a subset (of rows) which 

forms a network structure if entire conversion fails. An efficient algorithm 

for doing so is of considerable value since a model usually fails to be com­

pletely convertible, and since the expense of attempting entire conversion 

may be prohibitive. 

The problem of finding a maximum GUB set (in terms of number of rows) 

within a general coefficient matrix has been shown by Thomen to be NP-hard 

[14]. We prove the same result for the maximum embedded pure network problem. 

The implication is that currently only exponential-time algorithms exist to 

solve these types of problems and the hope of finding a more efficient 

algorithm is dim. 

Therefore, the efficient identification methods we have developed 

have been heuristic algorithms--they find large, sometimes even maximum 

structures, but they cannot guarantee a maximum result. Since the size of 

the maximum structure is not known for the large-scale problems with which we 

work, we develop upper bounds on this size to evaluate our heuristics [14] . 

Computational results are given for a number of large-scale, real­

world problems. They show the NET identification algorithms to very effective 

and efficient in identifying large sets of pure network rows. 

Some of this research has been sunmarized in [16]. 
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2. PROBLEM DEFINITION AND REPRESENTATIONS 

The Linear ProgralTllling Problem is defined here as: 

(L) . . . t m1n1m1ze c x 

s.t. r ~Ax~ r (ranged constraints) 

b ~ x ~ 6 (simple bounds) 

where r and r are m-vectors, x, c, !!. and 6 are n-vectors and A 

is an mxn matrix. Consider for the moment the case where all x variables 

are real-valued; the integer and mixed integer cases are admitted later. 

The (maximum) GUB problem (a well-known paradigm of embedded structure) 

for (L) can be stated as: 

(GUB) Find a (maximum) subset of rows in A which can be scaled to 

contain only 0, +1 entries and which satisfy the property that 

each column of A (restricted to those rows) has at most one 

non-zero entry. 

The real values of the non-zero coefficients in A do not make a difference 

in the GUB problem, since any non-zero entry in a GUB row can be scaled to 

+1 by column scaling alone. Therefore, it is convenient to replace A by a 

binary (0,1) matrix, K, of the same dimension where each non-zero entry of 

A is replaced by +1 with all other entries zero. 

Using the matrix K, with entries kij' the (maximum} GUB problem 

can be formulated as the binary integer program 

(GUBI) (maximize} z1 + z2 + .•• + zm 

s.t. 

where 

~ k .. z.:: 1; 
l 1J 1 

z1 E {0, l} 

j = l, ... ,n 

(z1 is an indicator variable for GUB inclusion.) 
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Alternative representations of the GUS problem have been developed 

as the basis for various heuristic algorithms and for theoretical considera­

tions such as determining the complexity of the problem and developing bounds 

on the maximum achievable size of a GUB set. These include graphical conflict, 

conflict matrix, and vector space representations [14]. 

Two rows in A are said to ~on6U.c.t if there is at least one column 

of A with non-zero entries in both rows. If each row of A is considered 

as a vertex in an undirected graph with two vertices connected by an edge when­

ever the corresponding rows conflict, then the (maximum) GUB problem becomes 

one of finding a (maximum) independent set of vertices in the graph. An inde­

pendent set of vertices in a graph is a subset of the total vertex set with 

no two vertices adjacent (connected by an edge) in the graph. 

The conflict matrix representation of the GUB problem uses an mxm 

symmetric binary matrix M with each row and column representing a row of A. 

M has +l values in those i,j entries where row i and row j conflict in 

A. By definition, every row conflicts with itself so the main diagonal of M 

has all +l entries. The (maximum) GLIB problem then becomes one of finding 

(through permutation of the rows of A) an embedded identity matrix (of maxi­

mum size) in the conflict matrix M. 

The vector space representation [13] considers each row of K as a 

vector inn-space having unit length in those directions corresponding to its 

non-zero entries. The vector R is formed as the sum of each of the row 

vectors. A unit hypercube inn-space situated at the origin with length 1 

in all positive directions represents the feasible GUB region . If R extends 

beyond this region, the set of rows is not a GUB set and at least one row must 

be removed to bring R into the feasible region . The (maximum) GUB problem 

becomes one of determining (the mi nimum number of) rows which must be removed 

5 



in order to bring R into the feasible region. The heuristics based on this 

representation compute gradient vectors which indicate the direction of shortest 

distance to the feasible region and remove first those rows which produce the 

greatest movement in that direction; these methods produce GUB sets of comparable 

quality to other heuristics, but have proven to be more computationally efficient . 

The (maximum) Embedded Pure Network problem for (L) can be stated as: 

(NET) Find a (maximum) subset of rows in A which can be scaled to 

contain only 0,±1 entries and which exhibit the property that 

each column of A (restricted to those rows) has at most two 

non-zero entries, and if the column has two non-zero entries, the 

(scaled) entries must be of opposite sign. 

The real values of the non-zero coefficients in A cannot be ignored as they 

were in the GUB problem since simple column scaling is no.longer sufficient to 

produce the required ±1 entries in columns containing two non-zero entries. 

The addition of row scaling may help, but even this is not sufficient to guar­

antee that a network set of rows obtained by considering only the signs of the 

non-zero elements can be scaled to the required 0,±1 values. 

Considering, for the moment only, matrices with 0,±1 entr i es (or a 

subset of m rows with 0,±1 entries in a general matrix) with no scaling 

allowed, the (maximum) NET problem can be fonnulated as the binary integer 

program: 

(NET!) maximize z1 + z2 + ... + zm 

s. t. . l zi !: l ; j = 1, ••• ,n 
1:aij=-l 

. l zi :5 1 ; j = 1 , •.. ,n 
l :a . . =+1 lJ 

where Zi E {0,l} . I 

(z1 is an indicator variable for inclusion in the network set.) 
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Unfortunately, NET does not lend itself to the many representations 

which GLIB admits. The primary reason for this is that the scaling problems 

associated with NET make it impossible to disregard the real values of the 

non-zero coefficients in A. Also, the concept of pairwise row conflicts so 

useful in the GLIB algorithms does not apply directly to network rows when row 

scaling is allowed. 

To efficiently confront the scaling dilenma, we are currently forced 

to restrict the eligibility of rows for membership in the network set. The 

most obvious restriction is to allow no scaling and consider only those rows 

with intrinsic 0,±1 entries. Two less restrictive options are employed in the 

algorithms described later. These are: 

1. Admit only rows with intrinsic 0,±1 entries but allow row ~e6lee,tl.on 

(multiplication of a row by -1). 

2. Admit only rows whose non-zero entries can be row-scaled to 0,±1. This 

includes rows with all non-zero entries of the same absolute value. 

Two representations of the NET problem are developed for the algorithms 

presented. 

As suggested by Thomen [14], GUB heuristics can be used to produce a 

bipartite-network row factorization which can be partitioned into two subsets, 

G1 and G2, such that each column of the matrix has at most one non-zero 

entry in G1 and at most one non-zero entry in G2. Additionally, the entries 

must be of opposite sign. To produce such a (D-GLIB) factorization, a GLIB 

heuristic can be applied to the eligible rows of A producing G1, and then 

applied again to remaining eligible rows (not selected in the first pass and 

compatible for NET inclusibn, allowing row reflection if necessary) giving G2. 

If we consider only the rows of A with 0,±1 entries, or those which 

have been scaled to 0,±1, a vector space representation for NET can be developed 
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similar to that developed for GUB. The representation can also allow 

reflection of rows, if desired. 

With each row in the eligible set, we associate two vectors in n-space, 

V~ and Vk' each consisting of ±1 in those dimensions corresponding to ±1 

entries in row i and zero in all other dimensions. For example, if row i is 

(l,0,-1 ,l,0), then vt = (1,0,0,l,0) and v; = (0,0,-1,0,0). 

We define R+ (R-) as the resultant vector from the sum of all V~ 

(V1). These vectors extend from the origin into the orthants of n-space 

corresponding to all positive dimensions and all negative dimensions, respec­

tively. A unit hypercube in each of these orthants constitutes the feasible 

NET region. Should either R+ or R- extend beyond its feasible region then 

the rows in the eligible set do not currently form an admissible set of network 

rows. 

The reflection (multiplication by -1) of a row merely results in the 

switching of the v+ and v- vectors for the row. That is, when row i is 

reflected, the negative of V~ becomes Vi and the negative of Vi becomes 

V~. This in turn will change the vectors R+ and R-. In fact, it · is possible 

that just the reflection of these rows in an infeasible set may bring R+ and 

R- into their feasible regions without deletion of any rows. 

If either R+ or R- extends beyond the feasible region, a row 

penalty for each is row is computed as the dot product of V~ and R+ plus 

the dot product of Vi and R-. The row with the greatest row penalty is 

identified and the revised penalty for that row, if reflected, is computed. If 

this reflected penalty is less than the original row penalty, the row is 

reflected, otherwise it is deleted. When both R+ and R- fall within the 

feasible region, the set of rows which remain constitutes an admissible net­

work set (15]. 
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3. IMPLEMENTATION OF AUTOMATIC NETWORK 
IDENTIFICATION HEURISTICS 

The 0-GUB Algorithm: 

Step 0. Ve;tvun.i.ne EUgible Ro~. Using the scaling scheme desired, determine 

which rows of the matrix are eligible for selection as network rows. 

Step 1. Find F,<Jt.6:t GUB Se.t. Apply a GUB heuristic to the eligible set. 

Step 2. Ve.tvunlne E.Ugib.Ulty no~ Seeond GUB Se.t. For each eligible row not 

included in the first GLIB set, check the columns in which the row has 

non-zero entries. In each of these columns, if the first GLIB set has no 

non-zero entries or one non-zero entry of opposite sign then the row is 

eligible for inclusion in the second GUS set in its present form. If the 

first GUB set has no non-zero entries or a non-zero entry of like sign in· 

each column, then the row is eligible for inclusion in reflected form. 

Otherwise, the row is not eligible and is discarded. 

Step 3. Find Second GUB Se.t. If there are any rows eligible for the second 

pass~ reapply the GUB heuristic to those rows. 

The D-GUB Algorithm uses a two-phase, one-pass, non-backtracking GLIB 

algorithm which is feasibility seeking (i.e., [3]). Phase 1 attempts to delete 

as few rows as possible in order to produce a feasible GLIB set. Phase 2 

examines the rows deleted in Phase land reincludes rows which do not violate 

the GUB restriction. 

Computational experience with many real-world models indicates that 

Phase 2 of the GUS heuristic rarely adds additional rows to the GUB sets 

obtained in either pass. For the second GUS set, Phase 2 is especially 

ineffectual . This suggests that the algorithm, which is already extremely 

fast, can be made even faster by the elimination of Phase 2 with minimal loss 

of solution quality. 
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The NET Algorithm is also two-phased, one-pass, non-backtracking and 

a deletion heuristic which is feasibility seeking. As such, it begins with 

an eligible set of rows which normally do not form an admissible network set 

and attempts ta delete as few rows as possible ta obtain a feasible set. 

Deleted rows are then considered for reinclusian if they do not violate the 

feasibility requirements. 

The measure of infeasibility at any paint is a matrix penalty computed 

as the sum of individual row penalties. Rows in the eligible set are examined 

in order of decreasing row penalty and either reflected, if the row penalty 

would be reduced, or removed and placed in a candidate set far later use. 

This guarantees that the matrix penalty will be reduced at each iteration . 

Thus, the number of iterations in Phase 1 is limited by the initial .matrix 

penalty, which is polynomi.ail.y bounded. In Phase 2, the rows in the candidate 

set are examined for reinclusion in the eligible set if they do not increase 

the matrix penalty. Those not reincluded are discarded. 

Statement of the Problem: 

Let A= {aij} be an mx n matrix with aij = 0,±1 'tJ i ,j. 

Problem: Find a matrix N = {nij} with (m-k) rows and n columns which is 

derived from A by 

l. Deleting k rows of A where k ~ O, 

2. Multiplying zero or more rows of A by -1, where N has 

the property that each column of N has at most one +l element 

and at most one -1 element. We wish to find a large N in the 

sense of containing as many rows as possible, i . e., minimize k. 

Terminology and Notation: 

l . E is the set of row indices for rows eligible far inclusion in N and 

is called the eligible set. 
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2. C is the set of row indices for rows removed from E in Phase l 

(Deletion). Some rows in C may be readmitted to E in Phase II. 

C is called the candidate set. 

3. The phrase 11reflect row i' of A" means to multiply each element in 

row i I by -1 , i.e. , a; , j +- -ai , j v' j. 

4. Other notation will be defined in the algorithm itself. 

The NET Algorithm: 

Phase I - Ve.le;ti.on 06 In6ea.6ible. Row.cs 

Step 0: In.i..ti.ai.,lza.tlon. Set E = {1,2, ... ,m}, C = ~- For each column j 

of A compute the + penalty (K;) and the - penalty (Kj) as fol lows: 

K°: = ( l 1 ) - l , 
J iEE:a .. >O 

1J 

K: = ( }: 1 ) - l . 
J iEE:a .. <O 

1J 

These penalties represent the number of excess +l and -1 elements, 

respectively, in column j which prevent the rows in E from forming 

a valid N matrix. A penalty value of -1 for K;(Kj) indicates that 

the column does not contain a +l(-1) element. 

Step 1 : Ve.6,lne. Row Pe,na,U,lu. For every i E E, compute a row penalty (pi) 

as follows: 

P· = I K: + r K:. 
1 . 0 J · <O J J:aij> J:aij 

This is simply the sum of + penalties for all columns in which row i 

has a +l plus the sum of - penalties for all columns in which row i 

has a -1. 

Step 2: Ve.6ine. Ma.ti't.lx Pe.na.lty. Compute the penalty (h) for the matrix by 

summing the row penalties as follows: 

h = l P1• • 
iEE 

If h = 0, then go to Step 7. Otherwise, go to Step 3. 
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Step 3: RowSe.lecti.on. Find the row i'EE with the greatest penalty, i.e . , 

Find i I EE such that p. , = max p .. 
, iEE , 

(If there is a tie, choose i' from among the tied values.) Compute 

the reflected row penalty pi' for i I as follows: 

p., = l (K:+1) + l (K:+1) . , . oJ . oJ J:ai'j> J:ai'j< 

This would be the row penalty for row i I if it were to be reflected. 

Step 4: Ve.ie.te, o4 Re6tec..t Row. 

Case i) 

Case ii) 

P; I ~ P; • Let E + E - { i 1 
} , C + C U { i 1 

} • Go to Step 5. 

pi I < pi ; . Reflect row i 1 
• Go to Step 6. 

Step 5: Reduce column pe.na.lti.e.6 as follows: 

For all j such that 

For all j such that 

Go to Step 1. 

+ + a. 1 .>0,K.+K.-
1 J J J 

a. , . < 0, K: + K: 
1 J J J 

Step 6: Change column pena.lti.u as follows: 

1 

1 

Using the a• I • 
1 J 

values after reflection of row i', 

For all j such that 

For all j such that 

Go to Step l. 

a • I • > 0, 
1 J 

a.,.<0, 
1 J 

Phase II - Runc.lu..6-lon 06 RoW6 64om C 

+ + 
K. + K. + 1 
J J 

and K: + K: - l 
J J 

+ + K. + K. - 1 
J J 

and K: + K: + l 
J J 

Step 7: E.limhtate Con6.Uc.Ung Rawti. The rows in E, some possibly reflected 

from the original A matrix, form a valid N matrix. However, some of 

the rows removed from E and placed in C may now be reincluded in E 

if they do not make h > 0. Remove from C (and discard) all rows which, 

if reincluded in E in present or reflected form, would make h > 0. 

I.e., remove i from C if 

a) 3 jl such that a .. 
1Jl 

> 0 and K:" = 0 
J1 

or a .. 
1J1 

< 0 and K: = 0 
J1 
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and 

b) 3 j2 such that a .. 
1J2 

> 0 and K: = O 
J2 

or a .. 
1J2 

< 0 and K: = 0 
J2 

If C = $, STOP, otherwise go to Step 8. 

Step 8: Se.led Row 60~ Runci.u.6lon. At this point a row from C may be 

reinc1uded in E. There are several possible schemes for selecting the 

row. After the row is reinc1uded, the column penalties are adjusted. 

Then go to Step 7. 

No dominating ru1e has been discovered for breaking ties in maximum 

row penalty encountered in Step 3. The rule used herein is to select the row 

with the minimum number of non-zero entries in an attempt to p1ace a larger 

number of non-zero entries in the network set. Other possible rules are 

"first-come, first-served," maximum number of non-zero entries, type of 

constraint, or modeler preference. 

Although the algorithm described above is presented for a matrix with 

strictly 0,±1 entires, it can be generalized to any matrix by simply letting 

E be the set of rows with strictly 0,±1 entries or which can be scaled to 

contain only 0,±1 entries. 

Prespecified network rows can also be accommodated with the following 

modifications: 

Let P = {ilrow i is prespecified}. 

Then E + E - P. 

After computation of K: 
J 

and K: in Step 0, for each column 
J 

if 3 i E P such that aij = 1 then + + K.+K.+l, 
J J 

if 3 i E P such that a .. = -1 
lJ 

then K: + K: + l. 
J J 

13 
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Rows in P are not eligible for deletion or reflection . At the 

termination of the algorithm, the rows in N are given by EU P. 

Computational experience on real-world models indicates that Phase 2 

of the NET algorithm is even less productive than that of the GUB algorithm. 

In only two of sixteen cases were any rows eligible for reinclusion and the 

maximum number eligible was three. This indicates that the expense of exam­

ining the rows in the candidate set for eligibility is probably not justified 

for the occasional small improvement in quality. 

It is easy to modify the NET algorithm to detect other embedded 

structures. 
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4. PROBLEM COMPLEXITY 

Analysis of the inherent complexity of a problem can reveal whether 

there is a possibility of developing an efficient algorithm to completely 

solve all cases of the problem (e.g., [5], [10]). Unfortunately, analysis of 

the NET problem indicates that it cannot be solved optimally by an efficient 

algorithm at this time [15]. 

The problem of finding a GUB set of specified size (i.e., number of 

rows) is NP-complete, while that of finding a maximum GUB set is NP-hard 

[3], [14]. The corresponding maximum 0-GUB problem with no scaling, since it 

represents a composition of two disjoint GUB problems, is also NP-complete 

{for a D-GUB set of specified size) and NP-hard (for a maximum D-GUB set). 

The problem of e.n-tiAe conversion by general linear transfonnation of 

any matrix to the node-arc incidence matrix of a pure network l6 such conversion 

is possible, has been shown to be polynomial in complexity [1], [11]. This, 

however, does not apply to the problem of finding the maximum embedded pure 

network should entire conversion fail. (The en.t.Ute GUS problem is polynomial, 

too.) A slightly less complicated problem than finding the maximum size 

embedded network set is the following: 

(NETO) Given an mxn matrix A and an integer p < m, determine 

whether A contains a set of p or more rows such that each 

column of A (restricted to those rows) has at most two non­

zero entries, where entries in the same column must be of 

opposite sign. 

Given a set of p rows from A, it is easy to verify, in polynomial time, 

whether the set satisfies the above criterion. Given an integer p < m, it 

is not easy to determine whether there exists a set of p or more rows in A 

which satisfies the criterion--in general, there does not currently exist an 

algorithm which can do so in polynomial time. 

15 



Two rows conflict if they -both contain a non-zero element of like sign 

in a common column. The absence of such pairwise conflicts in a subset of rows 

from A is not a necessary condition for the rows to form a valid network 

set if row reflection is allowed. However, that condition is necessary and 

sufficient for that purpose when no scaling is allowed. With no scaling, it 

is evident that the absence of pain'lise conflicts is necessary in a valid net­

work set, for the existence of a conflict violates the opposite-sign require­

ment for columns containing two non-zero elements. It is also sufficient, 

because the violation of the criterion for a valid network set would require 

at least one column of A to contain at least two non-zero entries of like 

sign in rows of the set. This, in turn, would imply that the two rows i n 

which this occurs are in conflict. 

Consider a graph in which the nodes represent the rows of A and two 

nodes are connected by an edge if and only if the rows conflict in A. The 

problem of finding a set of p or more rows in A which do not conflict is 

then equivalent to finding an independent set of size p or more in the graph 

so defined. This problem, known as the independent set decision problem, is 

known to be NP-complete [5]. Furthermore, the problem of finding a maximum 

independent set, and therefore, a maximum GUB set or network set, is NP-hard. 

The addition of row reflection to the problem simply means that each 

row can exist in one of two states, namely, unreflected or reflected. Clearly 

then, in a set of m rows, there are 2m distinct states for the set, each 

corresponding to a different subset of reflected rows. The problem of finding 

a maximum network set in A, allowing row reflection, is equivalent to finding 

a maximum network set with no scaling allowed (shown above to be NP-hard) for 

2m distinct matrices. As a result, this problem is also NP-hard. For a 

general matrix in which non-zero entries may be of any magnitude, and allowing 

16 
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simple row and column scaling, the problem of finding a maximum subset of rows 

which can be scaled to produce a pure network set is shown in [15] to be 

NP-hard, as well. 

This analysis of network identification algorithms has only addressed 

the worst-case bound. No conclusions can be made about the average perform­

ance of an optimal algorithm--it may be possible to develop an optimal 

algorithm with good average performance, but having an exponential worst-case 

bound. 

17 



5. UPPER BOUNDS ON MAXIMUM NETWORK SET SIZE 

The problem of finding a maximum-size, pure-network set of rows in a 

matrix, regardless of scaling restrictions, has been shown to be NP-hard. 

This also applies to the problem of determining just the size of a maximum 

set. Upper bounds on the maximum set size, computed in polynomial time, can 

be useful in evaluating the quality of network sets produced by heuristic 

algorithms. 

The bounds developed here apply to the maximum set size obtainable 

from the set of eligible rows, and thus depend on the scaling restrictions 

employed. Clearly, the maximum set size can be no greater than the number of 

rows in the eligible set, but this bound is of little practical use. 

Each column of the matrix (restricted to the eligible set) i s allowed 

at most two non-zero entries. If k represents the maximum number of non­

zero entries in any column of A (considering only entries in eligible rows), 

then it is clear that at least k-2 rows must be deleted from the eligible 

set in order to make this 11worst column11 feasible. Since the column counts 

are readily available in the form of the column penalties (Kj and Kj), 

the upper bound on the network set size for a matrix with m eligible rows 

is: 

u1 = m - max (K: + K:) . 
. J J 
J 

This bound is evidently 4haJtp in that matrices can be constructed for which 

it is achieved. 

A tighter bound is based on a matrix penalty computed from column 

penalties, rather than row penalties as in the NET algorithm. This penalty 

is: 
H = l K: + l K:. 

. + J . - J J:K.>O J:K.>O 
J J 
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Clearly, as long as H > 0, the rows remaining in the eligible set 

do not form a valid network set. The reflection of a row in the eligible set 

may decrease H, increase H, or leave it unchanged. The deletion of a row 

from the eligible set may decrease H, or leave it unchanged. The actual 

effect of a reflection or deletion depends on the rows remaining in the 

eligible set and their state (unreflected or reflected) at the time. However, 

it is possible to compute for each row the maximum possible reduction in H 

obtainable by reflection or deletion of the row, regardless of the other rows 

remaining in the eligible set. These maximum possible reductions are called 

the 1t.e.6lec.,ti.on pote.n:ua.e and de.le.ti.on poten.ti.a.t for the row, respectively. 

The bound is determined by finding the minimum number of row deletions 

necessary to reduce H to zero. This cannot, of course, be specified exactly; 

however, the result will be conservative in that it will guarantee that at 

least that number of rows must be deleted. 

Case K~ K~ 

l 0 -1 

2 0 0 

3 0 >O 

4 >O -1 

5 >O 0 

6 >O >O 

K} = column penalty of like sign to aij 

(K: if a .. > O; K: if a . . < 0) 
J 1J J 1J 

Kj = column penalty of unlike sign to a . . lJ 

Table 1 
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Consider the possible states of a column j of A in which row i 

has a non-zero entry (i.e., aij f 0). The six possible cases are sulTITlarized 

in Table l. 

The non-zero entries in each column are counted only when they occur 

in the initial eligible set. The penalties used are those computed before 

any row reflections or deletions have occurred. 

Consider first the effect on column j, and thus H, of reflecting 

row i. In cases 1, 5, and 6, reflection of row i would not change H. In 

case 4, reflection of row i would decrease H by 1, unless another row with 

a non-zero in column j was previously reflected. In cases 2 and 3, reflec­

tion of row i would actually increase H by 1, unless enough other rows 

with non-zero entries in column j were reflected or deleted to produce a 

-1 value for Kj. Since we cannot be sure that reflection in cases 2 and 3 

would actually increase H, we must consider H unchanged by reflection in 

these cases. In sunmary, we allow H to be decreased only by reflection of 

rows with non-zero entries in columns exhibiting case 4. The reflection poten­

tial for row i is computed by summing the effects for each column in which 

row i has a non-zero element, with the condition that only one row reflec­

tion is allowed to decrease H for each column exhibiting case 4. 

Row deletions provide greater opportunity for reducing H. In cases 

1 and 2, deletion of row i has no effect on H, while in cases 4, 5, and 6, 

deletion of row i directly decreases H by 1. In case 3, deletion of row i 

does not directly decrease H, but it allows reflection of another row with 

a non-zero in column j, producing a net decrease of 1 in the value of H. 

In su!TITiary, we allow H to be decreased by deletion of rows with non-zero 

entries in columns exhibiting case 3, 4, 5, or 6. The deletion potential for 

row i is computed by surnning the effects for each column in which row i has 

a non-zero entry. 

20 



To obtain this bound, the reflection and deletion potentials for each 

row in the eligible set are computed. Then the maximum possible reduction of 

H by row reflections alone is computed by summing the individual row reflec­

tion potentials. If H > O at this point, then rows must be deleted. Rows 

are deleted in order of decreasing deletion potential until H ~ O. The upper 

bound is then computed as: 

u2 = m - number of rows deleted, 

where m is the number of rows in the initial eligible set. 

This bound is evidently sharp, since examples can be constructed which 

satisfy the bound exactly. 

Similar arguments can be used to construct even better bounds, but the 

additional computation cost may not be justified for routine use with every 

model. 
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6. COMPUTATIONAL RESULTS 

The D-GUB and NET algorithms were coded in FORTRAN IV and were tested 

on the set of real-world models with characteristics shown in Table 2. 

The results obtained for the D-GUB algorithm are given in Table 3. The 

row eligibility criterion used was that each contain only 0,±1 entries, or 

be able to be scaled to 0,±1 entries by row scaling only. The number of 

eligible rows as a fraction of the total row count ranged from 9% to 100% (the 

objective row(s) not being eligible in any case). The number of GUB rows 

obtained in each pass is indicated. In two cases, the entire eligible set was 

determined to be a GUS set, so no second pass was required. The times given 

are in CPU seconds for the IBM 360/67 with the program compiled using FORTRAN H 

(Extended) with code optimization (OPT= 2). 

The results for the NET algorithm are given in Table 4. Also included 

are the upper bounds on the maximum pure network set size computed from the 

problem data. The times given for detennining the eligible set should be 

nearly the same as those for the D-GUB algorithm since the same eligibility 

criterion and code were used in both cases. The eligibility of rows in the 

candidate set for reinclusion in Phase 2 was determined, but Phase 2 was not 

included due to the absence of eligible rows in nearly every case. The solu­

tion time does not include the time required to determine eligibility for 

Phase 2. The NET quality value is the number of rows in the network set, 

expressed as a percentage of the better upper bound on the pure network 

set size. As explained earlier, the actual maximum network set size is, in 

general, unknown and thus the actual NET quality may be better than this con­

servative estimate. In particular, the bounds are almost certainly too high 

for problems with a large number of eligible rows (e.g., PAPER) and for problems 

with dense, or unstructured coefficient matrices (e.g., TRUCK, which is included 

in this study as a deliberate torture-test). 
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TABLE 2 

SAMPLE LP (MIP) MODEL CHARACTERISTICS 

COLUMNS NON-ZERO 
MODEL DESCRIPTION ROWS TOTAL BINARY COEFFICIENTS 

NETTING Currency Exchange 90 177 114 375 

AIRLP Distribution 171 3,040 0 6,023 

COAL Energy Development 171 3,753 0 7,506 

TRUCK Fleet Dispatch (Set Covering) 220 4,752 4,752 30,074 

CUPS Production Scheduling 361 582 145 1,341 

FERT Production & Distribution 606 9,024 0 40,484 

I'\) 
PIES Energy Production & Consumption 663 2,923 0 13,288 

w PAD Energy Production & Consumption 695 3,934 0 13,459 

ELEC Energy Production & Consumption 785 2,800 0 8,462 

GAS Production Scheduling 799 5,536 0 27,474 

PILOT Energy Production & Consumption 976 2,172 0 13,057 

FOAM Production Scheduling 1,000 4,020 42 13,083 

LANG Equipment & Manpower Scheduling 1,236 1,425 0 22,028 

JCAP Production Scheduling 2,487 3,849 560 9,510 

PAPER Econometric Production 3,529 6,543 0 32,644 

ODSAS Manpower Planning 4,648 4,683 0 30,520 



TABLE 3 

0-GUB ALGORITHM RESULTS 

ELIGIBILITY NETWORK ROWS FOUND ROWS NONZEROS 
MODEL ROWS TIME PASS 1 TIME PASS 2 TIME TOTAL TIME REFLECTED IN SET 

NETTING 59 0.01 36 0.03 18 0.04 54 0.07 18 89 

AIRLP 150 0.09 150 0.41 ALL GUB 150 0.41 0 3,000 

COAL 111 0. 11 111 0.50 ALL GUB 111 0.50 0 3,753 
,. 

TRUCK 219 0.76 29 3.96 18 4.44 47 8.40 18 1,755 

CUPS 300 0.05 150 o. 14 101 0.15 251 0.29 l 710 

FERT 585 0.62 559 3.00 13 3.03 572 6.03 13 16,291 

PIES 142 0.09 128 0.51 0 0.05 128 0.56 0 1,392 
N 
.i::,. PAD 174 0. 10 160 0.52 0 0.06 160 0.58 0 1,552 

ELEC 322 0. 12 266 0.47 6 0.52 272 0.99 6 2,691 

GAS 752 0.58 607 2.61 75 2. 39 682 5.00 75 9,008 

PILOT 109 0.10 96 0.44 13 0.48 109 0.92 1 479 

FOAM 966 0.33 917 0.95 34 0.94 951 1.89 1 8,001 

LANG 850 0.26 342 2.91 243 0.83 585 3.74 1 1,804 

JCAP 1,811 0.26 517 1.49 357 1.01 874 2.50 201 2,622 

PAPER 2,324 0.79 1,016 3.53 468 3. 71 1,484 7.24 433 8,176 

ODSAS 410 0.61 195 1.84 122 1.55 317 3.39 92 5,344 



TABLE 4 

NET ALGORITHM RESULTS 

ELIGIBILITY UPPER BOUNDS NETWORK ROWS FOUND ROWS NONZEROS 
MODEL ROWS TIME Ul U2 NUMBER TIME !}UAL ITV REFLECTED IN SE_I_ 

NETTING 59 0.01 58 57 54 0.08 94.74% 18 89 

AIRLP 150 0.09 150 150 150 0. 35 100% 0 3,000 

COAL 111 O. 11 111 111 111 0.43 100% 0 3,753 

TRUCK 219 0.76 214 137 46 19.82 33.58% 18 1,781 

CUPS 300 0.05 299 297 295 o. 14 99.3 3% 1 862 

FERT 585 0.62 584 572 572 6 .15 100% 13 16,291 

PIES 140 0.09 139 132 128 0 .59 96. 97% 0 1,392 
N 
UI PAD 174 0. 10 171 164 160 0.59 97.56% 0 1,552 

ELEC 322 o. 14 310 306 286 2.07 93.46% 34 2,915 

GAS 752 0.60 750 710 668 9.71 94.08% 33 11,002 

PILOT 109 0. 10 109 109 109 0. 36 100% 1 479 

FOAM 966 0.34 965 955 951 1.16 99. 58% 1 8,001 

LANG 850 0.29 836 758 661 14.82 87.20% 2 2,239 

JCAP 1,811 0.26 1,801 1,092 917 44.07 83.97% 200 2,540 

PAPER 2,324 0.66 2,316 2,072 1,627 94. 16 78.52% 603 8,995 

ODSAS 410 0.61 406 369 286 14.55 77.51% 45 6,207 



7. CONCLUSION 

The identification algorithms are very fast (especi ally when compared 

with computer time expended in any attempt to solve these large problems) and 

they consistently produce maximum or near maximum pure network sets (from the 

eligible rows) as evidenced by the upper bounds. 

Better yet, they provide independent insights which can be used to 

explain and improve the model at hand, or make it easier to solve. For instance , 

several models in Table 2 have been revealed as multi-corrmodity production/ 

transportation problems, a totally unexpected perspective for the model pro­

ponents. Further, these results have yielded prescriptive benefits for model 

solution, especially via decomposition. 

Many problems exhibiting intrinsic network structure are disguised by 

their formulation and resist the simplistic attempts used here to rescale them. 

In particular, the COAL model is known to be an entire network if appropriately 

restated, but it is not yet evident how this is to be discovered using efficient, 

general, problem-independent automatic identification. Methods used to scale 

an entire matrix to 0,±1 values (see [l], [11]) can be attempted, but failing 

entire conversion the next step is not evident . 

Using the conflict matrix method of Greenberg and Rarick [8], Schrage 

[12] reports finding several other embedded structures. Our experience with 

this method at large scale has not been encouraging. Its principal disadvantage 

is the requirement for some representation of the conflict matrix. We feel 

that the superior speed and modest region demands of the gradient method 

exhibited in both GUB and NET identification will carry over to the identifi­

cation of other special structures. This approach is currently being pursued. 
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