

Calhoun: The NPS Institutional Archive DSpace Repository

Experimental deflection survey of cantilever sectors of uniform thickness

Garrett, Joseph Luther
Pasadena, California; California Institute of Technology
https://hdl.handle.net/10945/6401
\qquad

GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

EXPGRIMENTAL DEFLZCTION SURVEY OF
CANTIIEVER SECTORS OF UNIFORM THICKMESS
Thesis by
Lieutenant Commander J. Garrett

Thesis
G2

Theols by

Josegh Garrett, ILeutenant Commander, U.S.J.

In Partial Fulfillment of the Requirements
 For the Dogree of
 Aeronautical Bngineer

Cellfornia Institute of Techrology
Pasadena, Callfornia

The author wishes to wenvoladea lif einrocietion for the cooveration

The author espocially desires to erpress his gratitude to Dr. I. . Sechles. Dr. G. H. Nousner, wind ir. . I. Villisns for theis helnful advice and their suffestions.

Acknowledgement is also macic to ir. i. ". "orant for his assistance in the construction of testine guipmont am for inis aid in the experinental work.

The research was carriod out in collaborction with Iicutenant Commander Williar H. Honry, U.S. H .

3μ 91120 PAGS
SuTx 2 g
I Intronaction 1
II Trupanert 3
2. 1 mose Smaivon 3
2.2 Tostive Mrquipmont 3
Initial Calibzetion and
Preliminary Testing 6
IV Rporimertial procedure 8
4.1 Procedure for Phaso 1 8
4.2 Froceture Ior Phase 2 9
V Case of Distrisuted Loadine 11
VI Rosults :幺ก Discussion 16
6.1 Results of Phase 1 16
6.2 Results of Phaso 2 19
VII Recomendintions 23
VIII Conclusions 24
Roferences 25
Tables 26
Ilustrations 38Appondix


```
    1. Plan Fom of Thase I jpecinen
    2. Plan Fom of Phase ? 5yocinen
    3. Arrangeaent for Securing Spacinen
    4. Srrengement for Loading and Measuring Doflection of Test Specimen
    5. Sample Data siheot
    6. Are Bowndary Loading Condition No. 1
    7. Arc Boundary Loading Condition Ho. }
    &. Are Boundary Losding Condition ifo. 2
    9. Deflections for Loading Condition No. 1
10. Deflections for Loading Condition Fo. 3
11. Deflectionsfor Loading Condition Ho. 2
```


OT CAHTILYVRR SBCTORS OF UNIFORA THICRTESS

307)

The purpose of this investigation was to experimentaliy detemine defloction data for 0 to 1.80 derree uniform thicieness cantilevor sectors. The basic doflection data is presented in the form of influence coefficients that cen be utilised in the determination of the deflection of enctors as caused by any regular transverse loadins.

Ono phass of the investigation specifically planned to achleve rosults that could be compared with an analytical solution of the problem.

In addition to the basic experimentation, proliminary investigation *as made of the effect of thickness and boundary fixity on the stiffness of cantilever sectors.

Deflection modes as calmiatod from the data of this investigation Were in close agrement with those deteminod by the analytical solution. Agreoment in absolute naenitado vas of the ordor of 15 percont for three loading conditions checked.

Iurther investigation into the effect of thicimess is considered desirable before the results of this investigation are applied to the determination of deflections for sectors of different thickness from those used in the investigation.

Tho investigation was carried out in the Guggenhoim Aoronautical Laboratory at the California Inotitute of Tocinologe, Pasadona, California.

I 1H2MODNOCTON

The prupose of this investigation was to study the deflection of uniform thickness sectors visen fixed on one rodius and subjectod to transverse loadings. The invostleation :us nade usine smecimens of 2 list alumims alloy. All loacince wero selow the proportional limit of the material.

The experimental soris wes diviled into two phases:
Phasa 1. Obtainine doflection data for a fanily of sectors of varying opening ancle but ifth 1 dontical thicioness and radius. The doflection data was reducod to influence coefficients that vore arranged in matrix form. The sectore of this family varied in sector anclo from 30 to 180 degrees.

Phase 2. Dotemining the deflection pattern of a 45 degree sector when subjected to a particular boundary loading. This phase was for the prupose of obtainine results that could be compared wh results of an analytical solution. (I) The second phase also included a preliminary investigation of the effect of thiccness and boundary fixdty on the doflection of sectorg for the particular case of 45 decree opening ancie.

The testing equipment was designed and built oy the author in colLaboration with Willian 3 . Benry, and utilized the basic facilities of the GALCIT* stractures laboratory.

[^0] Pasedena, California.

A mafor portion of the tiro vas spont on the dovelopment of procedures and tochniques which would permit the invosticotion to procoed moro rapidy and yleld data that could be used for the dotormination of defloctions cunsed by any kind of transyossc loadine.

II ExUIPMETI

2.1 Test Gnecimens

The jeric mecinco asod in fhase 1 of this invesufration was cut from $1 / 4$ inch ninnimu nịorninto. The original specimon was 19.94 inches in radiug, had an averar; thicimess of 0.251 inchos and a sector ancle of 180 dogrees. Sectors of $235,90,75,60,45$ and 30 degrees Fere ointalned. by prokroscivoly cutting buck tha basic spocimen. Mure 1 shows the plan form of the specimon with its $19-1 / 2 \times 20$ inch hold-down extension. A 2 inch by 15 dermee polar grid was lightly eribed on both sides of the specimen after it had boen painted with a licht cont of Drizen 3luo.

The spacimen used in Phase 2 of this investigation cut from $1 / 8$ inch 2 dsT elumimu alloy plato. Tine averago thicknoss of this specinen was 0.125 finches. The overall radius was 25 inches and the effective zedius was 20 inches. 2adial sav cuts were nade betreen the above nentioned radif at 1 incin intervals alon the offective circuaference. Flgure 2 shows the plen form of the svecimon used in Fhase 2.

Tho testine equipmont ses constructod using an existinc steel frame as a suppertine base. Tvo $2-1 / 2 z$ is $x 3 / i+$ inch anele soctions appaxinatcly 43 inches lone wore leveled and secured to tho ozdsting baso frame. The uprer horizontal surface of the angle irons had been machined to provide a levol surface for the hold-dow pletes. swo stross felievod and mechined I is $29 \times 19-1 / 2$ inch stoel hold-down plates wore secured to the ancile irons by 12 steel bolte. The specimon was insorted between the hold-
dom plates and arims 2/3n 1rah tritmor than the apociaon woro usod to provont eacossivo "howine" of the hole-10m nites. Since no bolts could 3e used newr the ling of fidty of the syecimon, thros scrov sodiz repe mar loyze to increase the menamise of the umer hold-down plate on the specimen. Nio scrm, jocis usod nore sufficient to curso noticeable concure benctis of yotix dola-iown plates. Fifoure 3 shors the arranement used to secure tho specirien.

The lowidns dovico pemittod tho application of point londs from

 without its ausin; cinuise to tico syocimon curing royected louũing.

The movement of the locd to the various frid points was accomplish in tive collosime maner:
(a) Tue loocixe pin vas woised from combact with the spocimen by \& four foot lefer am that had a fulcrum above the sector centor.
(B) who levor arm, carryine the loadine rin ith it, could we rosated ajout the sector contcr tirouchont the requirod 180 degreas.
(c) Sadicl motion of tho loadinf yin was eccomplished by msans of roliors on tiso griding mechanist. These roliers octed on tho lover arm and could be locked at eny railai position.
(d) Tho loadne pin guidine nechnism wes so arroncca that fon the load was positioned on the spocimon naither the lever arm nor the duiding mecianism took any arorcoiable mount of the vertical load.

Further infomation co tho mechanical detalls of the lowinu cun be obtained Iron Figure 3.

A deflection table was positioned parallel and 9-1/2 inches below the lover surface of the specimen This deflection table consisted of an ordinary office table that was socured to the testing frame by means of "C" clamps. A 30×60 inch smooth surface top was mado fron $1 / 4$ inch masonite glued to 1 inch plyrood. When rigidly clamped to the table this top providod a smooth and staady platform from which the doflections could be measured. Since there was no velght on the table other than the deflection gavge, no addtional ricidity of the table was deomed nocessary.

A defloction gauge was made by mounting a Modol 282 Anes dial grauge of 1 inch travel and reading to 0.001 inch on a sturdy base. The main spring of the dial garge was removed and a unifora gauge force was obtained by gravity action on a horizontal 8 inch alumimm bar supported at an off-center pivot. The overall height of the deflection gauge was made adjustable by the addition of precision eround base blocks.

Fleure it illustrates the oporation of the deflection garge.

Frelininary tests for tho promose of ietcrainine the nost costrable oxporimentation teainiques wero conducted on a 0.075 inch 2 ist aiuninu syocimen. Farly invostication indicated the dosirabllity of locdine the specken by cravity from ebove whlo ceflections were beinz measuroc. from bolow.

The Iollowns ceneral roculrgaonts wore sot forth:
(a) llazimm dofloctions must be as largo as rossible to kect roadine eprors to a minimum, brt measuresble permonent set of tho specinon mast not resclt.
(3) The loadine rust be as $2 n 20$ as possible within tho innits of (a) above and jot pornit casy nanuil handire.
(c) Soctor anglos from 0 to 180 docroes nust be 1nvestleated.
(d) Brom the dsta obtained it zust os possible to dnternine the deflection of a spocition undar any iom of transvarso loudinc.

In view of the above requirements, it was decided thet the superposition of doflections caused by point londs would be utilized and, further, that Hawell's Reciprocal Theorem would be used to minimize the amount of data required.

The preliminary investigation utilized a standard spring-loaded dial gauge and the results obtained did not agree with Haxwell's Reciprocal Thoorem. Two possible causes for this discropancy were investigated.
(a) Fizdty of the spocimen in the test oquipment.
(b) Iinear variation in the defloction gauge force on tho specimen because of the main spring of the dial gange.

By rearacin; tive mein sprim; of tio disl fruce with a lever aystem that produced a unifiom deñloction purco forec throughout its range of travol, the regults wore found to sutieiy 'ianoll's Recinrocal Theoren. By reneated testing it was cietomaned that ifanoll's Reciprocel theorem sould yield resuits within the scotter caused sy repented readines for any one poiat. Superposition :res ciecired by comprine results with those of a survey made with a urifora losd on a 45 dogree gector.

By plotting deriection duta from the preliminsyy investigation, the distrination and censity of loading points vere decided upon.

It was determined that the most accurato results could be obtained by loavint tine dolloction waye undor a siven noirt while the load was moved fron point to point. This testing nrocedure eliminated errors that might result from irresilarities in the deflection table if the parare were noved between readnes. It ciso made it possible to obtain a check on the tare readine urtor each load had beon romoved. A third advantage of this method of tosting over an alternate method was that deflections could be read diroctiy uithout need for subtractine a tare readinu ach time.

[^1]
IY Erpariarmat opocirrog

Lel Pencoctro for Pirnel.

E1fty-thmo Ertc points vore selceted as tect wointc. Tho dofloction

 weifint 50 rounds. The looding -in ma neormesival. movod to all tost pointa. Deflection reactueg as rend :oro multnlied by 20 and wore recordse on datn shante. The muncrs moonden, therefom, reroscrited Inches of deflaction mar $10 n$ nounds and are hereafter referrod to as influanco coefficionts desionnter as ifu
 had boor undor a test point and all readings trisen, that noint novor had to be used again as a loadine noint.

Unon completion of the deflaction sumey, the data was transcrijed to the nore convenicnt metrix form of Tables 1 to 7 .

The data for each tost point was exained for large discrepancios by drawing contour lines on the rouch data sheets. Ficure 5 illustrutes a data shoet that had boen emmined in this manner.

Whon completinf a choch of all the dats for the 180 degree sector, that specinen renoved, cut back to 135 degrees, and the abnve testing procedure repeated.

Similer emorimentil procecure was followed with the 90, 75,60,45.

Lérrccedurcicy
The motizod of mowsurime do iloctloms in this phise ros tice same an

A distributed souncary lowang of -ii. 0 incir pounds rudial noment ler incir end -iC.'0 pouncs slan por inch vios lyosed over one inch of

 moved to each of tive 15 fingors that wore I inch wide at the root. A
 inch wide at the root.

Incluence conficionts for the cheus alone were obtainod circoty fron doflection yoalines thicon wivn a 10 pomd conenntrited load was Thaceat at the root of cach sinecr.

Iufluonce conificients for rafial monent alone vero celculated from Who data iy the method inustratod in the dppendix of tile report.

The above procodurs vac ropestod for the same sector after all fingers had been avit to onowall their original width. The results were compared and thon all excopt 3 of the marrower fingers wore cut off at theis root and the procedurc repoated for those three pincers.

By maling a plot oi all cocfficients auminst arc position, and including on that plot the values from the tiree finier teat, it viss nossible to correct the oriminal data for the effect of the fincere on the plate silifnoss.

∇ CASI OS DISMAITUTRD LOADIMG

The determination of the doflection of a sector plate causod by a distributed load requires that an aroa coefficient dosignated "a $\mathrm{J}^{\text {" be }}$ associated with each of the loading points of the influence coofficient matrix. If in the symmetrical influonce matricos formed in this investigation there are "n" loadine points dosicnated by suoscripts "g" there are "n" deqlection points dosienated by subscripts "i". Now if q, is the loading intensity of the distributod load at the load point "j" an equivalent concentrated load py can bo dofinod as follows

$$
\begin{equation*}
p_{j}=a_{j} q_{j} \tag{1}
\end{equation*}
$$

 buted loading the rigorous requirements for the area coefficients become

$$
\begin{equation*}
w_{i}=\sum_{j=1}^{n} p_{j} g_{i j}=\sum_{j=1}^{n} a_{j} q_{j} g_{i j} \tag{2}
\end{equation*}
$$

where (2) must be satisifed for all deflection points simulaneousiy.
To meet these requirements aj would be a function dependent upon:
(a) The geometric position of " f " with respect to other load points and the plate's boundaries.
(b) The load distribution,
(c) The deflection mode near "i".

Accordingly aj cannot be unfuely defined for all values of load distribution and still satisfy the recuirements exactly.

For regular loading distributions and resultine deflection patterns a unique ay can be assigned each loading point that will satisfy wquation (2) to an acceptable degree of accuracy. The accuracy will be dependent upon the variation from the ideal in the load distribution and defleotion pattern.

For this specific investigation the assignoent of unique values to the area coefricients was based on two approximations.
(a) The load distribution was taken to be constant over each elemental area ag.
(b) Influence coefficients varied in a linear manner betwoen adjolnine grid points.

In Phase 1, where for reasons previously mentioned the loading points wers selocted arbitrurily, an unsymetrical distribution of load points exists. This lack of symotry made it impractical to ostablish one eseneral mule for the dotermination of all area coefficienis. Troical exanples for elements as illustrated in Figure (a) follows Area $A_{1}^{(1)}$ bounded by or containing load points $a, b, g_{0} f k_{0}$ and e was distributed to those points
as follows:

Fifura (a)

0 to k. (This assignment of zero to k was made since k was an unsymatrical point which was originally selactod as a load and defleotion point because of its importance in the case of boundary loadings. It could be illustrated that failure to assign an area
conficiont so this yoint ioes not cause it to be oliminated as a deffection point.)

To justify the assigmont of $\frac{A_{1}}{2}$ to joint "e examine a geometrically similar internel point "g" which would bo assigned $\frac{A_{n}}{8}$ from oach of its four edjoining areas.

The typical are cocificients bocome:
$a_{a}=\frac{A_{1}}{8}$
$a_{1}=\frac{\Lambda_{1}}{4}$
$a_{B}=\frac{A}{2}$
$a_{k}=0$
$a_{g}=\frac{A_{1}}{4}+\frac{A_{2}}{4}$
$a_{n}=\frac{A_{1}}{8}+\frac{A_{2}}{8}$

For the area $c, h, 1, c^{\prime}$ (where c^{\prime} is not a loading point) the sroa A_{3} is first तistrinuted equaliy to the four corner Foints. That area which ras assiened to c^{\prime} is then redistributed to c end o inversely as the distance from c^{\prime} to those points. This arbitrary method of area assignoent for elements near the center of the sector is based on the approxination that the load distribution will be nearly constant and that the deflection between the two points will be innear.

Writine the deflection for any point we have

$$
\begin{align*}
w_{1}= & a_{a} q_{a} g_{1 a}+a_{0} q_{b} \varepsilon_{13}+\ldots a_{1}^{a_{q}} \varepsilon_{1 c}+a_{c} q_{c} \cdot s_{i c^{\prime}}+ \\
& \ldots+a_{0} q_{0} \varepsilon_{10} \tag{3}
\end{align*}
$$

where a_{c}^{*} would be the area coefficient of point c if c^{\prime} were a real load. point. The inst tem of (3) vanishes since g_{10} must be zero where the Plxed radius does not deflect.

Considering oniy that part of the deflection which is caused by the loadine near c and c we have

$$
\begin{equation*}
w_{1}=a^{1} c_{0} \operatorname{sg}_{1 c}+a_{c} a_{c} \xi_{i c} \tag{4}
\end{equation*}
$$

Thon is $E_{i j}$ varies Iinearly and $c_{c_{1}}=q_{c}=c_{0}$ from the assumtions made Mquation (4) can be writton

$$
\begin{equation*}
w_{1}=a{ }_{c} q_{c} \varepsilon_{1 c}+a_{c} q_{c 1} \cdot 2 / 3 \varepsilon_{1 c} \equiv a_{c} q_{c} \varepsilon_{1 c} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(a_{c}^{*}+2 / 3 a_{c^{\prime}}\right) q_{c} E_{1 c}=a_{c} q_{c} \xi_{1 c} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{c}=a_{c}^{*}+2 / 3 a_{c} 1 \tag{7}
\end{equation*}
$$

where a_{0} is the total area coefficient of tho point "c".
Equation (7) illustrates that for the approximations made there is justification for the arbitraxy essigmont of tho area assumed by a non-load point to other load points in the inverse ratio of distance to those points.

Since on a fixed boundary gio vanishes, the area coefficients assigned to the boundary points have no significance except to provide a check. The area of the sector wust equal $\sum_{j=1}^{n} a_{j} f a_{0}$.

Tables 10 and 11 have tabulated values for the area coefficients assignod each losding point of the sectors investigated. Because these area coesficients are for sectors of 20 inch radius multiplication by $r^{2} / 400$ is required to reduce then to coefficients for other radil. It should be noted that while the area coefficionts as defined here have dimensions of square inches no attempt was mado to associate ong eiven boundary with the area except to imply that it is in the vicinity of the corresponding load point.

For convenience of notation the area coofficients for each specimen investigated are arranged in colunn matrix form and designatod as $\{A\}$.

The arrancement of the olements in the colum matrix is mado to corrospond with the order of the load points in the associated influence coofficient matrix.

6.1 Pesults of Phose 1.

The results of Phase 1 of this investigation are contained in the matrices of influence coefficients, Tables 1 through 7. Colunn matrices of the associatod area coofficients are given in tables 10 and 11. The results as presented aro anplicable to 20 inch radil cantilever sectors of 24 st alumimam $1 / 8$ inch thick and for loodings within tho proportional linit of the material. Bye of the coofficionts presented the doplection resulting from a transverse loading on any thin cantilevered sector of from 0 to 180 degrees can be ascertalned.

A deflection caused by a concentrated load P_{j} at any grid point "g" is given by

$$
\begin{equation*}
w_{1}=P_{j H_{1 j}} \times 10^{-3^{*}} \tag{8}
\end{equation*}
$$

This doflection occprs when the sector is geometrically and physically identical to the sector usod in this investigation. Within the region of proportional stress-strain the accuracy of the deflections determined for this type of loading is egoverned only by the accuracy of the valuos of the influence coofficients.

Possible sources of error in the tabulated influence coefficients are:
(1) Mothod used in measuring doflections.
(2) Method of loading test specimen,
(3) Fixity of specimen at its supporting radius.
(i4) Imperfections in the test specimen.

[^2]By turin; rocatoa tcst radings and by utilizing haswell's Reciprocal Theorom it wis ostimatod that because of (1) and (2) the coefficients may have a scattor of $t .5 \%$ or $f .02$ whichever may be the larger. From the preliminary investigation the errors caused by (3) were bounded by an upper and lower limit that were in treriation by 5 percent. The material property curves indicate that tho error caused by (4) should be of magnitudo less than 2 percent.

For concentrated loads at points other than the loading points used in this investigntion, interpolation of the data by graphical or algebraic methods can be employed. The accuracy of the interpolation and the accuracy of the infiuence coefilcients will both affect the accuracy of the final results. For deflections at points other than grid points and for doflection surveys of sectors of intermediato sector angies a similar interpolation can be used.

For a contimous finite transverse shear loading on the free boundary of the sector, the deflection at any erid point is found by eraphical or analytical ovaluation of the integral.

$$
\begin{equation*}
w_{1}=\sum_{s} V_{(s)} \varepsilon_{1(s)} \cdot \Delta s \tag{9}
\end{equation*}
$$

The process of evaluating and using E_{i} (s) for the boundary from a finite number of $\mathfrak{g}_{1 j}$ values nay introduce interpolation errors in addition to those existing in the basic data. where reasonable mothods of interpolation are omployed these errors will not be accumalative but will average out and, therefore, be admissible.

Deflentson surveys for distributed transverse loading over the nlar form of the soctor rovile the tree loadiu; of the rost general 1ntorost. Distrinuter lourlmes knciuding unifom louds and loade of the nstume oncountorn by airiokis in subsonic or suncrsonic flow are of arochai intereat if the arroximion of eirfoils by thin plates of uniform thicienoss is parnitted. Euch londings can bo treated from the inta obtained in this investigation.

For the case of c cisorinated load of intensity q_{j} at grid point " J^{\prime} the ref?ection is apryo:-1rated by

$$
\begin{equation*}
w_{i}=\sum_{j=1}^{n} q_{j} a_{j} \varepsilon_{i j} \times 10^{-3} \tag{10}
\end{equation*}
$$

or in ratria form

$$
\begin{equation*}
[Q]_{\alpha}\{Q\}_{\alpha}=\{v\}_{\alpha} \tag{11}
\end{equation*}
$$

where $[G]_{\alpha}$ is the symetrical square matrix of influence coefficients for a sector with sector anglo α.
$\{Q\}$ is the column matrix formed by the products $a_{j} q_{j}$
$\{W\}$ is the column matrix formed by olements w_{1} of the deflection.
Possible sources of error in deflections determined from aiquation
(11) are:
(1) Errors in influence coefficlents,
(2) Brrors in area coefficients as discussed in an earlier section of this report.

In the case of loadings that are discontimous or have discontimous derivativer less accurate results may result. In the case of such loadings
accuracy could be improved by effectively increasing the density of the test points through interpolation. This procedure would require the determination of additional infiuence coefficionts by interpolation and the reassigment of area coefficients to all loading points.

For sectors of thicioness, radius, or material constants different from those used in the investigation, the determination of ansolute deflections can bo accomplished through the use of the elasticity reletlonships that are applicarlo to thin plates. (3)

6.2 Rosulta of Phase 2.

The influence coefficients obtained for transverse shear and for redial moments actine on the arc boundary of the 45 degree sector used In this phase are given in Tables $B(a)$ and $B(b)$. Coefficients for transverse shear are deslennted $\mathbb{F i j}_{1 j}$ and are manerically equivalent to the deflection in inches at "1" caused by 1000 pounds shear per inch acting over one inch of arc at "3H. Influence coefficients for radial moments are designated nsig and correspond to deflection at "i" caused by 1000 inch pounds radial noment per inch of arc acting over 1 inch near "j". The coofficient osij represents deflection at ${ }^{11}{ }^{1}$ carsed by 1000 pounds of concentrated load at " J " where, in this case. " J " is the free corner of the sector, namely, 45 degrees and 20 Inches.

The coofficients given in Tables 8(a) and 8(b) aro applicable to 24 if aluninum sectors of 20 inch radius and $1 / 8$ inch thickness. By superposition, the deflection of such a sector caused by any efven boundary loading is given by the equation

$$
\begin{align*}
v_{1}=10^{3}= & \sum_{j=1}^{15} v_{j} \cdot F_{i j}+\cdot 71 v_{(16)} g_{1(16)} \\
& +\sum_{j=1}^{15} H_{j} \cdot m^{c_{1 j}}+.71 M_{(16)} m_{i(16)}+F_{c^{1} 1 j} \tag{12}
\end{align*}
$$

where
∇_{j} is the transverso shear in pounds ner inch of arc near " j ".
My is redial moment in inch rounds per inch of aro roar " J ".
PCis concontrated loud in pounds at 45 degreos and 20 inches.

For 45 degree sectors of thicicnoss, radius, or material constants different from those of the sector usod in this phiso of the investicution, the determination of deflections can ba accomilished throuch use of the elasticity rolationshipa for thin plates.

The deflection at six points on the freo boundary of tine 45 degree sector wore computed for tiree succific boundary londines. Tho boundney loadines considored are givon by Eirnures b, 7. and 8. The dofloctions causod by thoso loading as dotomined from Bazatian (12) are roproconted的 Figures 9, 10, and 11 respectively. The lowings investigated correspond to loadines for which an andyitical solution has been obtained by Willians. (1) The doflections fiven by the enniytical solution are indicated on Figures 9. 10, and 11 alone thth the dofloctions as dotemined by this arnerimental method. While it is anticipatoc that thore will bo no more than minor chences in the analytical results, the euthor whes to call attention to the fact thot the comparisons made in \#igures 9. 10. and 11 are therefore strictly valid only if no changes occur in the analytical solution wherein it applys to the loadines, deflections, and material propertios used herein.

The follouine obsorvatious are considered signiflcants
(1) The ordor of magnitude of the meximun deflections as determinod oy the two approachos in the samo.
(2) For the throo loadine investigated all defloctions in each case were less whon doterminsc oxperimentaliy than when determined analyticaliy. This finding is contraxy to what is normolly found when experimential resuits aro compared with anslytical results, such as in beam problems. It is, however, in accordance with some prelininary results of a similar investiration on cantilevered rectangular plates.
(3) The defloction moces as detominod by the analytical and experimental mothode aro similar. This observation indioates that good aireonont night ise expectod for the gtresses near the sector's boundnries as deterrined uy the two approachos.

The results of a prelininary invostigation into the effect of the thichess of sector plates on their stiffness are contained in Table 9. Defleotion data for the $2 / 4$ incin sector plate was compered with corresponding derlection datio for the $1 / 8$ inci sector of Thaso 2. The olenentary rolationships of elesticity wien appied to thin plates with small doflections give deflections invarscly as the cubo of the thickness. From that relationchip the ratio of deflection of tine .125 plate to the .251 plate would be $8.10:$ 1. Eor the five points investigsted the experimental reauls indicate that the ratio of doflootions is nearly constant and of the order of $7.30: 1$.
lossible causes for this rariation that may have rosulted from the experimental technique ares
(1) The thinner $1 / 8$ inch plate may have pernitted a higher dagree of relative fizity at the supportine radius. Since the preliminary investigation into the offect of fixity indicated a maximu of 5 percont variation in deflections for various fixity conditions it is improbable that this is the only cause for the variation noted.
(2) There may exist a "thickness effect" which is accentuated enough by the geonetry of the plate to require the use of the thickeness term in the plato equations. (4)
(3) The material constants of the specimen were different from the values assumed in the calculation of the boundary loading, namely, e 10.3×10^{6} and $\nu=.3$.

A complete investigation of the effect of thicloness on the deflection of similar plates was beyond the scope of this investigation but. in view of the limited observations made, it must be concluded that further investigation is necessary before the results of this deflection survey can be accurately extended to sectors of thickness, radius, or material constants different from those of the test specimens used.

As a result of this investigation the following recomendations are made as to the nature of future experimentation wth cantilever sectors:
(1) That a deflection survey be made of a cantilever sector, for any given transverse loading, by some alternate experimental method. The agrement with the indings of this survey would give a quantitative indication of the accuracy to be expected in the use of the results of this Investigation when extended to any of the nany surveys that can be made from these results.
(2) That an alternate method of applying radial noments to the aro boundary be developed, and the results be compared with those of Phase 2.
(3) That an extensive investigation be made of the effect of plate thickness on stiffness.
(4) That surface stresses be determined at selected points on a given sector subjected to a given loading. Four alternate methods of doterminine, and checining, those stresses are suggested.
(a) Strain gauce readings with total load applied.
(b) By superposition of strain gauge readings for concentrated loads at Erid points through the use of the area coefficients given in this investigation.
(c) By graphical or finite difference solution of the deflection survey made by this influence coefficient method.
(d) By the analytical solution.
(5) That in future investigations (particulariy when thin plates are used) conditions at the fixed boundary be aocurately controlled.

The conclusions may be eumarizod as follows:

1. That the influence coofficients dotominod in this investisetion provido sufficiont and sotisfactore basic data for doteminine tho doflection of 0 to $18 n$ तबcrea cantilever sectors for ant renular transverse laading.
2. That, for goomotrically sinfler soctors that havo tho same boundary fiddty cood agremont with deflactiona determined by othor experimentri mothode can bo expected.
3. That bosarus of the tochnique used in securing tho spocimen to the test equipmont the "offectire ili-its" $^{\text {at }}$ the supporting railus mey have boen even greater than that of a theoretically flat cantilever sector.
4. That further investigation, particularly into the effect of thickness on stiffnese, is essential before the date obtained by this investigetion can be acmurately extended to thin sectors of thickness. radius, or materifel constanta different from those of the test specimen used herein.

RTMTRMOSS

1. Willams, I. I. Mrino Plate Problen for a Cantilever Soctor of Uniform Thictnoss". Ph.D. Thesis, Colifornia Institutc of Technology. Aeronautics Department (under Preparation)
2. Karman, T. V. and Biot, H. A. Miathomaticsi Mothods in Encinoerinel pp 190. Mcfrew-hili Book Company, Inc., Hes York and London, 1940.
3. Sechlor, ․ . . NEMasticity in Encineering", Chapter XII, Callior nia Institute of Iechnology. (To bo priblished.)
4. Kdmán, T. V. Article in Encyikiopedie der hathematischon liseenschof ten, Vol IV. (1910)
5. T1moshervo, S. "Theory of Plates and Shells" McGraw-lifil Book Commeny, Inc., New York and Iondon, 1940.

$$
\begin{array}{ll}
1.11 \\
1.67 & 2.81 \\
2.24 \\
.28 .91
\end{array}
$$

$$
\begin{array}{llll}
.88 & 10.15 & .13 \\
.60 & 1.90 & \\
.00 & 4.00 & 1.20 & 2.26 \\
.04 & 6.30 & 1.68 & 3.26
\end{array}
$$

$$
\begin{array}{lll}
1.20 & 2.26 \\
1 & \\
1.68 & 3.26 & 4.96 \\
2.09 & 4.24 & 6.65
\end{array}
$$

$$
\left.\begin{array}{llllllllll}
2.52 & .0 & 5.66 & 7.13 & 2.04 & 3.95 & 6.04 & 8.06 & 9.10 & 3.24
\end{array}\right)
$$

4.80
6.62
8.58
8.412 .45
16.76
$\begin{array}{llll}1.88 & 2.41 & 2.91 \\ 3.80 & 5.03 & 6.26 \\ 5.70 & 7.97 & 10.05\end{array}$

$$
\begin{array}{|c|c|}
\hline 5.70 & 7 \\
7.67 \\
\hline 8.47 & 12
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|}
\hline 9.67 \\
8.47 \\
4.30
\end{array}
$$

$$
\begin{array}{lll}
8.47 & 12 \\
4.303 \\
5.20 & 7 \\
5 .
\end{array}
$$

oeg. in.

.02
.01
01

$$
\begin{array}{ccccccc}
50 & .65 & 0.75 & .62 & .58 & \\
79 & 1.22 & 1.57 & 1.73 & .82 & 1.43 \\
05 & 1.80 & 2.53 & 2.89 & 1.08 & 2.02
\end{array}
$$

\qquad
$\begin{array}{llll}.98 & 1.84 & 3.02 & 3.6\end{array}$
.

1.08	2.02	3
1.27	2.54	4

3. 08
$4.12 \quad 5.8$
$\begin{array}{lllllllll}1.33 & 2.38 & 3.53 & 4.14 & 1.27 & 2.54 & 4.12 & 5.88 \\ .73 & 1.01 & 1.26 & 1.36 & .66 & 1.34 & 1.00 & 2.10\end{array}$

.73	1.01	1.26	1.36	.06	1.34	1.00	2.19	1.44	
1.06	1.62	2.15	2.36	1.18	2.07	2.96	3.78	2.06	3.26

$\begin{array}{llllllllll}1.06 & 1.62 & 2.15 & 2.36 & 1.18 & 2.07 & 2.96 & 3.78 & 2.06 & 3.26\end{array}$
$\begin{array}{llllllllll}10.025 & 2.25 & 3.11 & 3.50 & 1.52 & 2.73 & 4.20 & 5.60 & 2.66 & 4.4 \\ 0 & 2.58 & 3.25 & 4.02 & 1.67 & 3.17 & 4.84 & 6.51 & 2.97 & 4.9\end{array}$

1.67	3.17	4.84	6.51
	.36	.4	

6. 35

$\begin{array}{ll}7.25 & 8.45 \\ 0.72 & .76\end{array}$
$\begin{array}{ll}0.72 & .76 \\ 2.10 & 2.33\end{array}$

$$
\begin{array}{lllll}
2.10 & 2.33 & .49 & 1.18 & \\
3.65 & 4.35 & .68 & 1.78 & 3 . \\
5.86 & 6.74 & .86 & 2.37 & 4 .
\end{array}
$$

$$
\begin{array}{ll}
5.86 & 6.74 \\
7.88 & 9.06
\end{array}
$$

$$
\begin{array}{ll}
1.00 \\
1.34 & 1.06 \\
, 20 & 1.28
\end{array}
$$

$$
\begin{array}{ll}
4.74 & 5.28 \\
6.68 & 7.47
\end{array}
$$

$$
\begin{array}{ll}
7.72 & 8.60 \\
1.82 & 1.97
\end{array}
$$

$$
\begin{array}{lll}
1.82 & 1.97
\end{array}
$$

$$
\begin{array}{ll}
3.34 & 3.70 \\
5
\end{array}
$$

$$
\begin{array}{ll}
5.00 & 5.56 \\
6.72 & 7.44
\end{array}
$$

$$
\begin{array}{ll}
6.72 & 7.44 \\
0.42 & .42 \\
\hline
\end{array}
$$

$$
\begin{array}{cc}
0.83 & .87 \\
1.36 & 1.42
\end{array}
$$

$$
\begin{array}{ll}
.36 & 1.42 \\
1.96 & 2.04 \\
& 50
\end{array}
$$

$$
\begin{array}{ll}
2.60 & 2.76
\end{array}
$$

$$
\begin{array}{ll}
3.28 & 3.51
\end{array}
$$

$$
\begin{array}{ll}
3.28 & 3.51 \\
3.94 & 4.24
\end{array}
$$

$$
\begin{array}{lll}
3.94 & 4.24 & 1.12 \\
\hline & 2.26 \\
4.60 & 4.98 & 1.22
\end{array}
$$

$5.27 \quad 5.78$

$$
\begin{aligned}
& \text { Radius }-20 \text { inches } \\
& \text { Ave. thickness -. } 251 \text { inches } \\
& 24 \text { ST Aluminum Plate }
\end{aligned}
$$

MATRIX OF INFLUENCE COEFFICIENTS* FOR 135 DEGREE SECTOR

[^3]| OEG. 1 N. | $15 / 6$ | $15 / 10$ | $15 / 44$ | $15 / 20$ | $20 / 12$ | $30 / 16$ | $30 / 20$ | $45 / 6$ | $45 / 10$ | $45 / 14$ | $45 / 18$ | $45 / 30$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{cc}
.27 & \\
.49 & 1.18 \\
.68 & 1.78 \\
.66 & 2.97 \\
1.02 & 2.95 \\
.44 & .92 \\
.68 & 1.63 \\
.88 & 2.32 \\
1.12 & 3.05 \\
1.22 & 3.36 \\
.60 & 1.26 \\
.85 & 2.03
\end{array}
$$

$\begin{array}{lll}68 & 1.78 & 3.07 \\ .86 & 2.97 & 4.20\end{array}$

$$
\begin{array}{lllll}
.86 & 2.97 & 4.20 & 6.24 \\
1.02 & 2.95 & 5.36 & 8.14 & 11.13
\end{array}
$$

$$
\begin{array}{lllll}
.88 & 8.63 & 2.58 & 3.52 & 4 . \\
88 & 2.32 & 3.92 & 5.52 & 7 . \\
12 & 3.05 & 5.22 & 7.61 & 10 .
\end{array}
$$

$$
\begin{array}{llllll}
3.92 & 5.52 & 7.10 & 1.71 & 3.57 & 5.62 \\
5.22 & 7.61 & 10.01 & 2.24 & 4.64 & 7.42
\end{array}
$$

$$
\begin{array}{llllllllll}
.12 & 3.05 & 5.22 & 7.61 & 10.01 & 2.24 & 4.64 & 7.42 & 10.38 \\
\hline 22 & 3.36 & 5.94 & 8.70 & 11.50 & 2.42 & 5.16 & 8.38 & 1.9 .99 & 13.7 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
1.84 & 2.3 \\
3.24 & 4.3 \\
6.57 & 6.3
\end{array}
$$

$$
\begin{array}{llllllllll}
.24 & 4.37 & 5.39 & 1.74 & 3.28 & 4.74 & 6.14 & 6.77 & 2.70 & 4.61 \\
.57 & 6.38 & 7.98 & 2.23 & 4.48 & 6.80 & 9.24 & 10.36 & 3.59 & 6.16
\end{array}
$$

$$
\begin{array}{cccccccccc}
5.88 & 8.34 & 10.78 & 2.70 & 5.62 & 8.84 & 12.26 & 13.87 & 4.38 & 7.98 \\
50 & .11 .89 & 16.28 \\
.52 & .64 & .70 & .46 & .65 & .84 & 0.97 & 1.23 & .70 & .92 \\
\hline .18 & 1.36
\end{array}
$$

$$
\begin{array}{ccccccccccccc}
.52 & .64 & .70 & .46 & .65 & .84 & 0.97 & 1.23 & .70 & .92 & 1.18 & 1.36 & . \\
1.04 & 1.26 & 1.42 & .81 & 1.23 & 1.65 & 1.92 & 2.06 & 1.28 & 1.74 & 2.20 & 2.62 & .
\end{array}
$$

$$
\begin{array}{lllllllllllllll}
1.04 & 1.26 & 1.42 & .81 & 1.23 & 1.65 & 1.92 & 2.06 & 1.28 & 1.74 & 2.20 & 2.62 & .70 & 1.14 & \\
1.60 & 2.00 & 3.20 & 1.16 & 1.85 & 2.52 & 3.02 & 3.30 & 1.85 & 2.70 & 3.50 & 4.17 & .85 & 1.50 & 2.15
\end{array}
$$

$$
\left.\begin{array}{lllllllllllllll}
1.60 & 2.00 & 3.20 & 1.16 & 1.85 & 2.52 & 3.02 & 3.30 & 1.85 & 2.70 & 3.50 & 4.17 & .85 & 1.50 & 2.15 \\
2.22 & 2.84 & 3.29 & 1.42 & 2.48 & 3.48 & 4.32 & 4.68 & 2.42 & 3.64 & 4.91 & 5.93 & .98 & 1.80 & 2.70
\end{array}\right] .50
$$

$$
\begin{array}{lllllllllllllllll}
2.22 & 2.84 & 3.29 & 1.42 & 2.48 & 3.48 & 4.32 & 4.68 & 2.42 & 3.64 & 4.91 & 5.93 & .98 & 1.80 & 2.70 & 3.50 & \\
2.88 & 3.71 & 4.37 & 1.76 & 3.13 & 4.52 & 5.70 & 6.25 & 2.90 & 4.69 & 6.38 & 7.95 & 1.13 & 1.90 & 3.22 & 4.26 & 5.42
\end{array}
$$

$$
\begin{array}{llllllllllllllllll}
2.88 & 3.71 & 4.37 & 1.76 & 3.13 & 4.52 & 5.70 & 6.25 & 2.90 & 4.69 & 6.38 & 7.95 & 1.13 & 1.90 & 3.22 & 4.26 & 5.42 & \\
3.53 & 4.58 & 5.54 & 2.00 & 3.82 & 5.50 & 7.05 & 7.84 & 3.43 & 5.72 & 7.91 & 9.94 & 1.27 & 2.34 & 3.65 & 4.99 & 6.40 & 7.80
\end{array}
$$

$$
\begin{array}{lllllllllllllllllll}
3.53 .58 & 4.58 & 5.54 & 2.00 & 3.82 & 5.50 & 7.05 & 7.84 & 3.43 & 5.72 & 7.91 & 9.94 & 1.27 & 2.34 & 3.65 & 4.99 & 6.40 & 7.80 \\
4.13 & 5.46 & 8.72 & 2.28 & 4.44 & 6.48 & 8.46 & 9.53 & 3.34 & 6.58 & 7.38 & 1.98 & 1.38 & 2.63 & 4.04 & 5.62 & 7.30 & 9.00 & 10.74
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { MATRIX OF INFLUENCE COEFFICIENTS* } \\
\text { FOR } 90 \text { DEGREE SECTOR }
\end{array}
\end{aligned}
$$

$\stackrel{\rightharpoonup}{i}$
둔
$16^{\circ} \varepsilon \quad \varepsilon 1^{\prime}$ Z

$$
\begin{aligned}
& \text { (Inches deflection per pound) } x 0^{3}
\end{aligned}
$$

MATRIX OF INFLUENCE COEFFICIENTS*
Radius - 20 inches

追 ㄷ
MATRIX OF INFLUENCE COEFFICIENTS*
FOR 60 DEGREE SECTOR

\quad Radius - 20 inches

(Inches deflection per pound) $\times 10^{3}$
matrix of influence coefficients*
Radius Mickness -. 251 inches
24 ST Aluminum Plate

$$
\begin{aligned}
& \text { Radius - } 20 \text { inches } \\
& \text { Ave. Thickness - . } 251 \text { inches }
\end{aligned}
$$

Table Ba

Influence Coefficients

$$
\begin{aligned}
& \text { จ5ij }=\text { Inches selection/ Pound } \times 10^{3} \\
& \mathrm{~m}_{\mathrm{I}}^{\mathrm{Ij}}=\text { Inches Deflection/Inch Pound } \times 10^{3} \\
& c^{g_{1 j}}=\text { Inches Deflection/Pound } \times 10^{3}
\end{aligned}
$$

Sector Angle $=45^{\circ}, \quad t=1 / 8$ Inches, \quad Radius $=20$ Inches
Meterial--24 ST Aluminum Alloy

$$
\begin{aligned}
& w_{i}=\left\{\sum_{j=1}^{15} v(j) \cdot g_{1 j}+.71 \nabla_{i(16)} \nabla_{i}(16)+\sum_{j=1}^{15} N_{(j) m_{i j}}+\cdots\right. \\
&\left.+.7 M_{i}(26) g_{i(16)}+c_{i j}\right\} \times 10^{3}
\end{aligned}
$$

Table Bb

Influence Coefficients

$\nabla_{i j}=$ Inches Dellection/Pound 2210^{3}
$\mathrm{m}_{\mathrm{E}} \mathrm{j}=$ Inches Derlection/Inch Pound $\times 10^{3}$
$c^{E_{1 j}}=$ Inches Dellection/Found $x 10^{3}$
Sector Angle $=45^{\circ} / 20^{\prime \prime}, \quad t=1 / 8$ Inches, Radius $=20$ Inches

$$
\begin{aligned}
& H_{1}=\left\{\sum_{j=1}^{15} \nabla_{(j)} \nabla_{i j}+.71 \nabla_{(16)} \nabla_{i(16)}+\sum_{j=1}^{15} \pi_{j}(j)_{m i j} E_{1 j}+\cdots\right. \\
& \left.+.7 / M_{(16)} \mathrm{E}_{1(16)}+\sum_{c_{1 j}}\right\} \times 10^{3}
\end{aligned}
$$

Load at

Moter at	$45^{\circ} / 16^{\prime \prime}$	$45^{\circ} / 26^{4}$	$45^{\circ} / 18^{\prime \prime}$	$45^{\circ} / 201$	$30^{\circ} / 20^{\prime \prime}$	$15^{\circ} / 20$
		7.30*				
	$45^{\circ} / 18^{\prime \prime}$	7.34	7.35			
	$45^{\circ} / 20^{\prime \prime}$	7.26	7.30	7.39		
	$30^{\circ} / 20^{\prime \prime}$	7.23	7.34	7.29	7.31	
	15\% $/ 20$	7.29	7.32	7.16	7.19	7.26

- Influance Coefficiente $\frac{.125 \text { inch Sector }}{\text { Influence Coofficient }}$

TABLIE 9
Effect of Thickness
on Stifmess

Deg.	In.	A 750	Deg.	In.	A	600	Deg.	In.	A
15	6	5.5850	15	6	5.5850	7.5	20	1.9897	
15	10	10.4720	15	10	10.4720	15	6	8.1214	
15	14	14.6608	15	14	14.6608	15	10	10.2427	
15	20	0.0000	20	20	0.0000	15	14	10.4720	
30	12	19.7804	30	12	19.7804	15	16	8.3776	
30	16	21.4672	30	16	21.4672	15	18	8.4300	
30	20	14.1368	30	20	14.1368	15	20	3.9794	
45	6	5.5850	45	6	5.5850	22.5	20	1.9897	
45	10	10.4720	45	10	10.4720	30	8	7.3396	
45	14	14.6608	45	14	14.6608	30	12	8.9010	
45	18	18.8491	45	18	18.8491	30	14	7.3304	
45	20	0.0000	45	20	0.0000	30	16	8.3776	
60	8	10.5418	60	4	0.0000	30	18	8.4300	
60	12	12.5664	60	6	0.0000	30	20	3.9794	
60	16	16.7550	60	8	5.4105	37.5	20	1.9897	
60	20	9.4246	60	10	0.0000	45	4	3.1027	
75	14	1.6755	60	12	6.2832	45	6	2.9125	
75	6	0.0000	60	14	0.000	45	8	2.0944	
75	8	4.2936	60	16	8.3775	45	10	2.6170	
75	10	0.0000	60	18	0.000	45	12	3.1416	
75	12	6.2832	60	20	4.723	45	14	3.6652	
75	14	0.0000				45	16	4.1888	
75	16	8.3775				45	18	4.2150	
75	18	0.0000				45	20	1.9897	
75	20	4.7123							

mand 10

> Column Matrices of Area Coefficients*
> for
> Sectors of 20 Inch Radius
> *Inches ${ }^{2} /$ Point

Deg. / In.	$\mathrm{A}_{1} 80^{\circ}$
15/6	5.5850
15/10	10.4720
15/14	14.6608
15/20	0.0000
30/12	19.7804
30/16	21.4672
30/20	14.1368
45/6	5.5850
45/10	10.4720
45/14	14.6608
45/18	18.8491
45/20	0.0000
60/8	13.0550
60/12	12.5664
60/26	16.7550
60/20	9.4246
75/10	10.4720
75/24	14.5608
75/18	18.8491
75/20	0.0000
90/4	5.4454
90/8	10.6814
90/12	12.5664
90/16	16.7550
90/20	9.4246
105/6	6.2832
105/10	10.4720
105/14	14.6608
105/18	18.8491
120/8	13.4041
120/12	12.5664
120/16	16.7550
120/20	9.4246
135/8	10.4720
135/12	14.6608
135/16	18.8491
135/20	0.0000
150/4	5.4454
150/8	10.6814
150/12	12.5664
150/26	16.7550
150/20	9.4246
165/6	6.2832
165/10	10.4720
165/14	14.6608
165/18	18.8491
165/20	0.0000
180/12	10.1230
180/14	0.0000
180/16	8.3775
180/18	0.0000
180/20	4.723

Deg. /In.	${ }^{1} 135^{\circ}$	Dog. / In.	${ }^{4} 90{ }^{\circ}$
15/6	5.5850	15/6	5.5850
15/10	10.4720	15/20	10.4720
15/14	14.6508	15/14	14.6608
15/20	0.0000	15/20	0.0000
30/12	19.7804	30/12	19.7804
30/26	21.4672	30/16	21.4672
30/20	14.1368	30/20	14.1368
45/6	5.5850	45/6	5.5850
45/10	10.4720	45/10	10.4720
45/14	14.6608	45/14	14.6608
45/18	18.8491	45/18	18.8491
45/20	0.0000	45/20	0.0000
60/8	13.0550	60/8	13.0550
60/12	12.5664	60/12	12.5664
60/16	16.7550	60/16	16.7550
60/20	9.4246	60/20	9.4246
75/10	10.4720	75/10	10.4720
75/14	14.6608	75/14	14.6608
$75 / 18$	18.8491	75/18	18.8491
75/20	0.0000	75/20	0.0000
90/4	5.4454	90/4	3.3510
90/8	10.6814	90/6	0.0000
90/12	12.5664	90/8	5.9690
90/16	16.7550	90/10	0.0000
90/70	9.4246	90/12	6.2832
105/6	6.2832	90/14	0.0000
105/10	10.4720	90/16	8.3775
105/14	14.6608	90/18	0.0000
105/18	18.8491	90/20	4.1723
$120 / 8$ $120 / 12$	10.8909 12.5664		
120/16	16.7550		
120/20	9.4246		
135/4	1.6755		
135/6	0.0000		
135/8	4.2935		
135/10	0.0000		
135/12	6.2832		
135/14	0.0000		
135/16	8.3775		
135/18	0.0000		
135/20	4.7123		

TABL 11
Colum Matrices of Arer Coefficients**
Sectors of 20 Inch Redius

- Inches ${ }^{2} /$ point
T)

PLAN FORM OF PHASE I SPECIMEN 1/4"24STALUMINUM ALLOY

Figure 3

Arrancament for securing specimen

FIG. 5
SAMPLE DATA
)

(

Inifuonce Cocficiants（：orria Comecritratod Ioncinci．
Tut w_{1} 三 jornecion in inchos at dorlection point＂I＂．

$=10$ pounds（Phzse 2）．
 $=\left[\right.$ Inches def．（at Hi＂）per In）（at＂SHM） 210^{3} 。
$J_{i j}=I_{j} E_{i j}=10^{-3} \quad$ 1：1
$o_{1 j}=20$ iij $\quad(x 1250 ?) \quad 1: 2$
$i_{1 j}=200 \quad$（Finso \quad 1， $1: 3$
In the oxperimental nrocodure used tho dial gauge was set to read yero rith tho loni off inci，therefors，rear tif then the loca was arolled．
 directlo．

Incuonce Cocifictents ishore ionatne alonc Boundomi）．
Let wi 三 Noflection in inchos at＂i＂．（Phase 2）．
$\nabla_{j}=$ Shear in pounds／inch on boundary near＂${ }^{\prime \prime}$＂．
Filj EInfluence coofficient in inches／ 1000 pounds．
$=$［Inchos deflection（at＂in）per pound near＂ j ＂$] \times 10^{3}$ ．
$s=$ Foundary longth of element neer＂j＂．
$w_{i j}=s\left(\nabla_{j} \psi_{i j}\right) \times 10^{-3}$
$2: 1$
For 10 pouni load and fingers 2^{14} dide at root．
Vis $=\frac{\text { Eis }_{1}}{100}$（INEEE Mo．1－15）
$\sigma_{i j}=w_{i j} \times 100$

For in oui load and linger $.71^{\text {H }}$ wide at root.

Ei(16) $=$ is $x 100 \quad 2: 3$
By superposition, for the specific case of these i the cionlaction at any point "\&" wo to as distributed sises loud on the boundary is given by s

$$
v_{i}=\sum_{j=1}^{15} v_{j} B_{i j} \times 10^{-3} f 0.717(16) \quad \theta_{i}(16) \geq 10^{-3} \quad 2: 10
$$

Equations $2: 2$ and $2: 3$ indicate that the influence coefficients are Independent of the with of the firers. However, 2: Ia illustrates how the width of the finger is used when calculating deflections by the use of influence coefficients.

Influence Coefficients (Radial Moment on Froe Boundary).
Let $w_{1} \equiv$ Deflection in inches at "1".
M_{j} 三 Radial Moment in inches / Ib / inch near "j".
$=49.9$ inch pounds $/$ in. (Phase 2).
gif 三 Influence coefficient in inches deflection per 1000 inch pounds / inch / inch.
$=$ [Inches deflection at Mi" per inch pound near "In] 10^{3}.
For 10.4 pound load 4.8 inches from root of $1^{\prime \prime}$ fingers.

$$
\begin{aligned}
& w_{1 j}=s\left(\nabla_{j} g_{i j}+\mathrm{N}_{\mathrm{j}} \mathrm{~m}_{\mathrm{ijj}}\right) \times 10^{-3} \quad 3: 1 \\
& =1.0\left(10.4 \times 5+49.9 \text { mб́ij) } \times 10^{-3}\right. \text { (Fingers 1-15) 3: la } \\
& =0.71\left(\frac{10.4}{.72} \times 5(1.6)+\frac{119.2}{. ?} \mathrm{mbsi}(16) \times 10^{-3} \text { (Finger 16) } 3: 16\right. \\
& n^{6} 1 \mathrm{j}=\frac{1.9 \times 10^{-3}-10.4 \text { Veii }}{49.9} \quad \text { (Finders 1-16) } \quad 3: 2
\end{aligned}
$$

Experimental deflection survey of cantil

32768002010696
DUDLEY KNOX LIBRARY

[^0]: *uggenhoim Aeronautical Laboratories. California Institute of Technology,

[^1]: * The deflection gruge can be noved to each of the load points while the load is at one load point.

[^2]: - Double indices do not indicate sumnation over j.

[^3]: (Inches deflection per pound)

