
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1980-11

Automatic identification of embedded network
rows in large-scale optimization models

Brown, Gerald G.; Wright, William G.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/63236

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPSSS-80-030

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AUTOMATIC IDENTIFICATION OF EMBEDDED NETWORK ROWS

IN LARGE-SCALE OPTIMIZATION MODELS

Gerald G. Brown
William G. Wright

Naval Postgraduate School
Monterey, California

November 1980

Approved for public release; distribution unlimited.

Prepared for: Chief of Naval Research
Arlington, VA 22217

\I

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund
Superintendent

David A. Schrady
Acting Provost

This work was supported in part by the Office of Naval Research,
Code 434, Arlington, VA.

Reproduction of all or part of this report is authorized.

Reviewed by:

...._,

""".. ·~- · '-" · 11 •- _. -

KNEALE T. MARSHALL, Chail111an__
Department of Operations Research

'

Prepared by:

Re 1 eased by:

~
i.~J:(4k_A/ Id¼.

WILLlPaf M. TOLLi:S -
Dean of Research

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (ltllen Dele Ent•t•dJ

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER r-GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

NPS55-80-030
4. TITLE (Md Sublltl•J S. TYPE OF REPORT A PERICO COVERED

Automatic Identification of Embedded Network Technical Report
Rows in Large-Scale Optimization Models S. PERl"ORMING ORG . REPORT NUMIIER

7. AUTHOR(•) I. CONTRACT OR GRANT NUMIER(1J

Gerald G. Brown
William G. Wright

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT , l'RO JECT , TASK
AREA A WORK UNIT NUMIIERS

Naval Postgraduate School 6ll53N,RR014-07-01 Monterey, CA 93940 NR047-144,N0001480WR00020
11, CONTROLLING OF F ICE NAME AND AOOR£SS 12. REPORT DATE

November 1980
13. NUMIIER OF PAGES

27
14 . MONITORING AGENCY NAME A AOORESS(II d/llorenl lrorn Conlrolllnll Otllc•) 15, SECURITY CLASS . (ot Ihle report)

Unclassified
15• . DECLASSIFICATION / DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (oll/111 Repotl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ot Ille •b•tr•ct enle,.d In Bfoclr 20, II dltt•rent,,...,. Report)

II . SUPl'LEMENTARV NOTES

19. KEY WORDS (ConrJnue on'""""" old• II necuoa,y .id ldontlly by block numb.,.)

Networks; Large-Scale Optimization; Basis Factorization; Computational
Complexity; Mixed Integer Optimization; Generalized Upper Bounds

20. ABSTRACT (Conl/nue on'""'"" aide II n•c•••.,,,. .id ldenlll)' b1 block n..,b•r)

DO

The solution of a contemporary large-scale linear, integer, or mixed-integer
programming problem is often facilitated by the exploitation of intrinsic
special structure in the model. This paper deals with the problem of identi-
fying embedded pure network rows within the coefficient matrix of such
models and presents two heuristic algorithms for identifying such structure .
The problem of identifying the maximum-size embedded pure network is shown
to be among the class of NP-hard problems; therefore, the polynomially {over)

FO .. M
I JAN 73 1473 EDI TION OF I NOV $9 IS OIISDLETE

5/N 0102·014•6601 I UNCLASSIFIED
SECURITY CLASSll"ICATIOH OF THIS l'AGE (ll'lt•n D•t•~•n••••d)

UNCLASSIFIED
~~;..U "IITY CLAS SI F IC ATI ON Q F nus PAGE~lfen D•t• Ente,.d)

bounded, efficient algorithms presented here do not guarantee network sets of
maximum size. However, upper bounds on the size of the maximum network set
are developed and used to evaluate the algorithms. Computational tests with
large-scale, real-world models are presented.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wll•n D•t• EnlerodJ

AUTOMATIC IDENTIFICATION OF EMBEDDED NETWORK ROWS

IN LARGE-SCALE OPTIMIZATION MODELS

Gerald G. Brown

William G. Wright

Naval Postgraduate School
Monterey, CA 93940

USA

ABSTRACT

The solution of a contemporary large-scale linear, integer, or mixed­

integer programming problem is often facilitated by the exploitation of

intrinsic special structure in the model. This paper deals with the problem

of identifying embedded pure network rows within the coefficient matrix of

such models and presents two heuristic algorithms for identifying such

structure. The problem of identifying the maximum-size embedded pure net­

work is shown to be among the class of NP-hard problems; therefore, the

polynomially-bounded, efficient algorithms presented here do not guarantee

network sets of maximum size. However, upper bounds on the size of the

maximum network set are developed and used to evaluate the algorithms.

Computational tests with large-scale, real-world models are presented.

Key words: Networks, Large-Scale Optimization, Basis Factorization~

Computational Complexity, Mixed Integer Optimization

Generalized Upper Bounds

Abbreviated Title: Identifying Embedded Networks

.

1 . INTRODUCTION

The success of mathematical optimization and the increase in size and

speed of digital computers have led to the formulation of very large and

complex systems as mathematical programming models. The direct solution of

the associated linear programming (LP) problems using the classical simplex

method is often prohibitively expensive, if not impossible in a practical

sense.

Large-scale models are predominantly characterized by sparse coeffi-

cient matrices and inherent special structure. If speci al structure can be

identified, it can often be used to reduce the apparent problem monolith to

components of more manageable size, or to admit enhancement of solution

procedures. We are concerned with structures which can be used in factoriza­

tion algorithms, for which all simplex bases share a common structure under

row partition, and with structures which invite decomposition. The details

of actual exploitation of special structure, once identified, will not be

discussed here (e.g., see [6], or (7]).

Useful factorizations (even for a subset of columns) include simple

bounds, generalized (upper) bounds (GUB), and embedded network rows, among

others. Simple bound rows have only one non-zero coefficient. GUB refers to

a set of rows for which each column (restricted to those rows) has at most

one non-zero coefficient. Embedded network rows refers to a set of rows for

which each column (restricted to those rows) has at most two non-zero coeffi­

cients of opposite sign. If the non-zero coefficients in the embedded network

rows are restricted to at most one +land one -1 in each column, then the

structure is referred to as an embedded pure network (NET).

Various methods are available to identify and exhibit special structure

in the coefficient matrix. These range from simple permutation of rows and

columns to full (linear) transformations of the coefficient matrix. An

intennediate method allows simple scaling (multiplication by a non-zero con­

stant) of each row and/or column. Generally, entire transformation methods

are used in an attempt to convert the complete coefficient matrix to one having

a very special structure, such as a node-arc incidence matrix for a network.

Partial transformation methods look for large subsets on the coefficient matrix

which exhibit the desired structure, with the implicit presumption that large

subsets are more efficiently exploited than small subsets.

Much of the computational improvement of the specialized simplex algo­

rithms is obtained when logic can be substituted for arithmetic in simplex

operations. This is most conveniently accomplished when the coefficient

values in the special structure set are restricted to 0, ±1. This restriction

can be satisfied by considering only subsets of the coefficients with intrinsic

0, ±1 entries. In practice, however, it is often possible, through row and/or

column scaling, to induce the desired 0, ±1 values. For simple upper bounds,

row scaling will suffice. GUB sets can be converted with row and column

scaling (except that columns corresponding to integer variables are not cus­

tomarily scaled). To produce pure network rows, however, the scaling problem

is non-trivial due to the existence of two non-zero coefficients in many

columns as well as the requirement that unit elements in the same column be

of opposite sign.

The use of GUB has received much attention since the concept was

introduced in 1964 by Dantzig and Van Slyke [4]. Some form of GUB has been

implemented in many commercial LP systems, though restrictions on what consti­

tutes an admissible (i.e., implemented) GUB set vary. Work has been done in

the automatic identification of GUB sets [2], [9]; computational results on

large-scale problems indicate that this is not only feasible, but can be

extremely advantageous [3], [14].

2

Although some elegant work has been done in the theory of entire

conversion of a linear program to a network problem {[1], [11]) 1 few practical

results have been achieved which reliably identify a subset (of rows) which

forms a network structure if entire conversion fails. An efficient algorithm

for doing so is of considerable value since a model usually fails to be com­

pletely convertible, and since the expense of attempting entire conversion

may be prohibitive.

The problem of finding a maximum GUB set (in terms of number of rows)

within a general coefficient matrix has been shown by Thomen to be NP-hard

[14]. We prove the same result for the maximum embedded pure network problem.

The implication is that currently only exponential-time algorithms exist to

solve these types of problems and the hope of finding a more efficient

algorithm is dim.

Therefore, the efficient identification methods we have developed

have been heuristic algorithms--they find large, sometimes even maximum

structures, but they cannot guarantee a maximum result. Since the size of

the maximum structure is not known for the large-scale problems with which we

work, we develop upper bounds on this size to evaluate our heuristics [14] .

Computational results are given for a number of large-scale, real­

world problems. They show the NET identification algorithms to very effective

and efficient in identifying large sets of pure network rows.

Some of this research has been sunmarized in [16].

3

2. PROBLEM DEFINITION AND REPRESENTATIONS

The Linear ProgralTllling Problem is defined here as:

(L) . . . t m1n1m1ze c x

s.t. r ~Ax~ r (ranged constraints)

b ~ x ~ 6 (simple bounds)

where r and r are m-vectors, x, c, !!. and 6 are n-vectors and A

is an mxn matrix. Consider for the moment the case where all x variables

are real-valued; the integer and mixed integer cases are admitted later.

The (maximum) GUB problem (a well-known paradigm of embedded structure)

for (L) can be stated as:

(GUB) Find a (maximum) subset of rows in A which can be scaled to

contain only 0, +1 entries and which satisfy the property that

each column of A (restricted to those rows) has at most one

non-zero entry.

The real values of the non-zero coefficients in A do not make a difference

in the GUB problem, since any non-zero entry in a GUB row can be scaled to

+1 by column scaling alone. Therefore, it is convenient to replace A by a

binary (0,1) matrix, K, of the same dimension where each non-zero entry of

A is replaced by +1 with all other entries zero.

Using the matrix K, with entries kij' the (maximum} GUB problem

can be formulated as the binary integer program

(GUBI) (maximize} z1 + z2 + .•• + zm

s.t.

where

~ k .. z.:: 1;
l 1J 1

z1 E {0, l}

j = l, ... ,n

(z1 is an indicator variable for GUB inclusion.)

4

Alternative representations of the GUS problem have been developed

as the basis for various heuristic algorithms and for theoretical considera­

tions such as determining the complexity of the problem and developing bounds

on the maximum achievable size of a GUB set. These include graphical conflict,

conflict matrix, and vector space representations [14].

Two rows in A are said to ~on6U.c.t if there is at least one column

of A with non-zero entries in both rows. If each row of A is considered

as a vertex in an undirected graph with two vertices connected by an edge when­

ever the corresponding rows conflict, then the (maximum) GUB problem becomes

one of finding a (maximum) independent set of vertices in the graph. An inde­

pendent set of vertices in a graph is a subset of the total vertex set with

no two vertices adjacent (connected by an edge) in the graph.

The conflict matrix representation of the GUB problem uses an mxm

symmetric binary matrix M with each row and column representing a row of A.

M has +l values in those i,j entries where row i and row j conflict in

A. By definition, every row conflicts with itself so the main diagonal of M

has all +l entries. The (maximum) GLIB problem then becomes one of finding

(through permutation of the rows of A) an embedded identity matrix (of maxi­

mum size) in the conflict matrix M.

The vector space representation [13] considers each row of K as a

vector inn-space having unit length in those directions corresponding to its

non-zero entries. The vector R is formed as the sum of each of the row

vectors. A unit hypercube inn-space situated at the origin with length 1

in all positive directions represents the feasible GUB region . If R extends

beyond this region, the set of rows is not a GUB set and at least one row must

be removed to bring R into the feasible region . The (maximum) GUB problem

becomes one of determining (the mi nimum number of) rows which must be removed

5

in order to bring R into the feasible region. The heuristics based on this

representation compute gradient vectors which indicate the direction of shortest

distance to the feasible region and remove first those rows which produce the

greatest movement in that direction; these methods produce GUB sets of comparable

quality to other heuristics, but have proven to be more computationally efficient .

The (maximum) Embedded Pure Network problem for (L) can be stated as:

(NET) Find a (maximum) subset of rows in A which can be scaled to

contain only 0,±1 entries and which exhibit the property that

each column of A (restricted to those rows) has at most two

non-zero entries, and if the column has two non-zero entries, the

(scaled) entries must be of opposite sign.

The real values of the non-zero coefficients in A cannot be ignored as they

were in the GUB problem since simple column scaling is no.longer sufficient to

produce the required ±1 entries in columns containing two non-zero entries.

The addition of row scaling may help, but even this is not sufficient to guar­

antee that a network set of rows obtained by considering only the signs of the

non-zero elements can be scaled to the required 0,±1 values.

Considering, for the moment only, matrices with 0,±1 entr i es (or a

subset of m rows with 0,±1 entries in a general matrix) with no scaling

allowed, the (maximum) NET problem can be fonnulated as the binary integer

program:

(NET!) maximize z1 + z2 + ... + zm

s. t. . l zi !: l ; j = 1, ••• ,n
1:aij=-l

. l zi :5 1 ; j = 1 , •.. ,n
l :a . . =+1 lJ

where Zi E {0,l} . I

(z1 is an indicator variable for inclusion in the network set.)

6

Unfortunately, NET does not lend itself to the many representations

which GLIB admits. The primary reason for this is that the scaling problems

associated with NET make it impossible to disregard the real values of the

non-zero coefficients in A. Also, the concept of pairwise row conflicts so

useful in the GLIB algorithms does not apply directly to network rows when row

scaling is allowed.

To efficiently confront the scaling dilenma, we are currently forced

to restrict the eligibility of rows for membership in the network set. The

most obvious restriction is to allow no scaling and consider only those rows

with intrinsic 0,±1 entries. Two less restrictive options are employed in the

algorithms described later. These are:

1. Admit only rows with intrinsic 0,±1 entries but allow row ~e6lee,tl.on

(multiplication of a row by -1).

2. Admit only rows whose non-zero entries can be row-scaled to 0,±1. This

includes rows with all non-zero entries of the same absolute value.

Two representations of the NET problem are developed for the algorithms

presented.

As suggested by Thomen [14], GUB heuristics can be used to produce a

bipartite-network row factorization which can be partitioned into two subsets,

G1 and G2, such that each column of the matrix has at most one non-zero

entry in G1 and at most one non-zero entry in G2. Additionally, the entries

must be of opposite sign. To produce such a (D-GLIB) factorization, a GLIB

heuristic can be applied to the eligible rows of A producing G1, and then

applied again to remaining eligible rows (not selected in the first pass and

compatible for NET inclusibn, allowing row reflection if necessary) giving G2.

If we consider only the rows of A with 0,±1 entries, or those which

have been scaled to 0,±1, a vector space representation for NET can be developed

7

similar to that developed for GUB. The representation can also allow

reflection of rows, if desired.

With each row in the eligible set, we associate two vectors in n-space,

V~ and Vk' each consisting of ±1 in those dimensions corresponding to ±1

entries in row i and zero in all other dimensions. For example, if row i is

(l,0,-1 ,l,0), then vt = (1,0,0,l,0) and v; = (0,0,-1,0,0).

We define R+ (R-) as the resultant vector from the sum of all V~

(V1). These vectors extend from the origin into the orthants of n-space

corresponding to all positive dimensions and all negative dimensions, respec­

tively. A unit hypercube in each of these orthants constitutes the feasible

NET region. Should either R+ or R- extend beyond its feasible region then

the rows in the eligible set do not currently form an admissible set of network

rows.

The reflection (multiplication by -1) of a row merely results in the

switching of the v+ and v- vectors for the row. That is, when row i is

reflected, the negative of V~ becomes Vi and the negative of Vi becomes

V~. This in turn will change the vectors R+ and R-. In fact, it · is possible

that just the reflection of these rows in an infeasible set may bring R+ and

R- into their feasible regions without deletion of any rows.

If either R+ or R- extends beyond the feasible region, a row

penalty for each is row is computed as the dot product of V~ and R+ plus

the dot product of Vi and R-. The row with the greatest row penalty is

identified and the revised penalty for that row, if reflected, is computed. If

this reflected penalty is less than the original row penalty, the row is

reflected, otherwise it is deleted. When both R+ and R- fall within the

feasible region, the set of rows which remain constitutes an admissible net­

work set (15].

8

3. IMPLEMENTATION OF AUTOMATIC NETWORK
IDENTIFICATION HEURISTICS

The 0-GUB Algorithm:

Step 0. Ve;tvun.i.ne EUgible Ro~. Using the scaling scheme desired, determine

which rows of the matrix are eligible for selection as network rows.

Step 1. Find F,<Jt.6:t GUB Se.t. Apply a GUB heuristic to the eligible set.

Step 2. Ve.tvunlne E.Ugib.Ulty no~ Seeond GUB Se.t. For each eligible row not

included in the first GLIB set, check the columns in which the row has

non-zero entries. In each of these columns, if the first GLIB set has no

non-zero entries or one non-zero entry of opposite sign then the row is

eligible for inclusion in the second GUS set in its present form. If the

first GUB set has no non-zero entries or a non-zero entry of like sign in·

each column, then the row is eligible for inclusion in reflected form.

Otherwise, the row is not eligible and is discarded.

Step 3. Find Second GUB Se.t. If there are any rows eligible for the second

pass~ reapply the GUB heuristic to those rows.

The D-GUB Algorithm uses a two-phase, one-pass, non-backtracking GLIB

algorithm which is feasibility seeking (i.e., [3]). Phase 1 attempts to delete

as few rows as possible in order to produce a feasible GLIB set. Phase 2

examines the rows deleted in Phase land reincludes rows which do not violate

the GUB restriction.

Computational experience with many real-world models indicates that

Phase 2 of the GUS heuristic rarely adds additional rows to the GUB sets

obtained in either pass. For the second GUS set, Phase 2 is especially

ineffectual . This suggests that the algorithm, which is already extremely

fast, can be made even faster by the elimination of Phase 2 with minimal loss

of solution quality.

9

The NET Algorithm is also two-phased, one-pass, non-backtracking and

a deletion heuristic which is feasibility seeking. As such, it begins with

an eligible set of rows which normally do not form an admissible network set

and attempts ta delete as few rows as possible ta obtain a feasible set.

Deleted rows are then considered for reinclusian if they do not violate the

feasibility requirements.

The measure of infeasibility at any paint is a matrix penalty computed

as the sum of individual row penalties. Rows in the eligible set are examined

in order of decreasing row penalty and either reflected, if the row penalty

would be reduced, or removed and placed in a candidate set far later use.

This guarantees that the matrix penalty will be reduced at each iteration .

Thus, the number of iterations in Phase 1 is limited by the initial .matrix

penalty, which is polynomi.ail.y bounded. In Phase 2, the rows in the candidate

set are examined for reinclusion in the eligible set if they do not increase

the matrix penalty. Those not reincluded are discarded.

Statement of the Problem:

Let A= {aij} be an mx n matrix with aij = 0,±1 'tJ i ,j.

Problem: Find a matrix N = {nij} with (m-k) rows and n columns which is

derived from A by

l. Deleting k rows of A where k ~ O,

2. Multiplying zero or more rows of A by -1, where N has

the property that each column of N has at most one +l element

and at most one -1 element. We wish to find a large N in the

sense of containing as many rows as possible, i . e., minimize k.

Terminology and Notation:

l . E is the set of row indices for rows eligible far inclusion in N and

is called the eligible set.

10

2. C is the set of row indices for rows removed from E in Phase l

(Deletion). Some rows in C may be readmitted to E in Phase II.

C is called the candidate set.

3. The phrase 11reflect row i' of A" means to multiply each element in

row i I by -1 , i.e. , a; , j +- -ai , j v' j.

4. Other notation will be defined in the algorithm itself.

The NET Algorithm:

Phase I - Ve.le;ti.on 06 In6ea.6ible. Row.cs

Step 0: In.i..ti.ai.,lza.tlon. Set E = {1,2, ... ,m}, C = ~- For each column j

of A compute the + penalty (K;) and the - penalty (Kj) as fol lows:

K°: = (l 1) - l ,
J iEE:a .. >O

1J

K: = (}: 1) - l .
J iEE:a .. <O

1J

These penalties represent the number of excess +l and -1 elements,

respectively, in column j which prevent the rows in E from forming

a valid N matrix. A penalty value of -1 for K;(Kj) indicates that

the column does not contain a +l(-1) element.

Step 1 : Ve.6,lne. Row Pe,na,U,lu. For every i E E, compute a row penalty (pi)

as follows:

P· = I K: + r K:.
1 . 0 J · <O J J:aij> J:aij

This is simply the sum of + penalties for all columns in which row i

has a +l plus the sum of - penalties for all columns in which row i

has a -1.

Step 2: Ve.6ine. Ma.ti't.lx Pe.na.lty. Compute the penalty (h) for the matrix by

summing the row penalties as follows:

h = l P1• •
iEE

If h = 0, then go to Step 7. Otherwise, go to Step 3.

11

Step 3: RowSe.lecti.on. Find the row i'EE with the greatest penalty, i.e . ,

Find i I EE such that p. , = max p ..
, iEE ,

(If there is a tie, choose i' from among the tied values.) Compute

the reflected row penalty pi' for i I as follows:

p., = l (K:+1) + l (K:+1) . , . oJ . oJ J:ai'j> J:ai'j<

This would be the row penalty for row i I if it were to be reflected.

Step 4: Ve.ie.te, o4 Re6tec..t Row.

Case i)

Case ii)

P; I ~ P; • Let E + E - { i 1
} , C + C U { i 1

} • Go to Step 5.

pi I < pi ; . Reflect row i 1
• Go to Step 6.

Step 5: Reduce column pe.na.lti.e.6 as follows:

For all j such that

For all j such that

Go to Step 1.

+ + a. 1 .>0,K.+K.-
1 J J J

a. , . < 0, K: + K:
1 J J J

Step 6: Change column pena.lti.u as follows:

1

1

Using the a• I •
1 J

values after reflection of row i',

For all j such that

For all j such that

Go to Step l.

a • I • > 0,
1 J

a.,.<0,
1 J

Phase II - Runc.lu..6-lon 06 RoW6 64om C

+ +
K. + K. + 1
J J

and K: + K: - l
J J

+ + K. + K. - 1
J J

and K: + K: + l
J J

Step 7: E.limhtate Con6.Uc.Ung Rawti. The rows in E, some possibly reflected

from the original A matrix, form a valid N matrix. However, some of

the rows removed from E and placed in C may now be reincluded in E

if they do not make h > 0. Remove from C (and discard) all rows which,

if reincluded in E in present or reflected form, would make h > 0.

I.e., remove i from C if

a) 3 jl such that a ..
1Jl

> 0 and K:" = 0
J1

or a ..
1J1

< 0 and K: = 0
J1

12

and

b) 3 j2 such that a ..
1J2

> 0 and K: = O
J2

or a ..
1J2

< 0 and K: = 0
J2

If C = $, STOP, otherwise go to Step 8.

Step 8: Se.led Row 60~ Runci.u.6lon. At this point a row from C may be

reinc1uded in E. There are several possible schemes for selecting the

row. After the row is reinc1uded, the column penalties are adjusted.

Then go to Step 7.

No dominating ru1e has been discovered for breaking ties in maximum

row penalty encountered in Step 3. The rule used herein is to select the row

with the minimum number of non-zero entries in an attempt to p1ace a larger

number of non-zero entries in the network set. Other possible rules are

"first-come, first-served," maximum number of non-zero entries, type of

constraint, or modeler preference.

Although the algorithm described above is presented for a matrix with

strictly 0,±1 entires, it can be generalized to any matrix by simply letting

E be the set of rows with strictly 0,±1 entries or which can be scaled to

contain only 0,±1 entries.

Prespecified network rows can also be accommodated with the following

modifications:

Let P = {ilrow i is prespecified}.

Then E + E - P.

After computation of K:
J

and K: in Step 0, for each column
J

if 3 i E P such that aij = 1 then + + K.+K.+l,
J J

if 3 i E P such that a .. = -1
lJ

then K: + K: + l.
J J

13

j,

Rows in P are not eligible for deletion or reflection . At the

termination of the algorithm, the rows in N are given by EU P.

Computational experience on real-world models indicates that Phase 2

of the NET algorithm is even less productive than that of the GUB algorithm.

In only two of sixteen cases were any rows eligible for reinclusion and the

maximum number eligible was three. This indicates that the expense of exam­

ining the rows in the candidate set for eligibility is probably not justified

for the occasional small improvement in quality.

It is easy to modify the NET algorithm to detect other embedded

structures.

14

4. PROBLEM COMPLEXITY

Analysis of the inherent complexity of a problem can reveal whether

there is a possibility of developing an efficient algorithm to completely

solve all cases of the problem (e.g., [5], [10]). Unfortunately, analysis of

the NET problem indicates that it cannot be solved optimally by an efficient

algorithm at this time [15].

The problem of finding a GUB set of specified size (i.e., number of

rows) is NP-complete, while that of finding a maximum GUB set is NP-hard

[3], [14]. The corresponding maximum 0-GUB problem with no scaling, since it

represents a composition of two disjoint GUB problems, is also NP-complete

{for a D-GUB set of specified size) and NP-hard (for a maximum D-GUB set).

The problem of e.n-tiAe conversion by general linear transfonnation of

any matrix to the node-arc incidence matrix of a pure network l6 such conversion

is possible, has been shown to be polynomial in complexity [1], [11]. This,

however, does not apply to the problem of finding the maximum embedded pure

network should entire conversion fail. (The en.t.Ute GUS problem is polynomial,

too.) A slightly less complicated problem than finding the maximum size

embedded network set is the following:

(NETO) Given an mxn matrix A and an integer p < m, determine

whether A contains a set of p or more rows such that each

column of A (restricted to those rows) has at most two non­

zero entries, where entries in the same column must be of

opposite sign.

Given a set of p rows from A, it is easy to verify, in polynomial time,

whether the set satisfies the above criterion. Given an integer p < m, it

is not easy to determine whether there exists a set of p or more rows in A

which satisfies the criterion--in general, there does not currently exist an

algorithm which can do so in polynomial time.

15

Two rows conflict if they -both contain a non-zero element of like sign

in a common column. The absence of such pairwise conflicts in a subset of rows

from A is not a necessary condition for the rows to form a valid network

set if row reflection is allowed. However, that condition is necessary and

sufficient for that purpose when no scaling is allowed. With no scaling, it

is evident that the absence of pain'lise conflicts is necessary in a valid net­

work set, for the existence of a conflict violates the opposite-sign require­

ment for columns containing two non-zero elements. It is also sufficient,

because the violation of the criterion for a valid network set would require

at least one column of A to contain at least two non-zero entries of like

sign in rows of the set. This, in turn, would imply that the two rows i n

which this occurs are in conflict.

Consider a graph in which the nodes represent the rows of A and two

nodes are connected by an edge if and only if the rows conflict in A. The

problem of finding a set of p or more rows in A which do not conflict is

then equivalent to finding an independent set of size p or more in the graph

so defined. This problem, known as the independent set decision problem, is

known to be NP-complete [5]. Furthermore, the problem of finding a maximum

independent set, and therefore, a maximum GUB set or network set, is NP-hard.

The addition of row reflection to the problem simply means that each

row can exist in one of two states, namely, unreflected or reflected. Clearly

then, in a set of m rows, there are 2m distinct states for the set, each

corresponding to a different subset of reflected rows. The problem of finding

a maximum network set in A, allowing row reflection, is equivalent to finding

a maximum network set with no scaling allowed (shown above to be NP-hard) for

2m distinct matrices. As a result, this problem is also NP-hard. For a

general matrix in which non-zero entries may be of any magnitude, and allowing

16
I'

simple row and column scaling, the problem of finding a maximum subset of rows

which can be scaled to produce a pure network set is shown in [15] to be

NP-hard, as well.

This analysis of network identification algorithms has only addressed

the worst-case bound. No conclusions can be made about the average perform­

ance of an optimal algorithm--it may be possible to develop an optimal

algorithm with good average performance, but having an exponential worst-case

bound.

17

5. UPPER BOUNDS ON MAXIMUM NETWORK SET SIZE

The problem of finding a maximum-size, pure-network set of rows in a

matrix, regardless of scaling restrictions, has been shown to be NP-hard.

This also applies to the problem of determining just the size of a maximum

set. Upper bounds on the maximum set size, computed in polynomial time, can

be useful in evaluating the quality of network sets produced by heuristic

algorithms.

The bounds developed here apply to the maximum set size obtainable

from the set of eligible rows, and thus depend on the scaling restrictions

employed. Clearly, the maximum set size can be no greater than the number of

rows in the eligible set, but this bound is of little practical use.

Each column of the matrix (restricted to the eligible set) i s allowed

at most two non-zero entries. If k represents the maximum number of non­

zero entries in any column of A (considering only entries in eligible rows),

then it is clear that at least k-2 rows must be deleted from the eligible

set in order to make this 11worst column11 feasible. Since the column counts

are readily available in the form of the column penalties (Kj and Kj),

the upper bound on the network set size for a matrix with m eligible rows

is:

u1 = m - max (K: + K:) .
. J J
J

This bound is evidently 4haJtp in that matrices can be constructed for which

it is achieved.

A tighter bound is based on a matrix penalty computed from column

penalties, rather than row penalties as in the NET algorithm. This penalty

is:
H = l K: + l K:.

. + J . - J J:K.>O J:K.>O
J J

18

•

Clearly, as long as H > 0, the rows remaining in the eligible set

do not form a valid network set. The reflection of a row in the eligible set

may decrease H, increase H, or leave it unchanged. The deletion of a row

from the eligible set may decrease H, or leave it unchanged. The actual

effect of a reflection or deletion depends on the rows remaining in the

eligible set and their state (unreflected or reflected) at the time. However,

it is possible to compute for each row the maximum possible reduction in H

obtainable by reflection or deletion of the row, regardless of the other rows

remaining in the eligible set. These maximum possible reductions are called

the 1t.e.6lec.,ti.on pote.n:ua.e and de.le.ti.on poten.ti.a.t for the row, respectively.

The bound is determined by finding the minimum number of row deletions

necessary to reduce H to zero. This cannot, of course, be specified exactly;

however, the result will be conservative in that it will guarantee that at

least that number of rows must be deleted.

Case K~ K~

l 0 -1

2 0 0

3 0 >O

4 >O -1

5 >O 0

6 >O >O

K} = column penalty of like sign to aij

(K: if a .. > O; K: if a . . < 0)
J 1J J 1J

Kj = column penalty of unlike sign to a . . lJ

Table 1

19

Consider the possible states of a column j of A in which row i

has a non-zero entry (i.e., aij f 0). The six possible cases are sulTITlarized

in Table l.

The non-zero entries in each column are counted only when they occur

in the initial eligible set. The penalties used are those computed before

any row reflections or deletions have occurred.

Consider first the effect on column j, and thus H, of reflecting

row i. In cases 1, 5, and 6, reflection of row i would not change H. In

case 4, reflection of row i would decrease H by 1, unless another row with

a non-zero in column j was previously reflected. In cases 2 and 3, reflec­

tion of row i would actually increase H by 1, unless enough other rows

with non-zero entries in column j were reflected or deleted to produce a

-1 value for Kj. Since we cannot be sure that reflection in cases 2 and 3

would actually increase H, we must consider H unchanged by reflection in

these cases. In sunmary, we allow H to be decreased only by reflection of

rows with non-zero entries in columns exhibiting case 4. The reflection poten­

tial for row i is computed by summing the effects for each column in which

row i has a non-zero element, with the condition that only one row reflec­

tion is allowed to decrease H for each column exhibiting case 4.

Row deletions provide greater opportunity for reducing H. In cases

1 and 2, deletion of row i has no effect on H, while in cases 4, 5, and 6,

deletion of row i directly decreases H by 1. In case 3, deletion of row i

does not directly decrease H, but it allows reflection of another row with

a non-zero in column j, producing a net decrease of 1 in the value of H.

In su!TITiary, we allow H to be decreased by deletion of rows with non-zero

entries in columns exhibiting case 3, 4, 5, or 6. The deletion potential for

row i is computed by surnning the effects for each column in which row i has

a non-zero entry.

20

To obtain this bound, the reflection and deletion potentials for each

row in the eligible set are computed. Then the maximum possible reduction of

H by row reflections alone is computed by summing the individual row reflec­

tion potentials. If H > O at this point, then rows must be deleted. Rows

are deleted in order of decreasing deletion potential until H ~ O. The upper

bound is then computed as:

u2 = m - number of rows deleted,

where m is the number of rows in the initial eligible set.

This bound is evidently sharp, since examples can be constructed which

satisfy the bound exactly.

Similar arguments can be used to construct even better bounds, but the

additional computation cost may not be justified for routine use with every

model.

21

6. COMPUTATIONAL RESULTS

The D-GUB and NET algorithms were coded in FORTRAN IV and were tested

on the set of real-world models with characteristics shown in Table 2.

The results obtained for the D-GUB algorithm are given in Table 3. The

row eligibility criterion used was that each contain only 0,±1 entries, or

be able to be scaled to 0,±1 entries by row scaling only. The number of

eligible rows as a fraction of the total row count ranged from 9% to 100% (the

objective row(s) not being eligible in any case). The number of GUB rows

obtained in each pass is indicated. In two cases, the entire eligible set was

determined to be a GUS set, so no second pass was required. The times given

are in CPU seconds for the IBM 360/67 with the program compiled using FORTRAN H

(Extended) with code optimization (OPT= 2).

The results for the NET algorithm are given in Table 4. Also included

are the upper bounds on the maximum pure network set size computed from the

problem data. The times given for detennining the eligible set should be

nearly the same as those for the D-GUB algorithm since the same eligibility

criterion and code were used in both cases. The eligibility of rows in the

candidate set for reinclusion in Phase 2 was determined, but Phase 2 was not

included due to the absence of eligible rows in nearly every case. The solu­

tion time does not include the time required to determine eligibility for

Phase 2. The NET quality value is the number of rows in the network set,

expressed as a percentage of the better upper bound on the pure network

set size. As explained earlier, the actual maximum network set size is, in

general, unknown and thus the actual NET quality may be better than this con­

servative estimate. In particular, the bounds are almost certainly too high

for problems with a large number of eligible rows (e.g., PAPER) and for problems

with dense, or unstructured coefficient matrices (e.g., TRUCK, which is included

in this study as a deliberate torture-test).

22

TABLE 2

SAMPLE LP (MIP) MODEL CHARACTERISTICS

COLUMNS NON-ZERO
MODEL DESCRIPTION ROWS TOTAL BINARY COEFFICIENTS

NETTING Currency Exchange 90 177 114 375

AIRLP Distribution 171 3,040 0 6,023

COAL Energy Development 171 3,753 0 7,506

TRUCK Fleet Dispatch (Set Covering) 220 4,752 4,752 30,074

CUPS Production Scheduling 361 582 145 1,341

FERT Production & Distribution 606 9,024 0 40,484

I'\)
PIES Energy Production & Consumption 663 2,923 0 13,288

w PAD Energy Production & Consumption 695 3,934 0 13,459

ELEC Energy Production & Consumption 785 2,800 0 8,462

GAS Production Scheduling 799 5,536 0 27,474

PILOT Energy Production & Consumption 976 2,172 0 13,057

FOAM Production Scheduling 1,000 4,020 42 13,083

LANG Equipment & Manpower Scheduling 1,236 1,425 0 22,028

JCAP Production Scheduling 2,487 3,849 560 9,510

PAPER Econometric Production 3,529 6,543 0 32,644

ODSAS Manpower Planning 4,648 4,683 0 30,520

TABLE 3

0-GUB ALGORITHM RESULTS

ELIGIBILITY NETWORK ROWS FOUND ROWS NONZEROS
MODEL ROWS TIME PASS 1 TIME PASS 2 TIME TOTAL TIME REFLECTED IN SET

NETTING 59 0.01 36 0.03 18 0.04 54 0.07 18 89

AIRLP 150 0.09 150 0.41 ALL GUB 150 0.41 0 3,000

COAL 111 0. 11 111 0.50 ALL GUB 111 0.50 0 3,753
,.

TRUCK 219 0.76 29 3.96 18 4.44 47 8.40 18 1,755

CUPS 300 0.05 150 o. 14 101 0.15 251 0.29 l 710

FERT 585 0.62 559 3.00 13 3.03 572 6.03 13 16,291

PIES 142 0.09 128 0.51 0 0.05 128 0.56 0 1,392
N
.i::,. PAD 174 0. 10 160 0.52 0 0.06 160 0.58 0 1,552

ELEC 322 0. 12 266 0.47 6 0.52 272 0.99 6 2,691

GAS 752 0.58 607 2.61 75 2. 39 682 5.00 75 9,008

PILOT 109 0.10 96 0.44 13 0.48 109 0.92 1 479

FOAM 966 0.33 917 0.95 34 0.94 951 1.89 1 8,001

LANG 850 0.26 342 2.91 243 0.83 585 3.74 1 1,804

JCAP 1,811 0.26 517 1.49 357 1.01 874 2.50 201 2,622

PAPER 2,324 0.79 1,016 3.53 468 3. 71 1,484 7.24 433 8,176

ODSAS 410 0.61 195 1.84 122 1.55 317 3.39 92 5,344

TABLE 4

NET ALGORITHM RESULTS

ELIGIBILITY UPPER BOUNDS NETWORK ROWS FOUND ROWS NONZEROS
MODEL ROWS TIME Ul U2 NUMBER TIME !}UAL ITV REFLECTED IN SE_I_

NETTING 59 0.01 58 57 54 0.08 94.74% 18 89

AIRLP 150 0.09 150 150 150 0. 35 100% 0 3,000

COAL 111 O. 11 111 111 111 0.43 100% 0 3,753

TRUCK 219 0.76 214 137 46 19.82 33.58% 18 1,781

CUPS 300 0.05 299 297 295 o. 14 99.3 3% 1 862

FERT 585 0.62 584 572 572 6 .15 100% 13 16,291

PIES 140 0.09 139 132 128 0 .59 96. 97% 0 1,392
N
UI PAD 174 0. 10 171 164 160 0.59 97.56% 0 1,552

ELEC 322 o. 14 310 306 286 2.07 93.46% 34 2,915

GAS 752 0.60 750 710 668 9.71 94.08% 33 11,002

PILOT 109 0. 10 109 109 109 0. 36 100% 1 479

FOAM 966 0.34 965 955 951 1.16 99. 58% 1 8,001

LANG 850 0.29 836 758 661 14.82 87.20% 2 2,239

JCAP 1,811 0.26 1,801 1,092 917 44.07 83.97% 200 2,540

PAPER 2,324 0.66 2,316 2,072 1,627 94. 16 78.52% 603 8,995

ODSAS 410 0.61 406 369 286 14.55 77.51% 45 6,207

7. CONCLUSION

The identification algorithms are very fast (especi ally when compared

with computer time expended in any attempt to solve these large problems) and

they consistently produce maximum or near maximum pure network sets (from the

eligible rows) as evidenced by the upper bounds.

Better yet, they provide independent insights which can be used to

explain and improve the model at hand, or make it easier to solve. For instance ,

several models in Table 2 have been revealed as multi-corrmodity production/

transportation problems, a totally unexpected perspective for the model pro­

ponents. Further, these results have yielded prescriptive benefits for model

solution, especially via decomposition.

Many problems exhibiting intrinsic network structure are disguised by

their formulation and resist the simplistic attempts used here to rescale them.

In particular, the COAL model is known to be an entire network if appropriately

restated, but it is not yet evident how this is to be discovered using efficient,

general, problem-independent automatic identification. Methods used to scale

an entire matrix to 0,±1 values (see [l], [11]) can be attempted, but failing

entire conversion the next step is not evident .

Using the conflict matrix method of Greenberg and Rarick [8], Schrage

[12] reports finding several other embedded structures. Our experience with

this method at large scale has not been encouraging. Its principal disadvantage

is the requirement for some representation of the conflict matrix. We feel

that the superior speed and modest region demands of the gradient method

exhibited in both GUB and NET identification will carry over to the identifi­

cation of other special structures. This approach is currently being pursued.

26

•

LIST OF REFERENCES

1. R. E. Bixby and W. H. Cunningham, "Converting Linear Programs-to Network
Problems , 11 Mathematics of Operations Research 5 (1980) 321-357.

2. A. L. Brearly, G. Mitra and H. P. Williams, "Analysis of Mathematical
Prograrrming Models Prior to Applying the Simplex Algorithm," Mathematical
Prograrrming 8 (1975) 54-83.

3. G. G. Brown and D. S. Thomen, "Automatic Identification of Generalized Upper
Bounds in Large-Scale Optimization Models," Management Science (to appear).

4. G. B. Dantzig and R. M. Van Slyke, "Generalized Upper Bounding Techniques,"
Journal of Computer and System Sciences l (1967) 213-226.

5. M. R. Garey and D. s. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

6. G. W. Graves and R. D. McBride, "The Factorization Approach to Large-Scale
Linear Programming," Mathematical Progranming 10 (1976) 91-110.

7. G. W. Graves and T. J. Van Roy, "Decomposition for Large-Scale Linear and
Mixed Integer Linear Programming,11 Mathematical Programming (to appear).

8. H.J. Greenberg and D. C. Rarick, "Determining GUB Sets via an Invert Agenda
Algorithm,11 Mathematical Programming 7 (1974) 240-244.

9. R. D. McBride, "Linear Prograrrming with Linked Lists and Automatic
Guberization, 11 Working Paper No. 8175, University of Southern California,
School of Business, July 1975.

10. V. Klee, "Combinatorial Optimization: What is the State of the Art,"
Mathematics of Operations Research 5 (1980) 1-26.

11. J. S. Musalem, "Converting Linear Models to Network Models," Ph.D. Dissertation,
UCLA, January 1980.

12. L. Schrage (Private Conmunication, March 1980).

1;3. S. Senju and Y. Toyoda, "An Approach to Linear Programming with 0-1
Variables," Management Science 15 (1968) 8196-B207.

14. D. S. Thomen, "Automatic Factorization of Generalized Upper Bounds in Large­
Scale Optimization Problems," M.S. Thesis, Naval Postgraduate School,
September 1979.

15. W. G. Wright, "Automatic Identification of Network Rows in Large-Scale
Optimization Models," M.S. Thesis, Naval Postgraduate School, September 1980.

16. W. G. Wright and G. G. Brown, "Automatic Factorization of Embedded Structure
in Large-Scale Optimization Models," Proceedings of the Symposium on Computer­
Assisted Analysis and Model Simplification, Boulder, Colorado, March 1980.

27

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93940

Library, Code 55
Naval Postgraduate School
Monterey, CA 93940

Dean of Research
Code 012
Naval Postgraduate School
Monterey, CA 93940

Office of Naval Research
Code 434
Arlington, CA 22217

Professor G. G. Brown
Code SSBw
Naval Postgraduate School
Monterey, CA 93940

No. of Copies

2 ..

2

1

1

1

30

•

