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Abstract In this paper, we address the problem of building
a grid map as accurately as possible using inexpensive and
error-prone sonar sensors. In this research area, incorrect
sonar measurements, which fail to detect the nearest obsta-
cle in their beamwidth, generally have been dealt with in the
same manner as correct measurements or have been excluded
from the mapping. In the former case, the map quality may
be severely degraded. In the latter case, the resulting map
may have insufficient information after the incorrect mea-
surements are removed because only correct measurements
are frequently insufficient to cover the whole environment.
We propose an efficient grid-mapping approach that incorpo-
rates incorrect measurements in a specialized manner to build
a better map; we call this the enhanced maximum likelihood
(eML) approach. The eML approach fuses the correct and
incorrect measurements into a map based on sub-maps gen-
erated from each set of measurements. We also propose the
maximal sound pressure (mSP) method to detect incorrect
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sonar readings using the sound pressure of the waves from
sonar sensors. In several indoor experiments, integrating the
eML approach with the mSP method achieved the best results
in terms of map quality among various mapping approaches.
We call this the maximum likelihood based on sub-maps
(MLS) approach. The MLS map created using only two sonar
sensors exhibited similar accuracy to the reference map,
which was an accurate representation of the environment.

Keywords Grid mapping · Sonar sensor · Maximum
likelihood estimation

1 Introduction

The grid map represents an environment with a discretized
field (Thrun et al. 2002). The use of sonar sensors is an attrac-
tive approach to building grid maps because of their low cost,
ability to detect glass objects (Silver et al. 2004) and insen-
sitivity to light (Hebert 2000). Despite these characteristics,
the following troublesome artifacts still exist:

– Erroneous measurements: Lee and Chung (2009) reported
that more than 50 % of sonar measurements failed to
detect the closest obstacle in general indoor environments
due to specular reflection. Because these erroneous mea-
surements hinder accurate map building, most related
research (Burguera et al. 2007, 2008; Kuc and Siegel
1987; Leonard and Durrant-Whyte 1992; O’Sullivan et
al. 2004; Ivanjko et al. 2003; Lee and Chung 2007, 2009)
have focused on the discrimination between correct read-
ings and incorrect ones.

– Inconsistent cells in mapping: Sonar sensors provide
range information to the closest obstacle directly, but no
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Table 1 Classification of
grid-mapping approaches based
on their handling of incorrect
measurements

Previous approaches

Incorrect measurements handled in the
same way as correct measurements

Posterior approach (Thrun et al. 2002; Ribo and Pinz
2001; Moravec 1988; Thrun 1998)

Fuzzy approach (Ribo and Pinz 2001; Oriolo et al.
1997, 1998; Noykov and Roumenin 2007)

Dempster–Shafer approach (Ribo and Pinz 2001;
Pagac et al. 1998; Murphy 1998; Carlson et al.
2005)

Maximum likelihood approach (Thrun 2003; Pathak
et al. 2007)

Incorrect measurements discarded Conflict evaluated maximum approximated
likelihood Approach (Lee and Chung 2009)

Proposed new approach

Incorrect measurements reprocessed Maximum likelihood based on sub-maps (MLS)
Approach: enhanced maximum likelihood (eML)
approach + maximal sound pressure (mSP) method

angular information (Choset et al. 2003). When multi-
ple sonar measurements overlap, the angular uncertainty
causes inconsistent cells. For example, one measurement
might indicate the existence of an obstacle in a certain
map cell whereas a second measurement may provide
contradictory information. Several estimation approaches
(Thrun et al. 2002; Ribo and Pinz 2001; Moravec 1988;
Thrun 1998, 2003; Pagac et al. 1998; Murphy 1998; Carl-
son et al. 2005; Oriolo et al. 1997, 1998; Noykov and
Roumenin 2007; Pathak et al. 2007) have been proposed
to handle this inconsistency in a reasonable manner.

In addition to these two issues, we found that situations
might arise where the correct sonar measurements would not
be sufficient to represent the whole environment. In a map-
ping procedure, incorrect measurements, which fail to detect
the nearest obstacle, generally have been treated in the same
manner as correct measurements (Thrun et al. 2002; Ribo
and Pinz 2001; Moravec 1988; Thrun 1998, 2003; Pagac
et al. 1998; Murphy 1998; Carlson et al. 2005; Oriolo et
al. 1997, 1998; Noykov and Roumenin 2007; Pathak et al.
2007) or discarded (Lee and Chung 2009; Barshan 2007)
to avoid their undesirable effects. Table 1 summarizes sev-
eral grid-mapping approaches in terms of their handling of
incorrect measurements. As shown in Lee and Chung (2009),
if incorrect measurements are used in mapping without any
special consideration, then the resulting map may contain
too many errors to be useful in other applications such as
localization or path planning. However, if incorrect measure-
ments are excluded from the mapping process, some areas
may not be represented. In the course of several experiments,
we found that these situations occur frequently. In particular,
the unrepresented areas become quite apparent when only a
small number of sonar sensors are used to build the map, as

shown in Fig. 1b. If only ideally correct measurements were
used, the resultant map could be unsatisfactory.

Based on the consideration that appropriate handling of
incorrect measurements and the two issues identified above
are fundamental to building high-quality grid maps using
error-prone sonar sensors, we propose a new grid-mapping
approach called the maximum likelihood based on sub-maps
(MLS) approach. The MLS approach consists of two layers:
a decision layer and a mapping layer. For the decision layer,
we propose the maximal sound pressure (mSP) method to
detect incorrect measurements; this is an extension of the
concept of using sound pressure proposed in Lee and Chung
(2009). For the mapping layer, we propose the enhanced
maximum likelihood (eML) approach. The eML approach
is based on the maximum likelihood (ML) approach (Thrun
2003; Pathak et al. 2007), because the ML approach is suit-
able for dealing with inconsistent cells, as described in Sect.
2. However, unlike the ML approach that uses incorrect mea-
surements in the same manner as correct measurements, the
eML approach uses a divide-and-conquer strategy to manage
incorrect measurements appropriately. The eML approach
builds one sub-map for the correct measurements and another
for the incorrect measurements, and then merges the two sub-
maps into one. Briefly, after collecting the sonar readings, the
mSP method divides the readings into two groups: incorrect
and correct. The eML approach then builds the final map by
merging the two sub-maps.

Our main contributions are as follows:

– To our knowledge, this research represents the first time
that incorrect sonar measurements have been consid-
ered for sonar grid mapping. The technique of handling
incorrect measurements may be extended to building a
map using only a few sonar sensors, because incorrect
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Fig. 1 Example of using only ideally correct measurements obtained
from a real indoor experiment. The white region represents the empty
space, and the black region indicates the occupied area. The gray region
means the unknown area. a Reference map (62 m × 30 m). The line
indicates the robot trajectory. b Grid map based on ideally correct mea-
surements from only two sonar sensors. Correct measurements were

extracted from the decision process based on the reference map in (a).
The extraction is perfect and similar to that of an ideal decision maker
for correctly executed measurements. Ideally correct measurements are
used, but the map contains unrepresented areas indicated by dashed
boxes

measurements can compensate for areas that cannot be
represented by correct measurements alone. In Sect. 7,
we show the results of using a complete 360◦ band of
sonar sensors and results using only two sonar sensors.
For reasons of cost, a small number of sonar sensors is
desirable for commercial devices, such as robotic vacuum
cleaners.

– In general cases, such as when sonar sensors are installed
to provide full 360◦ coverage around a robot, the deci-
sion performance of the MLS approach is slightly bet-
ter than that of the conflict evaluated maximum approxi-
mated likelihood (CEMAL) approach (Lee and Chung
2009), which has the best performance among vari-
ous decision methods developed so far. For the case
of using only two sonar sensors, the decision perfor-
mance of the MLS approach is approximately 8 % bet-
ter than the CEMAL approach. Overall, compared with
previous decision approaches (Burguera et al. 2008;
Kuc and Siegel 1987; Leonard and Durrant-Whyte
1992; O’Sullivan et al. 2004; Ivanjko et al. 2003; Lee
and Chung 2007, 2009; Burguera et al. 2007), the
MLS approach is the best for classifying the state of
measurements.

– Based on a criterion given in Sect. 7, we confirmed that
the number of wrongly represented regions in the MLS
map was smaller than in maps built using previous map-
ping approaches (Thrun et al. 2002; Ribo and Pinz 2001;
Moravec 1988; Thrun 1998, 2003; Pagac et al. 1998;
Murphy 1998; Carlson et al. 2005; Oriolo et al. 1997,
1998; Noykov and Roumenin 2007; Pathak et al. 2007;
Lee and Chung 2009), both when using a complete 360◦
band of sonar sensors and when using only two sonar
sensors.

– The MLS approach has a light O(n) computational load
that is comparable to independent estimation approaches

(Thrun et al. 2002; Ribo and Pinz 2001; Moravec 1988;
Thrun 1998; Pagac et al. 1998; Murphy 1998; Carl-
son et al. 2005; Oriolo et al. 1997, 1998; Noykov
and Roumenin 2007), which are described in Sect. 2,
and is very low compared to the O(n2) load of the
CEMAL approach and the O(2kn) load of the ML
approach where n is the number of sonar measurements
and k is the number of cells. Additionally, although
the MLS approach is based on the ML approach, the
MLS solution globally maximizes the likelihood of the
measurements.

– The MLS approach does not require adjustment of para-
meters, unlike independent estimation approaches that
must carefully regulate their own update parameters to
create accurate maps. The MLS approach requires partial
modification only when using a different kind of sonar
sensor.

It should be noted that we assumed that pose estimations
were available because localization during mapping was not
a concern in this study. Even if accurate localization were
provided, exact grid-mapping with sonar sensors is still a
serious problem due to troublesome artifacts of sonar sen-
sors, and is still demanded for an inexpensive sensor-based
application (Choi et al. 2011; Lee and Chung 2010; Burguera
et al. 2009a). The pose estimations rely on extended Kalman
filter-based simultaneous localization and mapping (SLAM)
(Ahn et al. 2008).

The remainder of the paper is organized as follows. We
begin by describing related research in Sect. 2. Section 3 pro-
vides preliminary definitions, and Sect. 4 presents the mSP
method. Section 5 describes the eML approach and Sect.
6 summarizes the MLS approach. Section 7 describes the
experimental results and Sect. 8 presents the summary and
conclusions.
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Fig. 2 a Three correct sonar readings with inconsistent cells shaded in gray. b Posterior approach. c Dempster–Shafer approach. d Fuzzy approach.
e Maximum likelihood approach

2 Related works

2.1 Handling inconsistent cells

As mentioned in Sect. 1, handling inconsistent cells is an
issue in grid mapping with sonar sensors. Previous research
in this area can be classified into two categories: independent
estimation and dependent estimation.

– Independent estimation: Independent estimation
approaches tackle the inconsistent cell with the assump-
tion that each cell is independent of the others (Thrun et
al. 2002). The assumption reduces the problem to finding
a solution among 2k possible maps into a collection of
binary or trinary estimation problems.

– Posterior approach (PT): The PT was proposed for
managing the inconsistency with the concept of prob-
ability (Thrun et al. 2002; Ribo and Pinz 2001;
Moravec 1988; Thrun 1998) and measures the occu-
pancy of the cell.

– Dempster–Shafer approach (DS): Based on the con-
cept of ignorance, the DS (Ribo and Pinz 2001; Pagac
et al. 1998; Murphy 1998; Carlson et al. 2005) infers
a belief function that indicates whether a cell is occu-
pied, empty, or in an unknown state based on the
Dempster–Shafer theory (Shafer 1976).

– Fuzzy approach (FZ): The FZ (Ribo and Pinz 2001;
Oriolo et al. 1997, 1998; Noykov and Roumenin
2007) quantifies the possibility that indicates a cell
belongs to an obstacle. It is based on the theory of
fuzzy sets (Zadeh 1973) designed to deal with vague-
ness, and determines safe cells that are free of obsta-
cles.

– Dependent estimation: Unlike the independent estima-
tion approaches, the maximum likelihood (ML) approach
(Thrun 2003; Pathak et al. 2007) does not assume the
independence of other cells. The ML map is obtained by
maximizing the likelihood of sonar measurements.

The assumption of independence has a serious effect on
the quality of the map. As shown in Fig. 2b–d, independent
estimation approaches fail to represent the shaded gray region
of Fig. 2a, which contains inconsistent cells. In other words,
the angular uncertainty of sonar sensors is not appropriately
handled by the assumption of independence. Thus, a map
built by independent estimation approaches may be defective
in terms of representing narrow openings.

Conversely, as illustrated in Fig. 2e, the ML approach rep-
resents narrow regions quite accurately. If the state of the cells
in the shaded gray region of Fig. 2a is set to occupied, the like-
lihood of other readings j1 and j2 decreases. Thus, the state
should be empty to prevent this decrease, and this process
makes the ML approach suitable for handling the angular
uncertainty of the sonar sensor. We started our research with
the ML approach because of its suitability for dealing with
inconsistent cells.

2.2 Detecting incorrect measurements

Several techniques have been developed for filtering out
incorrect measurements, and these can be divided into five
classes.

– By clustering: The random sample consensus/Gaussian
filtering (RANSAC/GF) method (Burguera et al. 2008)
rejects readings that do not fit a Gaussian distribution
established by RANSAC clustering (Fischler and Bolles
1981).

– By geometric primitives: The region of constant depth
(RCD) matching method (Kuc and Siegel 1987; Leonard
and Durrant-Whyte 1992) extracts readings that satisfy a
geometric constraint, based on the radius of a circle. The
feature prediction (FP) method (O’Sullivan et al. 2004)
discriminates reliable measurements by assigning a con-
fidence measure to each sonar reading, and the measure
is determined by hypothetical obstacles.

– By adaptive range: The bounding box method (Ivanjko
et al. 2003) reduces the range of measurements that are
outside the border created by four adjacent (front, back,
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left, right) sensor readings. In the navigable Voronoi dia-
gram (NVD) method (Lee and Chung 2007), the diagram
is generated by instantaneous measurements, and sonar
readings beyond the diagram are excluded.

– By consistency: The sonar probabilistic analysis of con-
flicts (spAC) method (Burguera et al. 2007) iteratively
determines the probability of each sonar reading, based
on the occurrence of conflict cells. The conflict evalua-
tion with sound pressure (CEsp) method (Lee and Chung
2009) determines incorrect measurements through a
comparison of sound pressures when conflict cells occur.

– By learning: The neural network learning (NN) method
(Thrun et al. 2002) trains a neural network by supervised
learning and then determines the status of a measurement.

The mSP method proposed in this paper is not included in
the five categories above. It determines the status of the sonar
readings using a temporary map based on sound pressure as
described in Sect. 4.

3 Definitions

A sonar sensor emits a wave, and the wave returns to the
sensor after striking one or several obstacles. The distance to
the obstacle is calculated from the time of flight of the wave.
Thus, the distance measurement gives information about two
regions (Fig. 3): the arc region and the free region. The arc
region, where obstacles are most probably located, is the
farthest area of the measurement. The free region in which
no obstacles exist, is everywhere else in the beamwidth of
the measurement except for the arc region.

Sonar sensors were originally designed to provide the
distance to the closest obstacle in their beamwidth. When,
therefore, a range measurement does not indicate the near-
est obstacle, it is incorrect. Conversely, the measurement is
correct when it does indicate the closest obstacle. It can be
expressed by

C(i) =
{

Correct if
∣∣zi − d

(
N

∣∣zi
M

)∣∣ ≤ β

Incorrect if
∣∣zi − d

(
N

∣∣zi
M

)∣∣ > β
(1)

Fig. 3 Region of sonar reading i where θw is the beam-width, zi is the
range, F(zi ) is the free (hatched) region, A(zi ) is the arc (gray) region,
and 2β is the interval corresponding to range uncertainty

where zi is the range of a sonar measurement and i is the
index of the measurement. β indicates range uncertainty and
N

∣∣zi
M is the nearest obstacle or the nearest occupied cell within

the beamwidth of measurement i on a map M . The d
(
N

∣∣zi
M

)
is the distance from the sensor to the nearest obstacle, and is
defined as

d
(
N

∣∣zi
M

) =
{

distance to N
∣∣zi
M for N

∣∣zi
M �= ∅

zmax for N
∣∣zi
M = ∅

(2)

where zmax is the maximum detectable range. The N
∣∣zi
M

corresponds to the nearest obstacle in the real environment,
or the closest occupied cell on a map.

4 Decision—maximal sound pressure method

We build a temporary map based on the sound pressure to
classify a sonar reading into one of two groups: incorrect or
correct.

4.1 Sound pressure

A sonar sensor emits a wave that returns to the sensor after
hitting an obstacle. The distance to the obstacle is calculated
from the time of flight of the wave. The pressure of the return-
ing wave on the sensor is called the sound pressure (Lee and
Chung 2009), and is expressed as

S P(r, θ) = 1

r
10

DT (θ)+DR (θ)

20 (3)

where r is the distance from the sensor to the obstacle,
θ is the angle from the heading of the sensor, DT (θ) is the
transmitting directivity, and DR(θ) is the receiving direc-
tivity (Kleeman and Kuc 2008). The parameters DT (θ) and
DR(θ) depend on the specific characteristics of the sonar
sensor being used. The derivation of (3) is provided in Lee
and Chung (2009).

The log function is introduced for computational reasons
and (3) can be simplified to

L S P(r, θ) = DT (θ)+ DR(θ)

20
− log r. (4)

Because one sound pressure is compared with another
sound pressure, the use of the log function does not affect
the result of the comparison.

We used two well-known sonar sensors: the 600 series
from SensComp Inc. (S600) and the MA40B8 from Murata
Co., Ltd (MA40B8). After applying the specific DT (θ) and
DR(θ) from each sensor, the final sound pressure levels were
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Fig. 4 The black cells are conflict cells. In this case, the whole arc
region of the measurement i is included in the free region of the other
measurement j . Thus, the information supported by reading i is con-
tradicted by the information supported by reading j

– S600 (|θ | ≤ 11.25◦)

L S P(r, θ) = −0.00605θ2 − 0.01977|θ | − log r (5)

– MA40B8 (|θ | ≤ 22.5◦)

L S P(r, θ) = −0.001025θ2 + 0.00147|θ | − log r. (6)

4.2 Conflict evaluation with sound pressure (CEsp) method

Inconsistency of information contained in cells may occur
when multiple sonar measurements overlap. Depending on
the inconsistency, a cell may be classified into one of two
groups: consistent cells Cc and inconsistent cells Ic. Addi-
tionally, inconsistent cells are further classified into two other
groups: uncertain cells Uc and conflict cells Fc. The conflict
cells occur when all of the arc cells of a measurement are
on the free regions of other measurements (Fig. 4). Details
about other types of cells such as the consistent cell and the
uncertain cell are provided in Lee and Chung (2009). There
are always incorrect measurements when conflict cells occur;
this was shown in Lee and Chung (2009). Based on this, the
CEsp method (Lee and Chung 2009) determines incorrect
measurements through the comparison of sound pressures in
conflict cells.

Although incorrect measurements are always included in
the case when conflict cells occur, not all incorrect measure-
ments cause conflict cells. Thus, determining incorrect mea-
surements only when conflict cells exist may limit the deter-
mination of all incorrect measurements. Therefore, we pro-
pose a new decision method to cover the case when conflict
cells do not occur.

4.3 Maximal sound pressure (mSP) method

The sound pressure comparison is applied to only conflict
cells in the CEsp method. Unlike the CEsp method, how-
ever, we extend the application of the comparison to all cells
covered by all sonar readings. The result of the comparison

Fig. 5 Example of the mSP map and the decision procedure based
on that map: a environment on a gridded field and three sonar mea-
surements i1, i2, and j̄ . The arrow indicates a cell for instantiating the
notation used in (8). b The mSP map built based on three readings. The
dotted box indicates the erroneous outside area. Based on the mSP map,
reading j̄ contains some obstacles in its free region, and thus it becomes
the incorrect measurement

is represented by a temporary map M̂ , called the maximal
sound pressure (mSP) map. The mSP map is obtained using

M̂ ≡
{

M

∣∣∣∣Oc(M) =
⋃

c∗xy

}
(7)

where M is the map, and Oc(M) is all occupied cells in M .
(7) indicates that the mSP map flags only specific cells c∗xy
as occupied where c∗xy is defined as

c∗xy ≡
{
cxy

∣∣max
(
L S PP (cxy)

)
> max

(
L S PN (cxy)

)}
(8)

where cxy is a cell, L S PP (cxy) is the sound pressure of the
measurement that indicates there may be an obstacle in cell
cxy , and L S PN (cxy) is the sound pressure of the measure-
ment that indicates there are no obstacles in the cell cxy .

For example, for the gray cell in Fig. 5a, L S PP (cxy) is
obtained from measurement i1, because the reading i1 indi-
cates that there is an obstacle in the cell. Additionally, because
the reading j̄ indicates there are no obstacles in the cell,
L S PN (cxy) is calculated from the reading j̄ .

Figure 5b shows an example of the mSP map for the case
of Fig. 5a. As shown in Fig. 5b, the areas outside the bound-
ary of the environment contain errors while areas inside the
boundary are defined reliably. This feature of the mSP map is
due to taking obstacle information from the reading with the
highest sound pressure. More specifically, because the sound
pressure has a higher value for an obstacle closer to the sensor
and closer to the sensor’s line of the sight, we consider the
information with the highest sound pressure to be true. The
clean inside representation property of the mSP map means
it can be used as a standard to determine the status of mea-
surements, but not be used as a map due to erroneous outside
areas.

(1) is applied to a measurement using the mSP map to
determine the status of that measurement. For example, in
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Fig. 5b, the measurement j̄ is determined to be an incorrect
reading, because it includes some occupied cells that indicate
obstacles in its free region. The complexity of building the
mSP map is O(n) because the mSP map is generated with
a complexity proportional to the number of measurements.
The decision complexity is also linear to the number of mea-
surements. The total computational complexity is O(n), i.e.,
O(n + n). The decision based on the mSP map and (1) is
called the maximal sound pressure (mSP) method.

As will be shown in Sect. 7, the mSP method gives better
results than previous decision methods, especially when only
two sonar sensors are used. This is because the mSP method
works without considering whether conflict cells occur. Thus,
even in the case when there are insufficient relationships
among sonar readings, the mSP method will still determine
the status of measurements reliably.

In this section, we have described how all sonar readings
are classified into two groups. In the next section, based on
the classification, we explain how the grid map is made.

5 Mapping—enhanced maximum likelihood approach

The enhanced maximum likelihood (eML) approach pro-
posed in this paper starts with the ML approach, due to its
effectiveness in handling inconsistent cells as described in
Sect. 2.

5.1 Previous maximum likelihood approach

5.1.1 Maximum likelihood (ML) approach

Because sonar sensors are designed to measure the range to
the closest obstacle in their beamwidth, their likelihood can
be defined as

p(zi |M) = η exp

⎧⎨
⎩−1

2

(
zi − d

(
N

∣∣zi
M

)
σ

)2
⎫⎬
⎭ (9)

where M is the map, η is a normalizing term, and σ is the
range uncertainty Lee and Chung (2009). Based on (9), the
ML grid map is obtained through

M ≡ argmax
M

p(Z |M)

= argmax
M

∏
i

p(zi |M) (10)

= argmax
M

∑
i

log p(zi |M) (11)

= argmin
M

∑
i

(
zi − d

(
N

∣∣zi
M

))2
(12)

where Z = {z1, · · · , zn}. A static world assumption is
used in (10), indicating that other sensor measurements are

conditionally independent when map M is given (Thrun et
al. 2002; Thrun 2003). The log function is introduced for
reducing computational costs in (11), and the application of
simple algebra results in (12). Eventually, the ML approach
becomes a problem to minimize the sum of quadratic func-
tions. The ML approach suffers from three typical prob-
lems: over-fitting, heavy computational complexity, and local
minima.

– Over-fitting is an intrinsic problem of the ML approach
(Bishop 2007). Lee and Chung (2009), it was reported
that more than 50 % of the sonar measurements were
incorrect in general indoor environments. Thus, the ML
grid map will be over-fitted to those incorrect measure-
ments and may contain errors.

– The solution to (12) is to minimize the sum of all
quadratic functions, which involves a complexity of
O(2kn) where k is the number of cells in a map and
n is the number of sonar readings. The likelihood of all
measurements n must be calculated for the 2k possible
maps leading to a complexity of O(2kn). This high com-
plexity makes the ML approach unsuitable for practical
use.

– The expectation-maximization (EM) algorithm (Demp-
ster et al. 1977) can be used to reduce the complexity,
but may fall into a local minimum, making determina-
tion difficult of whether the solution is a global or simply
a local minimum.

5.1.2 Maximum approximated likelihood (MAL) approach

The maximum approximated likelihood (MAL) approach
was proposed in Lee and Chung (2009) to resolve the prob-
lems inherent in the ML approach. The MAL approach can
be summarized by the following:

M ≡ argmax
M

p(Z1|M) (13)

= argmin
M

∑
zi∈Z1

(
zi − d

(
N

∣∣zi
M

))2
(14)

� argmin
M

∑
zi∈Z1

g(zi ) (15)

where Z1 is the set of correct measurements and g(zi ) is
defined as

g(zi ) ≡
{

0 for
∣∣zi − d

(
N

∣∣zi
M

)∣∣ ≤ β(
zi − d

(
N

∣∣zi
M

))2
for

∣∣zi − d
(
N

∣∣zi
M

)∣∣ > β
.

(16)

As proved in Lee and Chung (2009), the ML approach
can be converted to a problem of simple logic if the incor-
rect measurements, which cause conflict cells, are removed.
Thus in (13), the MAL approach integrates only correct
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measurements into the map, and this is helpful in indirectly
avoiding the over-fitting problem of the ML approach.

To reduce the huge complexity, the MAL approach in (15)
approximates the minimization of (14) by relaxing the margin
±β for the range uncertainty β shown in Fig. 3. In general,
this approximation reduces the complexity slightly. Funda-
mentally, the assumption that no conflict cells exist among
correct measurements converts the high-dimensional opti-
mization in (15) to a simple logic. This assumption drastically
reduces the O(2kn) complexity of the ML approach to O(n),
and the globally minimized solution of (15) is achievable.

Although the MAL approach overcomes the problems of
the ML approach directly or indirectly, it excludes incorrect
measurements from the mapping process. Thus, it can suffer
from the same lack of information insufficiency illustrated in
Fig. 1.

5.2 Enhanced maximum likelihood (eML) approach

To resolve the problem of insufficient information, the eML
approach integrates incorrect measurements into a map
instead of removing them. An eML map consists of two sub-
maps; one is generated from correct measurements Z1, and
the other is from incorrect measurements Z̄2.

Before proceeding further, we assume that all sonar read-
ings are classified into two groups: correct and incorrect.
Details of the classification process are described in Sect. 4.
Henceforth, the set of all sonar readings is the sum of two
subsets (Z = {

Z1, Z̄2
}
).

5.2.1 Model

Although an incorrect reading fails to provide correct
information about the existence of obstacles in its arc region,
it is not entirely wrong and part of the reading contains use-
ful information. As illustrated in Fig. 6, the portion of the
measurement closest to the sensor contains correct informa-
tion about the empty region. Thus, if the correct portion is
extracted, it can be integrated into a map to compensate for an
unrepresented area without degrading the map quality. Thus
incorrect measurements Z̄2 can be reprocessed by adjusting

Fig. 6 As shown in the hatched area, an incorrect measurement which
fails to detect the closest obstacle contains correct information about
the empty region

their range, and reprocessed measurements Z2 will be used
in the mapping.

The eML map is defined as follows:

M ≡ argmax
M

p(Z ′|M) (17)

= argmin
M

⎧⎨
⎩

∑
zi∈Z1

(
zi − d

(
N

∣∣zi
M

))2

+
∑

z j∈Z2

(
z j − d

(
N

∣∣z j
M

))2

⎫⎬
⎭ (18)

� argmin
M

⎧⎨
⎩

∑
zi∈Z1

g(zi )+
∑

z j∈Z2

g(z j )

⎫⎬
⎭ . (19)

Instead of using original incorrect measurements Z̄2 in
(17), reprocessed readings Z2 are used to build an eML map.
More specifically, instead of Z(= {

Z1, Z̄2
}
), the new mea-

surements set Z ′(= {Z1, Z2}) is used to build the map. (18)
is obtained by applying the definition of the likelihood of a
sonar reading (9). Finally, approximating the quadratic func-
tions in (18) as was done for (15) results in (19). For the sake
of simplicity,

h(Za, M) ≡
∑

zi∈Za

g(zi )

∣∣∣∣
M

for a = {1, 2} , (20)

and (19) becomes

M � argmin
M
{h(Z1, M)+ h(Z2, M)} . (21)

5.2.2 Constraints

To solve (21), we assume two sub-maps that satisfy the fol-
lowing:

M1 = {M |h(Z1, M) = 0} (22)

M2 = {M |h(Z2, M) = 0} . (23)

Because the functions h() in (22) and (23) consist of
quadratic functions, they cannot be less than zero, and zero
is the smallest value achievable. Therefore, for each set of
measurements, M1 and M2 are the globally minimum solu-
tion of each h(). If M1 and M2 exist as we have assumed,
then (21) can be converted to

M � argmin
M

h(Z1, M) ∪ argmin
M

h(Z2, M) (24)

= M1 ∪ M2. (25)

In (25), M is represented by the sum of M1 and M2.
Completing this representation, however, requires determin-
ing whether M1 and M2 are coupled. Thus, the following
constraints should be satisfied to make the sub-mapping in
(25) perfect:
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Fig. 7 Example of the eML approach. a The case of three sonar mea-
surements where measurements i1 and i2 are correct, and measurement
j̄ is determined to be incorrect. The decision process is described in
Sect. 4. b Based on correct measurements i1 and i2, M1 is built by
the MAL approach. c Based on M1, the incorrect measurement j̄ is

reprocessed and becomes new measurement j . d M2 is generated using
M1 and j . e The eML map is produced by merging M1 and M2. The
dotted area indicates the additional region obtained by reprocessing the
incorrect measurement

h(Z1, M) = h(Z1, M1) (26)

h(Z2, M) = h(Z2, M2). (27)

(26) ensures that M2 does not affect h(Z1, M1), and (27)
ensures that M1 does not increase or decrease h(Z2, M2).

In summary, the final solution M is represented by the
sum of two sub-maps M1 and M2. Four constraints (22),
(23), (26), and (27) must be satisfied to achieve the sub-map
representation.

5.2.3 Solution

To this point, we have not described how to determine the
reprocessed measurements Z2. Thus, M2, in (23), cannot be
calculated. Unlike M2, M1 is fixed due to the fixed Z1 and
can be readily generated. This is consistent with the physical
perspective that map M1, built by correct measurements Z1,
should not be changed by incorrect readings.

– M1 : M1 is obtained by the MAL approach (Lee and
Chung 2009) although there is one precondition for
doing so. The precondition is that all correct mea-
surements Z1 should not cause conflict cells. Fortu-
nately, the measurements determined correct by the mSP
method satisfy the condition, as shown in the Appen-
dix A. Given three sonar readings (i1, i2 ∈ Z1 and
j ∈ Z̄2) as shown in Fig. 7a, M1 is generated with i1

and i2 using the MAL approach because they are correct
readings (Fig. 7b).

– Z2 : Based on M1, the original incorrect measurements
Z̄2 can be reprocessed into new measurements Z2 by

Z2 =
{

z j

∣∣∣∣z j = d
(

N
∣∣z̄ j
M1

)}
for z̄ j ∈ Z̄2 (28)

where z j is the new range of the reprocessed measure-
ment. (28) means that the range of new reprocessed mea-
surements is determined by the distance to the closest
occupied cell within the beamwidth of an original incor-

rect measurement on map M1. For example, as illustrated
in Fig. 7(c), the range of the incorrect measurement j̄
reduced to the nearest occupied cell in M1, and the incor-
rect measurement j̄ becomes j .

– M2 : Once Z2 has been determined, M2 can be generated
by

M2 =
⎧⎨
⎩M

∣∣∣∣Oc(M) = ⋃
z̄ j∈Z̄2

N
∣∣z̄ j
M1

and Ec(M) = ⋃
z j∈Z2

F(z j )

}
(29)

where Oc(M) and Ec(M) are all occupied cells and all
empty cells in M , respectively. The N

∣∣z̄ j
M1

s are found

while calculating Z2 in (28), and then only N
∣∣z̄ j
M1

s are
marked as occupied in M2. Additionally, the cells of the
free region of the reprocessed measurements F(z j ) are
marked as empty in M2. As illustrated in Fig. 7d, all occu-
pied cells in M2 are the same as N

∣∣z̄ j
M1

, and all empty cells
make up the free region of new measurements Z2.

M is determined by merging M1 with M2, as shown in
Fig. 7e where the dotted area indicates the additional region
obtained using incorrect measurements appropriately. The
details about satisfying four constraints (22), (23), (26), and
(27) are as follows:

– (22): Lee and Chung (2009) proved that M1 satisfies (22).
– (23): While building M2, the occupied cells are acquired

from N
∣∣z̄ j
M1

and the distance to N
∣∣z̄ j

M1
determines the range

of new measurement Z2. Therefore, z j − d
(

N
∣∣z̄ j
M1

)
= 0

for z j ∈ Z2. Eventually, this brings all quadratic func-
tions of h(Z2, M2) to zero, and thus the second constraint
(23) is satisfied.

123



132 Auton Robot (2013) 35:123–141

– (26): All occupied cells of M2 is obtained from M1 as pro-

vided in (29), i.e., Oc(M2) =
⎛
⎝ ⋃

z̄ j∈Z̄2

N
∣∣z̄ j
M1

⎞
⎠ ∈ Oc(M1).

Thus, M2 does not affect h(Z1, M1), and (26) is satisfied.
– (27): As in (29), Oc(M2) is generated from the nearest

occupied cell within the beamwidth of an original incor-
rect measurement on the map M1, so that h(Z2, M2) =
h(Z2, M1). Thus, h(Z2, M1 ∪ M2) = h(Z2, M2). The
same applies to (27).

Because M1 and M2 minimize each h() as shown in (22)
and (23), respectively, M(= M1∪M2) becomes the solution
that globally maximizes the likelihood of sonar measure-
ments, as shown in (21). The complexity of the eML approach
is O(n); O(n) to build M1 (Lee and Chung 2009), O(n) to
acquire new measurements Z2, and O(n) to build M2.

6 Method overall

Integrating the eML approach with the mSP method results
in the Maximum Likelihood based on Sub-maps (MLS)
approach outlined in Algorithm 1. After collecting sonar
readings, the mSP method determines the status of each
measurement (line 1–2 in Algorithm 1), and then the eML
approach builds a map with all measurements based on their
status (line 3–6 in Algorithm 1). The complexity of the MLS
approach is O(n): O(n) for the mSP method and O(n) for
the eML approach.

Algorithm 1 The MLS approach
Require: All sonar measurements (Z )

1: M̂ ← build the mSP map by Eq. (7) and (8)
2: Z = {

Z1, Z̄2
} ← classify all measurements into two categories

using M̂ by Eq. (1)
3: M1 ← build a map using all correct measurements Z1 by the MAL

approach (Lee and Chung 2009)
4: Z2 ← reprocess the range of all incorrect measurements Z̄2 using

M1 by Eq. (28)
5: M2 ← build a map using all reprocessed measurements Z2 by Eq.

(29)
6: M ← build the eML map using M1 and M2 by Eq. (25)

7 Experimental results

7.1 Experimental setup

To test the performance of the MLS approach, we conducted
experiments in several indoor environments using two types
of well-known sonar sensors: S600 and MA40B8. Figure 8

Fig. 8 Configuration of the sonar sensors used in the experiments.
The upper-left image shows 12 MA40B8 sensors and the white dotted
arrow indicates the direction of robot travel. In the lower-left figure,
each gray box represents the position of one of the 16 S600 sensors.
The white circles indicate the two sonar sensors used in the experiments
for insufficient measurements

shows the configurations of these sensors. The experimental
environments were grouped into corridor environments des-
ignated C#1 and C#2, home-like environments designated
H#1-5, and unstructured environment designated U#1. The
experiment with the MA40B8 were conducted in all envi-
ronments, while the S600 was used only in C#1, C#2, H#1,
and U#1. Only two results for the MA40B8 and the S600
are illustrated in this paper due to space limitations, while
the other results are summarized in tables, on graphs, or in
the provided supplementary materials. In particular, because
the performance of the MLS approach was significant when
there were insufficient measurements, such as in the case of
using only two sonar sensors, the two-sensor case is described
in detail and the others are included in the supplementary
materials. The details of the experimental specifications are
as follows:

– Map

– Cell size: 5 cm ×5 cm

– Measurement

– Maximum admissible range: 4 m1

– Sampling frequency: 4 Hz

– Motion: Manual movement

– Translational velocity: 150 mm/s
– Rotational velocity: 25◦/s

1 Because the divergence between the theoretical and the measured
beamwidth starts to increase rapidly around 4m according to Burguera
(2009b) and our experiences, the maximum admissible range was lim-
ited to 4m.
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Fig. 9 Experimental results in environment C#1 (62 m × 30 m) with
only two MA40B8 sensors: a Reference map. The line indicates the
trajectory of the robot, and the dashed areas represent narrow open-
ings. b PT map. c DS map. d FZ map. The FZ map originally sets the
state of a cell to safe (white) or unsafe (black). e ML map. The ML

map contains only occupied and empty cells because the ML approach
originally sets the state of a cell to occupied (black) or empty (white).
f CEMAL map. The dashed areas are unrepresented regions. g Our
approach: MLS map. h Our approach: mSP map

7.2 Mapping performance

We compared the performance of the MLS approach with
a number of representative grid mapping approaches: the

posterior approach (PT), the Dempster–Shafer approach
(DS), the fuzzy approach (FZ), the maximum likelihood
approach (ML), and the conflict evaluated maximum approx-
imated likelihood approach (CEMAL). As described in
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Fig. 10 Experimental results in environment C#1 (62 m × 30 m) with
only two S600 sensors: a Reference map. The line indicates the tra-
jectory of the robot, and the dashed areas represent narrow openings.

b PT map. c DS map. d FZ map. e ML map. f CEMAL map. The
dashed areas are unrepresented regions. g Our approach: MLS map. h
Our approach: mSP map

Lee and Chung (2009), PT, DS, and FZ require adjustment
of the update parameters. For these approaches, the parame-
ter set that minimized the wrong cell ratio (WCR, described

below) was used to build the grid maps. The EM algorithm
Dempster et al. (1977) was used with ML to reduce the com-
putational burden.
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Fig. 11 Experimental results in environment U#1 (14 m× 14 m) with
only two MA40B8 sensors: a Reference Map. The line indicates the tra-
jectory of the robot, and is the same with the line in (i). b PT map. c DS

map. d FZ map. e ML map. f CEMAL map. g Our approach: MLS map.
h Our approach: mSP map. i Snapshots in unstructured environment.
The line indicates the trajectory of the robot

Fig. 12 Experimental results in environment H#1 (18 m× 16 m) with
only two S600 sensors: a Reference map. The line indicates the trajec-
tory of the robot. b PT map. c DS map. d FZ map. e ML map. f CEMAL

map. The dashed areas indicate regions of significant error caused by
wrong decisions about incorrect measurements. g Our approach: MLS
map. h Our approach: mSP map

7.2.1 Qualitative comparison

Accurate reference maps are necessary to evaluate the qual-
ity of a map. We used data from a laser range finder (LRF)

as well as a blueprint of each environment to build the ref-
erence maps. The blueprints make up for obstacles that the
LRF sometimes misses, and the LRF provides detailed infor-
mation that the blueprint does not contain. In detail, after
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building a LRF-based grid map, a reference map is obtained
by combining the grid map with the blueprint. Figures 9, 10,
11, 12a show the reference maps.

Figures 9, 10, 11, 12b–d show the results of the inde-
pendent estimation approaches PT, DS, and FZ. Although
the overall shape of each environment was captured success-
fully, the maps still include errors where areas behind the
wall of the environment were expressed as empty. The errors
were the result of improper handling of the angular uncer-
tainty and the effect of incorrect measurements as described
in Sect. 2. If the parameters of each approach are modified to
show occupied regions, this causes previously unrepresented
obstacles to be shown, but also results in the appearance of
ghost obstacles. Conversely, if the parameters are adjusted in
the opposite direction, ghost obstacles disappear, but so do
some real obstacles. Thus, adjusting the parameters for each
of these approaches is difficult.

On the other hand, as shown in Figs. 9, 10, 11, 12e, the
results of the ML approach successfully represented the over-
all shape of the environment as well as the inner area without
any parameter adjustments, although erroneous parts in the
outside area remained. Specifically, in terms of representing
narrow openings, the maps in Figs. 9e and 10e are not sat-
isfactory because incorrect measurements obstructed a clear
representation.

Figures 9, 10, 11, 12f, which are the results of the CEMAL
approach, are good, compared with the other results. The
CEMAL approach faithfully represented the overall shape of
the environment and indicated occupied regions accurately.
It did, however, omit some empty areas in the inner region
of the environment because incorrect sonar measurements
were excluded from the mapping and the exclusion caused
insufficient measurement to cover the whole environment.
Additionally, wrong decisions about incorrect measurements
cause errors as shown in Fig. 12f. In other environments, as
shown in the supplementary materials, results of the CEMAL
approach were similar to Figs. 9, 10, 11, 12f in terms of over-
all representation, partial omission, and errors from wrong
decisions.

In contrast, the result of the MLS approach (Figs. 9, 10,
11, 12g) are excellent in terms of map quality; the occupied
regions are shown more accurately and the empty regions
are placed more clearly, compared with the other results.
The narrow openings in particular are clearly represented.
Furthermore, the MLS approach successfully showed areas
not represented by the CEMAL approach, and reduced the
extent of some erroneous parts that the CEMAL approach
failed to represent correctly.

7.2.2 Quantitative comparison

We defined a criterion for quantitatively evaluating and
comparing the performance of the mapping approaches. This

Fig. 13 Wrong cell ratios (WCR) for the different approaches when
using all sonar sensors. One experiment was conducted for each envi-
ronment. The case for U#1 is omitted because that environment was
very cluttered and the laser sensor alone was incapable of providing an
exact reference map

Fig. 14 Wrong cell ratios (WCR) for the different approaches when
using only two sonar sensors. One experiment was conducted for each
environment

is the wrong cells ratio (WCR) that indicates how much of
the map contains wrong regions. The WCR is given by

WCR = #of wrong cells in the map being evaluated

#of wrong cells in the MLS map
(30)

where a wrong cell is a cell that has a different state than in
the reference map. The WCR is a relative error measure with
respect to the error of the MLS map. Thus, when the WCR is
greater than 1, the map being evaluated has more errors than
the MLS map.

Figure 13 shows that the MLS approach had performance
superior to that of PT, DS, and FZ, and was similar to the
CEMAL approach in terms of WCR when using all sonar
sensors. Figure 14 indicates that the MLS approach had the
best performance in terms of WCR when using only two
sonar sensors. The WCR results indicated that a MLS map
contains the smallest number of wrongly represented cells.
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Table 3 Summary of mapping approaches

Complexity Dominant memory usage a Processing Empiricalb error

PT O(n) n Online 5.1 (1.8)

DS O(n) n Online 4.2 (1.7)

FZ O(n) n Online 8.8 (2.1)

ML O(2kn) � n Offline N/Ac

CEMAL O(n2) � n Online 1.2 (1.4)

MLS O(n) n Offline 1 (1)

aThe dominant memory usage excludes memory required to store the map
bThis error is the wrong cell ratio (WCR), and the value in parentheses indicates the case of using only two sonar sensors
cBecause the ML approach originally sets the state of a cell to occupied or empty, the WCR cannot be measured

7.2.3 Computational load

Table 2 shows the total computation time required to create
the map using each approach. The ML computation required
a very long time compared to the other approaches despite
using the EM algorithm. On the other hand, while the MLS
approach is based on the ML approach, its execution time was
comparable to the other estimation approaches. The MLS
time was somewhat longer because the MLS is a two-layered
approach incorporating a filtering layer (mSP) and a fusion
layer (eML), while PT, DS, and FZ, have only a fusion layer.
Although it was longer, the MLS execution time was not
prohibitive for practical use.

7.2.4 Overall comparison

Table 3 summarizes properties of mapping approaches.
Except the ML approach and the CEMAL approach, all map-
ping approaches have the complexity of O(n) where n is
the number of measurements. In terms of memory usage,
the ML approach and the CEMAL approach use the most.
Empirically, they require approximately 600 times the mem-
ory compared to the MLS approach. This is because both
ML and CEMAL store indices or pointers of all related mea-
surements in each cell in order to decrease the search time.
Except the ML approach and the MLS approach, all mapping
approaches can build a map incrementally. Through several
indoor experiments, quality of MLS map is shown the best
not only in the case of using the complete band of sonar
sensors but also in the case of using only two sonar sensors.

7.3 Decision performance

In Sect. 2, we described the result of research into the
rejection of incorrect sonar measurements. We selected rep-
resentative methods RCD, spAC, RANSAC/GF, NVD, NN,
and CEsp to compare with the mSP method.

Fig. 15 Correct decision ratio (CDR) for the different approaches
when using all sonar sensors

Fig. 16 Correct decision ratio (CDR) for the different approaches
when using only two sonar sensors. The result of the NVD method
is not included because it cannot be used with only two sensors

The correct decision ratio (CDR) from Lee and Chung
(2009) was used for the purposes of quantitative comparison.
The CDR indicates the proportion of measurements correctly
determined through a filtering process. Thus, higher values
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Fig. 17 Shaded gray cells indicate conflict cells. If the three measure-
ments are correct, conflict cells should not occur. Thus, the incorrect
measurements should be included in this case

of CDR indicate better decision performance to a maximum
of 100.

As shown in Figs. 15 and 16, the mSP method had the
best performance for correctly determining the state of mea-
surements, with a CDR of about 91 % when using all sonar
sensors and about 84 % when using only two sonar sensors.

8 Conclusion

A small number of sonar sensors is desirable to reduce cost
and processing resources. Thus, we began this research by
asking how to build an accurate grid map, using a small num-
ber of error-prone sonar sensors. Empirically, when there
are insufficient sonar measurements, the grid map frequently
misrepresents some empty regions because correct sonar
measurements cannot cover the whole area. If incorrect mea-
surements are used without appropriate processing to recover
unrepresented regions, they will degrade the quality of the
map. To address this issue, we started with the ML approach
because of its suitability for handling inconsistent informa-
tion, as described in Sect. 2. The ML approach, however,
has three critical problems: over-fitting, heavy computational
complexity, and local solutions. These problems degrade the
quality of the ML map, and prevent its use in practical appli-
cations. Thus, obtaining a high-quality grid map requires
simultaneously incorporating incorrect measurements appro-
priately and overcoming the problems of the ML approach.

To achieve that, we proposed the MLS approach, which
consists of two layers: the decision layer (the mSP method)
and the mapping layer (the eML approach). The mSP method
determines if sonar readings are incorrect or correct based
on the extended application of sound pressure. Because mea-
surements determined to be correct do not cause conflict cells,
they can be used to build the eML map. The eML approach
builds two sub-maps; one is based on correct measurements
and the other is from incorrect measurements. The eML map
is obtained by merging these two maps. In other words, the
eML approach is a type of divide-and-conquer algorithm.

To our knowledge, the MLS approach is the only map-
ping methodology that integrates incorrect measurements
into a map in a well-defined manner. The MLS approach

can generate an accurate and precise map even with only
two error-prone sonar sensors by the appropriate handling
of incorrect measurements. This indicates that the MLS
approach is less sensitive to the number of sonar sensors
when building a high-quality grid map than previous map-
ping approaches. Although the MLS approach is based on
the ML approach, its complexity is O(n), which is very low
compared to the O(2kn) of the ML approach. Moreover, the
MLS map succeeds in globally maximizing the likelihood
of sonar measurements with a divide-and-conquer approach.
Additionally, the mSP method is better than existing meth-
ods at determining the true state of sonar measurements in the
case when a complete band of sensors is used or when only
two sonar sensors are used. Several indoor experiments con-
firmed that the MLS approach was a good mapping method-
ology in terms of the quality of the map, the low algorithm
complexity, and the ability to build map with a small number
of sonar sensors.

There are three significant aspects of the MLS approach.
First, while conducting our experiments, the robot followed
the corridors or the walls, and its two sonar sensors had been
on the right and left sides of the robot (Fig. 8) to reduce the
proportion of incorrect measurements. If these two sensors
were on the front and rear of the robot, almost all sonar mea-
surements would have been incorrect due to the undesirable
reflections that would result from such a geometry. When
almost all measurments are incorrect, the mSP method and
the MLS approach do not produce usable results because
proper information is seriously sparse to model the environ-
ment. Thus, when only two sonar sensors are used to build
a grid map, their configuration may be critical to obtain use-
ful measurements. Second, all experiments were conducted
in a static environment. Third, we assumed that pose esti-
mations were available because localization during mapping
was not a concern in this study. The pose estimations rely
on EKF-SLAM [extended Kalman filter-simultaneous local-
ization and mapping) (Ahn et al. (2008)]. The quality of the
MLS grid map cannot be guaranteed if the level of pose esti-
mation error is excessive. In our experiments, the maximum
error between the real final pose and the estimated final pose
was approximately 10 cm in both the x and y directions.

Acknowledgments The authors would like to the anonymous review-
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Proof of condition for the MSP method

As described in Sect. 5, the measurements regarded as correct
should not cause conflict cells if the eML approach is to be
used. This can be proved by the following theorem.

Theorem 1 The mSP method, i.e., the decision based on the
mSP map and (1), does not cause conflict cells.
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Proof Let us assume that three measurements i , j1, and j2
are classified as correct readings by the mSP method. Addi-
tionally, let us assume that these measurements cause conflict
cells. Without any loss of generality, we assume that conflict
cells occur with the sonar reading i and the other readings j1
and j2. As shown in Fig. 17, the whole arc region A(zi ) of
the measurement i overlaps free regions F( j1) and F( j2).

In this case, by the definition of the correct measurement in
(1), the measurement i should contain occupied cells in its arc
region. However, if at least one occupied cell exists in the arc
region A(zi ), then one or both of the other measurements j1
and j2 should be incorrect due to the definition of the incorrect
measurement in (1). Conversely, if there are no occupied cells
in the arc region A(zi ), then the sonar reading i should be
incorrect, because it satisfies the definitions of the incorrect
measurement.

As a results, if conflict cells occur, incorrect measurements
defined by (1) always exist. Specifically, if conflict cells exist,
the first assumption that only correct measurements remain
through the mSP method is violated. Therefore, the measure-
ments determined to be correct through the mSP method do
not cause conflict cells. �

With Theorem 1, we can confirm that the mSP method
can be applied so the eML approach can be used because it
does not cause conflict cells. However, Theorem 1 does not
apply only to the mSP map. The decision based on a map and
(1) does not cause conflict cells for any fixed map. The key
property that the map should have is that it is a reasonable
representation of the inner region of an environment. If not,
the performance of the decision based on the map cannot be
guaranteed.
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