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ABSTRACT

This study offers a systematic stability analysis of unsteady shear flows representing large-scale, low-

frequency internal waves in the ocean. The analysis is based on the unbounded time-dependent Couette model.

This setup makes it possible to isolate the instabilities caused by uniform shear from those that can be attributed

to resonant triad interactions or to the presence of inflection points in vertical velocity profiles. Linear analysis

suggests that time-dependent spatially uniform shears are unstable regardless of the Richardson number (Ri).

However, the growth rate of instabilitymonotonically decreases with increasingRi and increases with increasing

frequency of oscillations. Therefore, models assuming a steady basic state—which are commonly used to con-

ceptualize shear-induced instability and mixing—can be viewed as singular limits of the corresponding time-

dependent systems. The present investigation is focused on the supercritical range of Richardson numbers

(Ri . 1/4) where steady parallel flows are stable. An explicit relation is proposed for the growth rate of

shear instability as a function of background parameters. For moderately supercritical Richardson num-

bers (Ri ; 1), we find that the growth rates obtained are less than, but comparable to, those expected for

Kelvin–Helmholtz instabilities of steady shears at Ri, 1/4. Hence, we conclude that the instability of time-

dependent flows could represent a viable mixing mechanism in the ocean, particular in regions charac-

terized by relatively weak wave activity and predominantly supercritical large-scale shears.

1. Introduction

Shear-induced destabilization of laminar currents and

the subsequent generation of small-scale turbulence rep-

resents one of the major drivers of diapycnal mixing in the

ocean interior (e.g., Smyth andMoum2012).Motivated by

numerous geophysical applications, the problem of in-

stability of vertically sheared parallel flows has long

evolved into a broad and active research area of fluid dy-

namics. Comprehensive reviews of the field can be found

in, for example, Peltier and Caulfield (2003), Thorpe

(2005), and Ivey et al. (2008). The following discussion is

therefore focused on a small subset of results that are

directly relevant for the present investigation.

Intermittent mixing events in the ocean interior are

commonly conceptualized by assuming that the onset

of turbulence is triggered by the well-known Kelvin–

Helmholtz instability (KHI). KHI (von Helmholtz 1868;

Kelvin 1871) occurs in stably stratified (i.e., with density

increasing downward) unidirectional steady shear flows.

The susceptibility of shear flows to KHI is traditionally

determined using the Richardson number

Ri5
2

g

r*

›r*

›z*

›u*

›z*

� �2
, (1)

where r*(z*) and u*(z*) are the vertical profiles of

density and velocity in the basic state and asterisks

hereafter denote dimensional field variables. Non-

dissipative steady shears are stable as long as the

Richardson number exceeds the critical value of Ricr 5
1/4 (Richardson 1920; Miles 1961; Howard 1961). In the

subcritical regime (Ri , 1/4), nonlinear evolution of

growing modes is typically characterized by a series of

secondary instabilities, which ultimately generate fully

turbulent billows—a scenario supported by observational

(Woods 1968; van Haren et al. 2014), laboratory (Thorpe

1971; Atsavapranee and Gharib 1997), and numerical

(Caulfield and Peltier 2000; Smyth et al. 2001) studies.

The inclusion of dissipative effects can substan-

tially modify the conditions for—and the evolutionary

patterns of—KHI. For instance, the critical Richardson

number required for instability is sensitive to the as-

sumed diffusivity and viscosity values. Somewhat coun-

terintuitively, both viscous and diffusive effects couldCorresponding author: Timour Radko, tradko@nps.edu
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be either stabilizing or destabilizing, depending on a

particular system (e.g., Balmforth and Young 2002;

Thorpe et al. 2013). A recent numerical study of the

KHI evolution in the field of preexisting turbulence

revealed a tendency for suppression of the flow roll-

up relative to the patterns realized for corresponding

laminar initial states (Kaminski and Smyth 2019). An-

other interesting effect is realized in two-component

fluids with unequal diffusivities of density components,

where weak, dynamically stable shears can destabilize

the system by triggering so-called thermohaline-shear

instability (Radko 2016).

In the oceanographic context, the vertical shear re-

quired for KHI is usually attributed to internal waves.

The associated shears are, strictly speaking, neither

unidirectional nor steady. However, since the spectrum

of internal waves is dominated by relatively slow near-

inertial waves (e.g., Garrett andMunk 1972), the steady-

state approximation appears to offer a reasonable

starting point for the analysis of shear-driven insta-

bilities and it has been frequently used in the past

(e.g., Dunkerton 1997). Nevertheless, the intrinsic time-

dependence of internal waves has some major conse-

quences for their stability. A fundamentally different

class of instabilities arises due to the possibility of res-

onant triad interactions between the primary internal

wave and two low-amplitude harmonics. Several ana-

lyses of parametric subharmonic instability—usually

the most rapidly amplifying type of instabilities induced

by triad interactions—have led to a conclusion that

propagating internal waves can be unstable regardless

of its amplitude (Mied 1976; Drazin 1977; Klostermeyer

1982; Lombard and Riley 1996). This result appears to

be robust; it is also supported by our analysis of time-

dependent shear instabilities (TDSI) in the Couette

model. However, it should be kept in mind that the in-

stability of a flow field does not always guarantee the

transition to turbulence. For instance, the laboratory

experiments of Troy and Koseff (2005) indicate that

the threshold Richardson numbers for the formation of

visible billows in oscillatory shears are actually signifi-

cantly lower than the canonical value of Ricr 5 1/4.

The objective of the present study of time-dependent

shear flows is threefold. First, we embark on a rather

complete exploration of the parameter space in order to

examine stabilizing/destabilizing effects of planetary

rotation, temporal variability pattern of the background

flow, and dissipation of buoyancy and momentum.

Another defining feature of the present analysis is

the chosen framework, which is based on the unbounded

Couette flow. This configuration makes it possible to

delineate the destabilization caused by uniform shear

from (i) effects of resonant triad interactions between

harmonic waves and (ii) instabilities associated with

the presence of inflection points in vertical velocity

profiles. In this regard, the present investigation can be

related to the stability analyses of inertial currents by

Winters (2008) and of oscillatory flows characterized

by solid-body rotation in the vertical plane by Majda

and Shefter (1998), although our methodology is sub-

stantially different. Finally, an attempt is made to iden-

tify parameter regimes where the growth rates are

substantial and amplifying perturbations are thus likely

to strongly influence the evolution of the flow field. An

explicit scaling law is proposed, which captures the de-

pendencies of growth rates on the characteristics of the

basic flow.

The manuscript is organized as follows. The model

configuration and the technique used in linear stability

analyses are described in section 2. Section 3 explores

properties of TDSI in a simplified two-dimensional

framework. The physical interpretation of TDSI is of-

fered in section 4, where the growth of unstable per-

turbations is linked to the strain-inducedmodulation of

vertical velocity (the Orr mechanism). Section 5 pres-

ents the analysis of a more complicated and realistic

three-dimensional system under the influence of plan-

etary rotation. The results are summarized and con-

clusions are drawn in section 6.

2. Formulation

The total density field r* is separated into the back-

ground component r* and a small departure r0* from it:

r*5 r*(z*)1 r0*(x*, y*, z*, t*), (2)

where asterisks denote dimensional quantities. We con-

sider a linearly stratified basic state:

r*5A
r
*z*1A

r0
* , (3)

where (Ar
*, Ar0

* ) are constants and ›r*/›z*5Ar
*, 0.

The velocity field v*5 (u*, y*, w*) is similarly sepa-

rated into the basic state v*, which is assumed to be

time dependent, and a weak perturbation v0*. The hor-

izontal components of basic velocity (u*, y*) are finite

and vary in z* and t*. The basic vertical velocity w* on

the other hand is assumed to be negligible. This feature

reflects the pattern of dominant internal waves in the

ocean that operate at low (close to inertial) frequencies

and are characterized by nearly horizontal wave fronts.

We further assume that the basic horizontal velocity

components vary linearly in z*:

u*5A
U
* (t*)z*, y*5A

V
* (t*)z*, w*5 0: (4)
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The nonlinearity of the equation of state and

the compressibility of seawater are ignored, which

reduces the governing Boussinesq equations of

motion to

8>>>>>><
>>>>>>:

›r0*
›t*

1 v* � =r0*1w*
›r*

›z*
5 k

r
=2r0*,

›v*
›t*

1 v* � =v*1 (2f*y*, f*u*, 0)52
1

r
0
*
=p*2 g

r0*
r
0
*
i
z
1 n=2v*1F*

= � v*5 0

, (5)

where p* is the pressure, g is gravity, f* is the Coriolis

parameter, iz is the vertical unit vector, F* is the exter-

nally imposed pressure gradient force maintaining the

basic velocity v*, n is the molecular viscosity, and kr is

the molecular diffusivity of density. Note that here we

make no attempt to represent effects of unequal diffu-

sivities of heat and salt—two major components of

seawater density—thereby intentionally excluding from

our analysis a set of processes collectively referred to as

double-diffusive convection (Stern 1960; Radko 2013).

System (5) is nondimensionalized using micro-

structure scales, on which effects of molecular

viscosity and dissipation play an order-one role.

Thus, d5 [krn/(g/r0*)j›r*/›z*j]
1/4
, d2/kr, kr/d, r0*nkr/d

2,

and j›r*/›z*jd represent the units of length, time,

velocity, pressure, and density perturbations, re-

spectively (e.g., Radko 2013). The governing sys-

tem (5) is first nondimensionalized and then

linearized with respect to the basic state (r, p, v),

resulting in

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

›r0

›t
1A

U
z
›r0

›x
1A

V
z
›r0

›y
2w0 5=2r0

›u0

›t
1A

U
z
›u0

›x
1A

V
z
›u0

›y
1w0A

U
2 f y0 5Pr

�
2
›p0

›x
1=2u0

�

›y0

›t
1A

U
z
›y0

›x
1A

V
z
›y0

›y
1w0A

V
1 fu0 5Pr

�
2
›p0

›y
1=2y0

�

›w0

›t
1A

U
z
›w0

›x
1A

V
z
›w0

›y
5Pr

�
2
›p0

›z
2 r0 1=2w0

�

›u0

›x
1

›y0

›y
1

›w0

›z
5 0

, (6)

where f 5 f*d2/kr is the nondimensional Coriolis pa-

rameter and Pr 5 n/kr is the Prandtl number. The

pressure field can be inferred diagnostically from the

divergence of the momentum equations, and therefore

(6) effectively represents the closed set of prognostic

equations for (r0, u0, y0, w0). To simplify the interpre-

tation of our nondimensional results in terms of rele-

vant oceanic scales, we assume the following nominal

dimensional values of governing parameters:

N*2 ; 1025 s22, r
0
*; 103 kgm23, g; 10m s22,

f*; 1024 s21, n; 1026 m2 s21, k
r
; 1027 m2 s21 ,

(7)

which suggest d 5 0.01m. The key nondimensional

numbers are evaluated accordingly:

f 5 0:1, Pr5 10, N5
ffiffiffiffiffi
Pr

p
5 3:16: (8)

A complication arising in the stability analysis of (6)

is associated with z dependence of its coefficients

(AVz,AUz), and the problem is treated using techniques

utilized in earlier studies of the unbounded Couette

model (Knobloch 1984; Shepherd 1985; Radko 2019).

The perturbation fields are represented by a superposi-

tion of plane-wave components

(r0, u0, y0,w0)5Re[(r̂, û, ŷ, ŵ)exp(ikx1 ily1 imz)],
(9)
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where (r̂, û, ŷ, ŵ) are time dependent. Importantly, the

vertical wavenumberm in the uniform shearmodel (e.g.,

Shepherd 1985) is also a function of time:

m5m
0
2B

U
(t)k2B

V
(t)l , (10)

where

B
U
5

ðt
o

A
U
(t0) dt0, B

V
5

ðt
o

A
V
(t0) dt0 . (11)

For each mode (9), transformation (10) reduces the

governing system to a set of ordinary differential equa-

tions (ODEs):

d

dt

0
BBB@

r̂

û

ŷ

ŵ

1
CCCA5M

0
BBB@

r̂

û

ŷ

ŵ

1
CCCA , (12)

where the elements of 4 3 4 matrix M depend on the

wavenumbers (k, l, m0), time t, instantaneous values of

shear (AU, AV), their temporal integrals (BU, BV), and

the Prandtl number (Pr).

3. Two-dimensional model

To gain insight into the stability properties of (6),

we first explore a relatively simple nonrotating two-

dimensional (x, z) version of the model, which is ob-

tained by assuming l5 0, ŷ5 0, f5 0, andAV5 0. In this

regime, the governing equations can be simplified

by introducing streamfunction c, such that (u, w) 5
(2›c/›z, ›c/›x). In the vorticity–streamfunction form,

system (6) reduces to8>>><
>>>:

›r0

›t
1A

U
z
›r0

›x
2

›c0

›x
5=2r0

›=2c0

›t
1A

U
z
›=2c0

›x
5Pr

�
2
›r0

›x
1=4c0

� . (13)

A monochromatic pattern is assumed for the back-

ground shear:

A
U
5 a

U
cos(vt) . (14)

The shear strength is traditionally quantified using the

Richardson number in (1). In particular, we introduce the

Richardson number based on the mean shear variance

Ri5

2
g

r
0
*

›r*

›z*�
›u*

›z*

� �2�
t

, (15)

where the symbol [. . .]t denotes temporal averaging, and

the minimal Richardson number is

Ri
min

5

2
g

r
0
*

›r*

›z*

max

�
›u*

›z*

� �2� . (16)

Both mean and minimal Richardson numbers can be

expressed as a function of shear amplitude aU in (14) as

follows:

Ri5
2Pr

a2U
, Ri

min
5

Pr

a2U
. (17)

In terms of the mean Richardson number (Ri), the

canonical condition for stability of parallel flows with

respect to KHI amounts to Ri5 2Rimin . 2Ricr 5 1/2

and therefore our investigation will specifically target

this supercritical regime.

Solutions of the two-dimensionalmodel (13) are sought

in the form of plane waves (r0, c0)5Re[(r̂, ĉ) exp(ikx1
imz)] and the counterpart of (12) reduces to

d

dt

�
r̂

ĉ

�
5M

2D

�
r̂

ĉ

�
, (18)

whereM2D is a 23 2 matrix with elements that depend

on (k, m0, t, AU, BU, Pr). Stability properties of the

ODE system in (18) are determined by integrating it

in time using random complex initial conditions for

(r̂, ĉ). Since this system is linear, its solutions even-

tually become dominated by the fastest growing

mode. The growth rate lr is evaluated by introducing

the quadratic norm that is based on the net pertur-

bation energy, which reduces, in our nondimensional

units, to

e5
(k2 1m2)jĉj2

4
1

Prjr̂j2
4

. (19)

The best linear fit to (1/2) ln(e) is used to determine lr
for each (k, m0).

A typical calculation of this nature is shown in

Fig. 1, which was performed for (Ri, v, k, m0)5
(1, 0:1, 1:53 1024, 1022). The inspection of the energy

amplification pattern in Fig. 1 indicates that, after a

brief initial adjustment period, the perturbation

starts to grow in a nearly exponential manner. It is

also apparent that the overall exponential growth

is modulated on the temporal scale of 20p, which

matches the periodicity of the basic shear 2p/v. The

calculations analogous to that in Fig. 1 were repeated

for a wide range of wavenumbers and the overall
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maximal growth rate lmax was determined by maxi-

mizing lr over the wavenumber space:

l
max

5max
k,m0

(l
r
) . (20)

Because of the invariance of governing equations with

respect to the transformation (k,m0)/ (2k,2m0), the

growth rate in (20) can be maximized over nonnegative

values of m0 without loss of generality.

The key objective of the following investigation is the

analysis of the maximal growth rate as a function of

(Ri, v). The relevant range of v could be estimated by

recalling that the frequency of internal waves lies in the

interval

f ,v,N , (21)

and their energy spectrum is dominated by near-inertial

components (v ; f). Thus, even though planetary ro-

tation is not incorporated in our two-dimensional cal-

culations, we assume that, for baseline parameters in

(8), the v 5 0.1 case represents the dominant (inertial)

oscillations. It should also be kept in mind that the wave

fronts of internal waves become progressively steeper

with increasing frequency. Our model, on the other

hand, is based entirely on the vertical shear of horizontal

velocity and thus implicitly assumes that wave fronts are

relatively flat. This implies that the proposed configu-

ration offers a consistent representation of wave-

induced shear for as long asv�N; 3.16. The following

analysis is therefore restricted to the range v , 1.

Figure 2 presents a series of calculations performed

for various (Ri, v) in which the growth rate lr is plotted

as a function of (k, m0). The patterns realized in all

configurations are qualitatively similar, taking the form

of narrow rays emanating from the point (k,m0)5 (0, 0).

This pattern indicates that the relation lr(k, m0) can be

more efficiently described in polar coordinates (k, u),

which are defined as follows:

k5k cos(u), m
0
5 k sin(u) . (22)

Figure 3 presents the counterparts of the growth rate

patterns in Fig. 2 that are plotted as functions of

(k, u). The unstable regions take the form of vertical

bands that are located in the vicinity of u ’ p/2 and

thus represent amplifying harmonics with almost

horizontal wave fronts. The range of unstable wave-

numbers in Fig. 3 is limited to k, kmax ; 0.1. In terms

of dimensional wavelengths L*, this condition trans-

lates to

L*.
2p

k
max

d; 0:6m. (23)

The stability of relatively short modes (L*& 0:6m)

is attributed to the action of molecular dissipation

(viscosity and diffusivity), which preferentially af-

fects small scales.

Another notable feature of patterns in Fig. 3, which

substantially expedites our subsequent calculations, is

the monotonic increase in the growth rate lr with de-

creasing wavenumber k for any given u. While no formal

proof of this property is available at this time, the in-

spection of numerous cases (only a small fraction of

which is presented here) indicates that it is a generic

feature of the oscillatory Couette flow. This finding im-

plies that the maximal growth rate lmax can be obtained

by considering the long wavelength limit (k / 0), in

which case (20) reduces to:

l
max

5max
u

�
lim
k/0

(l
r
)

�
. (24)

Formulation (24) makes it possible to efficiently explore

the wide range of governing parameters (Ri, v) by as-

suming small finite wavenumber (k 5 1026 was used

in the following calculation) and maximizing lr over

one-dimensional interval 0, u, p rather than over the

entire two-dimensional space of (k, m0).

Figure 4 presents the resulting pattern of lmax(Ri, v),

which indicates that the growth rate monotonically in-

creases with decreasing Ri and with increasing v. The

growth rate pattern is visibly different in the narrow

region of relatively low Richardson numbers (Ri, 1:5),

where decrease in lmax(Ri) is particularly rapid. In the

rest of the domain, the variation of the growth rate with

FIG. 1. The temporal record of (1/2) ln(e), where e is the qua-

dratic perturbation norm for Ri5 1, k5 1.53 1024,m05 0.01, and

v 5 0.1. The overall amplification pattern can be closely approxi-

mated by a straight line (dashed), which implies that the pertur-

bation grows at an exponential rate. However, the long-term

exponential growth is modulated on small temporal scales with

periodicity matching that of the basic state.
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both frequency and Richardson number are more

gradual. In particular, the lmax(v) relation for Ri. 1:5 is

well described by the proportionality lmax } v, as ap-

parent from Fig. 5a. This property can be rationalized by

the following argument. The calculation in Fig. 4 is

based on the limit k / 0, which represents relatively

large spatial scales. On such scales, the direct influence

of molecular dissipation is expected to be negligible and

the linear system (13) reduces to8>>><
>>>:

›r0

›t
1 a

U
cos(vt)z

›r0

›x
2

›c0

›x
5 0

›=2c0

›t
1 a

U
cos(vt)z

›=2c0

›x
1Pr

›r0

›x
5 0

. (25)

To explore properties of this nondissipative system, we

consider the transformation

8<
:

t/Ct, x/Cx, z/Cz

c0 /C2c0, r0 / r0

v/C21v

, (26)

and focus on C� 1, which represents an increase in the

frequency of oscillations relative to some nominal con-

figuration. As a result, (25) further reduces to

8>>><
>>>:

›r0

›t
1 a

U
cos(vt)z

›r0

›x
5 0

›=2c0

›t
1 a

U
cos(vt)z

›=2c0

›x
1Pr

›r0

›x
5 0

, (27)

which is invariant with respect to the transformation

(26). This invariance implies that the increase in fre-

quency is associated with the equivalent reduction

of spatial and temporal scales. The growth rate is in-

versely proportional to temporal scales, and therefore

it should be directly proportional to the background

oscillation frequency. Thus, for sufficiently large fre-

quencies, lmax is expected to be well described by

the relation

l
max

5 l
norm

(Ri)v . (28)

FIG. 2. The growth rate lr is plotted as a function of wavenumbers (k, m0) for various combinations of the

Richardson number and frequency: (a) Ri5 1, v5 0:1; (b) Ri5 1, v5 0:2; (c) Ri5 5, v5 0:1; and

(d) Ri5 5, v5 0:2. Only positive growth rates are shown. The maximal growth rate increases with increasing

frequency, whereas the increase in Ri has an adverse effect on the instability.
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This expectation is readily confirmed by the diagnostics

in Fig. 5b, which plots the ratios lmax/v as a function of

Ri for 23 values of v, spanning the interval from 0.15 to

1. Remarkably, all 23 curves in Fig. 5b are visually in-

distinguishable from each other.

The dependence of lnorm on Ri is well described by an

empirical relation

l
norm

5
c
1ffiffiffiffiffiffi
Ri

p 1
c
2

Ri
, (29)

where (c1, c2) are obtained from the best fit of (29) to the

pattern in Fig. 5b:

c
1
5 0. 3553, c

2
520:014 67: (30)

The proposed empirical model retains its form after

conversion to the dimensional units:

l
max
* 5

�
c
1ffiffiffiffiffiffi
Ri

p 1
c
2

Ri

�
v*. (31)

The relative RMS difference between the raw results in

Fig. 4 and (31) is less than 0.6%when evaluated over the

range 1:5,Ri, 10. Therefore, relation (31) can be used

to estimate the growth rate of time-dependent shears for

given environmental conditions.

To glean some insight into the potential significance of

TDSI, it is desirable to assess its strength in the context

of other destabilizing processes that occur in oceanic

shear flows. This task can be accomplished, for instance,

by comparing the TDSI growth rates with those of KHI.

The intensity of KHI is dependent on the Richardson

number and on the assumed basic velocity and density

profiles. However, the calculations performed for the

harmonic (Balmforth and Young 2002) and hyperbolic

tangent (Hazel 1972) shears indicate that, for moder-

ately subcritical Richardson numbers (Ri ;0.1), the

KHI growth rates are on the order of

l
KHI
* ; 0:1

›u*

›z*
. (32)

This crude estimate provides us with a convenient ref-

erence point for interpreting the results in Fig. 4.

Therefore, in Fig. 6, we plot the pattern of growth rates

normalized by the RMS basic shear:

FIG. 3. As in Fig. 2, but the growth rate pattern is now presented in polar coordinates (k, u), which are defined in

(22). Note the monotonic increase in lr with decreasing k.
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l
S
5

l
max
*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

›u*

›z*

� �2�
t

s 5 l
max

ffiffiffiffiffiffi
Ri

Pr

s
. (33)

In the majority of the parameter space in Fig. 6, the

ratios of the growth rate and shear are contained within

the range of 0.01, lS , 0.1. This finding implies that, in

terms of its ability to rapidly extract the energy from the

basic shear, TDSI is somewhat less effective than KHI

(lSKHI ; 0:1) but not dramatically so.

4. Physical interpretation

In an attempt to identify the essential physics of TDSI,

the governing equations in (13) are reduced to

8>><
>>:

Dr0

Dt
5w0

D§ 0

Dt
52Pr

›r0

›x

, (34)

where §0 5 =2c0 is the vorticity perturbation, all dissi-

pative processes are neglected, andD/Dt represents the

linearized material derivative:

D

Dt
[

›

›t
1u

›

›x
. (35)

In the absence of shear, system (34) supports regular

plane-wave solutions that maintain their amplitude in

time. The physics of internal waves is well understood

and it is illustrated in Fig. 7. The upper schematic rep-

resents the evolution of a harmonic perturbation that

displaces the density interface downward in some re-

gions (e.g., point A1) and upward in others (e.g., point

A3). The response of the system to this perturbation

is apparent from the vorticity equation in (34). The tilt

of the density interface [(›r0/›x). 0] at point A2 results

in the clockwise torque [(D§0/Dt) . 0], which reflects

the tendency of buoyancy forces to flatten inclined

density interfaces. This torque acts in the manner op-

posing the initial displacement, thereby providing the

restoring force that eventually reverses the tilt of the

density interface. This process then repeats over and

over, which maintains the oscillatory motion of invari-

able magnitude.

Note that the dynamics of buoyancy-driven oscilla-

tions illustrated in the upper panel of Fig. 7 pertains to

both vertically sheared and uniform flows. The essential

difference between the two systems comes into play by

FIG. 5. (a) The maximal growth rate lmax is plotted as a function

of frequency v for various values of the Richardson number in the

range 1:6#Ri# 10 with increments of 0.2. The growth rate

monotonically decreases with the increasing Richardson number.

(b) The normalized growth rate lnorm 5 lmaxv
21 is plotted as a

function of the Richardson number for various values of frequency

number in the range 0.15 , v # 1 with increments of 0.0385.

FIG. 4. The decimal logarithm of the maximal growth rate lmax is

plotted as a function of (Ri, v).

2384 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



considering effects of strain produced by the basic

Couette flow on the harmonic perturbation. The oscil-

lation of basic shear leads to the corresponding periodic

variation in the orientation of the perturbation wave

fronts. The lower panel (Fig. 7) illustrates the system

evolution during the phase when the perturbation is

oriented in the direction opposing the background

shear. In this regime, the basic shear flow tends to make

the perturbation wave fronts more vertical. Such a

change in the orientation of wave fronts has an inter-

esting consequence of amplifying the vertical velocity

component—the kinematic Orr effect (e.g., Lindzen

1988). This effect can be illustrated by relating w0 5
›c0/›x to §0 5 =2c0 as follows:

=2w0 5
›§ 0

›x
. (36)

Assuming the normal mode solutions for w0 and §0:

§ 0 5 §̂ cos(kx1mz)

w0 5 ŵ sin(kx1mz)
,

(
(37)

we arrive at

ŵ5
k§̂

k2 1m(t)2
. (38)

Thus, for any given amplitude of vorticity §̂ , ŵ tends

to increase with decreasing m2, which happens when

wave fronts become more upright. Now let us consider

for a moment a configuration where this strain-induced

increase in vertical velocity occurs in upwelling

locations—such as the point A3 in the upper panel of

Fig. 7. In this case, the perturbation will gain energy

and its amplitude will increase. In order for this

mechanism to produce persistent long-term growth,

the periodicity of the buoyancy-driven oscillating

mode should match the periodicity of strain-induced

forcing. The maximum of ŵ corresponds to the mini-

mum ofm2 which can be achieved either once or twice

per shear period, depending on relative values of m0

and Au. For instance, in the case presented in Fig. 1,

the dominant period of the perturbation is twice that

of the background shear. Thus, this realization of

TDSI can be placed into a broader class of parametric

subharmonic instabilities of time-dependent flows (e.g.,

Drazin and Reid 1981).

Of course, the mechanism illustrated in Fig. 7 de-

mands that the strain-induced upwelling occurs in re-

gions where the motion of buoyancy-driven oscillatory

mode is also upward for much of the oscillation period

and vice versa. One can easily imagine configurations

in which it is not the case. For instance, if these two

components of vertical velocity are anticorrelated, then

the buoyancy-driven oscillatory mode would decay

rather than grow. The phase difference between the

strain-induced velocity forcing and the perturbation

pattern is ultimately set by the initial value of the ver-

tical wavenumber (m0) or—to be more precise—by the

initial inclination of wave fronts, as measured by m0/k.

For some values of m0, the strain-induced forcing is

stabilizing but for others it is destabilizing. This sensi-

tivity of the stability/instability of individual harmonics

to m0 is reflected very clearly in the growth rate pat-

terns lr(k, m0), such as shown in Fig. 2. Nevertheless,

it should be kept in mind that the overall instability of

any system is ultimately controlled by its most unstable

component. Therefore, the mechanism of TDSI is based

fundamentally on the emergence of unstable harmonics

in an oscillating shear for certain values of m0.

5. Three-dimensional model

The foregoing analysis of time-dependent shear

instability in 2D provides essential guidance for the

exploration of a more realistic and challenging three-

dimensional case. At the same time, the extension of our

analysis into 3D makes it possible to incorporate the

effects of planetary rotation, which two-dimensional

models cannot represent. In particular, the background

shear associated with internal waves now acquires shear

components in both x and y directions:�
A

U
5 a

U
sin(vt)

A
V
5 a

V
cos(vt)

. (39)

FIG. 6. The ratio of the maximal growth rate and the mean shear

(lS 5 lmax/S) is plotted as a function of (Ri, v). Most of the data

are in the range of moderate growth rates 0.01 , lS , 0.1.
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As shown in the appendix, the amplitudes of shear

components (aU, aV) are determined by the mean

Richardson number and the wave frequency as follows:8>>>>>><
>>>>>>:

a
U
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pr

Ri( f 2 1v2)

s
v

a
V
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pr

Ri( f 2 1v2)

s
f

. (40)

As previously (section 3), the growth rates were calcu-

lated by integrating the ODE system (12) in time and

using the best linear fit to (1/2) ln(e), where the net

perturbation energy e in 3D takes the form

e5
jûj2 1 jŷj2 1 jŵj2

4
1

Prjr̂j2
4

. (41)

Taking planetary rotation into account makes the

shear instability problem dynamically richer and more

interesting. Figure 8 presents typical patterns the growth

rate lr as a function of (k, l) for various values of (Ri, v)

and m0 5 0.01. The three-dimensional visualization

of a typical lr(k, l, m0) relation is shown in Fig. 9, re-

vealing a rather intricate growth rate pattern realized in

the presence of planetary rotation.

The principal complication in the 3D case is that the

calculation of largest growth rates lmax now requires

maximization of lr over the three-dimensional wave-

number space (k, l, m0). This difficulty, however, is al-

leviated by adopting the spherical coordinate system

(k, u, g) defined as follows:

k5 k cos(u) cos(g), l5 k cos(u) sin(g),

m
0
5 k sin(u) . (42)

In all cases considered, we find that lr monotonically

increases with decreasing k, which implies that the

maximal growth rate can be obtained using

l
max

5max
u,g

�
lim
k/0

(l
r
)

�
. (43)

This simplification allows us to proceed in the man-

ner analogous to that adopted for the two-dimensional

case (section 3). We assume small finite wavenumber

(k 5 1026) and maximize lr over the two-dimensional

interval 0, u, p, 0, g , 2p. The results are shown in

Fig. 10, where we plot the growth rates lmax as a function

of frequency v for Ri5 1 and Ri5 5. As previously

(section 3), we find that lmax monotonically increases

with increasingv. The growth rates realized at the larger

FIG. 7. Schematic diagram illustrating the physical mechanism of TDSI.
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Richardson number (Ri5 5) are significantly lower than

those forRi5 1. Also suggestive is the comparison of 3D

growth rates with the corresponding 2D calculations,

which are represented in Fig. 9 by dashed curves. While

3D and 2D results are close for relatively rapid oscilla-

tions (v $ 0.2), significant differences are apparent at

near-inertial frequencies (v ’ 0.1). The latter observa-

tion is readily confirmed by inspecting the l(Ri) re-

lations forv5 0.1 andv5 0.2 in Fig. 11. Forv5 0.2, the

2D and 3D patterns are generally similar, with 3D

growth rates exceeding the 2D ones by 20%–30%. The

inertial shear case, on the other hand, is marked by

cardinal dissimilarities between the 2D and 3D solu-

tions—the growth rates in 3D are now less, by an order

of magnitude, than the corresponding 2D values.

The differences between 2D and 3D stability charac-

teristics at low frequencies can be attributed to (i) the

influence of planetary rotation on the temporal pattern

of the background shear in (40) and/or (ii) the direct

effects of the Coriolis parameter in the perturbative

system (6). To glean some insight into the relative sig-

nificance of these effects, a series of calculations in

Fig. 11 were reproduced using a hybrid model, which

retains the Coriolis parameter in the calculation of basic

shear in (40) while neglecting planetary rotation in the

perturbative system (6). These calculations, which are

also included in Fig. 11, indicate that much of the de-

stabilizing influence of planetary rotation can be as-

cribed to its direct effect on the perturbative system.

This influence can be substantial and, somewhat un-

expectedly, it can be either destabilizing (v 5 0.1 case)

or stabilizing (v 5 0.2 calculation).

The significance of taking into account the Coriolis

effect in stability analyses of (6) is revealed perhaps

most clearly by the dissimilar growth patterns lr(k, l)

realized in rotating and hybrid models, such as those

shown in Fig. 12. The original model, which fully ac-

counts for planetary rotation, produces the ‘‘tropical

butterfly’’ pattern (Fig. 12a). The ‘‘alien spider’’ struc-

ture in Fig. 12b was obtained using the hybridmodel that

ignores the Coriolis effect in the perturbative system (6).

Both tropical butterfly and alien spider patterns are re-

markably intricate, visually striking, and rich in fine

details. This complexity is surprising, given the minimal

FIG. 8. The growth rate lr is plotted as a function of horizontal wavenumbers (k, l) for m0 5 0.01, f 5 0.1,

and various combinations of the Richardson number and frequency: (a) Ri5 1, v5 0:1; (b)Ri5 1, v5 0:12;

(c) Ri5 1, v5 0:5; and (d) Ri5 5, v5 0:12. Only positive growth rates are shown.
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character of systems being considered in the present

investigation. While the maximal growth rates in

Figs. 12a and 12b differ by a mere ;30%, the Coriolis

effect completely changes the symmetry characteristics

of the growth rate patterns. The alien spider (Fig. 12b) is

perfectly symmetric relative to the k axis, which is ori-

ented in the propagation direction of the basic internal

wave (the appendix). This symmetry is visibly violated in

the tropical butterfly pattern, implying that the growth

rate relation in Fig. 12a is no longer invariant with re-

spect to l / 2l transformation.

6. Discussion

This study presents the stability analysis of spatially

uniform but time-dependent vertical shears in two and

three dimensions. The overarching conclusion that

permeates all aspects of our investigation is that of a

profound influence of temporal variability of shear flows

on their stability. The extensive exploration of the pa-

rameter space, which spans a wide range of frequencies

and Richardson numbers, reveals that temporally vary-

ing shears are unconditionally unstable. In this sense, the

steady basic state model, commonly used in stability

analyses of parallel flows, can be viewed as a singular

limit of corresponding time-dependent systems.

The growth rates realized in our model for moder-

ately supercritical Richardson numbers (Ri; 1) are less

than, but comparable to, those expected for Kelvin–

Helmholtz instabilities of steady shears. They mono-

tonically increase with the increasing frequency of

the background oscillations and decrease with the

increasing Richardson number. The growth rates

predicted by the three-dimensional model (section 4),

which takes planetary rotation into account, are close

to the corresponding two-dimensional (nonrotating)

estimates for moderate and high frequencies (v*. 2f*).

In this regime, the growth rates are accurately repre-

sented by the explicit semiempirical expression (31). For

near-inertial (v*’ f*) oscillations, on the other hand,

the two-dimensional estimates significantly exceed their

three-dimensional counterparts.

The proposed physical interpretation of TDSI is based

on the strain-induced modulation of vertical velocity,

commonly referred to as the Orr effect. The unstable

TDSI modes can be described as plane internal waves

that are resonantly forced by time-dependent basic

FIG. 10. The maximal growth rate lmax is plotted as a function of

frequency v for Ri5 1 (red) and Ri5 5 (blue). The 3D and 2D

results are indicated by the solid and dashed curves, respectively.

FIG. 9. Three-dimensional visualization of the growth rate lr as a function of (k, l, m0) in the

domain 23 3 1023 , k , 3 3 1023, 23 3 1023 , l , 3 3 1023, and 0 , m0 , 0.01.
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shear flow. The Orr effect modifies their dynamics by

providing the energy input into the perturbation field

during each oscillation cycle. This amplification neces-

sarily requires appropriate phase alignment between the

strain-induced forcing and the perturbation pattern,

which, in turn, is realized for proper initial orientations

of the perturbation wave fronts.

In terms of underlying physics of TDSI, the present

model should be contrasted with the stability analysis of

free oscillatory flows characterized by solid-body rota-

tion in the vertical plane (Majda and Shefter 1998, 2000).

While the latter ‘‘rocking vorticity’’ basic states also

exhibit instability for arbitrary large Richardson num-

bers, their dynamics are substantially different. In par-

ticular, the strain—the essential destabilizing ingredient

of the time-dependent Couette model—plays no role

in the instability of solutions analyzed by Majda and

Shefter (1998). On the contrary, adding finite strain to

the rocking vorticity patterns always makes them line-

arly stable. Of course, both time-dependent Couette and

rocking vorticity models are interesting and bring com-

plementary insights into shear flow instability. However,

it should be kept in mind that oceanic shears are, by and

large, associated with an active internal wave field. The

spectrum of large-scale internal waves is dominated

by slow modes with nearly flat wave fronts, predomi-

nantly horizontal particle displacements, and finite

strain. Therefore, it is our belief that typical oceanic

conditions may be better represented by the time-

dependent Couette model.

The spatial scales of unstable TDSI modes are rela-

tively large (Lz
*. 0:6m and Lx,y

* . 20m for typical oce-

anic conditions), which places them in the category of

finescale phenomena. Therefore, the present linear

model can offer only a limited insight into the ability of

TDSI to induce irreversible mixing of seawater prop-

erties on themicroscale. Nevertheless, it is plausible that

the amplification of TDSI modes will ultimately create

favorable conditions for either convective (top-heavy)

or dynamic (Kelvin–Helmholtz) secondary instabilities,

triggering the transition to fully developed turbulence.

In this regard, TDSI could play a catalytic role in the

cascade of energy and temperature variances to small

scales, where they can be effectively removed by mo-

lecular dissipation.We also hypothesize that some TDSI

FIG. 12. The growth rate lr is plotted as a function of horizontal

wavenumbers (k, l) for Ri5 1, v 5 0.2, m0 5 0.002, and f 5 0.1.

(a) The experiment taking full account of planetary rotation.

(b) The hybrid model that retains the Coriolis effect in the calcu-

lation of basic shear in (40) but neglects it in the perturbative

system (6).

FIG. 11. The maximal growth rate lmax is plotted as a function of

the Richardson number (Ri) for v 5 0.1 (blue) and v 5 0.2 (red).

The 3D and 2D results are indicated by the solid and dashed curves,

respectively. The dotted curves represent the hybrid model, which

retains the Coriolis effect in the calculation of basic shear in (40)

while neglecting it in the perturbative system (6).
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modes could manifest themselves as layered patterns

omnipresent in seismic images of oceanic fine structure

(Holbrook et al. 2003; Ruddick et al. 2009). While

such patterns are frequently and appropriately at-

tributed (e.g., Biescas et al. 2008; Pinheiro et al.

2010) to thermohaline interleaving driven by double-

diffusive convection (Stern 1967; Ruddick and Kerr

2003; Radko 2013) some seismic images could reflect

finite-amplitude TDSI.

One of the distinguishing features of the present in-

vestigation is its framework, which assumes the basic

states with spatially uniform shear. Aside from a series

of analytical simplifications afforded by this configura-

tion, it also helps us to clarify several aspects of the

internal wave dynamics. In particular, the uniform gra-

dient model excludes the possibility of destabilization

through the resonant triad interaction, which is often

invoked in stability analyses of internal waves (e.g.,

Mied 1976; Lombard andRiley 1996). The present work,

therefore, draws attention to the existence of alternative

routes to instability and dissipation. Likewise, the uni-

form shear model has led us to the conclusion that

the presence of inflection points in vertical velocity

profiles may not be essential for triggering instabilities

of large-scale internal waves. This finding is particularly

suggestive in view of qualitative dissimilarities in the

stability properties of inflected and noninflected shears,

which have been reported for various models of parallel

flows (Drazin and Reid 1981; Rayleigh 1880). For in-

stance, steady uniform unbounded shears are stable re-

gardless of how low the Richardson numbers are

(Knobloch 1984), whereas the inflected shears are un-

stable for Ri , 1/4 (e.g., Hazel 1972). Considering the

general tendency of inflected shears to be less stable

than their noninflected counterparts, it is plausible that

the estimates in our study can serve as a lower bound for

the growth rates realized for more irregular shear pat-

terns, such as expected to occur in the ocean.

This project can be further developed in a number of

promising directions. For instance, it could prove ben-

eficial to extend our linear stability analyses beyond the

monochromatic shear model. The temporal pattern of

the basic shear can be represented by a superposition of

Fourier components conforming to the Garrett–Munk

spectrum with random initial phase distribution (e.g.,

Radko et al. 2015). Such an investigation would help

to answer intriguing questions with regard to the role

of various temporal harmonics in triggering TDSI.

Our results consistently indicate that high-frequency

modes are more effective in destabilizing shear flows

than low-frequency harmonics. The spectrum of inter-

nal waves, on the other hand, is dominated by slow,

near-inertial oscillations (Garrett and Munk 1972).

Therefore, the relative significance of slow and fast

spectral components in determining the stability prop-

erties of wave-induced shears is not clear a priori.

The analysis of time-dependent inflected shears also

represents a natural extension of the present investiga-

tion. Another potentially profitable avenue of explora-

tion is modeling of the nonlinear evolution of TDSI and

transition to turbulence. The assessment of the associ-

ated vertical fluxes of seawater properties is expected

to improve our understanding of wave-induced mixing

in the ocean.
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APPENDIX

Internal Wave Model

Tomake this article self-contained, we now review the

linear theory of monochromatic internal waves, casting

it in terms of nondimensional variables introduced in

section 2. The governing Navier–Stokes equations are

linearized with respect to the basic state at rest and

nondimensionalized as follows:8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

›r
w

›t
2w

w
5 0

›u
w

›t
2 f y

w
52Pr
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w
52Pr
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›w
w
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52Pr
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1
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w
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1

›w
w

›z
5 0

, (A1)

where the subscript w is used to emphasize that the field

variables in (A1) represent free large-scale internal

waves rather than their small-scale instabilities. We also

assume that the molecular dissipation is negligible on

the scale of these waves and seek plane-wave solutions

satisfying (A1) as follows:

u
w
5 û

w
cos(k

w
x1m

w
z2vt)

y
w
5 ŷ

w
sin(k

w
x1m

w
z2vt)

w
w
5 ŵ

w
cos(k

w
x1m

w
z2vt)

p
w
5 p̂

w
sin(k

w
x1m

w
z2vt)

r
w
5 r̂

w
cos(k

w
x1m

w
z2vt)

.

8>>>>>><
>>>>>>:

(A2)
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In the confines of the f-plane model, we can assume that

the wave is propagating in the positive x direction

without loss of generality, which accounts for the ab-

sence of y dependence in the assumed form (A2). When

(A2) is substituted into the linear system (A1) and the

amplitudes of ŵw, p̂w, and r̂w are sequentially elimi-

nated, we explicitly connect the amplitudes of horizontal

velocity components as follows:

ŷ
w
5 û

w

f

v
. (A3)

Equation (A3) makes it possible to express the local

RMS shear S in terms of ûw:

S[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"�
›u

w

›z

�2

1

�
›y

w

›z

�2
#
t

vuut 5 û
w
m

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 1 f 2

2v2

r
. (A4)

The nondimensional shear S, in turn, is directly related

to the mean Richardson number:

Ri[
N*2

S*
2
5

Pr

S2
. (A5)

Drawing together (A3)–(A5), we express the ampli-

tudes (ûw, ŷw) in terms of Ri:8>>>>>><
>>>>>>:

û
w
5
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2Pr

Ri( f 2 1v2)
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5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pr

Ri( f 2 1v2)

s
f

m
w

. (A6)

Finally, (A6) is used to evaluate the vertical shear

components:

8>>>>><
>>>>>:

›u
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›z
52û

w
m

w
sin(k

w
x1m

w
z2vt)52
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s
v sin(k
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pr

Ri( f 2 1v2)

s
f cos(k

w
x1m

w
z2vt)

. (A7)

Recalling that solution (A7) represents a plane wave in

an unbounded medium with uniform stratification, it

becomes apparent that all spatial locations (x, z) are

equivalent in terms of shear characteristics (except for

different phases). Thus, a model of temporal variability

of the wave-induced shear can be constructed, without

loss of generality, by assuming (x, z) 5 (0, 0), which

reduces (A7) to (39) and (40). The latter system is used

in section 4 to represent the temporal variation in basic

shear associated with large-scale internal waves.
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