

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1948

The calculation of enthalpy-enthropy diagrams for rocket propellant systems.

Slater, Mervin Otis; Slater, Mervin Otis

California Institute of Technology

https://hdl.handle.net/10945/6338

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

GALCIT REPORT NO.

1st

REPORT_____

Thesis S57

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943-5002

THE CALCULATION OF ENTHALPY-ENTROPY DIAGRAMS FOR ROCKET PROPELLANT SYSTEMS

Thesis by

LIBUTENANT COMMANDER MERVIN O. SLATER, U.S. NAVY

P

Library U. S. L'aval Postgraduate School Annapo...s, Md.

In Partial Fulfillment of the Requirements for the Degree Of Aeronautical Engineer

> California Institute of Technology Pasadena, California

> > .

June, 1948

ACKNOWLE DOEMENT

The calculations performed in this thesis were made in conjunction with Lieutenant R. S. White III, U.S. Navy.

The author is indebted to Dr. David Altman of the Chemistry Section, Jet Propulsion Laboratory, of the California Institute of Technology, for the use of his development of equations for calculating the composition of products of combustion, and for his valuable guidance in the formulation of this thesis.

C. L'ALL

ABSTRACT

The purpose of this thesis is to present a method and the fundamental data necessary to construct enthalpy-entropy diagrams and from these diagrams to calculate theoretical performance of rocket motor propellants. The systems investigated using this method are:

- (1) RFNA-Ammonia (1)
- (2) Ammonia (1)-Ozone (1)
- (3) Hydrogen (1)-0zone (1)

Enthalpy-entropy diagrams for these fuels were constructed for several different mixture ratios: over-oxidized, stoichiometric, and under-oxidized. Performance was calculated assuming chamber pressures of 600 psia and 300 psia and exhaust pressures of 14.7 psia, 7.35 psia, and 0.147 psia. These diagrams facilitate the investigation of the effect of varying chamber pressure on chamber temperature and performance. They also facilitate investigation of varying expansion ratio, varying mixtures ratios, etc. They are especially useful in determining the performance of step rockets where exhaust conditions may vary from sea level to vacuum.

The results of the performance calculations indicate that performance found by using enthalpy-entropy diagrams check closely with those determined by other methods. The performance of the last two systems is such as to indicate that a more thorough study of them should be made.

-111-

TABLE OF CONTENTS

Page

INTRODUCTION	1
LIST OF SYMBOLS	2
PART I CALCULATION OF ENTHALPY-ENTROPY DIAGRAMS	
ASSUMPTIONS	5
COMPONENT CALCULATIONS	8
CHAMBER TEMPERATURE	16
ENTHALPY CALCULATIONS	18
ENTROPY CALCULATIONS	21
PART II THEORY AND USE OF ENTHALPY-ENTROPY DIAGRAMS	25
PART III RESULTS AND CONCLUSIONS	28
REFERENCES	29
TABLES	T- 1
FIGURES	F-1
AP PEN DI X	A-1

LIST OF TATLES

Talle	Title	Per"
I	FQUILIBRIUM CONSTAN [™] S	Tl
II	ENTHALPY TABLES	יד ייד
III	ENTROPY TABLES	T4
IV	HEATS OF FORMATION	ጥ
V	ATOMIC WEIGHTS USED	PO
VI	SAMPLE CALCULATION (SHEET A)	Τ7
VII	SAMPLE CALCULATION (SHEET B)	TU
VIII	ENTHALPY-ENTROPY SUMMAPY	Ϋ́
Iλ	PERFORMANCE SUMMARY	T20
х	FROZEN PERFORMANCE SUMMARY	T 23

JIST OF TOUTS

Figura	Title	Pare
	SPECIFIC IMPULSE VERSUS MIXTURE CAPTO	
1 2	RFNA - NH ₃ ($P_c = 300 \text{ psis}$) RFNA - NH ₃ ($P_c = 600 \text{ psis}$)	F1 F2
34	$\frac{MH_3}{MH_3} - \frac{O_3}{O_3} \left(\frac{P_c}{P_c} = 300 \text{ psis} \right)$ $\frac{MH_3}{D_1} - \frac{O_3}{O_3} \left(\frac{P_c}{P_c} = 600 \text{ psis} \right)$	F3 F4
56	$\frac{H_2}{H_2} = \frac{0}{03} \left(\frac{P_c}{P_c} = \frac{300 \text{ psia}}{600 \text{ psia}} \right)$	F 5 F6
	TEMPERATURE - ENTROPY DIAGRAMS	
7 8 9	$\begin{array}{l} \text{RFNA} & - \text{ NH}_3 & (r = 3.00) \\ \text{RFNA} & - \text{ NH}_3 & (r = 2.21) \\ \text{RFNA} & - \text{ NH}_3 & (r = 1.50) \end{array}$	F7 F8 F9
10 11 12 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F10 F11 F12 F13
14 15 16 17	$\begin{array}{r} H_2 & -0_3 & (r = 9.92) \\ H_2 & -0_3 & (r = 7.94) \\ H_2 & -0_3 & (r = 6.61) \\ H_2 & -0_3 & (r = 4.96) \end{array}$	F14 F15 F16 F17
18	THEORETICAL SPECIFIC IMPULSE FROM H-S DIAGRAM	F18
	ENTHALPY - ENTROPY DIAGRAMS	
19 20 21	$\begin{array}{r} \text{RFNA} & - \text{ NH}_3 \ (r &= 3.00) \\ \text{RFNA} & - \text{ NH}_3 \ (r &= 2.21) \\ \text{RFNA} & - \text{ NH}_3 \ (r &= 1.50) \end{array}$	F19 F20 F21

 v	1	1	
~	-	-	

Figure	Title	Page
22 23 24 25	$\begin{array}{r} \mathbf{NH}_{3} & - & 0_{3} \\ \mathbf{NH}_{3} & - & 0_{3} \end{array} \begin{pmatrix} \mathbf{r} & = & 2.00 \\ \mathbf{r} & = & 1.41 \\ \mathbf{r} & = & 1.41 \\ \mathbf{r} & = & 1.10 \\ \mathbf{r} & = & 0.80 \end{pmatrix}$	F22 F23 F24 F25
26 27 28 29	$\begin{array}{r} H_2 & - & 0_3 \\ \end{array} \begin{pmatrix} r &= & 9.92 \\ r &= & 7.94 \\ r &= & 6.61 \\ r &= & 4.96 \end{pmatrix}$	F26 F27 F28 F29

s,

INTRODUCTION

The preparation of enthalpy-entropy diagrams start. logically with component calculations for the products of conduction in chemical equilibrium at selected temperatures and pressures. These components are used to calculate enthalpy and entropy points for the temperatures and pressures selected. The points are then plotted as enthalpy versus entropy for constant pressure to give the H-S diagrams.

It is natural to select a chamber pressure of 300 psia and an exhaust pressure of 14.7 psia since these conditions are universally used in comparing the performance of rocket propellants. Other values of chamber pressure and exhaust pressure may be used as desired. Temperatures which bracket the theoretical chamber and exhaust temperatures must be selected as well as any others that may be necessary to complete the diagrams.

An enthalpy-entropy diagram may be constructed assuming complete equilibrium for the products of combustion throughout the cycle, frozen equilibrium at combustion conditions, or any intermediate extent of reaction between these two conditions. In the body of this thesis complete equilibrium throughout the cycle is assumed. Performance based on frozen equilibrium is included in the appendix.

-7 --

EXPLANATION OF SYMBOLS

8	Number of moles of hydrogen (H2) in the products of
	reaction.
ъ	Number of moles of water wapor (H20) in the products
	of reaction.
c	Number of moles of carbon monoxide (CO) in the
	products of reaction.
đ	Number of moles of carbon dioxide (CO2) in the
	products of reaction.
0	Number of moles of oxygen (0_2) in the products of
	reaction.
f	Number of moles of nitrogen (N_2) in the products of
	reaction.
g	Number of moles of nitrous oxide (NO) in the products
	of reaction.
h	Number of moles of hydroxyl ions (OH) in the products
	of reaction.
1	Number of moles of atomic hydrogen (H) in the products
	of reaction.
j	Number of moles of atomic oxygen (0) in the products
	of reaction.
С	Number of gram atoms of carbon in the reactants.
H	Number of gram atoms of hydrogen in the reactants.
N	Number of gram atoms of nitrogen in the reactants.
0	Number of gram atoms of oxygen in the reactants.
Kn	Equilibrium constant based on the ratio of the number
	of moles.

KpEquilibrium constant based on the partial pressures.K1Particular equilibrium constant based on the ratios
of the number of moles of component gases in given
reactions.xArbitrary constant defined by $\frac{K_{10}}{a}$ yArbitrary constant defined by $\frac{2K_{6b}}{a^2}$ zArbitrary constant defined by $\frac{K_{T}}{a}$ AArbitrary constant defined by 1 + x + y + z which is

equal to 1 +
$$\frac{K_{10}}{e_2}$$
 + $\frac{2K_{6b}}{a^2}$ + $\frac{K_7}{a}$

Arbitrary constant defined by
$$2g^2a^2 + g$$

 $K_3^2b^2$

F Arbitrary constant defined by
$$2g^2a^2 + g - N$$

 $K_3^{2}b^2$

n^{T^oK} Number of moles of products of reaction at temperature T^oK.

T_c Equilibrium chamber temperature (°K).

Te Exhaust temperature (°K)

 $\Delta H_{300^{\circ}K}^{T^{\circ}K}$ Enthalpy change between equilibrium temperature $T_{c}^{\circ}K$ and $300^{\circ}K$.

AHTC Te Enthalpy change between combustion chamber conditions and exit conditions.

R Universal gas constant = 1.986 cal/gr. mole ^OK.

Qſ	Heat of formation in kcal/mole at 300°K.
Q _{uv}	Heat available in koal/mole at T ^O K from heat of
	cnemical reaction.
Pc	Chamber pressure in psia.
Pe	Exhaust pressure in psia.
r	Mixture ratio; the ratio of the weight of oxidizer
	to weight of fuel in the propellant system.
J	Mechanical equivalent of heat = $4.186 \times 10^{10} \text{ergs/kcal}$.
Vc	Velocity of gases in the chamber.
c	Effective exhaust velocity in ft/sec.
Isp	Specific impulse in 1b-sec/1b.
g	Acceleration due to gravity - 32.16 ft/sec ² .
RFNA	Red Fuming Nitric Acid (in this thesis, nitric acid
	with 6.8% NO2)
SOT	Absolute entropy in cal/mole ^O K.
Δh	Enthalpy change in kcal/gram
s ⁰	Absolute entropy in cal/gram ^O K.

PART I

ASSUMPTIONS

The assumptions made in this thesis can be roughly grouped into two categories namely those concerning the thermodynamic properties of the gases and those concerning the expansion through the nozzle. For the former these assumptions are:

- 1. The values of enthalpy, entropy, and equilibrium constants used in this calculation are the best values available. In the compilation of these tables all internal energy states plus anharmonicities were considered. Imperfections due to attraction between molecules were not considered.
- 2. The temperature is such that the amount of atomic nitrogen present in the combustion products may be neglected. Previous investigations have shown this to be acceptable.
- 3. The values of Q_{av} and $\Delta H_{300^{\circ}K}^{T^{\circ}K}$ are linear within 100 degree intervals.
- 4. The datum for the enthalpy of a given species is zero at 300⁰K, and the entropy represents the absolute entropy of the pure perfect gas at a temperature of T⁰K and a pressure of one atmosphere.
- 5. The gases are perfect gases so that enthalpy is a function of composition and temperature only and not a function of pressure. This also implies that the

-5-

enthalpy of mixing may be neglected. If enthalpy is not a function of pressure, then the value of enthalpy of mixing is essentially zero for all cases now known.

6. The equipartition of energy among the electronic, vibrational, and rotational energy levels is assumed to be instantaneous both in the chamber and in the expansion process for both constant composition flow and equilibrium flow.

The assumptions for the nozzle are:

1. It is assumed in this thesis that the products of combustion are in the chamber a sufficient length of time to react completely and reach chemical equilibrium; and that equilibrium is maintained throughout the expansion so that when the gases reach the exhaust temperature and pressure, they have an equilibrium composition corresponding to that condition. The first assumption regarding equilibrium in the chamber is probably not too far wrong, but the second may be subjected to considerable criticism. During the expansion process the gases undergo a rapid change in temperature and pressure so that equilibrium may not be maintained at exhaust conditions. Perhaps the composition of the combustion gases is nearer the frozen composition or somewhere between the two extremes.

-0-

- 2. The expansion is isontropic. The flow is frictionless and shock-free.
- 3. The velocity of the gases in the combustion chamber (V_c) is negligible with respect to the exhaust velocity.
- 4. The nozzle is correctly designed for all exhaust conditions; the gases are expanded to atmospheric pressure in all cases.
- 5. The chamber pressures used are 600 psia and 300 psia. The exhaust pressures are 14.7 psia, 7.35 psia, and 0.147 psia.
- The flow is assumed to be steady and non-viscous with a flat velocity profile radially.
- 7. The gravity effects may be neglected.

One of the advantages of this type of performance calculations is that it is not necessary to use an average value of the ratio of specific heats. Nor is it necessary to assume a constant one based on chamber conditions to determine exhaust temperature.

COMPONENT CALCULATIONS

The most tedious part of performance calculations is the solution for the components of the products of combustion at high temperatures. The equilibrium composition of a gaseous mixture is determined by the simultaneous equations of conservation of atomic species and of mass action. The scheme used in this calculation to permit one to solve for the components present in a system containing carbon, oxygen, hydrogen, and nitrogen is that developed by Dr. David Altman and Dr. Sidney Weinbaum of the Jet Propulsion Laboratory (Cf. Ref. 1).

For a system containing carbon, oxygen, hydrogen, and nitrogen, these equations are:

$$b = H - 2a - K_{9}a^{\frac{1}{2}}$$
(1)

$$g = 0 - C \left[\frac{K_1 a + 2b}{K_1 a + b} \right] - b \left[1 + \frac{K_1 0}{a^2} + \frac{K_7}{a} \right] - 2K_6 \frac{b^2}{a^2}$$
(2)

$$\frac{2g^2a^2}{K_3^2b^2} + g - N = 0 = P(I)$$
(3)

$$d = \frac{b C}{b + K_1 a}$$
(4)

$$e = \frac{b^2}{a^2} K_6$$
 (5)

$$f = \frac{1}{2} \left(\overline{N} - g \right) \tag{6}$$

$$h = \frac{b}{a^2} K_{10}$$
(7)

$$1 = a^{\frac{1}{2}} K_{3}$$
 (8)

$$j = \frac{b}{a} K_{7}$$
(9)

An explanation of the symbols used is made on page 2. The procedure is as follows:

(1) Choose a likely value of $a = n_{H_2}$

- (2) Calculate the corresponding value of b from equation(1).
- (3) Calculate the corresponding value of g from equation(2).
- (4) Substitute the values of a, b, and g into equation(3).
- (5) Repeat these steps and interpolate until the values of a, b, and c obtained make F(I) = 0.

In general, it will be found that if F(I) > 0, a should be decreased; and if F(I) < 0, a should be increased. A sample calculation is carried out below.

-)--

The equations used when one or more of the elements (C, H, N, or O) is missing, are listed below:

Case A: Systems containing only N, H, and O (C = zero)

$$b = \frac{1 - 2\epsilon - K_{ga^2}}{2 + \frac{K_{10}}{a^2}}$$
(1)

$$\mathbf{s} = \mathbf{0} - \mathbf{b} \left[1 + \frac{\mathbf{K}_{10}}{\mathbf{a}^2} + \frac{\mathbf{K}_{7}}{\mathbf{a}} + \frac{2\mathbf{K}_{6}\mathbf{b}}{\mathbf{a}^2} \right]$$
(2)

$$\frac{2^2 g^2 a^2}{x_3^2 b^2} + g - N = F(II) = 0$$
(3)

Case B: Systems containing only C, H, and O (N-zero)

$$b = \frac{H-2a-K_{9}a^{\frac{1}{2}}}{2+\frac{K_{10}}{a^{\frac{1}{2}}}}$$
(1)

$$b\left[1 + \frac{K_{10}}{a^{\frac{1}{2}}} + \frac{K_{7}}{a} + \frac{2K_{6}b}{a^{2}}\right] + c\left[\frac{K_{1}a + 2b}{K_{1}a + b}\right] - 0 = F(III) = o$$
 (2)

The proper a will make F(III) = 0.

Case C: Systems containing only H and O (C-N= zero).

$$b = \frac{H - 2a - K_{g}a^{\frac{1}{2}}}{2 + \frac{K_{10}}{a^{\frac{1}{2}}}}$$
(1)

$$b\left[1+\frac{K_{10}}{a^{\frac{1}{2}}}+\frac{K_{7}}{a}+\frac{2K_{6}b}{a^{2}}\right]-0=F(IV)=0$$
 (2)

SAMPLE CALCULATION

STOICHIOMETRIC MIXTURE OF H2(1)-02(1)

To illustrate this method of calculating minor components a sample calculation is presented below. This calculation is carried out in greater detail on sample forms suitable for this computation in Tables VI and VII.

For the H_2-O_3 system the balanced equation at a stoichiometric mixture ratio when no minor components are considered is:

$$3H_{2} + 0_{3} = 3H_{2}0$$

When an arbitrary basis of 100 grams of 03 is selected this equation becomes:

$$6.25 \text{ H}_2 + 2.0833 \text{ O}_3 = 6.25 \text{ H}_20$$

The reactants now represent a combined weight of 112.6 grams and the number of atoms are:

$$H = 12.50$$

 $0 = 6.25$

The values of K in the component equations above are given in terms of the number of moles of the constituents and are related to the values of K_p (in terms of pressures) by the relation:

 $\mathbf{K} = \mathbf{K}_{\mathrm{p}} (\mathrm{n}/\mathrm{P})^{\mathrm{n}}\mathrm{p} - \mathrm{n}_{\mathrm{R}}$

where n = total number of moles

P = total pressure in atmospheres

np-n_R = difference in number of moles between the products and reactants for the particular reaction under consideration.

The values of K_p are given in Table I.

Assuming the chamber temperature to be 3000° K and the chamber pressure to be 300 psia (20.408 at $\frac{100}{100}$ s.) the balanced equation considering minor components becomes:

 $6.25 \text{ H}_2 + 2.0833 \text{ O}_3 = a \text{ H}_2 + b \text{ H}_2 \text{ O} + e \text{ O}_2 + h \text{ OH} + i \text{ H} + j \text{ O}$

Since the system contains only 0 and H the equations used to solve for minor components are those listed in Case C above.

The total number of moles is estimated to be 6.63. This is based on a knowledge of the number of moles formed in the balanced equation with no minor components plus a knowledge of tendencies gained from previous experience. For the calculation of K_n in terms of the moles the following procedure is used:

-13-

$$n/P = \frac{6.63}{20.408} = .3249$$

$$(n/P)^{\frac{1}{2}} = (.3249)^{\frac{1}{2}} = .5700$$

$$K_{6} = K_{p6}(n/P) = 0.001983 \times .3249 = .0006443$$

$$K_{7} = K_{p7}(n/P) = 0.005336 \times .3249 = .001734$$

$$K_{9} = K_{p9}(n/P)^{\frac{1}{2}} = 0.1579 \times .5700 = .09000$$

$$K_{10} = K_{p10}(n/P)^{\frac{1}{2}} = 0.0529 \times .5700 = .03015$$

Now, assuming a to be 0.42, solve for b using equation (1). b is found to be 5.6690. Putting these values of a and b into equation (2) yields F = .0595. It is apparent that a is too high, so a new value of a = 0.40 is selected and the calculations again carried out. This continued until F is as near zero as accuracy permits. Then all of the components can be found using equations (4) to (9) above.

For the first case, after all of the components had been determined it was found that the total number of moles was 6.57 which differs from the first assumption of 6.63 moles. A new value of n = 6.57 is now assumed and the components recalculated. A similar procedure is carried out until the calculated number of moles equals the assumed number. These calculations are carried out in detail in Table VI. The components were found to be:

8	(H ₂)	182	.396
ъ	(H ₂ 0)		5.690
С	(02)	-	.132
h	(OH)	22	.271
1	(H)	-	.057
j	(0)		.025

CHAMBER TEMPERATURE

To find the chamber temperature, it is necessary to select temperatures for component calculations which bracket the theoretical chamber temperature. According to the chemical equation expressing the change which occurs in the propellant:

Reactants = Products + Energy The energy liberated in the reaction is called the heat available (Q_{av}) and is given by the relation:

$$Q_{av} = \sum n_1 Q_{f_1}(products) - \sum n_1 Q_{f_1} (reactants)$$

where Q_{f_1} = heat of formation of ith component in its specified state $n_1 = i^{th}$ component

The value $\Delta H_{300}^{\circ}K$ (the change of enthalpy from 300°K to $T^{\circ}K$) can be found in Table II.

The value
$$\Delta H_{3000}$$
 is given by:

$$\Delta H_{300}^{T^{O}K} = \sum n_{1} \Delta H_{1}$$

where n_i = the ith component $\Delta H_i = \Delta H_{3000}^{T^0 K}$ for the ith component.

The actual chamber temperature is found by balancing the heat available to the change in enthalpy. Table II is based on setting the enthalpy at 300° K equal to zero, and the values of heats of formation used are based on the same temperature.

Therefore in this case, the balance is between $\Delta H_{300^\circ K}^{T_c}$ and $Q_{av}^{T_c}$. In actual practice the values of $\Delta H_{300^\circ K}^{T_c}$ and Q_{av} are assumed to be linear within 100° intervals.

For the sample calculation T_c was found to be between 3600°K and 3700°K.

For 3600°K

 $\Delta H_{300^{\circ}K}^{3600^{\circ}K} = 246.107 \text{ kcal/ll2.6 grams}$ $Q_{av}^{3600^{\circ}K} = 262.703 \text{ kcal/ll2.6 grams}$

For 3700°K

$$\Delta H_{300}^{3700^{\circ}K} = 256.106 \text{ kcal/ll2.6 grams}$$

 $Q_{av}^{3700^{\circ}K} = 230.949 \text{ kcal/ll2.6 grams}$

By linear interpolation, $T_c = 3640^{\circ}K$.

FNTIALPY CALCULATIONS

The total enthalpy of a perfect gaseous mixture at $T^{O}K$ relative to its equilibrium composition at $300^{O}K$ is:

$$\Delta H_{300^{\circ}K}^{T^{\circ}K} = \sum (n_{1}^{300^{\circ}K} - n_{1}^{T^{\circ}K}) Q_{T_{1}} + \sum n_{1}^{T^{\circ}K} (\mu H_{300^{\circ}K}^{T^{\circ}K})_{1}$$

The first term on the right hand side represents the heat of dissociation put in at 300° K to obtain the equilibrium composition at T° K and the second term represents the change of enthalpy due to heating the gas from 300° K to T° K.

SAMPLE ENTHALPY CALCULATION

$T = 3000^{\circ}K$

		n300° K	nT ^O K	$(n_{1}^{300^{\circ}K} - n_{1}^{T^{\circ}K})$) Q _r	$(n_1^{300^\circ K} - n_1^{T^\circ K})$	Q _f 1
(a)	H2	0.0	0.396	-0.396	0.0	0.0	
(b)	H20	6.25	5.690	+0.560	+57.798	+32.457	
(0)	02	0.0	0.132	-0.132	0.0	0.0	
(h)	OH	0.0	0.271	-0.271	-10.06	+2.726	
(1)	Н	0.0	0.057	-0.057	-52.089	+2.969	
(j)	0	0.0	0.025	-0.025	-59.159	+1.479	

50	n ^{300°K} _	n _i ^{T^OK})	Q _f		39.541	kcal
----	----------------------	--	----------------	--	--------	------

		n ^{T°} K	(4H ^{T^oK} 300 ^o K) ₁	$n_1^{T^{O}K} (\Delta H_{300}^{T^{O}K})_1$	
(a)	H2	0.396	21.160	8.379	
(b)	H20	5.690	30.315	172.492	
(0)	02	0.132	23.427	3.092	
(h)	OH	0.271	21.447	5.812	
(1)	H	0.057	13.411	0.765	
(j)	0	0.025	13.411	0.336	

 $\sum n_{1}^{T^{O}K} (\Delta H_{300}^{T^{O}K})_{1} = 190.876 \text{ kcal}$

$$\sum (n_1^{300^{\circ}K} - n_1^{\circ}K) Q_{f_1} = 39.541 \text{ kcal}$$

$$\sum (n_1^{T^{\circ}K} (\Delta H_{300^{\circ}K}^{T^{\circ}K})_1 = 190.876 \text{ kcal}$$

$$\Delta H_{300^{\circ}K}^{T^{\circ}K} = 230.417 \text{ kcal}$$

$$\Delta h = \underline{\Delta H} = 230.417 \text{ kcal} = 2.04633 \text{ kcal/gram}$$

This calculation is carried out in Table VII.

-20-

ENTROPY CALCULATION

The entropy of a perfect gas composed of several components at temperature T^OK is given by:

$$\mathbf{S}_{\mathbf{T}^{O}\mathbf{K}}^{O} = \sum_{i} \mathbf{n}_{i}^{\mathbf{T}^{O}\mathbf{K}} (\mathbf{S}_{\mathbf{T}^{O}\mathbf{K}}^{O})_{i} - \mathbf{n}^{\mathbf{T}^{O}\mathbf{K}} \mathbf{R} \ln \mathbf{P} - \sum_{i} \mathbf{n}_{i}^{\mathbf{T}^{O}\mathbf{K}} \mathbf{R} \ln \mathbf{n}_{i}^{\mathbf{T}^{O}\mathbf{K}} \prod_{i} \mathbf{n}_{i}^{\mathbf{T}^{O}\mathbf{K}}$$

- where $S_{T^OK}^{O} =$ absolute entropy at T^OK in cal/degree. $n_1^{T^OK} =$ number of moles of the 1th component at T^OK . $(S_{T^OK}^{O})$ absolute entropy of the 1th component in cal/degree/ mole as given in Table III. T^OK
 - n^{T^OK} = total number of moles of products of combustion at T^OK.
 - R = Universal gas constant = 1.986 cal/degree/mole.

P = Chamber pressure in atmospheres.

The first term on the right hand side represents the absolute entropy at $T^{O}K$. The second term represents the correction to the absolute entropy due to the total pressure of the gases. The third term represents the change in entropy due to the mixing of the several component gases. Fundamentally, it represents the terms $\sum n_{1}^{T}R \ln$ (Probability) where the probability of finding the ith component in this case is

$$n_{1}^{T^{O}K}/n^{T^{O}K}$$
. The entropy of mixing is therefore $\sum_{i=1}^{T^{O}K} n_{i}^{T^{O}K}$

Another way to look at the second and third terms is when combined, they become the change of entropy due to the partial pressure of each component

$$\sum_{n_1 R \ln P} + \sum_{n_1 R \ln \frac{n_1}{n}} - \sum_{n_1 R \ln \frac{n_1 P}{n}} \sum_{n_1 R \ln P_1}$$

where P_1 = partial pressure of the ith component so that the entropy of mixing contains the correction due to the use of total pressure instead of partial pressure of each component.

		SAMPLE	ENTROPY CAL	CULATION		
			T = 3000°K			
		n3000°K	(S ⁰ ₃₀₀₀ °K) ₁	n ^{3000°K} (s [°] ₃₀	00°K)1	
(a)	H ₂	• 396	48.47	19,194		
(b)	H20	5.690	68.14	387.717		
(e)	02	.132	67.95	8.969		
(h)	OH	.271	61.39	16.637		
(1)	H	.057	38.81	2.212		
(j)	0	.025	49.47	1.237		
		$\sum n_1^{3000^\circ}$	^K (S ⁰ ₃₀₀₀ °K) ₁	- 435.966	cal/deg	
	n R ln	P = 6.571	x 1.986 x ln	20.408 = 39.	353 cal/deg	
		n3000 ⁰ X	n ^{3000°K} /n ³⁰⁰	00°K ln n ₁ /n	n _i ln ⁿ i/n	
(a)	H2	. 396	.06027	2.8084	1.112	
(b)	H ₂ 0	5.690	.86606	-1438	.818	
(0)	02	.132	.02009	3.9070	.516	
(h)	OH	.271	.04125	3.1893	.864	
(1)	H	.057	.00852	4.7677	.272	
(j)	0	.025	.00381	5.5728	.139	

 $\sum n_i \ln n_i / n = 3.717 \text{ moles}$

$$\sum_{n \in \mathbb{N}} n = \frac{n}{n} = 3.717 \times 1.986 = 7.382 \text{ cal/deg}$$

SUMMARY

1

$$\sum n_{1}^{T} (s_{3000}^{\circ} R)_{1} = + 435.966$$
 cal/deg
- n R ln 20.408 = - 39.353 cal/deg
$$-\sum n_{1}^{T} R \ln \frac{n_{1}^{T}}{n} = + \frac{7.382}{7.382}$$
 cal/deg
$$s_{3000}^{\circ} R = 403.995$$
 cal/deg
$$s^{\circ} = \frac{403.995}{112.6} = 3.58788$$
 cal/deg/gram

These calculations are also carried out in Table VII.

PART II

THEORY AND USE OF H-S DIAGRAMS

The fundemental process used in all jet propulsion motors is the conversion of heat energy into kinetic energy by an adiabatic expansion process. The basic equation is:

$$\Delta H + \underline{\Delta}(\underline{V}^2) + \underline{\Delta}Z = \underline{q} - \underline{v}_{s}$$
(1)

where ΔH = increase in enthalpy/unit wt of the fluid

- $\Delta (\frac{V^2}{2gJ}) = increase in kinetic energy/unit of wt. of the fluid$
- ΔZ = increase in potential energy/unit wt. of the fluid
 - q = heat added to the system/unit wt. of the fluid
 ws = work done by the system/unit wt. of the fluid

It is assumed that the change of potential energy, heat added, and work done are zero, so the equation for a rocket becomes:

$$\Delta H + \Delta (v^2) = 0$$
 (2)

In the combustion chamber the velocity is assumed to be negligible when compared to the jet velocity so;

 $\Delta(v^2) = v_c^2 - c^2 = -c^2$

c - effective exhaust velocity

Thus the equation for the exhaust velocity becomes:

$$o = (2g J \Delta H)^{\frac{1}{2}}$$

where the units are consistent. When the equation is reduced to a convenient form it becomes:

$$c = 0.03281 \left(2 \Delta H_{T_{e}}^{T_{c}} J \right)^{\frac{1}{2}}$$

where J = mechanical equivalent of heat = 4.816 x 10 ergs kcal

0.03281 converts cm/sec to ft/sec.

The value of $\Delta H_{T_{\Theta}}^{T_{C}}$ can be read directly from the enthalpyentropy charts. This is illustrated in Figure 18. Enter with $\Delta h = \Delta H_{300}^{-0} K$ coresponding to the chamber conditions

and expand isentropically to the exhaust conditions. The results for the systems investigated are tabulated in Table IX.

After solving for c it is easy to determine I sp which is defined as:

I sp = c/g

Where g = acceleration due to gravity - 32.16 ft/sec².

The values of I_{sp} for the systems investigated are also tabulated in Table IX.

Another type of diagram that may be constructed from this data is temperature versus entropy for lines of constant pressure. From this diagram exit temperatures may be read directly.
PART III

RESULTS AND CONCLUSIONS

As far as it has been possible to determine, the performance calculated by this method agrees closely with that determined by other methods. This method has an advantage in that the errors introduced by using an average value of the ratio of the specific heats to calculate exhaust temperatures and the use of an average molecular weight resulting from composition changes are eliminated.

These diagrams are especially useful in evaluating the performance of rocket fuels with varying chamber and exhaust conditions. It is very easy to rapidly determine I for sp different exhaust pressures. It is also easy to compare performances that might be obtained by varying conditions.

The labor in evaluating one set of conditions is considerably greater for the H-S diagram than for other methods; but for a comprehensive study of system, the labor is not much different. If one or only a few propellant combinations are finally selected as optimum, it will be very beneficial to construct enthalpy-entropy diagrams for those systems.

Using this method it is easy to consider efficiencies, heat transfer, and changes of entropy.

The results of these calculations show that the propellants $NH_3(1) - O_3(1)$ and $H_2(1) - O_3(1)$ are high performance propellants but they have high temperatures as well.

-28-

REFERENCES

- Altman and Weinbaum, <u>Minor Component Calculations of</u> <u>Carbon, Hydrogen, Oxygen, and Nitrogen.</u> <u>Memorandum Number 9-1 Pasadena: Jet Propulsion</u> <u>Laboratory, July 29, 1947.</u> 8 pp.
- Hirschfelder, McClure, Curtiss, and Osborne, <u>Thermodynamic</u> <u>Properties of Propellant Gases</u>. OSRD. Report Number 547.
- 3. Stosick, A. J., <u>Performance Calculations for Propellants</u> <u>Using Hydrogen Peroxide and Performance Calculations</u> <u>For Diethyleneglycol Dinitrate as a Monopropellant.</u> <u>AIR LAB. Project Number MX121, April 2, 1945.</u>
- Rice, H E. LCDR. USN <u>Performance Calculations of New</u> Propellant Systems., Thesis CIT, June 1947.
- 5. Boll, R. H. <u>Calculation of Enthalpy-Entropy Diagrams</u> for and Specific Impulse of Rocket Fuel Systems, University of Michigan External Memo Number 9, August 20, 1947.

Table Equilibrium constants."

11	1									
0				-	** ***		8			
				.0	00000	00000	00000	00000		
				ĸ	нини	жннн	*****	нннн		
				844	698 072 951 230	9995 912 9365 2366	677 087 513 060 763	100	164 428 730 089 878	923 432 432 432 437 637 517
				-			nNN			N P P P P
×				0	00000	0000				
				H (6)		×××× 0.000	10 M M M M		NOONO	
				62		10	20 20 20		50 6 6 G	98.11.28
				-	N ID B - N	ND 6-0				14 14 10110 10
				5	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
				10	00000	00000	00000	00000	00000	00000
×				× Q	O	N N H H H H	0 9 7 8 9			0 - 0 - 0
				10 10	41842	24.57	14142	5×0°5	2222	
									N 0	LA AND A PRI
				0.7	00000	00000	00000	00000		
				ж	ж инии	ннин	инини			
×				8	88 84 80 80 80 81 21	356	399	581 516 576 711	5337 5337 577A	21 22 1 22 1 22 1 22 1 22 1 22 1 22 1
										14.
				10			-			
				0	00000	00000	00000	00000	000	
× ×				×	6 ON	*****	000h	-ONGC		
				13	4 4 - 8 4		80.41		85181	285 28
	54									
	10	0000	00000	00000	00000	00000	00000	00000	00000	00000
	H E	****	W H H H H H N O O O O	*****	*****		*****		-XXXXX NNO	X H H H H
	-				N 0 h		****	- 00 00		2 2 2 2 4 1 2 2 2 2 2 1
			****	ຢາຍາຍ	តាតាតាស			w	0	
	101	0000	0000	0.01	0000	.01	.01	10,	10	.0
×	×	N N N N N	янцян	*****	нихии	жжнжж	ж	ж	×	ж
	28	- 30 - 7 - 7	070	479 479 293 293	841 241 107 107	82824		4	90	00
	-	• N - S	m	40NN-		****		60	en	•
				. °	00000	* # M M M	00000	NNN	00000	000
m				- 	*****	*****	*****	*****	*****	***
×					5 6 6 0 N	-	04804 04804	80 - 07 80 - 07	00000	
				5 1		N-044	NR	40000	-LAUN	***
	-	-	មា ។ ហេ ហេ ហ	0 ~ ~ 0 0			0	-	-	-
	0	10	00000	00000	00000	00000	10	.01	.0	.0
~	-	* 0	жжжжж	жжжня	жжжжж	****	н	×		×
	82	637 25 751 751	147	548 545 545	3200		321			29
	~		-	-4 104	N-190	NN	-		m	•
	10 1									
	10									
×	1	10	00404	ស ហ ហ ហ ហ ហ						*****
	8	12	0.00	9797		699-59	20.	44.	000000	
2					are: ar 40 40	00000				
•] •										
1	296	700 900 000	2000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	88888	88888	000000	500 900 000
		-			~~~~~	NNUNA	~~~~		44444	44445

· See next page for definitions of K1. K2

- T 1 -

		La	able [C	f · papntouo			
Temp. (^{OK})	K11	K12	K13	K11;	K15	K16	K17
296.1 1000 500 600 700							3.976 × 10-5 1.822 × 10-5 1.026 × 10-5 6.660 × 10-6
800 900 1100 1200	2.11 × 10-10					2.22. × 10-15	L. 724 × 10-6 3.603 × 10-6 2.638 × 10-6 2.116 × 10-6 2.011 × 10-6
1300 1100 22000 2500	2.98 × 10-11 1.13 × 10-11 6.62 × 10-12				2.77 × 10-6 2.37 × 10-6 2.23 × 10-6	9.078 × 10-16 7.290 × 10-16 7.1116 × 10-16	1.835 × 10-6 1.653 × 10-6 1.510 × 10-6 1.136 × 10-0 9.87 × 10-7
3000 3500 4000 1500 5000		8.27 × 10 ⁻⁰ 3.80 × 10 ⁻⁷ 1.20 × 10 ⁻⁶ 2.95 × 10 ⁻⁶ 5.96 × 10 ⁻⁶	3.55 × 10 ⁻⁷ 8.49 × 10 ⁻⁷ 1.65 × 10 ⁻⁶ 2.62 × 10 ⁻⁶ h.41 × 10 ⁻⁶	1.90 × 10 ⁻⁴ 7.61 × 10 ⁻⁴ 2.15 × 10 ⁻³ 4.80 × 10 ⁻³ 9.09 × 10 ⁻³	2.16 × 10-6 2.16 × 10-6 2.17 × 10-6 2.22 × 10-6 2.28 × 10-6		9.83 × 10-7 9.89 × 10-7 9.84 × 10-7 9.84 × 10-7 9.88 × 10-7 9.88 × 10-7
	$K_1 = F$ $K_{l_1} = F$ $K_7 = F$	COPH_O(PCO2PH_ NH3/PV2P9/2, NH3/PV2P9/2, OPH3/PH20; 1	$K_{C} = P_{CP}$ $K_{S} = P_{CO}/P_{O_{2}}^{V}$ $K_{B} = P_{N}/P_{M_{2}}^{V}$	$H_{1}^{P}H_{2}O^{P}H_{3}^{-P}CO^{i}$ $H_{2}O^{P}H_{3}^{-P}CO^{i}$ $K_{5} = P_{0}P_{1}^{P}H_{3}^{P}$	$K_{3} = P_{NO}P_{H}$ $\tilde{H}_{2}/\tilde{P}_{H_{2}}O_{3}$ $\tilde{H}_{10} = P_{OH}$	2 ^{/1,22} , P _{H2} ,	
	K11 = K13 =	PC2H2 PH20/PC01 PCNPC02/PC0Ph2	Hai Kaa	PCHPH20/PC0PH	ູ້		
	K15 = K17 =	PHCNPH20/P00P1 PH200/PH2P00	RN2; K16	PC2N2 PC02/PC0	Phys :		

- 2 -

- 2) -ENTHALPY TABLE AH3000K kcals/gram mole

T. _o k	H ₂	H ₂ 0	CO	CO 2	02	N ₂	ОН	NO	Η,Ν,Ο	RAT
300	0.0	0 0	ο (QO	0 0	0 0			0 0	0 0
400	0.695	0.811	0.699	0.942	0 721	U.697			0.497	0 199
500	1.393	1 641	1 404	1 970	1.447	1 399			0.993	0.397
600	2.093	2 496	2 125	3 072	2_203	2_112			1 490	0 596
700	2.796	3.380	2_862	4 232	2_981	2.840			1.987	0.795
800	3.502	4.292	3 615	5 441	3.778	3.582			2.484	0.993
900	4.212	5.234	4.386	6.692	4.594	4 343			2.981	1 192
1000	4.931	8.208	5.171	7 976	5.421	5 118	4.985	5.308	3.477	1 390
1100	5.657	7.211	5 973	9.291	6.278	5 907	5.725	6.133	3.974	1 589
1200	6.393	8.247	6.785	10.629	7.135	6.709	6.465	6.958	4 471	1.786
1300	7.138	9 312	7 606	11.989	7.990	7.520	7.233	7.800	4.967	1 986
1400	7.895	10.399	8 437	13.367	8.847	8.342	8.002	8.643	5.464	2.185
1 500	8.664	11.519	9.275	14_760	9.704	9.173	8.783	9.499	5.961	2 384
1600	9.439	12.660	10.120	16.168	10.592	10.009	9.584	10.355	6.457	2 582
1700	10.226	13 821	10.972	17.587	11.481	10.854	10.390	11.221	6.954	2 781
1800	11.023	15.006	11 829	19.017	12.369	11 703	11.197	12 088	7 451	2.980
1900	11.828	16.206	12.689	20.455	13.257	12 558	12.015	12.957	7 947	3 178
2000	12.644	17.424	13.554	21.902	14.146	13 417	12.834	13.827	8.444	3.377
2100	13.466	18.659	14.423	23.358	15.061	14.279	13.643	14.700	8 941	3 576
2200	14.295	19.909	15.294	24 820	15.974	15.143	14.506	15 598	9 438	3 774
2300	15.132	21.171	16.169	26 290	16 889	16 013	15.360	16.480	9 935	3 973
2400	15.975	22.446	17.045	27.760	17.802	16.883	16.213	17 364	10.430	4 171
2 500	16.827	23.733	17.923	29.242	18.717	17.758	17 080	18.249	10 928	4.370
2600	17.683	25.031	18.807	30.729	19.659	18.636	17.936	19.143	11.425	4 569
2790	18.542	26.338	19.691	32.218	20.601	19 516	18.807	20.036	11 921	4.767
2800	19.410	27.656	20.576	33.712	21.543	20.399	19.678	20 929	12.418	4.966
2900	20.282	28.980	21.464	35.211	22.486	21.284	20.563	21.823	12.915	5 165
3000	21.180	30.315	22.353	36.712	23.427	22.170	21.447	22.716	13 411	5,363
3100	22.041	31.658	23.242	38.222	24.384	23.058	22.335	23.617	13.908	5.562
3200	22.927	33.006	24,136	39.734	25 344	23.947	23.227	24.519	14 405	5 761
3300	23.818	34.362	25.028	41 244	26.308	24 837	24.121	25 421	14.901	5.959
3400	24.712	35.723	28.923	42.764	27.276	25.729	25.021	26.325	15 398	6 1 58
3500	25.611	37.092	26.818	44.281	28.247	26.622	25.920	27.229	15.894	6.356
3600	26.512	38.466	27.715	45.808	29.219	27.516	26.822	28 135	16 392	6,555
3700	27.416	39.845	28.613	47 332	30.198	28.412	27 730	29.041	16.889	6.754
3800	28.328	41.231	29.512	48.862	31.178	29.307	28.640	29.948	17.385	6.952
3900	29.236	42.619	30.412	50.394	32.164	30.205	29.552	30.856	17.882	7.151
4000	30.153	44.010	31,313	51.930	33.153	31.104	30.467	31.761	18.379	7.350
4100	31.069	45 413	32 215	53.471	34.139	32.006	31.390	32.682	18.875	7.548

SOURCE OF DATA;

*THERMODYNAMIC PROPERTIES OF PROPELLANT GASES . HIRSCHFELDER, CURTIS, MCCLURE, AND OSBORNE, O. S. R. D. REPORT # 547.

NOTE: FOR USE OF THIS TABLE IN CALCULATING THEORETICAL PROPELLANT PERFORMANCE

ENTROPY TABLE (S^O_{T^OK})

(cal/degree/mole)

T ^o K	H ₂ O	CO	co2	02	N2	NO	OH	Η	N	0	n _c
300	ці.80	47.30	50.20	49.00	45.80	50.40		27.40	36.62	38 .06	21.27
400	17.12	49.31	52.89	51.06	47.79	52.45		28.82	38.04	39.48	33.27
500	13.96	50.38	55.17	52.67	49.35	54.06		29.92	39.14	40.58	34.83
600	50.52	52.19	57.17	54.05	50.65	55.40	52.51	30.82	40.04	41.48	36.10
700	51.88	53.32	58.96	55.25	51.77	56.57		31.59	40.81	42.25	37.18
800	53.10	54.32	60.57	56.31	52.76	57.60		32.25	41.47	42.91	38.12
900	54.21	55.23	62.04	57.27	53.66	58.53		32.84	42.06	43.50	38.96
1000	55.24	56.06	63.39	58.14	54.48	59.38		33.36	42.58	44.02	39.72
1100	56.20	56.82	64.64	58.96	55.23	60.17	53.21	33.83	43.05	44.49	40.41
1200	57.10	57.53	65.80	59.71	55.93	60.89	53.86	34.26	43.48	44.92	41.05
1300	57.95	58.19	66.89	60.39	56.58	61.56	54.47	34.66	43.88	45.32	41.65
1400	58.76	58.81	67.91	61.03	57.19	62.18	55.04	35.03	44.25	45.69	42.21
1500	59.53	59.39	68.87	61.62	57.76	62.77	55.58	35.37	44.59	46.03	42.74
1600	60.27	59.94	69.78	62.19	58.30	63.32	56.10	35.69	44.91	46.35	43.24
1700	60.97	60.46	70.64	62.73	58.81	63.85	56.58	35.99	45.21	46.65	43.72
1800	61.65	60.95	71.46	63.24	59.30	64.35	57.05	36.27	45.49	46.93	44.17
1900	62.30	61.42	72.24	63.72	59.76	64.82	57.49	36.54	45.76	47.20	44.61
2000	62.93	61.86	72.98	64.18	60.20	65.27	57.91	36.80	46.02	47.46	45.03
2100	63.53	62.28	73.69	64.63	60.62	65.70	58.30	37.04	46.26	47.70	45.43
2200	64.11	62.69	74.37	65.06	61.02	66.12	58.70	37.27	46.49	47.93	45.81
2300	64.67	63.08	75.02	65.47	61.41	66.51	59.08	37.49	46.71	48.15	46.19
2400	65.21	63.45	75.65	65.86	61.78	66.89	59.45	37.70	46.92	48.36	46.54
2500	65.74	63.81	76.26	66.23	62.14	67.25	59. 80	37.90	47.12	48.56	46.89
2600	66.25	64.16	76.84	66.60	62.48	67.60	60.14	38.10	47.32	48.76	47.23
2700	66.74	64.49	77.40	66.96	62.81	67.94	60.47	38.29	47.51	43.95	47.55
2800	67.22	64.81	77.94	67.30	63.13	68.27	60.78	38.47	47.69	49.13	47.87
2900	67.69	65.12	78.47	67.63	63.14	68.58	61.09	38.64	47.86	49.30	48.17
3000	68.14	65.42	78.98	67.95	63.74	68.88	61.39	38.81	48.03	49.47	48.47
3100	68.58	65.71	79.48	63.26	64.03	69.18	61.68	33.97	43.19	49.63	48.76
3200	69.01	65.99	79.96	68.57	64.31	69.17	61.97	39.13	43.35	49.79	49.01
3300	69.43	66.26	80.43	68.87	64.58	69.75	62.24	39.23	43.50	49.94	49.32
3400	69.84	66.53	80.88	69.16	64.85	70.02	62.51	39.43	48.65	50.09	49.57
3500	70.24	66.79	81.32	69.14	65.11	70.28	62.77	39.57	48.79	50.23	49.81
3600	70.63	67.04	81.75	69.71	65.36	70.54	63.03	39.71	48.93	50.37	50.01
3700	71.01	67.29	82.17	69.98	65.61	70.79	63.28	39.85	49.07	50.51	50.31
3800	71.38	67.53	82.58	70.24	65.85	71.03	63.52	39.98	49.20	50.64	50.59
3900	71.74	67.76	82.98	70.50	66.08	71.27	63.76	40.11	49.33	50.77	50.82
4000	72.09	67.99	83.37	70.75	66.31	71.50	63.99	40.24	49.46	50.90	51.05
4100	72.44	68.21	83.75	70.99	66.53	71.73	64.22	40.36	49.58	51.02	51.28

- 75 -

HEATS OF FORMATION AT CONSTANT PRESSURE

USED IN THIS ANALYSIS

Constituent	Heat of Formation in Kilocalories per Mole
H20	+57.798
NO	-21.600
OH	-10.060
H	-52.089
0	-59.159
NH3(1)	+16.070
NO2	- 6.100
HINO3	+41.660
03(1)	-31.500
H ₂ (1)	+ 1.848

- **T** 6 -

TABLE V

ATOMIC WEIGHTS USED

Element	Atomic Weight
N	14.008
H	1.008
0	16.000
H2	2.016
H20	34.016
NH3	17.032
HN 3	63.016
NO2	46.008
03	48.000

×

TABLE VI SAMPLE CALCULATION SHEET (A)

H-12.50 O-6.25 N- H₂-O₃ STOIC

P=300 PSIA T=3000° K

			2	3				
		6.63			6.57			
	Kn 3							en orde om in selfensjoor 2
	6	.0006443			.0006383			
	216	0012886			DOIZ766			
	7	.001734			,001718			
	9	.09000			.08959			
	10	.03015			.03002			
	a	.42	.40	.398	,398	,396		
	22	. 84	.80	,796	.796	.792		
	a 1/2	.6481	.6325	.6309	.6309	.6293		
	a^2	.1764	.1600	.1584	,1584	,1568		
x	K10/a'/2	.04652	.04767	.04779	.04758	.04770		
	2+K10/a/2	2.04652	2.04767	2.04779	2.04758	2.04770		
	K92 1/2	.05833	.05693	,05678	,05652	.05638		
	H-2a-K9a1/2	11.6017	11.6431	11.6472	11.6474	11.6516		
	Ь	5.6690	5,686	5.6877	5.6884	5.6901		
	62	32,1376	32,3306	32.3499	32.3579	32.3772		
4	2K6b/a2	.04/39	.04579	.04621	.04.584	.04633		
Z	Ky/a	.004129	.004335	.004357	.004316	.004338		
A	(+K+y+Z	1.0920	1.0978	1.0984	1.0977	1.0984		
	ЬA	6.1905	6.2421	6.2475	6.2.444	6.2500		
	9			1				
	9 ²							
	K3 ²							
	B							
	F	0595	0079	0025	0056	0.0		
	a			,3980		,396		
	b			5.6877	ļ	5,690		
	e			.1316		.132	_	
	£							
8	9							
	- h			.2718		.271_	-	
-	-			.0568		.056		
	3			.02.48		.025		
	п			6.5707		6.510		

TABLE VII SAMPLE CALCULATION SHEET (B)

H2-03 STOIC

P= 300 PSIA Q=-56.384 KCALS

-	T°K	2500	3000	3500	3600	3640	3700	4000	
	a Ha	.103	. 396	.978	1.122		1,269	1.693	
	b H_20	6.117	5.690	4.705	4.432		4.134	3,122	
	e 02	,038	.132	.296	,335		.371	,466	
	h OH	.055	.271	.785	.918		1.062	1.500	
	i H	.005	,057	.349	.474		.632	1.370	
	j O	.002	.025	.168	,230		.312	.696	
	h	6.320	6.571	7,281	7.511		7.780	8,847	
	ZniAHi	48.635	190,876	236.491	246,179		256,106	287,599	
	QAV				262,703		2.30,949		
	ΔH	157.254	230.417	361.804	398.788		440,468	595,988	
	Ah	1.397	2.046	3.213	3,542	3,790	3,912	5,293	
				•					
									!
	ZniSi	413.054	435,966	471.300	480.766		491.547	531.002	
	2.5						44		
	nKIn P	37.850	39.353	43,605	44,983		46,594	52,984	
	ZniKin	2.240	7.382	16.698	18,815		21.351	28,984	
	C		4.0.000		45455		ALL 0 - A	CA C A CA CACACAC A CACACAC ACACACACACACAC ACACACACAC ACAC ACAC ACAC ACAC ACAC ACAC ACAC ACAC ACAC AC AC ACAC AC A	
	5	311.444	403,495	444, 393	454,598		466,304	206,636	
		0.050	0.000	0.045	1	A 10-	A . A1	4 400	
	3	3.33%	3,388	5.74 1	4.031	4.101	7.141	7,499	
-									
-									
-									
1		1							

			- T	9 -		
			TABI	LE VIII		
		E	THALPY - I	entropy sum	MARY	
			$P = pres$ $\Delta h = kcal$ $s = cal$	ssure in ps l per gram per gram p	ia or ^o K	
		RFNA -	NH3 OVER-	OXIDIZED (r	= 3.00)	
Temp ^O	K	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3000	۵h s	1.381 2.811	1.422 2.886			
2500	Ah s	1.004 2.674	1.012 2.739			
2400	Δh s	0.943 2.649	0.948 2.713			
2300	Δh s	0.885 2.624	0.888 2.688			
2000	Δh s	0.723 2.549	0.724 2.611	0.730 2.884		
1500	∆h s			0.479 2.740	0.479 2.802	0.479 3.152
1300	۵h s			0.390 2.677	0.390 2.739	
1000	∆h s			0.261 2.564	0.261 2.626	0.261 2.976
500	4 h s				0.070 2.362	0.070 2.712
400	۵h s					0.035 2.634
300	∆ h s				0.0 2.185	0.0 2.535

•

			-			
Temp	K	P = 600	P = 300	P = 14.7	P = 7.35	P =.147
3000	۵n s	1.517 2.946	1.57 3.033	angkangkan di Kinggy Dagkang an Indonesia di Kan		
2700	۵h s	1.233 2.846				
2600	∆ h s	1.154 2.817	1.171 2.889	9999999-9999999-9999999-999		
2500	Ah s	1.080 2.788	1.092 2.858			
2000	A h s	0.770 2.650	0.772 2.716	0.783 3.005		
1200	Ah s		-	0.610 2.911		
1500	Ah s			0.510 2.849	0.510 2.914	0.510 3.282
1400	Ah s			0.462 2.815		
1 300	Ah s				0.414 2.845	
1000	4 h			0.278 2.661	0.278 2.726	0.277 3.094
500	∆h s					0.074 2.813
300	Ah s					0.0 2.626

RFNA - NH, STOICHIOMETRIC (r = 2.21)

Temp ^o	K	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3000	A h s	1.548 3.272	1.583 3.362			
2500	۵h s	1.169 3.134	1.172 3.213			
210 0	Ah s	0.920 3.026	0.921 3.103	1990-1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1		
2000	Δh s	0.861 2.997	0.861 3.074	0.864 3.413		
1500	Ah s			0.577 3.248	0.577 3.326	0.577 3.764
1400	4h s			0.418 3.130	600 c 1 - 60 c 2 - 60	
1000	4 h s			0.317 3.038	0.317 3.116	0.317 3.553
900	A h s		99499 80-94 (P-46)	0.268 2.987	0.268 3.064	
800	A h S				0.221 3.008	
500	Ah s				0.086 2.797	0.086 3.234
400	Ah s					0.042 3.138
300	۵h s					0.0 3.017

RFNA - NH_3 UNDER-OXIDIZED (r = 1.50)

		1113	3 0151	UALDIESD (1 - 2.007	
Temp	K	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3500	۵h s	2.041 3.044	2.208 3.160			
3400	۵h s	1.888			danterip, nur darterip (d de standa	
3300	۸h s	1.749 2.958	1.850 3.055	her fan fik dige ger of kalf fan hinn de orden som	gangetangah-utawi kayan karka da dise. Angki-weba	
3200	Ah S		1.704 3.009	in reflemante er förgatte styrgette andra att en	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
3000	6h s	1.415 2.852	1.458 2.930	1.940 3.379		
2500	۵h s		1.034 2.776	1.107 3.080		
2000	A h s			0.747 2.920	0.747 2.984	
1500	A h s	999-949-959-959-999-999-999-999-999-999-		0.488 2.773	0.488 2.835	0.488 3.187
1000	۵h s					0.266 3.008
500	۵h s					0.071 2.739

 $NH_3 - O_3$ OVER-OXIDIZED (r = 2.00)

- T 13 -

Temp ^o K		P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3500	Ah S	2.351 3.278	2.554 3.412			
3400	∆h s	2.167 3.225				
3300	4h s	2.001 3.175	2.132 3.288			
3200	4h s		1.956 3.233			
3000	Ah s	1.597 3.046	1.658 3.137	2.267 3.657	•	
2500	Ah s		1.146 2.951	1.260 3.294	1.311 3.383	
2000	Ah s			0.819 3.099	0.824 3.169	
1800	Ah s			0.691 3.031	0.691 3.098	
1500	۵h s			0.533 2.934	0.533 3.001	0.533 3.380
1000	A h s					0.289 3.183

NH3 - 03 STOICHIOMETRIC (r = 1.41)

		NH3 -	- 03 UNDER-	-OXIDIZED (1	- 1.10)	
Temp ^o	K	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3500	Ah s	2.275 3.508	2.469 3.647			an an a share the standard and a share the sha
3200	A h s	1.810 3.369	1.892 3.474			
3100	Δh s	1.692 3.332	1.750 3.429			
3000	Ah s	1.588 3.297	1.628 3.389	2.164 3.919		
2500	∆ h s		1.195 3.232	1.249 3.590		
2000	∆ h s			0.878 3.426	0.879 3.504	
1700	۵h s			0.699 3.329	0.699 3.406	
1500	A h s			0.585 3.258	0.585 3.335	0.585 3.770
1000	A h s					0.320 3.556
500	Δh s					0.086 3.233

Temp ⁰ 1	K	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
3500	۵h s		2.563 3.994			
3000	∆h s	1.754 3.660	1.771 3.752			
2600	Ah s	1.391 3.526	1.398 3.619			
2500	dh s	1.317 3.497	1.321 3.589	1.377 4.004		
2000	Ah s			0.975 3.826		
1500	Δh s			0.653 3.641	0.653 3.731	0.653 4.238
1400	Δh s			0.592 3.599		
1 300	۵h s			0.532 3.555	0.533 3.648	
1200	Δh s			0.474 3.508	0.474 3.599	
1100	Ah s				0.417 3.548	
1000	۵h s			0.360 3.404	0.360 3.494	0.360 4.002
500	Δh s					0.098 3.640

NH3 - 03 UNDER-OXIDIZED (r = 0.80)

		m .	r -	
-	1.2.4	100	3	-
	L.	- in 1	U	

		2 3 0000 (2)0)00								
Temp ^o K		P = 600	P = 300	P = 14.7	P = 7.35	P = .147				
4000	۵h s	3.935 3.839	4.555 4.087							
3800	۵h s	3.274 3.670			agamenter of the degradient degradient degradient degradient degradient degradient degradient degradient degrad					
3700	∆h s	2.993 3.595	3.350 3.774							
3600	Δh s		3.028 3.686							
3500	Ah S	2.516 3.462	2.746 3.607	5•345 4•745	No althou indiana ondora Alta dita o rego althou	an a				
3000	A h s	1.706 3.213	1.765 3.306	2.431 3.858	2.777 4.055					
2500	4h s			1.334 3.464	1.383 3.555	2.367 4.380				
2000	۵h s			0.885	0.889	0.943 3.764				

 $H_0 = O_z$ OVER-OXIDIZED (r = 9.92)

 $H_2 - O_3$ STOICHIOMETRIC (r = 7.94)

Temp ⁰ I	5	P = 600	P = 300	P = 14.7	P = 7.35	P = .147
4000	Δh s	4.580 4.217	5.293 4.499			
3800	Δh s	3.819 4.023				
3700	∆h s	3.495 3.936	3.912 4.141			
3600	Ah s		3.542 4.037			
3500	Δh s	2.936 3.780	3.213 3.947	6.204 5.246		
3000	۵h s	1.965 3.481	2.046 3.588	2.869 4.229	3.278 4.457	
2500	۵h s		1.397 3.352	1.549 3.752	1.617 3.859	2.825 4.821
2000	Ah s			0.992 3.507	0.999 3.587	1.092 4.069
1800	<u>A</u> h s					0.833

 $H_2 - 0_3$ UNDER-OXIDIZED (r = 6.61)

Temp ^o K		P = 600	P = 300	P = 14.7	P = 7.35	P = .147
4000	∆h s	4.680 4.600	5.454 4.910			
3800	A h S	3.861 4.391				
3700	۵'n s	3.516 4.298	3.957 4.522			
3600	4h s		3.561 4.411	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
3500	Δh S	2.933 4.136	3.213 4.314	6.460 5.738		
3000	۵h s	2.000 3.850	2.058 3.960	2.836 4.632	3.267 4.880	
2500	۵h s		1.490 3.754	1.565 4.177	1.611 4.286	2.778 5.294
2000	A h s		9,49, _{99,1} ,49,45,	1.085 3.966	1.090 4.057	1.124 4.582
1500	۵h s					0.719 4.350
1000	Δh s					0.391 4.084

Ho - 03 U	NIER-OXIDIZED (n .	4.96)
-----------	-----------------	-----	-------

Tempok		₽=600	P = 300	P = 14.7	P = 7.35	P = .147
4000	۵h ع	5.108 5.367	5.949 5.717			
3600	4h s	3.569 4.960				
3500	Ah s	3.299 4.886	3.560 5.083	7.072 6.690		
3400	۵h ع		3.256 4.994			
3000	۵h ع	2.359 4.598	2.411 4.732	3.12 5 5.490	3.556 5.760	
2500	۵h s		1.781 4.503	1.863 5.037	1.908 5.171	3.023 6.297
2000	Ah s			1.307 4.791	1.308 4.907	1.357 5.579
1500	Ah 3					0.870 5.301
1000	۵h s				ar Barrena - G argana (Barrena - Ba	0.477 4.983
800	Ah 8					0.332 4.822

TABLE IX

PERFORMANCE SUMMARY

RFNA - NH3(1)

	r	Pc	Pe	C	Isp	TCK	Tok	
3.00 2.21 1.50	(stoic.)	300 300 300	14.7 14.7 14.7	6645 7323 6898	207 228 214	2325 2599 2062	1360 1630 1110	
3.00 2.21 1.50	(stoic.)	600 600 600	14.7 14.7 14.7	7161 7942 7384	223 247 230	2331 2621 2063	1170 1425 955	
3.00 2.21 1.50	(stoic.)	300 300 300	7 • 35 7 • 35 7 • 35	7167 7914 7384	223 246 230	2325 2599 2062	1190 1425 955	
3.00 2.21 1.50	(stoic)	600 600 600	7.35 7.35 7.35	7576 8437 7782	236 262 242	2331 2621 2063	1010 1240 810	
3.00 2.21 1.50	(stoic)	300 300 300	.147 .147 .147	8721 9751 8869	271 303 276	2325 2599 2062	480 615 350	
3.00 2.21 1.50	(stoic.)	600 600 600	•147 •147 •147	8854 9920 8996	275 308 280	2331 2621 2063	400 515 300	

TABLE IX

PERFORMANCE SUMMARY

NH3(1) - 03(1)

r	Pc	Pe	C	Isp	TCK	ToK	
2.00	300	14.7	8486	264	3280	2400	
1.41 (stoic.)	300	14.7	8930	278	3285	2460	
1.10	300	14.7	8901	277	3124	2050	
0.80	300	14.7	8292	258	2564	1423	
2.00	600	14.7	9233	287	3352	2200	
1.41 (stoio)	600	14.7	9749	303	3362	2290	
1.10	600	14.7	9649	300	3179	1802	
0.80	600	14.7	8910	277	2573	1220	
2.00	300	7 • 35	9199	286	3280	2200	
1.41 (stoic.)	300	7 • 35	9692	301	3285	2280	
1.10	300	7 • 35	9621	299	2124	1805	
0.80	300	7 • 35	8921	277	2564	1230	
2.00	600	7 • 35	9873	307	3352	2185	
1.41 (stoic.)	600	7 • 35	10414	324	3362	2100	
1.10	600	7 • 35	10233	318	3179	1580	
0.80	600	7 • 35	9412	293	2573	1050	
2.00	300	.147	11684	363	3280	1100	
1.41 (stoic.)	300	.147	12409	386	3285	1220	
1.10	300	.147	11872	369	3124	796	
0.80	300	.147	10786	335	2564	465	
2.00	600	.147	11936	371	3352	1140	
1.41 (stoic.)	600	.147	12721	396	3362	1060	
1.10	600	.147	12132	377	3179	665	
0.80	600	.147	10972	341	2573	380	

- T 22 -

TA MA TA

MIRPORYANCE SUMPARY

 $H_2(1) - O_3(1)$

						and the second se	and the second s
r	Pc	Pe	c	Isp	TCK	TeoK	
9.92	300	14.7	10129	315	3634	2870	
7.94 (stoic.)	300	14.7	10613	330	3640	2900	
6.61	300	14.7	11107	345	3607	2820	
4.96	300	14.7	11762	366	3447	2500	
9.92	600	14.7	11059	344	3752	2770	
7.94 (stoic.)	600	14.7	11665	363	3760	2815	
6.61	600	14.7	12227	380	3721	2710	
4.96	600	14.7	12816	398	3537	2280	
9.92	300	7 • 35	11021	343	3634	2735	
7.94 (stoic.)	300	7 • 35	11629	362	3640	2765	
6.61	300	7 • 35	12113	377	3607	2670	
4.96	300	7 • 35	12768	397	3447	2275	
9.92	600	7.35	11856	368	3752	2625	
7.94 (stoic.)	600	7.34	12521	389	3760	2675	
6.61	600	7.35	13081	407	3721	2550	
4.96	600	7.35	13651	424	3537	2010	
9.92	300	.147	14391	447	3634	1920	
7.94 (stoic.)	300	.147	15217	473	3640	2015	
6.61	300	.147	15768	490	3607	1650	
4.96	300	.147	16081	500	3447	1080	
9.92 7.94 (stoic) 6.61 4.96	600 600 600	•147 •147 •147 •147	14819 15739 16214 16442	461 489 504 511	3752 3760 3721 3537	1710 1910 1430 910	

TABLE X

FROZEN PERFORMANCE SUMMARY

RFNA - NH3							
	r	Pc	Pe	C	Isp	Took	TeoK
3.00 2.21 1.50	(stoic.)	300 300 300	14.7 14.7 14.7	6563 7199 6898	204 224 214	2325 2599 2062	1315 1505 1110
NH3 - 03							
2.00 1.41 1.10 0.80	(stoic.)	300 300 300 300	14.7 14.7 14.7 14.7	8155 8544 8643 8232	254 266 269 256	3200 3285 3124 2564	1882 1900 1780 1395
$H_2 - 0_3$							
9.92 7.94 6.61 4.96	(stoic.)	300 300 300 300	14.7 14.7 14.7 14.7	9578 10091 10566 11306	298 314 329 352	3634 3640 3721 3447	2095 2100 2060 1960

-A 1-

APPENDIX I

FROZEN FLOW

It is assumed in the body of this thesis that equilibrium exists throughout the expansion process. This may not be correct since during expansion the gases undergo a very rapid change of temperature and pressure so that equilibrium may not be maintained to exhaust conditions. Therefore it is valuable to calculate performance of rocket propellants assuming "frozen" flow. This assumes that the composition of the gases is the same at exhaust conditions as it is at the chamber conditions. Frozen flow represents the amount of energy obtained from the precess due only to the decrease in sensible heat with the drop in temperature. This is the least energy obtainable from the expansion and represents one of two extremes of the expansion process.

In all probability the composition of the combustion gases at the exhaust temperature and pressure lies somewhere between the equilibrium and frozen flow.

For the frozen composition calculations it is assumed that the change in composition of each component is linear within the 100-degree interval bracketing the chamber temperature. Accordingly, the composition at the theoretical chamber temperature is calculated and held constant during expansion.

The procedure used in calculating Δ h and s is the same as in the case of equilibrium flow except that the composition at the exhaust conditions is considered to be the same as that in the chamber. Performances for the three systems considered were calculated for a chamber pressure of 300 psia and an exhaust pressure of 14.7 psia. These values are included in Table T-10. Frozen flow appears as dotted lines on the enthalpy-entropy diagrams.

IIG.1 16

T. OF TICAL SPECIFIC LAPULSE FROM h-S I LAGHA.

			<u> </u>	1		1		1		í							£	1	1				in it				* * * * *					<u> </u>					
	·	-	1.			1		11-		-						1	1	1.17		,	20	00	<u> </u>	-		• • • •			i		•				·		
				+				4 4			1.		4	1	<u> -</u>	<u></u>		+	1			•															
	•		1.1	1.		i .	-			Z	• •			<u> </u>					·		-						1.1.1			•	-						
			11 	1.1		*		1	/	1:		:			•			÷.		1-1-1							•, 1•	.			÷. :	. ::		•			
• 1	+									-							* *									-									-		
	1		1.11	11.	122	*	1	1		•					11.1	. *	<u> </u>	1. 1.	1	1.	180	20	K	4.1	111		11.	1 1	-		4						
		1	1.4	· ':	÷ .		1	:	1.1					. : : .	1.12	:	·	1.1 17		1 :			:.::				•		1]	
							+		1	1							: .	1		112		-					29	2									
1.	1	·		ļ.,		ļ	ļ	/	[<u> </u>	• • • • •			. :	6				1111	1	* # 	-	4 y 1-1	1	11-0	1	1									. =::.	•
+			1	· .	. :			i.					(· · .]	:::		للحجر								•			
		.*											4 e			+		<u>+</u>			150	000	K		~						*						
	0	.60			2	1 1		:			11.	•••	+ +++++	1	*	1.	• •	1	- 11 -						7 1	+	• •									+	
· · · · · ·		:		11	-		1				4 44 4 9 4 4	* * *	1.1	-				1 11	• • •	1				****	· · · · · · · · · · · · · · · · · · ·		i		-		* =	****		··· ·	-	1 2	
								1.	1.1.1									1	111	0.00			E.H			1.11		- F	1			·					
			 			11	+	1	112	1	4		4.4.4		<u>.</u>					12					6 4 4 4 8	* ***	•••••		+		-						
1 <u>1</u> 1			1.		· ·	· · ·	1		•				A Cap B				2 5 8 4 5 444 4 1 2 4 4	بمنز			11-1	1.11	1	74 (*			- 1		*						
1	:			1.			1.00		1	111	11.			1												111	h				A	GR	A		· · · · ·		
	+		1. ·	1	+	1 1	1	1		1.	4									1						•					-					1	
				ļ	-											<u> </u> :			1111			1 . 4 3 . 4	1111							<u> </u>	*					· · · · · ·	
		-	1.11				1.			1				1 111 1		- 1-								* * 1 * 4 * 4			NH-		3-	Ś	5 Y	S	F.E	M			
			†	1:		<u> </u>	<u> </u>							• • •				:	- 1 + 4 - 4 + 4	.: :			:					5	-9						1		
								<u> </u>	<u></u>	<u> </u>					· · · ·			1 · · · ·				+ +	1. 11	# 1 1 1		1											
							1	1					Ŧ			į. •	-					ļ			••••	÷	ST	01	G		- =	1.	4	09	1		
	\top	•	17.1	11.1	1.	1.	1		• •	1.1.1	111			1 : .		1	1		1.11	1111	1.			•		1)										- 1	
			i		<u></u>				·				* * *								·			<u> </u>										·			
	h	00		1.1									+		1. A.		. •		60 - C		. ¹ •					1.						1.1				1	
1 1 2		•		+ .		1 .	1.				in	: .	• ••			::	4.4				2			۰.	:	. ··			1	Z	50			·			
								+ • • 	** *	2	HO.																			2	50	:	-				-
•					1.1.1	1		1	111		• • • •	111,	11	. 1.	* **	<u>i ::::</u>	11.1	ļ,: .	+		1.1-		1	• • •	1.1	11.4									·		
					• 3 •	1	1:			1.	FA	T	20	by		0		1.14	·C	DI	5	P	ER	0	R	9N	1:0	FE	-	on	-	· . · .			÷	i i	
				1.												T	K.	1.11		112		1.0				A.C.C.			• •			8 +			-		
		· · ·		1 1	1		1	1	1	1					1			1.11	1	1	1		l'i						1							· · · · ·	

Thesis 11246 S57 Slater AUTHOR Calculation of enthalpy6 enthropy diagrams for rocket PHOPELLant systems Ilant														
	DATE DUE													
				-										

