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ABSTRACT 

 During the last century, U.S. military doctrine instructed commanders to bypass 

dense urban areas at all costs. This train of thought is now obsolete, as senior U.S. 

military leaders predict the military will fight the next major war in a megacity. This 

research models sensor detection of subsurface adversary movements in urban municipal 

infrastructure to provide early warning to U.S. troops in the defense. Our model assesses 

whether tactics used on the ground can be applied underground. Results show that some 

tactics do not perform the same in the subsurface; however, the tactics that perform well 

in an urban subterranean environment may have negative consequences on the civilian 

population. 
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Executive Summary

Sewers, drainage systems, communication conduits and other urbanmunicipal infrastructure
are defensively advantageous for foes to escape the U.S. military’s might, evade intelligence,
surveillance, and reconnaissance detection, and engage occupying forces. Occupying forces
may have limited intelligence to thwart surprise attacks due to underwhelming knowledge of
operational environment and detection capabilities in the urban subterranean environment.

The ABC model utilizes Markov chains and differential equations to model targets flowing
into and out of hiding area(s) and operating area(s) through urban municipal infrastructure
(sewers, storm drainage, and communication conduits). The model parallels U.S. military
doctrine as best as possible to assess a platoon’s subsurface performance upon occupation
of a city block. Sensors are placed on routes to detect target movement with a probability
of detection. Detection provides units early warning to nearby target movement and aids
leadership to understand the operational environment.

Research concludes some of the tactics and principles executed by the U.S. military on
land are not an effective approach to engage foes in urban municipal infrastructure. Ob-
stacle effects of fixing, disrupting, and turning enemy movement and maneuver lowers
the probability of detection. While blocking a corridor increases model performance in
the subterranean environment, the principle of obstacle over watch is severely limited,
and the obstacle can be breached without resistance. Moreover, blocked urban municipal
infrastructure may have negative effects on a population’s public service.

The most important, non-mathematical recommendation drawn from this research em-
phasizes knowledge of the operating environment before entering an urban environment.
Open-source documentation offers very beneficial information when researching a megac-
ity’s urban municipal infrastructure. Data must be complied before the conflict begins.
The most effective mathematical way to increase the probability of detection, with minimal
physical impact to the environment, is to influence an enemy’s selection of which route they
will select to travel between the hiding area to operating area.
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CHAPTER 1:
Research Question and Objectives

1.1 Research Question
How might sensor technology shape the ability of the U.S. Department of Defense to fight
in an urban, subterranean environment during defensive (force protection) operations?

1.2 Research Objectives
Assess detectability: What is the probability of detecting (providing early warning) moving
targets in subterranean urban municipal infrastructure?

Improve readiness: Do probability results affect the Department of Defense and Department
of Homeland Security efforts to combat current and future subterranean operations?
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CHAPTER 2:
Introduction

2.1 Vignette
Consider a future military conflict in a megacity with a population of at least ten million.
Soon after its arrival, the U.S. military races to secure urban blocks to deny enemy access
to key terrain. Commanders must select the location of command posts, assembly areas,
and establish lines of communication. Subordinate units establish a basis of operations. In
a short time, buildings are cleared and secured, and the skies above are friendly. Soldiers
routinely work, rest, eat, and sleep. In the following days, the enemy conducts massive, co-
ordinated, dismounted attacks without warning. The losses are significant. The intelligence
community is perplexed, but soon realizes the enemy exploited the U.S. military’s inability
to address the subterranean fight.

Now, imagine a conflict where the U.S. military utilizes subterranean sensors in a megacity
to detect movement of enemy presence in underground municipal infrastructure (UMI) or
rudimentary passageways. Soldiers use commercial sensors like the ones used in homes
to provide early warning to their units during defensive operations. Ultimately, the U.S.
military would be able to ward off enemy attacks and employ the same sensors in the offense
to target enemy hiding areas or underground facilities. The possibilities are many.

2.2 Historical Significance

2.2.1 U.S. History
While U.S. military’s history contains many examples of subterranean challenges, the
Department ofDefense has recently begun to address these challenges. During theAmerican
Civil War, Union troops tunneled under Confederate positions to break the stalemate at the
Battle of Petersburg. As a countermeasure, the Confederates dug their own tunnel to block
Union advancement [1].

During the Vietnam War, the Vietcong effectively supported thousands of troops through
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elaborate tunnel systems to elude U.S. ground forces while setting conditions for campaigns
such as the Tet Offensive in 1968. Tunnels provided cover and concealment from ground
patrols and aerial assets while enhancing protection from artillery, aerial bombardment, and
close combat aviation. In response to the Vietcong’s underground tactics, the U.S. military
employed “Tunnel Rats” who were tasked to find, explore, and destroy subterranean threats.
With primitive equipment, ad hoc training, and constant fear during each mission, these
Soldiers accomplished what they could with the resources at hand [1].

Throughout the past two decades in Iraq and Afghanistan, adversaries consistently sought
protection in caves and urban areas to evade detection. Robots, military working dogs, and
infrared systems fare well in minimizing risks to Soldiers during insurgencies, but have
yet to be tested in high-intensity decisive operation conflicts. Even the Massive Ordnance
Aerial Blast, dropped on a tunnel system in Afghanistan, had limited effects on destroying
rudimentary underground infrastructure [2].

Adversary utilization of subterranean environment significantly degrades or neutralizes
one or more Warfighting Functions of U.S. military’s superior “technological might” [1].
Combatant use of the subterranean environment drove the U.S. military to execute a mission
it usually would not do nor is prepared to do. Once underground, adversaries seek to
maximize survivability [1] with a goal of prolonging conflicts past the threshold of U.S.
public and political support.

2.2.2 International History
The previous examples focus on rudimentary tunnels used against the U.S. military. This
research paper concentrates efforts on usage of established tunnels, pipes, conduit, lines
of communication systems, also known as urban municipal infrastructure, or subsurface
area. While there are no notable U.S military battles in which UMI plays a pivotal role,
the following World War II example highlights how an overwhelmed force maximized
survivability in the face of a dominant force.

During the Nazi occupation of Warsaw, Poland, in 1944, the Polish military and civilians
used theWarsaw’s sewer system to evade the German military while simultaneously mount-
ing an insurgency called the Warsaw Uprising. The Polish used Warsaw sewer systems to
move civilians, military personnel, weapons, equipment, and supplies [3]. Initially, the
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resistance was projected to last three to four days. However, it lasted two months and
approximately 6,000 Poles retreated to safety through thousands of meters of sewer [4], as
seen in Figure 2.1 and Figure 2.2.

Figure 2.1. A segment of Warsaw’s sewer system used during the Warsaw
Uprising. Source: [3].

Once German units discovered the operational importance of the sewer system to the Poles,
German officers ordered the damming sewer lines, release of poisonous gas into the sewers,
and lowering listening devices down into the sewer. When voices were confirmed, the
Germans threw grenades into the sewers. In response, Polish demolition units destroyed
the dams, and all travel in the sewers required absolute silence [4].
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Figure 2.2. Image compares the height of Warsaw’s sewers to a Polish
Soldier. Source: [3].

AlthoughWarsaw fell to theNazis in earlyOctober 1944, German leadership underestimated
the importance of Warsaw’s sewer systems. “General von dem Bach admitted during the
capitulation talks that initially he did not recognize the role of the municipal sewer system
and its usefulness as a means of transportation and communication between Warsaw’s city
districts” [4]. Moreover, German Soldiers were afraid of the sewers. General von dem
Bach “never managed to convince his soldiers to descend into the sewers and carry on the
struggle there” [4].

In the end, Nazi units failed to control the subsurface zone, and as a result, they accrued
additional costs by entering a prolonged fight. Although not a megacity fight, the Battle
of Warsaw is an excellent example of how UMI can play a role in future urban warfare.
One could imagine the cost of war if a dug-in, well trained, and supplied force occupied a
megacity, ready to fight.

2.3 Benefit of Study
The United States Army budgeted over $571,000,000 in fiscal year 2019 to man, equip,
and train units to deploy into a hostile subterranean environments. This study applies a
mathematical model to an important challenge facing the U.S. Army and Customs and
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Border Patrol domestically, but also abroad for our international allies in Israel and the
Republic of Korea, as well as coalition partners in Iraq and Afghanistan [5].

The United States Corps of Engineers Engineer Research and Development Center’s Geo-
technical and Structures Laboratory continues to seek and develop technologies vital to
Warfighters’ future fights, especially in the complex urban terrain. This study aids Engineer
Research and Development Center (ERDC) research efforts, in theoretical scenarios, to gain
feedback as to how and where to best employ military equipment in future fights.

2.4 Related Work
In addition to ERDC’s current efforts, there are dozens of open-source references describing
the urban subterranean environment. This section summarizes publications related to
military operations in urban subterranean environments.

In “Underground Warfare,” Richemond-Barak takes an in-depth look at the subterranean
challenge throughmany lenses. From her vantage point in Israel, the subterranean challenge
is a constant threat affecting the government, military, and civilians alike [6].

She begins her dialogue by providing a historical context to subterranean operations. Next,
she describes and gives examples of why the subterranean problem set is a global threat.
Later, she explains how international laws should be applied to subterranean operations
and should address tunnel detection technology. The variety of tunnel detection technol-
ogy offers unique capabilities when governments are faced with different types of tunnel
construction and usage [7].

While her recommendations seem Israeli Defense Force centric, destroying tunnel systems
[6] used by targets may not be effective for urban municipal infrastructure used by civilians.

TheMitreCorporation published an article on behalf of theU.S.ArmyTraining andDoctrine
Command Training and Doctrine Command (TRADOC) titled “U.S. Army TRADOC
G-2 Mad Scientist Megacities and Dense Urban Areas Initiative: Data Collection and
Analysis.” TRADOC’s G-2 envisions a world, by 2050, where nearly two-thirds of the
world’s population resides in cities. Due to the population increase, social unrest ensues
resulting in governance tasking themilitary to restore order in urban environment [8]. Out of
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the four ArmyWarfighting Challenges addressed in the study, two challenges are applicable
when the U.S. military operates in the subterranean environment [8].

The first challenge is to know the operating environment before deploying into an urban en-
vironment. During the Military Decision-Making Process, or the Joint Operations Planning
Process, gathering the most current information available, before deploying to a conflict, is
critical. The authors point out “awareness of ‘invisible geographies’ where seen and unseen
features (ex: cultural forces, religious systems, old and new infrastructure) intersect” [8]
can be decisive when establishing operational objectives and projecting forces, especially
when subterranean changes are not easily tracked from satellite imaginary.

The article addresses the technological challenges with commercial off-the-shelf equipment
that will aid in intelligence gathering and situation understanding. The article also notes,
“Commercial approaches can inform military unmanned system development but will not
completelymeetmilitary needs because commercial devices are not created for orworking in
unstructured, austere environments (e.g., rubble, underground, hostile environments)” [8].

In “Reimagining the Character of Urban Operations for the U.S. Army,” the RAND Cor-
poration arrives at similar conclusions as the Mitre Corporation report. In addition to
emphasizing intelligence as a significant enabler before and during urban operations, the
RAND report argues for a need to use light and armored formations within an urban envi-
ronment [9]. If future urban environments warrant light and armored formations, then all
Brigade Combat Teams may benefit from subterranean sensor use.

The Deputy Director of the Modern Warfare Institute, John Spencer, U.S. Army Major
(retired), also acknowledges U.S. Army subterranean gaps. He mentions a “Subterranean
Wishlist” which includes robots, canary birds, ground-penetrating radar, and sensors such
as sound echolocation devices called “bat vision” and thermal sights. The concept of using
sensors to enhance movement and maneuver, and survivability is vital to subterranean
operations [10].

In March 2019, the Army Times published an article titled “The Subterranean Battlefield.”
The article touches on a broad spectrum of ongoing efforts such as historical significance,
current training opportunities, opinions on the environment from field experts, and a list of
future technologies developed to address subterranean challenges. According to the article,
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the cost to equip a Brigade Combat Team with a subterranean equipment package runs
about $15.3 million [11].

Whether advocating the integration of light and armored formations in an urban environ-
ment, stressing the importance of intelligence, or discussing technologies to close gaps,
most authors emphasize the importance and urgent need to address some sort of urban war-
fare challenge. Some experts offer a list of sensor technologies to aid in the subterranean
fight.

However, none of the articles addresses deployment of new technology in the subsurface
operations within a doctrinal approach. Moreover, no researched article applied a qual-
itative model to sensor detection in a subterranean environment. Creating and testing a
mathematical model is the focus of this work. The next section introduces a variety of
sensors technologies that may aid in the subterranean fight.
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CHAPTER 3:
Sensors

3.1 Sensor Technology
Before immediately exploring sensor options, note there are currently no Department of
Defense fielded sensors designed and tested for subterranean use. There are many factors
of the subterranean environment that are known to significantly degrade or even prevent
unattended ground sensor performance.

As reported by Sandia National Laboratories, “it is apparent that no one sensor is capable
of robustly detecting all types of tunnels in varying environments, which in turn has led
to strategies of employing suites of sensors for detection” [12]. This logic holds for
detecting targets in the same tunnels, once discovered. Detecting movement of a target is
not limited to line of sight. Detecting magnetic, heat, or sound signatures are sometimes
more effective than detecting motion. This research paper assumes the following are future
sensor technologies able to impact the subterranean operations. Moreover, our work focuses
on the mathematical model, not sensor performance. For example, addressing a sensor’s
effective range, frequency thresholds, or probability of false alarms is outside our scope.
Below is a list of different sensor technology.

3.1.1 Passive Infrared Detection
Passive Infrared Detection detects movements. Passive Infrared Detection does not take
a picture or video of the target. It simply alerts users of a change in the location of an
object. Passive Infrared technology would provide early warning of unexpected move-
ment underground. Although simple, its employment must be thought out to maximize
effectiveness.

3.1.2 Magnetic Detection
Magnetic Detection recognizes the presence of a metal target crossing or intersecting sensor
receivers. It’s adaptable to the subterranean environments to alert sensors to a change of
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magnetic signatures in an area. Magnetic detection sensors would be highly effective
underground by “drowning out” magnetic noise from surface movement signatures.

3.1.3 Magnetic Switch Detection
Magnetic Switch Detection identifies a change in the position of two adjacent or joined
surfaces. Much like a door alarm in a residential house, a magnetic switch would alert users
to the disconnection of two sensors. Magnetic switch detection would be used to detect the
opening of a portal separating rooms or passageways. Employment of Magnetic switches
may require a bit of innovation and creative thinking for subterranean use.

3.1.4 Ultrasonic Sound
Ultrasonic Sound sensors expose targets by releasing and receiving inaudible frequencies.
A change in the ‘release’ and ‘receive’ interval alerts users to a moving object traveling
toward or away from the sensor. In nature, ultrasonic sound is known as echolocation.
Ultrasonic sound sensors would be highly effective underground, but like Passive Infrared,
emplacement would require a degree of planning.

3.1.5 Acoustic Detection
Acoustic Detection uses sound waves to detect movement. Acoustic detection is highly
vulnerable to cultural and vehicular noise. Predetermined frequency thresholds would
focus detection on a limited frequency range to employ acoustic detection effectively.
Once operational, acoustic detection could provide users with an effective way to detect
unexpected noise at certain times to establish target patterns.

3.1.6 Night Vision Infrared Detection
Night Vision Infrared Detection reveals and records a picture of a target once the target
enters predetermined range of the sensor. Once the sensor detects motion, the embedded
camera records a picture of the target. The picture is sent to the user for identification.
Some might relate this technology to a recreational hunter’s night vision infrared camera.
In a surface environment, identifying friendly movement versus hostiles is important. In
a subsurface environment, limited use of infrastructure allows units to determine friend
or foe simply by knowing the time of day or concurrent missions. Moreover, like a few
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of the sensors mentioned, the night vision infrared camera requires a specific degree of
technical installation to collect the desired effects. Night Vision Infrared Detection Camera
technology may benefit intelligence operations.

3.2 Definition of Layer 1a and Layer 1b Sensors

3.2.1 Layer 1a Sensor
Sensors initially placed are called “Layer 1a” sensors. In theory, Layer 1a sensors are
elementary to place, are for temporary use, and are designed to be expendable. These
sensors function long enough to provide unit leadership the data to make initial decisions
about the subterranean environment.

3.2.2 Layer 1b Sensor
If time allows, “Layer 1b” sensors replace Layer 1a sensors, or are placed near Layer 1a
sensors to provide redundancy. Like Layer 1a sensors, Layer 1b sensors are also easy to
place but may require certain positioning to optimize capabilities. The designs are discrete,
durable, and semi-permanent only to the extent that they are still easily recoverable as units
move. These sensors are effective and provide early warning of enemy movement in UMI.
Moreover, these future sensors operate as a network with other sensors in a designated area
of operations. In theory, these sensors function long enough to provide leadership the data
necessary to effectively operate in an area of operations for an extended time.

3.3 Sensor Probability of Detection
For operational security (OPSEC) measures, the sensors will be referred to as Sensor 1,
through Sensor 6 and the probabilities of sensor target detection will not be disclosed.
Distribution of this information is a need-to-know basis only. The Results and Analysis
Chapter provides the readerwith an increase or decrease value of how the sensors performed.
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CHAPTER 4:
Methodology

This thesis approaches the problem of adversaries moving undetected in UMI to conduct
operations. The baseline for the methodology is Wang and Zhou’s ABC search problem.
In ABC search problem,

consider a search problem as depicted in Figure [4.1] where a target follows
constrained pathways, moving between a hiding area and an operating area.
The target can stay in the hiding area where the sensors cannot penetrate, and
consequently the target is not detectable; it can travel along one of the routes
connecting the hiding area and the operating area; and it can spend time in the
operating area to carry out certain activities/tasks before returning to the hiding
area via one of the routes. [13]

Again, “in Figure [4.1], the hiding area is denoted by ‘A’; the collection of all routes is
represented by ‘B’; and the operating area is marked by ‘C’. The target is detectable by a
sensor both along the set of routes B and in the operating area C. In the hiding area A, the
target is not detectable” [13]. Assume hiding area A is an underground facility or a building
of cultural importance unable to be disrupted. For this model, detection in the operating
area C is insignificant to the problem. Targets detected in operating area C are on or above
ground level. Only targets in the subterranean environment are of interest. This search
problem is relevant to homeland security, military, counter-drug, counter-trafficking, and
law enforcement operations.
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Figure 4.1. This figure visually depicts the ABC model with each element:
hiding area, operating area and multiple (n) routes k. Source: [13].

This ABCmodel usesMarkov chains, first order differential equations, sensors with varying
probabilities of detection, all within a U.S. Army doctrinal framework to model flow and
probabilities of target detection. The current doctrinal framework approaches the problem
in Training Circular (TC) 3-21.50 “Small Unit Training in Subterranean Environments” and
Army Techniques Publication (ATP) 3-21.50 “Subterranean Operations” with an offensive
mindset. Troops enter subterranean environments and conduct a series of battle drills to
secure subsurface terrain or engage combatants in tunnels or underground facilities [14] [15].
One shortfall of the current doctrine is the lack of a defensive or force protection posture
when conducting operations in an urban subterranean environment. To address the current
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gap, this thesis’ methodology takes an incremental, layered approach, using additional U.S.
Army publications to model different scenarios.

First in Figure 4.2, a simple model depicts a UMI route with the presence of no military
action. The subterranean environment is in a steady-state, and targets can move freely [13]
in the subterranean environment. In this state, the model represents an underground UMI
from one point to another. There are no sensors to detect target movement.

Figure 4.2. Diagram of the steady state. Source: [13].

Next, the model adds a sensor to the single route in Figure 4.3. With the introduction of
a sensor, there exists a probability of detection [13]. Detection provides early warning to
troops of target activity in the UMI.
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Figure 4.3. Diagram of the Markov chain after the sensor is introduced.
Source: [13].

Themodel gradually increases in complexity. Additional routes and sensors replicate a force
occupying and defending a city block against targets moving through multiple subsurface
avenues of approach to their operating area.

Covering every subsurface avenue of approach with a sensor is unreasonable. A critical
step in the models’ results is determining the probability of detection when a sensor does
not cover every UMI corridor. In theory, this limitation forces leaders to select effective
locations to maximize early detection. A model with all routes covered by a sensor offers
an opportunity to compare results to models with only limited coverage.

With security as the top priority, allotting additional time in an area allows for the placement
of multiple Layer 1a or Layer 1b sensors. The model with Layer 1a and Layer 1b sensors
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on a single route assesses how much redundancy increases the probability of detection.

The model expands to represent a subsurface city block with a unit defending the operating
area from targets leaving multiple hiding areas through UMI to carryout activities in the
operating area. This model is adaptable and scalable to compare the probability of detecting
targets after placing sensors on every route, or on a limited number of important routes, or
randomly on routes throughout the subsurface.

Tactically, each model addresses how current doctrine might perform in UMI. Models aim
to replicate a U.S. Army unit a defending a block. Since TC 3-21.50 focuses on squad level
tactics, assume the same for the models. Figure 4.4 below from ATP 3-06 gives size unit
requirements to defend an urban area. A platoon leads and directs squads to place sensors
and defend against enemy targets.

Figure 4.4. ATP 3-06 Urban Operations Table 5-1. Source: [16]
.

InATP 3-06, “UrbanOperations,” an engineer’s countermobility or obstacle plan is essential
to unit defense in a megacity [16]. Units place obstacles to gain an advantage against enemy
movement. ATP 3-06 explains, “countermobility operations in urban terrain drastically
increase the defense’s ability to shape the attacker’s approach and to increase the combat
power ratios in favor of the defense” [16]. There are four types of obstacle effects evaluated:
disrupt, turn, fix, and block, see Figure 4.5.
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Figure 4.5. ATP 3-90.8 Combined Arms Countermobility Operations’ Ob-
stacle Effects. Source: [17]

.

ATP 3-90.8 defines each obstacle effect.

Disrupt: “An obstacle effect focuses fire planning and obstacle effort to cause the enemy
to break up its formation and tempo, interrupt its timetable, commit breaching assets
prematurely, and attack in a piecemeal effort” [17].

Turn: An “obstacle effect that integrates fire planning and obstacle effort to divert an
enemy formation from one avenue of approach to an adjacent avenue of approach into an
engagement area” [17].

Fix: “An obstacle effect that focuses fire planning and obstacle effort to slow an attacker’s
movement within a specified area, normally an engagement area” [17].

Block: “An obstacle effect that integrates fire planning and obstacle efforts to stop an
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attacker along a specific avenue of approach or to prevent the attacking force from passing
through an engagement area” [17].

By increasing or decreasing amodel’s parameter values, one can assess each obstacle effect’s
quantitative performance and the probability of detection. In addition to numerical results, a
qualitative assessment “considers collateral damage and the second- and third-order effects
of obstacle construction” [16].

Lastly, the conclusion references survey responses by U.S. Army officers who share their
unit’s experience with urban operations subterranean training and sensor utilization. The
intent of the survey aims to discover any doctrine or lessons learned about subterranean
operation not already researched, in an effort to improve the ABC model and better reflect
a possible urban subterranean environment to yield impactful results.
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CHAPTER 5:
Experimental Setup

5.1 Definition of Parameters
To maintain consistency, the definition of parameters is identical to Wang and Zhou’s initial
definitions and situational assumptions.

“The dwell time of the target in the hiding area is exponentially distributed with rate r f the
forward rate of traveling from the hiding area to the operating area” [13]. “The dwell time
of the target in the operating area is exponentially distributed with rate rb the backward rate
of traveling from the operating area back to the hiding area” [13]. “The probability of [the
target] being in the hiding area and that of being in the operating area at time t” [13] is ph(t)

and po(t), respectively.

“On its travels between the hiding area and the operating area, the target takes route k, k
is a numbered route in the ABC model with probability pk . In particular, the probability
of choosing route k is the same for both directions. This assumption will be relaxed in the
later discussion and models” [13].

Models express sensor probability of detection as psi. For example, Sensor 1 is ps1, Sensor
2 is ps2, ... and Sensor 6 is ps6. Assume that each psi can be different or the same than
another psi in each model. In order to evaluate the performance of sensors, Layer 1a sensors
have lower probabilities of detection than Layer 1b sensors. Otherwise, the actual sensor’s
probability of defection is not disclosed.

“The travel time between the operating area and the hiding area is negligible in comparison
with the dwell times in the hiding area and the operating area. Mathematically, we treat the
travel time along a route as zero” [13].

5.2 Key Assumptions
In this model, self-loops do not exist such that the summation of ph+ po = 1 . If one wanted
to model self-loops, the summation of pk would not equal one, meaning some of the targets
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do not travel from one location to the next. The targets are bound to move within the UMI
routes between hiding areas to operating areas.

Lastly, the percentage of targets beginning in hiding and operating area fluctuates, the
percentages could either be equal or not equal. Targets will likely concentrate in a “safe”
hiding area before traveling to an operating area. However, there is a chance that targets
can start in the operating area. The initial conditions of targets are the least predictable
parameter to model. Since targets also have the ability to influence the outcome in real
conflicts, unpredictable behavior adds value to results.

5.3 Numeric and Analytic Solutions
For 2x2 matrices, numerical and an analytic solutions are achievable. For complex 3x3 or
4x4 size matrices in Section 5.11, it is too difficult to find analytical solutions. However,
Chapter 6 details numerical solutions to 3x3 and 4x4 matrices.

From the conservation law, in-flow equals out-flow. The following in-flow/out-flow equa-
tions result for hiding area A and operating area C.

The rate of change over time in "A" can be written

dph

dt
= aph + bpo, (5.1)

while the rate of change over time in "C" is written

dpo

dt
= dph + cpo. (5.2)

Together, a 2x2 matrix represents the rate of change over A and C over time t where,

d
dt

[
ph

po

]
=

[
a b

d c

] [
ph

po

]
= A

[
x1

x2

]
(5.3)

and

A =

[
a b

d c

]
,

[
x1

x2

]
=

[
ph

po

]
(5.4)
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The general solution of Equation 5.3, d ®x
dt = A®x, is

®x(t) = c1 ®V1eλ1t + c2 ®V2eλ2t (5.5)

where λ1 and λ2, (λ1 , λ2) are the eigenvalues of A with corresponding eigenvectors ®V1

and ®V2, respectively. .

To find for the eigenvalues, we solve the characteristic equation

det(λI − A) =

����� λ − a −b

−d λ − c

����� = 0. (5.6)

After expanding, we have the following quadratic equation:

λ2 − (a + c)λ + ac − bd = 0 (5.7)

The quadratic formula yields two routes, λ1 and λ2.

λ1,2 =
(a + c) ±

√
(a + c)2 − 4(ac − bd)

2
, λ1 , λ2 (5.8)

After finding the eigenvalues, one can solve

(A − λI) ®V = ®0. (5.9)

to find the corresponding eigenvector for each eigenvalue. The coefficients c1 and c2 in
Equation 5.5 are found by imposing initial conditions Ph(0) and Po(0) . However, we can
find the sum Ph(0) + Po(0) (escape probability or survival probability) directly without
computing eigenvectors [13].

Assuming
ph(t) + po(t) = C1eλ1t + C2eλ2t, (5.10)

then
p′h(t) + p′o(t) = C1λ1eλ1t + C2λ2eλ2t, (5.11)
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From Equations 5.1 and 5.2, we have

ph
′(t) = aph(t) + bpo(t), (5.12)

po
′(t) = dph(t) + cpo(t), (5.13)

Imposing known initial conditions, po(0) and ph(0), we obtain

C1 + C2 = Ph(0) + Po(0) (5.14)

and
C1λ1 + C2λ2 = P′h(0) + P′o(0) = (a + d)Ph(0) + (b + c)Po(0). (5.15)

Multiplying Equation 5.14 by λ2 yields

C1λ2 + C2λ2 = [Ph(0) + Po(0)]λ2. (5.16)

To find C1, subtract 5.16 and 5.15:

C1(λ1 − λ2) = (a + d − λ2)ph(0) + (b + d − λ2)po(0) (5.17)

C1 =
(a + d − λ2)ph(0) + (b + d − λ2)po(0)

(λ1 − λ2)
. (5.18)

Similarity, after multiplying Equation 5.14 by λ1, we have

C1λ1 + C2λ1 = [Ph(0) + Po(0)]λ1. (5.19)

Subtracting Equations 5.19 and 5.15 yields C2:

C2(λ2 − λ1) = (a + d − λ1)ph(0) + (b + d − λ1)po(0) (5.20)

C2 =
(a + d − λ1)ph(0) + (b + d − λ1)po(0)

(λ2 − λ1)
. (5.21)

Therefore,
ph(t) + po(t) = C1eλ1t + C2eλ2t, (5.22)

where C1 and C2 are given in Equations 5.18 and 5.21.
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Chapter 6 will validate this analytic solution for ph(t) + po(t) against the ODE45 program
solver solution for ph(t) + po(t).

5.3.1 Validating the Numerical Solution for a 3x3 or 4x4 System of
Equations in MATLAB

Together, a 3x3, 4x4, ....ixi square matrix represents the rate of change over hiding area A
and operating area C over time t.

d
dt



x1

x2

.

.

.

xi


= A



x1

x2

.

.

.

xi


(5.23)

where,

A =



a11 ... a1i

. .

. .

. .

ai1 ... aii


(5.24)

To find for the eigenvalues, we solve the characteristic equation

det(λI − A) =

������������

λ − a11 ... a1i

. .

. .

. .

ai1 ... λ − aii

������������
= 0. (5.25)

After expanding, solve for each eigenvalue (root) of the characteristic equation.

To find the eigenvector, one can solve

(A − λI) ®V = ®0. (5.26)
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We can use MATLAB to numerically solve for eigenvalues and eigenvectors using the
command “[V,D] = eigen(A)” [18]. The resulting columns in matrix V are eigenvectors,
and the values along the main diagonal in matrix D are the eigenvalues.

When A has i distinct eigenvalues λ1,...,λi, the general solution of Equation 5.25. can be
written as 

x1

x2

.

.

.

xi


= C1 ®V1eλ1t + ... + Ci ®Vieλit . (5.27)

At time, t = 0 

x1(0)
x2(0)
.

.

.

xi(0)


= C1 ®V1 + ... + Ci ®Vi = [ ®V1... ®Vi]



C1

C2

.

.

.

Ci


= Vixi



C1

C2

.

.

.

Ci

 ix1

(5.28)

Finally, solving the numerical solution’s constant coefficients



C1

C2

.

.

Ci


= V−1 ∗



x1(0)
x2(0)
.

.

xi(0)


. (5.29)
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The general form is 

x1

x2

.

.

.

xi


= C1 ®V1eλ1t + C2 ®V2eλ2t + ... + Ci ®Vieλit . (5.30)

The coefficients C1, C2,...,Ci can be found by imposing initial conditions.

In Chapter 6, the numerical solutions for 3x3 and 4x4 systems of equations are compared
to MATLAB’s ODE45 program to validate our solutions through a different approach.

5.4 Route without Sensor
In this model, the target’s movement between the hiding area and operating area is critical.
First, dph

dt represents the rate of change of ph, hiding area A. Secondly, dpo
dt represents the

rate of change of po, operating area C. From the conservation law, the rates of change in
both areas yield a system of in-flow, out-flow equations. The vector ®x is expressed as:

®x =

[
ph

po

]
=

[
x1

x2

]
(5.31)

The initial ABC model is simple. One hiding area, one route (B = 1) represent a sewage
or drainage line running from a hidden area into an operating area (represented by a city
block). Since no sensors are present, the probability of detection does not exist. Targets
freely move between Hiding area and Operating area. Figure 5.1 illustrates the model.
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Figure 5.1. Diagram of Markov chain representing one route with no sensor
.

Below are the Markov chain’s system of equations and parameters used to model the initial
ABC scenario. Again, the percentage of targets beginning in hiding ph and operating area
po can fluctuate.

dph

dt
= −r f ph + rbpo (5.32)

dpo

dt
= −rbpo + r f ph (5.33)

5.5 One Route, One Sensor on Route
Figure 5.2 depicts the addition of a senor to the route. Tactically, this model represents the
presence of an opposing force interested in detecting target movement along Route 1.
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Figure 5.2. Diagram of Markov chain representing one route with one sensor

Here, we have the system of equations representing the in-flow and out-flow between hiding
and operating areas. Note if the sensor’s probability of detection is 0.0%, then the model is
equivalent to the previous model without a sensor.

dph

dt
= −r f ph + rb[(1 − ps1)]po (5.34)

dpo

dt
= −rbpo + r f [(1 − ps1)]ph (5.35)

5.6 Two Routes, One Sensor on Route 1
Next, the initial ABC model includes additional UMI. In Figure 5.3, the ABC model grows
to AB2C size. There are now two routes (B = 2) connecting the hidden area to operating
area. Below one sensor covers Route 1, while Route 2 remains uncovered. The model
represents placing a very limited number of Layer 1a sensors in the UMI with a moderate
probability of detection. Tactically, assume emplacement is hasty and it is unreasonable to
cover every subterranean void.
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Figure 5.3. Diagram of Markov chain representing two routes with one sensor
on Route 1

The Markov chain and parameter lists expand to include an additional route p2.

dph

dt
= −r f ph + rb[p1(1 − ps1) + p2]po (5.36)

dpo

dt
= −rbpo + r f [p1(1 − ps1) + p2]ph (5.37)

Now the probabilities of going forward and backward on respective routes are different. The
target has two unique probabilities of selecting the route traveling forward to the operation
area and two different probabilities selecting the route traveling back to the hiding area.
Sensor ps1 remains on Route 1.

dph

dt
= −r f ph + rb[p3(1 − ps1) + p4]po (5.38)

dpo

dt
= −rbpo + r f [p1(1 − ps1) + p2]ph (5.39)

The next section implements additional sensors along routes providing redundant detection
capabilities.
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5.7 Two Routes, Two Independent Sensors on Route 1
From the model above, when sensor emplacement is hasty. Now, additional time allows the
emplacement of an additional sensor on a Route 1. In Figure 5.4, Sensor 1 (Layer 1a) with
probability of detection ps1 and Sensor 2 (Layer 1b) with probability of detection ps2 cover
Route 1, Route 2 remains undiscovered.

Figure 5.4. Diagram of Markov chain representing two routes with two
independent sensors on Route 1

The probabilities of detection of ps1 and ps2 are different. The Markov chain’s system
of equation and parameter lists expands to include the following updated equations and
parameters.

dph

dt
= −r f ph + rb[p2 + p1(1 − ps2)(1 − ps1)]po (5.40)

dpo

dt
= −rbpo + r f [p2 + p1(1 − ps1)(1 − ps2)]ph (5.41)

Similar to Equations 5.38 and 5.39, the probabilities of going forward and backward on
respective routes are different. The target has two different probabilities of going forward
to the operation area and two different probabilities returning to the hiding area. Different
forward and backward probabilities can be modeled when there are more than two routes
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between hiding and operating areas.

dph

dt
= −r f ph + rb[p4 + p3(1 − ps2)(1 − ps1)]po (5.42)

dpo

dt
= −rbpo + r f [p2 + p1(1 − ps1)(1 − ps2)]ph (5.43)

The next section implements models implementation of additional sensors covering all
routes. In theory, with additional time, sensors will cover each route k.

5.8 Two Routes, One Sensor on each Route
Previous models depict a limited number of Layer 1a and Layer 1b sensors because of
limited time available and hasty emplacement. With more time, placement of additional
sensors can detect targets traveling along all routes k. In Figure 5.5 Route 1 and Route 2
are covered by Sensor 1 ps1 and Sensor 2 ps2. Again, the probabilities of detection of ps1

and ps2 are different.

Figure 5.5. Diagram of Markov chain representing two routes with one sensor
on each Route

The Markov chain’s system of equations and parameter lists expand to include an additional
sensor psi.
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dph

dt
= −r f ph + rb[p1(1 − ps1) + p2(1 − ps2)]po (5.44)

dpo

dt
= −rbpo + r f [p1(1 − ps1) + p2(1 − ps2)]ph (5.45)

The next model increases the number of routes and sensors, the number of hiding and
operating areas remains unchanged.

5.9 Twelve Routes, One Sensor on each Block Corner
The model represents an actual city block troops may operate throughout. Downtown
Monterey, California’s UMI network provides a visual representation of how sewers (Figure
5.6) and storm (Figure 5.7) systems form a network of connected voids capable of supporting
dismounted movement of formations, equipment, and supplies.
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Figure 5.6. City of Monterey sewer system map. Source: [19].

In the graphic above, there are two important features to note. The black lines represent
sewage lines and the yellow circles with black outline are manhole covers.
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Figure 5.7. City of Monterey stormwater system map. Source: [19].

In the graphic above, there are two additional important features to highlight. The purple
lines represent storm drainage lines and the purple dots along the storm drainage lines are
storm points.

Building upon previous models, a limited number of Layer 1a sensors are placed in the
UMI. We assume emplacement is hasty without perfect knowledge of UMI. The model uses
Layer 1a and Layer 1b sensors to compare probabilities of detection. Figure 5.8 depicts the
situation template when one enemy force attacking a defending force.
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Figure 5.8. A situation template of an enemy force’s movement toward a
friendly force

Suppose the city block highlighted in Figure 5.9 has twelveUMI entry points to the operating
area, eleven sewer system entry points, and one stormwater drainage entry point.
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Figure 5.9. A diagram of the UMI underneath a city block in Monterey, CA.

As shown in Figure 5.10, the first model evaluates the probability of detection of four
sensors placed on each block corner.
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Figure 5.10. The purple circles are possible locations of sensors to detect
targets.

The situation template graphic above is translated into a Markov chain diagram in Figure
5.11.
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Figure 5.11. Diagram of Markov chain representing Twelves Routes, One
Sensor on Each Block Corner

The equation reflects additional sensors and routes.

dph

dt
= −r f ph + rb[p1(1 − ps1) + p2(1 − ps2) + p3(1 − ps3) + p4(1 − ps4)

+p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12]po

(5.46)

dp0
dt
= −rbpo + r f [p1(1 − ps1) + p2(1 − ps2) + p3(1 − ps3) + p4(1 − ps4)

+p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12]ph

(5.47)

5.10 Twelve Routes, One Sensor on Eight Routes
The next model adds one Layer 1b sensor to four UMI intersection. Given the most recent
model where a target’s probability of selecting routes 1, 2, 3, and 4 is .120,

1.
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and the probability of selecting the remaining routes is .065. All other parameters remain
constant.

In the Figure 5.12 map, the additional sensors are highlighted by green circles.

Figure 5.12. The green circles are additional locations of sensors

With the addition of Layer 1b sensors, the model can detect all targets traveling into and
out of the operating area.

dph

dt
= −r f ph + rb[p1(1 − ps1) + p2(1 − ps2) + p3(1 − ps3) + p4(1 − ps4)

+p5(1 − ps5) + p6(1 − ps6) + p7(1 − ps1) + p8(1 − ps2) + p9

+p10 + p11 + p12]po

(5.48)
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Note, the psi value resets after ps6 because there are only six defined sensors in the model.

dp0
dt
= −rbpo + r f [p1(1 − ps1) + p2(1 − ps2) + p3(1 − ps3) + p4(1 − ps4)

+p5(1 − ps5) + p6(1 − ps6) + p7(1 − ps1) + p8(1 − ps2) + p9

+p10 + p11 + p12]ph

(5.49)

A model that covers all routes will result in similar outcomes to Two Routes covered by one
sensor each.

5.11 MultipleHidingAreas, Routes, Entering a SingleOp-
erating Area

Finally, the AB3C model adds additional hiding areas. The new models, A2B6C, A3B12C,
represents multiple enemy hiding areas and model the sensors’ ability to work as a network.
An overview of the UMI precedes an updated Markov chain and system of equations.

Doctrinally, shown in Figure 5.13, the models attempt to replicate a unit conducting a hasty
defense with an approximate 2:1 enemy to friendly ratio (Doctrinally, Hasty Defense is
considered 2.5:1).

Figure 5.13. FM 6-0 Historical Planning Force Ratio Table [20]

This situation may arise during initial entry into an urban area. Doctrinally, the situation
looks like the following graphic, Figure 5.14.
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Figure 5.14. Situational template representing two hiding areas, one oper-
ating area and six routes

The situation template graphic above is translated into a Markov chain diagram in Figure
5.15 and Figure 5.16 where attacking enemy units coming into contact with one another on
routes p3 and p4. There is also a probability of detect on each route.
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Figure 5.15. Diagram of Markov Chain representing Two Hiding Areas, One
Operating Area and twelve Routes.

Figure 5.16. An expanded diagram of Markov chain representing two hiding
areas, one operating area and six routes

.
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The model can analyze two coordinated attacking units, but unlike Figure 5.15 and Figure
5.16 there is no probability of detection between hiding areas.

dph1
dt
= −r f h1ph1 + r f h2[p5(1 − ps5) + p6(1 − ps6)]ph2 + r f o[p1(1 − ps1) + p2(1 − ps2)]po

(5.50)
dph2
dt
= −r f h2ph2 + r f h1[p5(1 − ps5) + p6(1 − ps6)]ph1 + r f o[p3(1 − ps3) + p4(1 − ps4)]po

(5.51)
dpo

dt
= −r f opo + r f ph1[p1(1 − ps1) + p2(1 − ps2)]ph1 + r f h2[p3(1 − ps3) + p4(1 − ps4)]ph2

(5.52)
The nextmodel adds another hiding area. Doctrinally, themodel replicates a unit conducting
a deliberate defense with a 3:1 enemy to friendly ratio. Three hiding areas represent three
company target assault positions ready to attack a friendly company defensive position in
an urban environment. This situation is likely to arise after initial entry into an urban area.
The three attacking units’ movement may be coordinated, but they do not come into contact
with one another. Doctrinally, the situation looks like the following graphic, Figure 5.17.
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Figure 5.17. Situational Template representing three hiding areas, one op-
erating area and twelve routes.

The situation template graphic above is translated into a Markov chain diagram illustrated
in Figure 5.18 followed by the system of equations.
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Figure 5.18. Diagram of Markov chain representing three hiding areas, one
operating area and twelve routes

.

dph1
dt
= −r f h1ph1 + r f h2[p5(1 − ps5) + p6(1 − ps6)]ph2 + r f h3[p11(1 − ps5)

+p12(1 − ps6)]ph3 + r f o[p1(1 − ps1) + p2(1 − ps2)]po

(5.53)

dph2
dt
= −r f h2ph2 + r f h1[p5(1 − ps5) + p6(1 − ps6)]ph1 + r f h3[p7(1 − ps1)

+p8(1 − ps2)]ph3 + r f o[p3(1 − ps3) + p4(1 − ps4)]po

(5.54)

dph3
dt
= −r f h3ph3 + r f h1[p11(1 − ps5) + p12(1 − ps6)]ph1 + r f h2[p7(1 − ps1)

+p8(1 − ps2)]ph2 + r f o[p9(1 − ps3) + p10(1 − ps4)]po

(5.55)

dp0
dt
= −r f opo + r f h1[p1(1 − ps1) + p2(1 − ps2)]ph1 + r f h2[p3(1 − ps3)

+p4(1 − ps4)]ph2 + r f h3[p9(1 − ps3) + p10(1 − ps4)]ph3

(5.56)
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The three attacking units’ movement may be coordinated, but there is no probability of
detection between hiding areas. Unlike all previous models which have a uniform travel
rate from each area, the next model, seen in Figure 5.19, incorporates unique rates for each
route. This enhances the model’s ability to replicate each obstacle effect.

Figure 5.19. Diagram of Markov chain representing three hiding areas, one
operating area and twelve routes

.

Chapter 6 shows the results from MATLAB’s ODE45 solver program and analyzes the
performance of each model.
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CHAPTER 6:
Results and Analysis

Themodels in this chapter incrementally build fromonemodel to the next. Depending on the
reader’s understanding of Markov chains and differential equations, it may be advantageous
to bypass the simpler mathematical models and proceed to Section 6.6. When a model
produces a significant result, subsequent models will use that result in order to test other
parameters. By the last section, the models aim to analyze impactful results for the U.S.
military and lead to a thought provoking conclusion.

6.1 One Route without Sensor on Route
Recall the original ABC model consisting of one hiding area, one route representing a
sewage or drainage line running from a hidden area into an operating area. Since no sensors
are present, the probability of detection does not exist resulting in the system achieving a
steady state. The results of steady state probabilities of Ph and Po are shown in Figure 6.1

Figure 6.1. The graph shows probability of target location over time while
Ph and Po values change from .50/.50 on the left graph to .90/.10 on the
right graph. The rates values, r f and rb, are held constant at 2.7 and 1.1,
respectively.

The steady state general equation yields the steady state probabilities of Ph and Po given
r f = 2.7 and rb = 1.1.
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The probability a target is in the hiding area at steady state:

P(S)h =
rb

r f + rb
(6.1)

P(S)h =
1.1
3.8
= 0.289. (6.2)

The probability a target is in the operating area at steady state:

P(S)o =
r f

rb + r f
(6.3)

P(S)o =
2.7
3.8
= 0.711. (6.4)

Both graphs in Figure 6.1 achieve the steady state of P(S)h = 0.289 and P(S)o = 0.711. While
this model yields no significant results, the steady state solutions are independent of a
target’s initial location. The target’s rates, r f and rb parameters, are more important to the
target’s behavior and model’s performance. The next model validates MATLAB ODE45
program solver’s solution against the analytical and numerical solutions.

6.2 One Route with Sensor on Route
With the addition of a sensor, the probability of detection changes over time when the
parameter values change. The resulting probabilities of Ph(t) and Po(t) are shown in Figure
6.2 and probabilities of detection are shown in Figure 6.3.
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Figure 6.2. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po values
change from .50/.50 on the left graph to .90/.10 on the right graph , r f
and rb values are held constant at 2.7 and 1.1, respectively.

Figure 6.3. The graph depicts the probability of detection results over time
depicted graphically for an addition of a sensor with a probability of detection
psi, Ph and Po values change from .50/.50 on the left graph to .90/.10 on the
right graph , r f and rb values are held constant at 2.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.1 and 6.2.
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Table 6.1. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.7658
2.00 0.9275
3.00 0.9759
4.00 0.9919
5.00 0.9972

Table 6.2. Time versus Probability when Ph = 0.9 and Po = 0.1 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.8619
2.00 0.9664
3.00 0.9895
4.00 0.9965
5.00 0.9988

With constant rates forward and backward, the more drastic differences in a target’s initial
location yield higher probabilities of detection at each time interval. A comparison of the
results in Tables 6.1 and 6.2 are shown in Table 6.3.

Table 6.3. Difference of Probabilities of Detection Figure 6.3’s left-side and
right-side results.

t Difference in P(t)
0 0
1.00 0.0961
2.00 0.0389
3.00 0.0134
4.00 0.0041
5.00 0.0016
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Analyzing results in from Figure 6.3 and Table 6.3, after one interval of time, the probability
of detection increase by 9.61% from after varying Ph and Po values.

Next, the rate forward value, r f , increases to 3.7. The resulting probabilities of Ph(t) and
Po(t) are shown in Figure 6.4 and probabilities of detection are shown in Figure 6.5.

Figure 6.4. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po values
change from .50/.50 on the left graph to .90/.10 on the right graph , r f
and rb values are held constant at 3.7 and 1.1, respectively.

Figure 6.5. The graph depicts the probability of detection results over time
depicted graphically for an addition of a sensor with a probability of detection
psi, Ph and Po values change from .50/.50 on the left graph to .90/.10 on the
right graph , r f and rb values are held constant at 3.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.4 and 6.5.

55



Table 6.4. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.7902
2.00 0.9322
3.00 0.9771
4.00 0.9923
5.00 0.9974

Table 6.5. Time versus Probability when Ph = 0.9 and Po = 0.1 values
change, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.9018
2.00 0.9726
3.00 0.9909
4.00 0.9969
5.00 0.9990

After comparing Figure 6.3, and Figure 6.5 and corresponding Table 6.4 and Table 6.5, the
increase in rates forward by 1.0 improves the probabilities of detection seen in Table 6.6 .

Table 6.6. Difference of Probabilities of Detection Figure 6.5’s left-side and
right-side results.

t Difference in P(t)
0 0
1.00 0.1116
2.00 0.0404
3.00 0.0138
4.00 0.0046
5.00 0.0016

56



Increasing the rate forward from 2.7 in Figures 6.2 and 6.3 to 3.7 in Figures 6.4 and Figure
6.5 resulted in a increase from 9.61% to 11.16% after 1 interval of time.

The target’s rate forward and rate backward influence the model’s behavior more than the
target’s initial condition.

MATLAB’s ODE45 program solver validates the following analytical solution and subse-
quent results for the remain 2x2 system of equations. The rate of change over time in the
hiding area A is

dph

dt
= aph + bpo, (6.5)

while the rate of change over time in the operating area is

dpo

dt
= dph + cpo. (6.6)

Together, a 2x2matrix represents the rate of change over A and C over time t, when Ph = 0.5
and Po = 0.5 values change, r f = 2.7 and rb = 1.1 and assume ps1 = .90 is

d
dt

[
ph

po

]
= A

[
ph

po

]
=

[
−2.7000 .1100
.2700 −1.1000

] [
ph

po

]
. (6.7)

To solve for the eigenvalues, take the determinant of the following transposed matrix and
set it equal to 0.

det(λI − A) =

[
λ − (2.7000) −.1100
−.2700 λ − (1.1000)

]
= 0 (6.8)

Taking determinant results in the following quadratic equations.

λ2 − (3.800)λ + 2.9403 = 0 (6.9)
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The quadratic formula solves our roots, λ1 and λ2.

λ1,2 =
−(3.800) ±

√
(3.800)2 − 4(2.9403)

2
, λ1 , λ2, (6.10)

The eigenvalues, λ1 and λ2, are

λ1 = −2.7184, λ2 = −1.0816. (6.11)

Solve for the constant coefficients C1 and C2 using Equations 5.18 and 5.21.

C1 = 0.5878 (6.12)

C2 = 0.3877 (6.13)

The explicit solution is for the escape probability is

ph(t) + po(t) = 0.5878e−2.7184t + 0.3877e−1.0816t (6.14)

The probability of detection at t = 5 is

ph(5) + po(5) = 0.0026, 1 − 0.0026 = 0.9974 (6.15)

Figure 6.6 graphically compares the ODE45’s solver solution to the analytical solution.
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Figure 6.6. MATLAB ODE45 and Analytical Solution Comparison when
Ph = .50, P0 = .50, r f = 2.7 and rb = 1.1

For a 2x2 system, MATLAB’s ODE45 results are nearly identical when compared to the
analytical solution.

6.3 Two Routes, One Sensor placed on Route 1
As explained in Chapter 5, this Section’s models have two routes, but only route 1 has a
sensor detecting targets. Section shows “how costly” uncovered routes are to operations.

Unless noted otherwise, the target has a 50% chance of selecting Route 1 or Route 2 to move
between the hiding area and operating area. Knowing how difficult and resource extensive
covering each route may be, units may choose to cover one route over another based on
intelligence or variety of other factors. Since greater r f , rb values yield a higher probability
of detection, models focus on the results of changing initial conditions but reinforce our
results from the previous section. The resulting probabilities of Ph(t) and Po(t) are shown
in Figure 6.7 and probabilities of detection are shown in Figure 6.8.
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Figure 6.7. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po are
.50/.50 , r f and rb values are held constant at 2.7 and 1.1, respectively.

Figure 6.8. The graph depicts the probability of detection results over time
depicted graphically for a sensor with a probability of detection psi covering
one of two routes, Ph and Po are .50/.50 , r f and rb values are held constant
at 2.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.7 and 6.8.
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Table 6.7. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.4361
2.00 0.6670
3.00 0.8027
4.00 0.8831
5.00 0.9308

Table 6.8. Time versus Probability when Ph = 0.9 and Po = 0.1 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.4812
2.00 0.6954
3.00 0.8196
4.00 0.8932
5.00 0.9367

Obviously, the probability of detection decreases with the addition of an uncovered route
when comparing results from Figure 6.5, the previous model of one sensor on covering a
single route, to Figure 6.8 above. In short, adding an uncovered route significantly decreases
the probability of detection no matter the performance of a sensor.

A comparison of the results in Tables 6.7 and 6.8 are shown in Table 6.9.
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Table 6.9. Difference of Probabilities of Detection Figure 6.8’s left-side and
right-side results.

t Difference in P(t)
0 0
1.00 0.0451
2.00 0.0284
3.00 0.0169
4.00 0.0101
5.00 0.0059

With constant forward and backward rates, adjusting the initial conditions, the target’s
initial location, results in higher probabilities of detection after one interval of time. The
probability of detection after one interval of time increased from 43.61% in 48.12% in
Figure 6.8.

Next, the following models analyzes increasing r f to 3.7 and compare its results. The
resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.9 and probabilities of
detection are shown in Figure 6.10.

Figure 6.9. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po are
.50/.50 , r f and rb values are held constant at 3.7 and 1.1, respectively.
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Figure 6.10. The graph depicts the probability of detection results over time
depicted graphically for a sensor with a probability of detection psi covering
one of two routes, Ph and Po are .50/.50 , r f and rb values are held constant
at 3.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.10 and 6.11.

Table 6.10. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.4686
2.00 0.6951
3.00 0.8247
4.00 0.8992
5.00 0.9421
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Table 6.11. Time versus Probability when Ph = 0.9 and Po = 0.1 values
change, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.5238
2.00 0.7276
3.00 0.8434
4.00 0.9100
5.00 0.9482

The increase in r f by 1.0 increases the probabilities of detection to about 50% (Figure 6.10),
but is low due to the uncovered route. A comparison of the results in Tables 6.10 and 6.11
are shown in Table 6.12.

Table 6.12. Difference of Probabilities of Detection Figure 6.10’s left-side
and right-side results.

t Difference in P(t)
0 0
1.00 0.0552
2.00 0.0325
3.00 0.0187
4.00 0.0108
5.00 0.0061

Increasing the rate forward from 2.7 in Figure 6.8 to 3.7 in Figure 6.10 resulted in an
increase from 4.51% to 5.52% after one interval of time. The 1.01% increase in early
warning is moderate and Commanders may not warrant employing unique capabilities to
obtain the desired effect to increased movement rate of targets through a certain UMI is
worth the risk.

However, after adjusting the initial conditions from Ph = 0.5 and Ph = 0.5 to Ph = 0.9 and
Ph = 0.1 in Figure 6.9 and Figure 6.10 the probability of detection is increased by 5.52%.
The 5.52% is significant and may motivate a commander to employ unique capabilities to
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obtain the desired effect. Although the increase would help provide early warning to units,
the enemy does get a say in the fight.

Until this point, the models offer targets a 50% probability of selecting Route 1 and Route 2
when moving between a hiding area to an operating area. On the first run, model introduces
a 75% probability of selecting Route 1 and a 25% probability of selecting Route 2 when
moving from a hiding area to an operating area. On the return from the operating area to
the hiding area, targets had a 25% probability of selecting Route 1 and a 75% probability of
selecting Route 2. The percentages are flipped during the model’s second run. The resulting
probabilities of Ph(t) and Po(t) are shown in Figure 6.11 and probabilities of detection are
shown in Figure 6.12.

Figure 6.11. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po are
.50/.50, r f and rb values are held constant at 3.7 and 1.1, respectively.
However, the probability of selecting route pk changes between .75 and .25
depending on the direction of travel.

65



Figure 6.12. The graph depicts the probability of detection results over time
depicted graphically for a sensor with a probability of detection psi covering
one of two routes, Ph and Po are .50/.50, r f and rb values are held constant
at 3.7 and 1.1, respectively. However, the probability of selecting route pk
changes between .75 and .25 depending on the direction of travel.

The discrete results from the figures above are shown in Tables 6.13 and 6.14.

Table 6.13. Time versus Probability when Pk1 = .75, Pk2 = .25, Pk3 =
.25,Pk4 = .75, Ph = 0.5 and Po = 0.5, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.5159
2.00 0.7321
3.00 0.8511
4.00 0.9173
5.00 0.9540
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Table 6.14. Time versus Probability when Pk1 = .25, Pk2 = .75, Pk3 =
.75,Pk4 = .25, Ph = 0.5 and Po = 0.5, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.4480
2.00 0.6933
3.00 0.8296
4.00 0.9053
5.00 0.9474

While holding the rates constant, results above show adjusting initial conditions impacts
the probability of detection. A comparison of the results in Tables 6.10 and 6.11 are shown
in Table 6.15.

Table 6.15. Time versus Probability Comparison between Figure 6.12’s left-
side and right-side results.

t Difference in P(t)
0 0
1.00 0.0679
2.00 0.0388
3.00 0.0215
4.00 0.0120
5.00 0.0066

Influencing the probability of route selection increased probability of detection from 46.86%
from Figures 6.9 and 6.10 to 51.59% in Figure 6.11 and Figure 6.12 resulting in an increase
of 4.73% after one interval of time. However, negative influences can have the opposite
effect and decrease the probability of detection by 2.06%. In this case, the reward outweighs
the risk.

Lastly, the model introduces a 90% probability of selecting Route 1 and a 10% probability
of selecting Route 2 when moving from a hiding area to an operating area. On the return
from the operating area to the hiding area targets had a 10% probability of selecting Route
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1 and a 90% probability of selecting Route 2. The resulting probabilities of Ph(t) and Po(t)

are shown in Figure 6.13 and probabilities of detection are shown in Figure 6.14.

Figure 6.13. The graph shows probability of target location over time with
the addition of a sensor with a probability of detection psi, Ph and Po are
.50/.50, r f and rb values are held constant at 3.7 and 1.1, respectively.
However, the probability of selecting route pk varies between .90 and .10
depending on the direction of travel.

.
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Figure 6.14. The graph depicts the probability of detection results over time
depicted graphically for a sensor with a probability of detection psi covering
one of two routes, Ph and Po are .50/.50, r f and rb values are held constant
at 3.7 and 1.1, respectively. However, the probability of selecting route pk
varies between .75 and .25 depending on the direction of travel.

.

The discrete results from the figures above are shown in Tables 6.16.

Table 6.16. Time versus Probability when Pk1 = .90, Pk2 = .10, Pk3 =
.10,Pk4 = .90, Ph = 0.5 and Po = 0.5, r f = 3.7 and rb = 1.1

t P(t)
0 0
1.00 0.5554
2.00 0.7673
3.00 0.8776
4.00 0.9356
5.00 0.9661

Lastly, after increasing probability of a target selecting Route 1 to 90%, the probability of
detection increased to 3.95% in Figure 6.14.

Although increasing the hiding area’s initial condition helps provide early warning to units,
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the enemy does get a say in the fight. As much as commanders would like to dictate enemy
movements, it is unreasonable to expect. Conversely, if the operating area’s initial condition
is greater than the hiding area, then the probability of detection decreases.

In the next model, commanders have the ability to influence targets to use or avoid certain
UMI, which is promising to increase the probability of detection, especially if units are
unable to cover all possible routes with sensors. Unless otherwise noted, the r f , rb values
of 2.7 and 1.1, respectively, will be used exclusively. This allows for a better understanding
of how other factors increase or decrease models’ probability of detection.

6.4 Two Routes, Two Sensors on Route 1
With additional time, units are able to place an additional sensor on Route 1. First, a unit
places a Layer 1a sensor on Route 1. After some time, the units add a Layer 1b sensor to
the same route to provide redundancy. This model analyzes if multiple sensors on a single
route significantly improve probability of detection and early warning. Route 2 remains
uncovered.

Recall the probability of detection of Layer 1a sensors is significantly less than the proba-
bility of detection of Layer 1b sensors.

The resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.15 and probabilities of
detection are shown in Figure 6.16.
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Figure 6.15. The graph shows probability of target location over time with
two Layer 1a sensors with a probability of detection psi covering one of two
routes, Ph and Po are .50/.50, r f and rb values are held constant at 2.7
and 1.1, respectively. However, the probability of selecting route pk varies
between .90 and .10 depending on the direction of travel.

.

Figure 6.16. The graph depicts the probability of detection results over time
depicted graphically for two Layer 1a sensors with a probability of detection
psi covering one of two routes, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively.

.
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The discrete results from the figures above are shown in Tables 6.17.

Table 6.17. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.3883
2.00 0.6118
3.00 0.7531
4.00 0.8430
5.00 0.9001

After one interval of time the probability of detection is 38.83%. However, with the addition
of the second, Layer 1b, the results follow in Figure 6.17 and Figure 6.18.

Figure 6.17. The graph shows probability of target location over time with
two Layer 1b sensors with a probability of detection psi covering one of two
routes, Ph and Po are .50/.50, r f and rb values are held constant at 2.7
and 1.1, respectively. However, the probability of selecting route pk varies
between .90 and .10 depending on the direction of travel.

.
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Figure 6.18. The graph depicts the probability of detection results over time
depicted graphically for two Layer 1b sensors with a probability of detection
psi covering one of two routes, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively.

.

The discrete results from the figures above are shown in Tables 6.18.

Table 6.18. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.5355
2.00 0.7678
3.00 0.8831
4.00 0.9411
5.00 0.9703

After running the models, there is a significant improvement in the probability of detection
between Figure 6.15 and Figure 6.16 versus Figure 6.17 and Figure 6.18. However, the
underwhelming performance of the Layer 1a probability of detection questions employing
them in the first place.
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Although emplacement of Layer 1b sensors is theoreticallymore cumbersome, the increased
probability of detection seems to be worth the time and expense for emplacement, at least
mathematically. Commanders must decide whether the additional time requirement and
additional risk are worth an increased probability of detection.

6.5 Two Routes, One Sensor on each Route
Suppose sensors cover each route. It is the best option to provide the best chances of early
warning. The following models will analyze pairing of Layer 1a and Layer 1b sensors
across two routes.

First, units place a Layer 1a sensor on Route 1 and with another Layer 1a sensor on Route
2. The resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.19 and probabilities
of detection are shown in Figure 6.20.

Figure 6.19. The graph shows probability of target location over time with
two Layer 1a sensors with a probability of detection psi each covering one
route, Ph and Po are .50/.50, r f and rb values are held constant at 2.7 and
1.1, respectively.
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Figure 6.20. The graph depicts the probability of detection results over time
depicted graphically for two Layer 1a sensors with a probability of detection
psi each covering one route, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.19.

Table 6.19. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.6519
2.00 0.8615
3.00 0.9741
4.00 0.9911
5.00 0.9907

Next, units place a Layer 1a sensor on Route 1 and Layer 1b sensor on Route 2. The resulting
probabilities of Ph(t) and Po(t) are shown in Figure 6.21 and probabilities of detection are
shown in Figure 6.22.
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Figure 6.21. The graph shows probability of target location over time with
one Layer 1a sensor and Layer 1b sensor with a probability of detection psi
and ps j each covering one route, Ph and Po are .50/.50, r f and rb values
are held constant at 2.7 and 1.1, respectively.

Figure 6.22. The graph depicts the probability of detection results over time
depicted graphically for one Layer 1a sensor and one Layer 1b sensor with a
probability of detection psi and ps j each covering one route, Ph and Po are
.50/.50, r f and rb values are held constant at 2.7 and 1.1, respectively.

.

The discrete results from the figures above are shown in Tables 6.20.
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Table 6.20. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.7031
2.00 0.8943
3.00 0.9610
4.00 0.9856
5.00 0.9946

The probability of detection difference between two Layer 1a sensor results shown in Figure
6.20 and Layer 1b sensor results shown in Figure 6.22 is about 5.0%.

Finally, two Layer 1b sensors cover both routes. The resulting probabilities of Ph(t) and
Po(t) are shown in Figure 6.23 and probabilities of detection are shown in Figure 6.24.

Figure 6.23. The graph shows probability of target location over time with
two Layer 1b sensors with a probability of detection psi each covering one
route, Ph and Po are .50/.50, r f and rb values are held constant at 2.7 and
1.1, respectively.
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Figure 6.24. The graph depicts the probability of detection results over time
depicted graphically for two Layer 1a sensors with a probability of detection
psi each covering one route, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively.

The discrete results from the figures above are shown in Tables 6.21.

Table 6.21. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.7563
2.00 0.9230
3.00 0.9741
4.00 0.9911
5.00 0.9970

The probability of detection difference between two Layer 1a sensor results shown in Figure
6.22 and Layer 1b sensor results shown in Figure 6.24 is about 5.0%.

The next models aim to simulate platoon’s probability of detection given different situations
in an urban subterranean environment.
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6.6 Twelve Routes, One Sensor on each Block Corner
Based on feasible parameters and characteristics of previous models, the next models are
the results analysis UMI underneath an actual city block.

First, the model compares the probability of detection of employing Layer 1a sensors and
Layer 1b sensors. With a Layer 1a sensor, the results are discouraging. The resulting
probabilities of Ph(t) and Po(t) are shown in Figure 6.25 and probabilities of detection are
shown in Figure 6.26.

Figure 6.25. The graph shows probability of target location over time with
four Layer 1a sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .834. The probability of selecting the remaining routes is .833.
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Figure 6.26. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1a sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, and 4 is .834. The probability of selecting the remaining
routes is .833.

The discrete results from the figures above are shown in Tables 6.22.

Table 6.22. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.2802
2.00 0.4706
3.00 0.6103
4.00 0.7131
5.00 0.7888

After one interval of time, the probability of detection from Figure 6.27, Figure 6.28 and
Figure 6.22 is 28.02%, and the probability of detection over a long period of time is only
78.88%.
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Layer 1b sensors result in the following probabilities of Ph(t) and Po(t) are shown in Figure
6.25 and probabilities of detection are shown in Figure 6.26.

Figure 6.27. The graph shows probability of target location over time with
four Layer 1b sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .834. The probability of selecting the remaining routes is .833.
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Figure 6.28. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1b sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, and 4 is .834. The probability of selecting the remaining
routes is .833.

The discrete results from the figures above are shown in Tables 6.23.

Table 6.23. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.3886
2.00 0.6121
3.00 0.7534
4.00 0.8432
5.00 0.9003

After one interval of time, the probability of detection from Figure 6.27, Figure 6.28 and
Table 6.23 is 38.86%, and the probability of detection over a long period of time is only
90.03%.
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While the 10.0% increase is promising, the uncovered routes significantly hamper the
performance of sensitive Layer 1b sensors.

As mentioned before, commanders attempt to influence the targets in selecting one route
over another. When successful, the next models measure how much the probability of
detection increases.

The next four models use the same Layer 1a and Layer 1b sensors used in the previous
models in this section. The next model increases the target’s probability of selecting routes
1, 2, 3, or 4 by .64% to 9.00% and decreases the remaining probabilities by .33% to 8.00%.
The resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.29 and probabilities of
detection are shown in Figure 6.30.

Figure 6.29. The graph shows probability of target location over time with
four Layer 1a sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .090. The probability of selecting the remaining routes is .080.
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Figure 6.30. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1a sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, and 4 is .090. The probability of selecting the remaining
routes is .080.

The discrete results from the figures above are shown in Table 6.24.

Table 6.24. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.2986
2.00 0.4962
3.00 0.6377
4.00 0.7395
5.00 0.8127

After one interval of time, the probability of detection from Figure 6.29, Figure 6.30 and
6.24 is 29.86%, and the probability of detection over a long period of time is only 81.27%.
The resulting probabilities ofPh(t) and Po(t) are shown in Figure 6.31 and probabilities of

84



detection are shown in Figure 6.32.

Figure 6.31. The graph shows probability of target location over time with
four Layer 1b sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .090. The probability of selecting the remaining routes is .080.
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Figure 6.32. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1b sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, and 4 is .090. The probability of selecting the remaining
routes is .080.

The discrete results from the figures above are shown in Table 6.25.

Table 6.25. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.4117
2.00 0.6394
3.00 0.7784
4.00 0.8638
5.00 0.9163

After one interval of time, the probability of detection from Figure 6.31, Figure 6.32 and
6.25 is 41.17%, and the probability of detection over a long period of time is 96.14%.

When compared to the Layer 1a performance from Figure 6.29, Figure 6.30 the Layer 1b
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increases the probability of detection by 11.0%. Finally, the following model increases the
target’s probability of selecting routes 1, 2, 3, or 4 by 3.00% to 12.00% and decreases the
remaining probabilities by 1.50% to 6.50%. The resulting probabilities of Ph(t) and Po(t)

are shown in Figure 6.33 and probabilities of detection are shown in Figure 6.34.

Figure 6.33. The graph shows probability of target location over time with
four Layer 1a sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .120. The probability of selecting the remaining routes is .065.
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Figure 6.34. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1a sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively.A target’s probability of selecting
routes 1, 2, 3, and 4 is .120. The probability of selecting the remaining
routes is .065.

The discrete results from the figures above are shown in Table 6.26.

Table 6.26. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.3763
2.00 0.5972
3.00 0.7394
4.00 0.8313
5.00 0.8908

After one interval of time, the probability of detection from Figure 6.33, Figure 6.34 and
Figure 6.26 is 37.63%, and the probability of detection over a long period of time is 89.08%.
The resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.35 and probabilities of
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detection are shown in Figure 6.36.

Figure 6.35. The graph shows probability of target location over time with
four Layer 1b sensors with a probability of detection psi each covering routes
1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are held constant at
2.7 and 1.1, respectively. A target’s probability of selecting routes 1, 2, 3,
and 4 is .120. The probability of selecting the remaining routes is .065.
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Figure 6.36. The graph depicts the probability of detection results over time
depicted graphically for four Layer 1b sensors with a probability of detection
psi covering routes 1, 2, 3, and 4, Ph and Po are .50/.50, r f and rb values are
held constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, and 4 is .120. The probability of selecting the remaining
routes is .065.

The discrete results from the figures above are shown in Table 6.27.

Table 6.27. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.5061
2.00 0.7400
3.00 0.8624
4.00 0.9271
5.00 0.9614

After one interval of time, the probability of detection from Figure 6.35, Figure 6.36 and
Figure 6.27 is 50.61%, and the probability of detection over a long period of time is 96.14%.

When compared to the Layer 1a performance from Figure 6.29, Figure 6.30 the Layer 1b
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increases the probability of detection by nearly 13.0%.

Of course, if sensors cover every route then the models behave like previous models.

6.7 TwelveRoutes, One Sensor onEightUMI Intersections
The next model adds one Layer 1b sensor to four additional UMI intersections. Given
the most recent model where a target’s probability of selecting routes 1, 2, 3, and 4 is
.120 and the probability of selecting the remaining routes is .065, all other parameters
remain constant. The resulting probabilities of Ph(t) and Po(t) are shown in Figure 6.37
and probabilities of detection are shown in Figure 6.38.

Figure 6.37. The graph shows probability of target location over time with
four Layer 1b sensors with a probability of detection psi each covering routes
1, 2, 3, 4, 5, 6, 7, and 8, Ph and Po are .50/.50 , r f and rb values are held
constant at 2.7 and 1.1, respectively. A target’s probability of selecting
routes 1, 2, 3, 4, 5, 6, 7, and 8 is .120. The probability of selecting the
remaining routes is .065.
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Figure 6.38. The graph depicts the probability of detection results over time
depicted graphically for eight Layer 1b sensors with a probability of detection
psi covering routes 1, 2, 3, 4, 5, 6, 7, and 8, Ph and Po are .50/.50, r f and rb
values are held constant at 2.7 and 1.1, respectively. A target’s probability
of selecting routes 1, 2, 3, 4, 5, 6, 7, and 8, is .120. The probability of
selecting the remaining routes is .065.

The discrete results from the figures above are shown in Table 6.28.

Table 6.28. Time versus Probability when Ph = 0.5 and Po = 0.5 values
change, r f = 2.7 and rb = 1.1

t P(t)
0 0
1.00 0.6485
2.00 0.8591
3.00 0.9424
4.00 0.9764
5.00 0.9903

Adding four Layer 1b sensors to detect targets moving in the UMI increase the probability
of detection over 14.00%.

Covering all routes would result in probabilities of detection similar to Figure 6.20, Figure
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6.22 or Figure 6.24.

In theory, given a platoon’s space responsibility in an urban environment, emplacement of
eight sensors is feasible.

6.8 Multiple Hiding Areas, Routes, Entering a Single Op-
erating Area

6.8.1 Two Hiding Areas, Six Routes, One Sensor on each Route
The final two models represent targets leaving their hiding areas, and moving along UMI
into their operation area. This model attempts to capture a subterranean attack by a force in
the offense.

In the next model, the probability of selecting a route is equal.

The two attacking units’ movements may be coordinated, and enemy units can come into
contact with one another. Doctrinally, the models attempt to replicate a unit conducting
a hasty defense with a 2:1 enemy to friendly ratio. This situation may arise during initial
entry into a urban area with Layer 1a sensors. The resulting probabilities of Ph1(t), Ph2(t)

and Po(t) are shown in Figure 6.39 and probabilities of detection are shown in Figure 6.40.
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Figure 6.39. The graph shows probability of target location over time for
six Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2 and Po are .475, .475 and .05, respectively, r f h1, r f h2 and r0 values
are held constant at 2.7, 2.7 and 1.1, respectively. A target’s probability of
selecting each route is .1666.

Figure 6.40. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2 and Po are .475, .475 and .05, respectively,
r f h1, r f h2 and r0 values are held constant at 2.7, 2.7 and 1.1, respectively.
A target’s probability of selecting each route is .1667.
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The discrete results from the figures above are shown in Table 6.29.

Table 6.29. Time versus Probability when Ph1 = 0.475 ,Ph2 = 0.475 and
Po = 0.05 values change, r f h1 = 2.7, r f h2 = 2.7 and r f o = 1.1

t P(t)
0 0
1.00 0.8916
2.00 0.9805
3.00 0.9947
4.00 0.9983
5.00 0.9994

The resulting probabilities of Ph1(t), Ph2(t) and Po(t) are shown in Figure 6.41 and proba-
bilities of detection are shown in Figure 6.42.

Figure 6.41. The graph shows probability of target location over time for
six Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2 and Po are .45, .45 and .10, respectively, r f h1, r f h2 and r0 values
are held constant at 2.7, 2.7 and 1.1, respectively. A target’s probability of
selecting each route is .1666.
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Figure 6.42. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2 and Po are .45, .45 and .10, respectively,
r f h1, r f h2 and r0 values are held constant at 2.7, 2.7 and 1.1, respectively.
A target’s probability of selecting each route is .1666.

The discrete results from the figures above are shown in Table 6.30.

Table 6.30. Time versus Probability when Ph1 = 0.45 ,Ph2 = 0.45 and
Po = 0.1 values change, r f h1 = 2.7, r f h2 = 2.7 and r f o = 1.1

t P(t)
0 0
1.00 0.8786
2.00 0.9752
3.00 0.9929
4.00 0.9977
5.00 0.9992

The resulting probabilities of Ph1(t), Ph2(t) and Po(t) are shown in Figure 6.43 and proba-
bilities of detection are shown in Figure 6.44.
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Figure 6.43. The graph shows probability of target location over time for
six Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2 and Po are .40, .40 and .20, respectively, r f h1, r f h2 and r0 values
are held constant at 2.7, 2.7 and 1.1, respectively. A target’s probability of
selecting each route is .1666.

.

Figure 6.44. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2 and Po are .40, .40 and .20, respectively,
r f h1, r f h2 and r0 values are held constant at 2.7, 2.7 and 1.1, respectively.
A target’s probability of selecting each route is .1666.
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The discrete results from the figures above are shown in Table 6.31.

Table 6.31. Time versus Probability when Ph1 = 0.4 ,Ph2 = 0.4 and Po = 0.2
values change, r f h1 = 2.7, r f h2 = 2.7 and r f o = 1.1

t P(t)
0 0
1.00 0.7911
2.00 0.9376
3.00 0.9786
4.00 0.9924
5.00 0.9973

Even with the addition of multiple hiding areas, the difference of Figure 6.40, Figure 6.42,
and Figure 6.44’s initial conditions do not affect the overall probability of detection.

In the next model, the probability of selecting a route is adjusted.

The two attacking units’ movements may be coordinated, but they do not come into contact
with one another. The resulting probabilities of Ph1(t), Ph2(t) and Po(t) are shown in Figure
6.45 and probabilities of detection are shown in Figure 6.46.
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Figure 6.45. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2 and Po are .475, .475 and .05, respectively, r f h1, r f h2 and r0 values
are held constant at 2.7, 2.7 and 1.1, respectively. A target’s probability of
selecting each route is .25.

Figure 6.46. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2 and Po are .475, .475 and .05, respectively,
r f h1, r f h2 and r0 values are held constant at 2.7, 2.7 and 1.1, respectively.
A target’s probability of selecting each route is .25.
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The discrete results from the figures above are shown in Table 6.32.

Table 6.32. Time versus Probability when Ph1 = 0.4 ,Ph2 = 0.5 and Po = 0.1
values change, r f h1 = 2.7, r f h2 = 2.7 and r f o = 1.1

t P(t)
0 0
1.00 0.8895
2.00 0.9776
3.00 0.9934
4.00 0.9978
5.00 0.9993

When compared to Figure 6.40’s results after one interval of time, the probability of
detection from Figure 6.46’s results is 7.10% greater, and the probability of detection
difference over a long period of time is 9.88% more.

This model can expand and encompass multiple routes as well. The final model addresses
route expansion.

Assuming the sensor probability is 50%, the explicit numerical solution to model is


ph1(t)

ph2(t)

po(t)

 = −0.3652


−0.1257
−0.1257
−0.9841

 e−1.0213t−0.000


−0.7071
0.7071
−0.0000

 e−3.0084t−0.5255


−0.6738
−0.6738
0.3032

 e−2.4703t .

(6.16)
MATLAB’s ODE45 solver solution validates the numerical solution. Figure 6.47 graphi-
cally compares the ODE45’s solver solution to the numerical solution.
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Figure 6.47. MATLAB ODE45 and Numerical Solution Comparison for a
3x3 System of Equations when Ph1 = .40, Ph2 = .40, P0 = .20, r f 1 = 2.7,
r f 2 = 2.7 and rb = 1.1, and ps1=.50. A target’s probability of selecting
each route is .1666.

6.8.2 Three Hiding areas, Twelve Routes, One Senors on each Route
The next model adds a hiding area area. Doctrinally, the models attempt to replicate a unit
conducting a deliberate defense with a 3:1 enemy to friendly ratio. This situation may arise
during defensive operations in an urban area.

The attacking units’ movement may be coordinated, and targets may come into contact with
one another. The resulting probabilities of Ph1(t), Ph2(t), Ph3(t) and Po(t) are shown in
Figure 6.48 and probabilities of detection are shown in Figure 6.49.
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Figure 6.48. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively, r f h1, r f h2, r f h3
and r0 values are held constant at 2.7, 2.7, 2.7, and 1.1, respectively. A
target’s probability of selecting a route is .0833.

Figure 6.49. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10,
respectively, r f h1, r f h2, r f h3 and r0 values are held constant at 2.7, 2.7, 2.7,
and 1.1, respectively. A target’s probability of selecting each route is .834.
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The discrete results from the figures above are shown in Table 6.33.

Table 6.33. Time versus Probability when Ph1 = 0.3 Ph2 = 0.3, Ph3 = 0.3
and Po = 0.1 values change, r f h1 = 2.7, r f h2 = 2.7, r f h3 = 2.7 and r f o = 1.1

t P(t)
0 0
1.00 0.8850
2.00 0.9784
3.00 0.9941
4.00 0.9981
5.00 0.9994

After one interval of time, the probability of detection from Figure 6.49’s results is 88.50%

The next model expands to four routes between the operating area and each hiding area to
replicate multiple effects commanders may employ to increase the probability of detection.
Tactically, this parameter change intends to mimic a “block” effect. Unlike the first model
in this section, the targets cannot travel between hiding areas.

The models below have unique probabilities of detection and rates for each route. This
change accurately models target behavior to depict a "block" or "disrupt" effect. Of the four
possible routes from each hiding area to an operating area, two are blocked forcing targets
to select from two routes instead of four. The resulting probabilities of Ph1(t), Ph2(t), Ph3(t)

and Po(t) are shown in Figure 6.50 and probabilities of detection are shown in Figure 6.51.
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Figure 6.50. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively, r f h1, r f h2,
r f h3 and r f h4 values are held constant at 0.0, 3.7, 3.7, and 0.0, respectively.
Instead of four routes connecting each hiding area to the operating area,
the model simulates a "block" with two open routes with target selection
probability of .1666 for each open route.
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Figure 6.51. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10,
respectively, r f h1, r f h2, r f h3 and r f h4 values are held constant at 0.0, 3.7,
3.7, and 0.0, respectively. Instead of four routes connecting each hiding area
to the operating area, the model simulates a "block" with two open routes
with target selection probability of .1666 for each open route.

The discrete results from the figures above are shown in Table 6.34.

Table 6.34. Time versus Probability when Ph1 = 0.3 Ph2 = 0.3, Ph3 = 0.3
and Po = 0.1 values change, r f h1 = 0.0, r f h2 = 3.7, r f h3 = 3.7 and r f 4 = 0.0

t P(t)
0 0
1.00 0.6278
2.00 0.8767
3.00 0.9438
4.00 0.9777
5.00 0.9911

Of the four possible routes from each hiding area to an operating area, three are blocked
forcing targets to select from a one route instead of four. The resulting probabilities of
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Ph1(t), Ph2(t), Ph3(t) and Po(t) are shown in Figure 6.52 and probabilities of detection are
shown in Figure 6.53.

Figure 6.52. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively, r f h1, r f h2,
r f h3 and r f h4 values are held constant at 0.0, 4.0, 0.0, and 0.0, respectively.
Instead of four routes connecting each hiding area to the operating area,
the model simulates a "block" with one open routes with target selection
probability of .3333 for each open route.
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Figure 6.53. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection
psi cover each route, Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10,
respectively, r f h1, r f h2, r f h3 and r f h4 values are held constant at 0.0, 4.0,
0.0, and 0.0, respectively. Instead of four routes connecting each hiding area
to the operating area, the model simulates a "block" with two open routes
with target selection probability of .3333 for each open route.

The discrete results from the figures above are shown in Table 6.35.

Table 6.35. Time versus Probability when Ph1 = 0.3 Ph2 = 0.3, Ph3 = 0.3
and Po = 0.1 values change, r f h1 = 0.0, r f h2 = 4.0, r f h3 = 0.0 and r f o = 0.0

t P(t)
0 0
1.00 0.6560
2.00 0.8771
3.00 0.9552
4.00 0.9835
5.00 0.9939

After one interval of time, blocking an additional route increases the probability to detect
targets moving in the UMI by nearly 3.00%. Intuitively, this increase is unlikely to convince
commanders to block single routes into operating areas.
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The last model again restricts a target to select a certain route at a certain rate. This
parameter change intents to mimic a “disrupt” effect. The resulting probabilities of Ph1(t),
Ph2(t), Ph3(t) and Po(t) are shown in Figure 6.54 and probabilities of detection are shown
in Figure 6.55.

Figure 6.54. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively. Four routes
connect each hiding area to the operating area, but the model simulates
a "disrupt" with probabilities of selecting a route between hiding area and
operating area for pk1,5,9, pk2,6,10, pk3,7,11, pk4,8,12, are .05, .1166, .1166,
.05, consequently the routes with lower probability of selection are assumed
to have lower rates r f h1, r f h2, r f h3 and r f h4. The rates are values are 0.7,
3.7, 3.7, and 0.7, respectively.
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Figure 6.55. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection psi
cover each route,Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively.
Four routes connect each hiding area to the operating area, but the model
simulates a "disrupt" with probabilities of selecting a route between hiding
area and operating area for pk1,5,9, pk2,6,10, pk3,7,11, pk4,8,12, are .05, .1166,
.1166, .05, consequently the routes with lower probability of selection are
assumed to have lower rates r f h1, r f h2, r f h3 and r f h4. The rates are values
are 0.7, 3.7, 3.7, and 0.7, respectively.

The discrete results from the figures above are shown in Table 6.36.

Table 6.36. Time versus Probability when Ph1 = 0.3 Ph2 = 0.3, Ph3 = 0.3
and Po = 0.1 values change, r f 1 = 1.1, r f 2 = 2.7, r f 3 = 2.7 and r f 4 = 1.1

t P(t)
0 0
1.00 0.5285
2.00 0.7729
3.00 0.8890
4.00 0.9453
5.00 0.9728

The resulting probabilities of Ph1(t), Ph2(t), Ph3(t) and Po(t) are shown in Figure 6.56 and
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probabilities of detection are shown in Figure 6.57.

Figure 6.56. The graph shows probability of target location over time for
four Layer 1b sensors with a probability of detection psi covering each route,
Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively. Four routes
connect each hiding area to the operating area, but the model simulates
a "disrupt" with probabilities of selecting a route between hiding area and
operating area for pk1,5,9, pk2,6,10, pk3,7,11, pk4,8,12, are .025, .1416, .1416,
.025, consequently the routes with lower probability of selection are assumed
to have lower rates r f h1, r f h2, r f h3 and r f h4. The rates are values are 0.7,
3.7, 3.7, and 0.7, respectively.
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Figure 6.57. The graph depicts the probability of detection results over time
depicted graphically for six Layer 1b sensors with a probability of detection psi
cover each route,Ph1, Ph2, Ph3 and Po are .30, .30, .30, and .10, respectively.
Four routes connect each hiding area to the operating area, but the model
simulates a "disrupt" with probabilities of selecting a route between hiding
area and operating area for pk1,5,9, pk2,6,10, pk3,7,11, pk4,8,12, are .025, .1416,
.1416, .025, consequently the routes with lower probability of selection are
assumed to have lower rates r f h1, r f h2, r f h3 and r f h4. The rates are values
are 0.7, 3.7, 3.7, and 0.7, respectively.

The discrete results from the figures above are shown in Table 6.37.

Table 6.37. Time versus Probability when Ph1 = 0.3 Ph2 = 0.3, Ph3 = 0.3
and Po = 0.1 values change, r f 1 = 0.7, r f 2 = 3.7, r f 3 = 3.7 and r f 4 = 0.7

t P(t)
0 0
1.00 0.5811
2.00 0.8197
3.00 0.9211
4.00 0.9651
5.00 0.9845

After one interval of time, the probability of targets selecting a route increases the probability
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to detect targets moving in UMI by 5.26%. This increase may be enough to convince
commanders to employ resource to achieve a similar result.

The overall performance of employing "disrupting" obstacles to increase the probability of
detection is lower than employing "blocking" obstacles nearly 7.50%. Yet, comparing the
results from Figure 6.49 to Figure 6.53 and Figure 6.57 covering each route yields the best
change to detect target movement in UMI.

Assuming the sensor probability is 50%, the explicit numerical solution to model is


ph1(t)

ph2(t)

ph3(t)

po(t)


= 0.0001


0.8166
−0.4082
−0.4082
−0.0001


e−2.9249t − 0.5105


−0.5491
−0.5492
−0.5492
0.3085


e−2.3016t

+ 0.2597


0.0756
0.0756
0.0756
0.9914


e−1.0485t − 0.000


0.0000
−0.7071
0.7071
−0.0001


e−2.9250t . (6.17)

MATLAB’s ODE45 solver solution validates the numerical solution. Figure 6.58 graphi-
cally compares the ODE45’s solver solution to the numerical solution.
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Figure 6.58. MATLAB ODE45 and Numerical Solution Comparison for a
3x3 System of Equations when Ph1 = .30, Ph2 = .30, Ph3 = .30 P0 = .10,
r f 1 = 2.7, r f 2 = 2.7, r f 3 = 2.7 and rb = 1.1, and ps1=.50. A target’s
probability of selecting each route is .834.
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CHAPTER 7:
Conclusion

7.1 Research Objectives

7.1.1 Assess Detectability
Commanders must decide where to place sensors and must accept prudent risk to expose
troops to an unknown subterranean environment. They must weigh the risk and reward
of expending resources in the subterranean space. Since there are so many factors that go
into decision making, multiple commanders from the company to Joint Task Force level
contributed their units’ experience to a survey. The survey’s trends and explanations are
below.

(1) Experience in subterranean urban environments. Officers’ experience in the subterranean
did not occur in urban environments, reference Section A.2. This trend is understandable
considering the concept of fighting in a dense urban metropolitan area is a newer concept.
Moreover, experience in UMI in a dense urban environment is so rare that doctrine is
currently under development. For example, of the officers that mentioned their units did
have some subterranean exposure, only one dealt with UMI, a wadi.

(2) Adversary usage of subterranean environment. According to the survey, some units were
concerned with entering cave systems, and rudimentary tunnels impacting force protection
of Forward Observation Bases (FOBs) or nodes of transportation, reference Section A.2.
Applying the situations above to the model, the location of a target’s hiding area A is
unknown, rudimentary tunnels or cave systems represent routes k, and FOBs or nodes of
transportation as operating areas C. If the U.S. Military knew the tunnel location and had
access to the routes, the ABC model is applicable. While the survey did not enhance
modeling the urban subterranean environment, it did confirm the doctrine used to build the
models is accurate.

(3) Subterranean training and Sensor Employment. Only one officer used sensors to detect
enemy movement, and one other trained in subterranean operations while deployed to the
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Republic of Korea, reference Section A.2. Due to the officers’ limited experience with
sensors, it is difficult to assess the model or sensor employment.

Future sensors must have a high probability of detection to be worth employing in a
megacity’s UMI. Finding the balance between speed of emplacement and performance is
critical. However, based on the results of all models presented, the more sensors, the better.
In the future, if Commanders are willing to use sensors in a megacity’s UMI to provide early
warning of target movement, units should place as many sensors as possible. Covering as
many routes as possible with sensors will result in the highest probability of detection.

The difference between employing a Layer 1b sensor versus a Layer 1a sensor is 10.44% ,
as shown in Section 6.5.

According to the models, after one interval of time elapsed, covering each route yielded a
probability of detection between 65.19% and 89.16%, as shown in Section 6.5 and Section
6.8.1.

Blocking Routes in order to canalized targets yielded a probability of detection between
62.78% and 65.60%, as shown in Section 6.8.2

Disrupting target movement along routes yielded a probability of detection between 52.85%
and 58.11%, as shown in Section 6.8.2.

The probability of target detection for models with covered and uncovered routes was
between 43.61% and 66.07%, as shown in Section 6.3 and Section 6.6.

7.1.2 Improve Readiness
The model results significantly affect the Department of Defense and the Department of
Homeland Security’s current and future subterranean operations efforts. Non-mathematical
findings or qualitative recommendations encapsulate important points to consider when
approaching the urban subterranean environment through a military perspective. Mathe-
matical results support the importance of factors that should be considered in future urban
subterranean operations when effective sensor technology exists to aid in the subterranean
fight.

Themost important recommendation drawn from this research emphasizes knowledge of the
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operating environment before entering an urban environment. Open-source documentation
provides immensely beneficial informationwhen researching amegacity’s UMI. In addition,
the most effective way to increase the probability of detection with minimal physical impact
on the environment is to influence an enemy’s selection of which route they are most likely
to select from the hiding area to operating area.

The research concludes some of the tactics and principles executed by the U.S. military’s
fight on land are not a practical approach to engaging adversaries in UMI.

According to themathematicalmodel results, obstacle effects of fixing and disrupting enemy
movement lowers the probability of detection because each obstacle effect slows the target’s
rate of travel between the hiding and operating areas. Employing the obstacle effects of fix
and disrupt are not recommended tactics in UMI.

While block/turn effect model is the best performingmodel in the subterranean environment
for obstacle effects, the principle of obstacle over-watch is severely limited and the obstacle
can be breached without resistance. Blocking UMI corridors for an extended period time
may have negative effects on the population’s public service. Moreover, targets can reduce
obstacles with no resistance, assuming the route is completely blocked in both directions of
travel. Extended use of the block and turn obstacle effects is not a recommended in UMI.
Figure 7.1 recalls each obstacle effect from Chapter 4.
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Figure 7.1. ATP 3-90.8 Combined Arms Countermobility Operations’ Ob-
stacle Effects. Source: [17].

7.2 Future Work
Three areas of future work may enhance the finding of this paper. First, given the increased
attention to subterranean operations in the past few years, intelligence communities must
begin to gather information on megacities’ UMI blue prints. Second, modeling rates of
travel r f and rb, and probability of taking a route k using UMI size (diameter of UMI)
may improve the realism of the model. Third, modeling UMI as a complex network may
significantly speed up the process of identifying the most important areas to employ sensors.
By effectively utilizing intelligence data and improving the flow rates and probability of
route selection the U.S. Army can mathematically determine the most effective area to place
sensors.

7.2.1 Intelligence Gathering
Data from building blueprints, subway systems, UMI, road networks, communication lines,
andmaintenance corridors are considered routes that targets may use to conduct invasive op-
eration in a subterranean environment. Current building codes, if available, or open-source
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transportation maps also help conceptualize the complexity of urban subterranean. From
megacity data, the Intelligence Preparation of the Battlefield (U.S. Army) or Joint Intelli-
gence Preparation of the Operating Environment process turns data into useful knowledge
before entering a megacity. Commands are better prepared for subterranean operations.
Education and preparation save time and treasure during the conflict.

7.2.2 Improving ABC Model’s Rate Forward/Back Values and Route
Selection Probability

Although each model used educated assumptions to represent different rates of travel
between areas, and probabilities that targets would choose one route over another, there
is a significant opportunity for improvement. Future work in the area of subterranean
warfare includes enhancing the subterranean model with real-life data, such as the actual
size and measurements of sewer and stormwater systems. Using the actual size of UMI aids
in determining the flow rate of target along a route and the probability of the target’s route
selection when moving between areas. One would imagine the diameter of the sewer and
stormwater lines is directly proportional to the opportunity of flow rate for the target and the
target’s probability of route selection. Moreover, additional researchmay uncover additional
urban zones (core, industry, commercial, peripheral, residential, and high rise) that have
unique subterranean characteristics to exploit or deny during subterranean operations.

7.2.3 Complex Network Centralities
When determining where to employ sensors in megacities’ UMI, using network centrality
metricsmay significantly aid in identifying themost important intersections (vertices/nodes)
highly connected to a large number of UMI voids (edges/arcs) such as pipes, culverts,
tunnels,...etc. One way to decide where to place sensors is to calculate vertex centralities.

Future work may model a megacity’s subterranean environment as a complex network and
run different centrality tests to aid in sensor placement decision making.

Calculating Degree Centrality, the number of connected edges to a signal vertex [21]
is important if a sensor is able to detect target movement in multiple directions. The
Degree Centrality essentially determines what node provides the ’best value’ criteria for
commanders to enter the subterranean space simply by determining all its connections.
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Eigenvector Centrality measures the strength of a vertex’s neighbors and ranks the impor-
tance of all vertices [21]. Calculating Eigenvector centrality gives commanders a list of
vertex’s of greatest and least importance. The list may aid in deciding where to focus efforts.
Eigenvector Centrality provides mathematical criteria for commanders to either bypass or
enter [15] the subterranean space.

Distance Centrality “identifies how much influence a given vertex has over graph structure
by calculating the amount of neighbor matrix change resulting from vertex removal” [21].
In other words, utilizing Distance Centrality in a complex UMI network gives insight to
important vertex to place a sensor to detect movement, or to block an important route.

All centrality results provide a unique way to prioritize sensor locations.

7.2.4 Layer 2 Sensors
Layer 2, non-UMI sensor technology, is the next layer of defense. These sensors detect
the construction and utilization of non-UMI voids. Non-UMI voids may connect UMI to
other UMI, building foundations, underground parking lots, etc. While Layer 2 sensors
utilization is interesting and as well as important, modeling its probability of detection is
outside the scope of this research and should be considered for future work.

7.2.5 Using Sensors in the Offense
The transition from defense to offense is rapid. Once the initiative is achieved, it must be
retained. While defense is reactive, offense dictates the battle’s tempo. Layer 1a and Layer
1b sensors assist in setting conditions to transition from defensive operations to offensive
operations. As units patrol deeper into the subterranean environment, sensors are employed.
Like in the defense, these sensors can detect target activity.

Consider a scenario where troops unknowingly approach an enemy subterranean hiding
space A. Troops place sensors in routes and return to there assembly area. Over the
next hours, days, or weeks the network of sensors detects large amounts of target activity.
Whether the enemy is staging a counterattack or conducting its defensive patrols near its
hiding area, sensors provide the unit leadership the ability to locate enemy positions without
direct contact.
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While it is important to address sensors’ abilities in the offense, modeling this scenario is
difficult. Our ABC model does not accurately depict enemy behavior so close to hiding
area and modeling sensors in the offense is a great topic for future work.
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APPENDIX: MATLAB Code and Survey Questions
and Results

A.1 MATLAB Code

A.1.1 "One Route with Sensor on Route"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t =gm1 ( t , x , r f , rb , ps1 )
2 ou t p u t =[− r f ∗x ( 1 ) + rb ∗(1− ps1 ) ∗x ( 2 ) ; . . .
3 − rb ∗x ( 2 ) + r f ∗(1− ps1 ) ∗x ( 1 ) ] ;

MATLAB Code :

1 %% Model 1 Master
2 x0 = [0 . 50 0 . 5 0 ] ;%i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , where x ( 1 )

+x ( 2 ) + . . . = 1
3 r f = 2 . 7 ;%ra t e forward t o o p e r a t i n g area
4 rb = 1 . 1 ;%ra t e backward t o h i d d i n g area
5 %ps1 =0.0;% no sensor , t h e s o l u t i o n conve rge s t o a s t e a d y

s t a t e s o l u t i o n
6 ps1 = 0 . 9 ;% P r o b a b i l i t y o f De t e c t i o n , I n t r o d u c t i o n o f a

s e n s o r t o Route 1
7 t f i n a l = 5 . 0 ;%Time Max
8 [ t , x ]= ode45 (@( t , x ) gm1 ( t , x , r f , rb , ps1 ) , [ 0 t f i n a l ] , x0 ) ;
9 c l f ;
10 f i g u r e ( 1 )
11 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 2 )
12 hold on
13 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ )
14 t i t l e ( [ ’ R e s u l t s f o r One Route wi th Senso r : r f = ’ , num2str (

r f ) , ’ rb = ’ . . .
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15 , num2str ( rb ) , ’ Ph = ’ , num2str ( x0 ( 1 ) ) , ’ and Po = ’ ,
num2str ( x0 ( 2 ) ) ] )

16 x l ab e l ( ’ Time ’ )
17 y l ab e l ( ’ P r o b a b i l i t y ’ )
18 l egend ( ’ Ph ’ , ’ Po ’ )
19 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
20 %% Model 1 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
21 f i g u r e ( 2 )
22 p_nd = x ( : , 1 ) +x ( : , 2 ) ; % escape or non− d e t e c t i o n p r o b a b i l i t y
23 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )%Plo t P r o b a b i l t y o f

D e t e c t i o n from t =[0 ,5]
24 hold on
25 p l o t ( t ,1−p_nd , ’ r s ’ )
26 t i t l e ( [ ’ R e s u l t s f o r One Route wi th Senso r : r f = ’ , num2str (

r f ) , ’ rb = ’ . . .
27 , num2str ( rb ) , ’ Ph = ’ , num2str ( x0 ( 1 ) ) , ’ and Po = ’ ,

num2str ( x0 ( 2 ) ) ] )
28 x l ab e l ( ’ Time ’ )
29 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
30 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
31

32 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
33 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
34 y _ d e s i r e d
35 %% Model 1 Numer ica l S o l u t i o n Check
36 A=[− r f rb ∗(1− ps1 ) ;
37 r f ∗(1− ps1 ) − rb ]
38

39 a=1
40 b=− t r a c e (A)
41 c=A( 1 , 1 ) ∗A( 2 , 2 )−A( 2 , 1 ) ∗A( 1 , 2 )
42 lambda1=(−b+ sqr t ( ( b∗b ) −4∗a∗c ) ) / ( 2∗ a )
43 lambda2=(−b− sqr t ( ( b∗b ) −4∗a∗c ) ) / ( 2∗ a )
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44

45 c1 = ( ( (A( 1 , 1 ) +A( 1 , 2 ) )−lambda2 ) ∗x ( 1 ) + ( (A( 2 , 1 ) +A( 2 , 2 ) )−lambda2 )
∗x ( 2 ) ) . / ( lambda1−lambda2 )

46

47 c2 = ( ( (A( 1 , 1 ) +A( 1 , 2 ) )−lambda1 ) ∗x ( 1 ) + ( (A( 2 , 1 ) +A( 2 , 2 ) )−lambda1 )
∗x ( 2 ) ) . / ( lambda2−lambda1 )

48

49 t n = t
50

51 poph=c1∗exp ( lambda1∗ t ) +c2∗exp ( lambda2∗ t )
52 p l o t ( t ,1−poph , ’ bs ’ )
53 hold on
54 p l o t ( t ,1−p_nd , ’ r + ’ )
55 t i t l e ( [ ’ Comparison o f ODE45 and A n a l y t i c a l S o l u t i o n s R e s u l t s

f o r ’ . . .
56 ’ One Route wi th Senso r : r f = ’ , num2str ( r f ) , ’ rb = ’ ,

num2str ( rb ) , . . .
57 ’ Ph = ’ , num2str ( x0 ( 1 ) ) , ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
58 l egend ( ’ A n a l y t i c a l S o l u t i o n ’ , ’ODE45 S o l u t i o n ’ )
59 x l ab e l ( ’ Time ’ )
60 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
61 hold o f f

A.1.2 "Two routes, One Sensor placed on Route 1"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t =gm2 ( t , x , r f , rb , pk0 , ps1 )
2 ou t p u t =[− r f ∗x ( 1 ) + rb ∗ ( pk0 ( 3 ) ∗(1− ps1 ) +pk0 ( 4 ) ) ∗x ( 2 ) ; . . .
3 − rb ∗x ( 2 ) + r f ∗ ( pk0 ( 1 ) ∗(1− ps1 ) +pk0 ( 2 ) ) ∗x ( 1 ) ] ;

MATLAB Code :

1 %% Model 2 Master
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2 x0 = [ 0 . 5 0 0 . 5 0 ] ; % i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , x ( 1 ) +
x ( 2 ) + . . . = 1

3 pk0 = [ . 7 5 . 25 . 25 . 7 5 ] ;
4 r f = 3 . 7 ;
5 rb = 1 . 1 ;
6 ps1 = 0 . 0 ; % sen so r p r o b a b i l i t y o f d e t e c t i o n ,
7 %the s o l u t i o n conve rge s t o a s t e a d y s t a t e s o l u t i o n
8 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb )
9 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
10 t f i n a l = 5 . 0 ;
11 [ t , x ]= ode45 (@( t , x ) gm2 ( t , x , r f , rb , pk0 , ps1 ) , [ 0 t f i n a l ] , x0 ) ;
12 c l f ;
13 f i g u r e ( 1 )
14 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 2 )
15 hold on
16 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ )
17 t i t l e ( [ ’ R e s u l t s f o r Two Routes , One Senso r P l a c ed on Route

1 : r f = ’ , . . .
18 num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str ( x0

( 1 ) ) , . . .
19 ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
20 x l ab e l ( ’ Time ’ )
21 y l ab e l ( ’ P r o b a b i l i t y ’ )
22 l egend ( ’ Ph ’ , ’ Po ’ )
23 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
24 %% Model 2 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
25 f i g u r e ( 2 )
26 p_nd = x ( : , 1 ) +x ( : , 2 ) ; % escape or non− d e t e c t i o n p r o b a b i l i t y
27 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
28 hold on
29 p l o t ( t ,1−p_nd , ’ r s ’ )
30 t i t l e ( [ ’ R e s u l t s f o r Two Routes , One Senso r P l a c ed on Route
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1 : r f = ’ . . .
31 , num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str (

x0 ( 1 ) ) , . . .
32 ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
33 x l ab e l ( ’ Time ’ )
34 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
35 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
36

37 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
38 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
39 y _ d e s i r e d

A.1.3 "Two routes, Two Sensors on Route 1"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t =gm3 ( t , x , r f , rb , pk0 , ps0 )
2 ou t p u t =[− r f ∗x ( 1 ) + rb ∗ ( ( pk0 ( 4 ) ) +( pk0 ( 3 ) ∗(1− ps0 ( 2 ) ) ∗(1− ps0 ( 1 ) )

) ) ∗x ( 2 ) ; . . .
3 − rb ∗x ( 2 ) + r f ∗ ( ( pk0 ( 2 ) ) +( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ∗(1− ps0 ( 2 ) ) ) ) ∗x

( 1 ) ] ;

MATLAB Code :

1 %% Model 3 Master
2 x0 = [ 0 . 5 0 0 . 5 0 ] ; % i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , where

x ( 1 ) + x ( 2 ) + . . . = 1
3 pk0 = [ . 5 0 . 50 . 50 . 5 0 ] ;
4 r f = 2 . 7 ;
5 rb = 1 . 1 ;
6 ps0 = [ 0 . 0 0 0 . 0 ] ;% sen so r p r o b a b i l i t y o f d e t e c t i o n ,
7 %the s o l u t i o n conve rge s t o a s t e a d y s t a t e s o l u t i o n
8 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb )
9 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
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10 t f i n a l = 5 . 0 ;
11 [ t , x ]= ode45 (@( t , x ) gm3 ( t , x , r f , rb , pk0 , ps0 ) , [ 0 t f i n a l ] , x0 ) ;
12 c l f ;
13 f i g u r e ( 1 )
14 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 2 )
15 hold on
16 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ )
17 t i t l e ( [ ’ R e s u l t s f o r Two Routes , Two Sen so r s P l a c ed on Route

1 : r f = ’ . . .
18 , num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str (

x0 ( 1 ) ) , . . .
19 ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
20 x l ab e l ( ’ Time ’ )
21 y l ab e l ( ’ P r o b a b i l i t y ’ )
22 l egend ( ’ Ph ’ , ’ Po ’ )
23 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
24 %% Model 3 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
25 f i g u r e ( 2 )
26 p_nd = x ( : , 1 ) +x ( : , 2 ) ; % escape or non− d e t e c t i o n p r o b a b i l i t y
27 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
28 hold on
29 p l o t ( t ,1−p_nd , ’ r s ’ )
30 t i t l e ( [ ’ R e s u l t s f o r Two Routes , Two Sen so r s P l a c ed on Route

1 : r f = ’ . . .
31 , num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str (

x0 ( 1 ) ) , . . .
32 ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
33 x l ab e l ( ’ Time ’ )
34 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
35 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
36 %Want R e s u l t s f o r t =1 ,2 ,3 ,4 ,5
37 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
38 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
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39 y _ d e s i r e d

A.1.4 "Two routes, One Sensors on each Route"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t = gm4 ( t , x , r f , rb , pk0 , ps0 )
2 ou t p u t = [− r f ∗x ( 1 ) + rb ∗ ( ( pk0 ( 1 ) ) ∗(1− ps0 ( 1 ) ) +pk0 ( 2 ) ∗(1− ps0 ( 2 )

) ) ∗x ( 2 ) ; . . .
3 − rb ∗x ( 2 ) + r f ∗ ( ( pk0 ( 1 ) ) ∗(1− ps0 ( 1 ) ) +pk0 ( 2 ) ∗(1− ps0 ( 2 ) ) ) ∗x ( 1 )

] ;

MATLAB Code :

1 %% Model 4 Master
2 x0 = [ 0 . 5 0 0 . 5 0 ] ; % i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , x ( 1 ) +

x ( 2 ) + . . . = 1
3 pk0 = [ . 5 0 . 50 . 50 . 5 0 ] ;
4 r f = 2 . 7 ;
5 rb = 1 . 1 ;
6 ps0 = [ 0 . 0 0 . 0 ] ;% sen so r p r o b a b i l i t y o f d e t e c t i o n ,
7 %the s o l u t i o n conve rge s t o a s t e a d y s t a t e s o l u t i o n
8 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb )
9 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
10 t f i n a l = 5 . 0 ;
11 [ t , x ]= ode45 (@( t , x ) gm4 ( t , x , r f , rb , pk0 , ps0 ) , [ 0 t f i n a l ] , x0 ) ;
12 c l f ;
13 f i g u r e ( 1 )
14 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 2 )
15 hold on
16 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ )
17 t i t l e ( [ ’ R e s u l t s f o r Two Routes , One Senso r P l a c ed on each

Route : r f = ’ . . .
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18 , num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str (
x0 ( 1 ) ) . . .

19 , ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
20 x l ab e l ( ’ Time ’ )
21 y l ab e l ( ’ P r o b a b i l i t y ’ )
22 l egend ( ’ Ph ’ , ’ Po ’ )
23 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
24 %% Model 4 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
25 f i g u r e ( 2 )
26 p_nd = x ( : , 1 ) +x ( : , 2 ) ; % escape or non− d e t e c t i o n p r o b a b i l i t y
27 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
28 hold on
29 p l o t ( t ,1−p_nd , ’ r s ’ )
30 t i t l e ( [ ’ R e s u l t s f o r Two Routes , One Senso r P l a c ed on each

Route : r f = ’ . . .
31 , num2str ( r f ) , ’ rb = ’ , num2str ( rb ) , ’ Ph = ’ , num2str (

x0 ( 1 ) ) . . .
32 , ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
33 x l ab e l ( ’ Time ’ )
34 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
35 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
36 %Want R e s u l t s f o r t =1 ,2 ,3 ,4 ,5
37 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
38 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
39 y _ d e s i r e d

A.1.5 "Twelve routes, One Sensor on each Block Corner"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t = gm5 ( t , x , r f , rb , pk0 , ps0 )
2 ou t p u t = [− r f ∗x ( 1 ) + rb ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0

( 1 ) ) ) . . .
3 +( pk0 ( 3 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 1 ) ) ) . . .
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4 +pk0 ( 5 ) +pk0 ( 6 ) +pk0 ( 7 ) +pk0 ( 8 ) +pk0 ( 9 ) +pk0 ( 1 0 ) +pk0 ( 1 1 ) +pk0
( 1 2 ) ) ∗x ( 2 ) ; . . .

5 − rb ∗x ( 2 ) + r f ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 1 ) ) ) . . .
6 +( pk0 ( 3 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 1 ) ) ) . . .
7 +pk0 ( 5 ) +pk0 ( 6 ) +pk0 ( 7 ) +pk0 ( 8 ) +pk0 ( 9 ) +pk0 ( 1 0 ) +pk0 ( 1 1 ) +pk0

( 1 2 ) ) ∗x ( 1 ) ] ;

MATLAB Code :

1 %% Model 5 Master
2 x0 = [ 0 . 5 0 0 . 5 0 ] ; % i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , x ( 1 ) +

x ( 2 ) + . . . = 1
3 pk0 = [ . 0834 .0834 .0834 .0834 .0833 .0833 .0833 .0833 .0833

.0833 . 0 8 3 3 . . .
4 . 0 8 3 3 ] ;
5 %pk0 =[.0900 .0900 .0900 .0900 .0800 .0800 .0800 .0800 .0800

.0800 . 0 8 0 0 . . .
6 %.08 0 0 ] ;
7 %pk0 =[.1200 .1200 .1200 .1200 .0650 .0650 .0650 .0650 .0650

.0650 . 0 6 5 0 . . .
8 % .06 5 0 ] ;
9 r f = 2 . 7 ;
10 rb = 1 . 1 ;
11 ps0 = [ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ] ; % sen so r p r o b a b i l i t y o f

d e t e c t i o n ,
12 %the s o l u t i o n conve rge s t o a s t e a d y s t a t e s o l u t i o n
13 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb )
14 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
15 t f i n a l = 5 . 0 ;
16 [ t , x ]= ode45 (@( t , x ) gm5 ( t , x , r f , rb , pk0 , ps0 ) , [ 0 t f i n a l ] , x0 ) ;
17 c l f ;
18 f i g u r e ( 1 )
19 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , ’ l i n ew i d t h ’ , 2 )
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20 hold on
21 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ )
22 t i t l e ( [ ’ R e s u l t s f o r Twelve Routes , One Senso r P l a c ed on

E i gh t UMI ’ . . .
23 ’ I n t e r s e c t i o n s : r f = ’ , num2str ( r f ) , ’ rb = ’ , num2str ( rb

) , . . .
24 ’ Ph = ’ , num2str ( x0 ( 1 ) ) , ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
25 x l ab e l ( ’ Time ’ )
26 y l ab e l ( ’ P r o b a b i l i t y ’ )
27 l egend ( ’ Ph ’ , ’ Po ’ )
28 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
29 %% Model 5 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
30 f i g u r e ( 2 )
31 p_nd = x ( : , 1 ) +x ( : , 2 ) ; % escape or non− d e t e c t i o n p r o b a b i l i t y
32 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
33 hold on
34 p l o t ( t ,1−p_nd , ’ r s ’ )
35 t i t l e ( [ ’ R e s u l t s f o r Twelve Routes , One Senso r P l a c ed on

E i gh t UMI ’ . . .
36 ’ I n t e r s e c t i o n s : r f = ’ , num2str ( r f ) , ’ rb = ’ , num2str ( rb

) , . . .
37 ’ Ph = ’ , num2str ( x0 ( 1 ) ) , ’ and Po = ’ , num2str ( x0 ( 2 ) ) ] )
38 x l ab e l ( ’ Time ’ )
39 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
40 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
41 %Want R e s u l t s f o r t =1 ,2 ,3 ,4 ,5
42 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
43 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
44 y _ d e s i r e d

A.1.6 "Two Hiding Areas, Six Routes, One Senors on each Route"
MATLAB Sytem of Equations:
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1 f unc t i on ou t p u t = gm7 ( t , x , r f 0 , pk0 , ps0 )
2 ou t p u t =[− r f 0 ( 1 ) ∗x ( 1 ) +( r f 0 ( 2 ) ∗ ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1−

ps0 ( 5 ) ) ) ) ∗x ( 2 ) . . .
3 +( r f 0 ( 3 ) ∗ ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 )

; . . .
4 ( r f 0 ( 1 ) ∗ ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 )−

r f 0 ( 2 ) ∗x ( 2 ) . . .
5 +( r f 0 ( 3 ) ∗ ( pk0 ( 3 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 )

; . . .
6 ( r f 0 ( 1 ) ∗ ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 ) . . .
7 +( r f 0 ( 2 ) ∗ ( pk0 ( 3 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 2 )−

r f 0 ( 3 ) ∗x ( 3 ) ] ;

MATLAB Code :

1 %% Model 7 Master
2 x0 = [0 . 475 0 .475 0 . 0 5 ] ;% i n i t i a l c o n d i t i o n f o r x ( 1 ) , x ( 2 ) , x

( 1 )+x ( 2 ) + . . . = 1
3 pk0 = [ . 1666 .1667 .1667 .1666 .1667 . 1 6 6 7 ] ;%Un i t s can come

i n t o c o n t a c t .
4 %pk0 =[ .25 . 25 . 25 . 25 0 0 ] ; %Un i t s do no t come i n t o c o n t a c t .
5 r f 0 = [ 2 . 7 2 . 7 1 . 1 ] ;
6 ps0 = [ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ] ; % sen so r p r o b a b i l i t y o f

d e t e c t i o n
7 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb )
8 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
9 t f i n a l = 5 . 0 ;
10 [ t , x ]= ode45 (@( t , x ) gm7 ( t , x , r f 0 , pk0 , ps0 ) , [ 0 t f i n a l ] , x0 ) ;
11 c l f ;
12 f i g u r e ( 1 )
13 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , t , x ( : , 3 ) , ’ g ’ , ’ l i n ew i d t h ’ , 2 )
14 hold on
15 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ , t , x ( : , 3 ) , ’ g∗ ’ )
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16 t i t l e ( [ ’ R e s u l t s f o r Two Hid ing Areas , S ix Routes , One Senso r
P l a c ed on ’ . . .

17 ’ Each Route : r f h 1 = ’ , num2str ( r f 0 ( 1 ) ) , ’ r f h 2 = ’ ,
num2str ( r f 0 ( 2 ) ) , . . .

18 ’ r f o = ’ , num2str ( r f 0 ( 3 ) ) , ’ Ph1 = ’ , num2str ( x0 ( 1 ) ) , . . .
19 ’ Ph2 = ’ , num2str ( x0 ( 2 ) ) , ’ Po = ’ , num2str ( x0 ( 3 ) ) ] )
20 x l ab e l ( ’ Time ’ )
21 y l ab e l ( ’ P r o b a b i l i t y ’ )
22 l egend ( ’ Ph1 ’ , ’ Ph2 ’ , ’ Po ’ )
23 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
24 %% Model 7 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
25 f i g u r e ( 2 )
26 p_nd = x ( : , 1 ) +x ( : , 2 ) +x ( : , 3 ) ; % escape or non− d e t e c t i o n

p r o b a b i l i t y
27 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
28 hold on
29 p l o t ( t ,1−p_nd , ’ r s ’ )
30 t i t l e ( [ ’ R e s u l t s f o r Two Hid ing Areas , S ix Routes , One Senso r

P l a c ed on ’ . . .
31 ’ Each Route : r f h 1 = ’ , num2str ( r f 0 ( 1 ) ) , ’ r f h 2 = ’ ,

num2str ( r f 0 ( 2 ) ) , . . .
32 ’ r f o = ’ , num2str ( r f 0 ( 3 ) ) , ’ Ph1 = ’ , num2str ( x0 ( 1 ) ) , . . .
33 ’ Ph2 = ’ , num2str ( x0 ( 2 ) ) , ’ Po = ’ , num2str ( x0 ( 3 ) ) ] )
34 x l ab e l ( ’ Time ’ )
35 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
36 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
37 %Want R e s u l t s f o r t =1 ,2 ,3 ,4 ,5
38 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
39 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
40 y _ d e s i r e d
41 %% Model 7 Numer ica l S o l u t i o n Check
42 A=[− r f 0 ( 1 ) r f 0 ( 2 ) ∗ ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 5 ) ) ) . . .
43 r f 0 ( 3 ) ∗ ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) ;
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44 r f 0 ( 1 ) ∗ ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 5 ) ) ) . . .
45 − r f 0 ( 2 ) r f 0 ( 3 ) ∗ ( pk0 ( 3 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) ;
46 r f 0 ( 1 ) ∗ ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) . . .
47 r f 0 ( 2 ) ∗ ( pk0 ( 3 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) − r f 0 ( 3 ) ]
48

49 [V,D]= e i g (A)
50 %V are t h e E i g e n v e c t o r s Columns V ( 1 ) , V ( 2 ) . . .
51 %D are t h e E i g e n va l u e s or Lambda
52

53 c0=V\ x0 ’
54

55 t n = t
56

57 poph=c0 ( 1 ) .∗V( 1 : 3 ) .∗ exp (D( 1 , 1 ) ∗ t ) +c0 ( 2 ) .∗V( 4 : 6 ) .∗ exp (D( 2 , 2 ) ∗
t ) + . . .

58 c0 ( 3 ) .∗V( 7 : 9 ) .∗ exp (D( 3 , 3 ) ∗ t ) ;
59 p l o t ( t ,1− poph ( : , 1 )−poph ( : , 2 )−poph ( : , 3 ) , ’ bs ’ )
60 hold on
61 p l o t ( t ,1−p_nd , ’ r + ’ )
62 t i t l e ( [ ’ Comparison o f ODE45 and Numer ica l S o l u t i o n s f o r ’ . . .
63 ’Two Hid ing Areas , S ix Routes , One Senso r P l a c ed on Each

Route : ’ . . .
64 ’ r f h 1 = ’ , num2str ( r f 0 ( 1 ) ) , ’ r f h 2 = ’ , num2str ( r f 0 ( 2 ) ) , ’

r f o = ’ , . . .
65 num2str ( r f 0 ( 3 ) ) , ’ Ph1 = ’ , num2str ( x0 ( 1 ) ) , ’ Ph2 = ’ ,

num2str ( x0 ( 2 ) ) , . . .
66 ’ Po = ’ , num2str ( x0 ( 3 ) ) ] )
67 l egend ( ’ Numer ica l S o l u t i o n ’ , ’ODE45 S o l u t i o n ’ )
68 x l ab e l ( ’ Time ’ )
69 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
70 hold o f f

135



A.1.7 "ThreeHiding areas, TwelveRoutes, One Senors on eachRoute"
MATLAB Sytem of Equations:

1 f unc t i on ou t p u t = gm8 ( t , x , r f 0 , pk0 , ps0 )
2 dh12= r f 0 ( 2 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ∗x ( 2 ) ;
3 dh13= r f 0 ( 3 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 1 2 ) ∗(1− ps0 ( 6 ) ) ) ) ∗x

( 3 ) ;
4 dh14= r f 0 ( 4 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 2 ) ) ) ) ∗x ( 4 ) ;
5 dh21= r f 0 ( 1 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ∗x ( 1 ) ;
6 dh23= r f 0 ( 3 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 8 ) ∗(1− ps0 ( 2 ) ) ) ) ∗x ( 3 ) ;
7 dh24= r f 0 ( 4 ) ∗ ( ( pk0 ( 3 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 4 ) ) ) ) ∗x ( 4 ) ;
8 dh31= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 1 2 ) ∗(1− ps0 ( 6 ) ) ) ) ∗x

( 1 ) ;
9 dh32= r f 0 ( 2 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 8 ) ∗(1− ps0 ( 2 ) ) ) ) ∗x ( 2 ) ;
10 dh34= r f 0 ( 4 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 1 0 ) ∗(1− ps0 ( 4 ) ) ) ) ∗x ( 4 )

;
11 dh41= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 2 ) ) ) ) ∗x ( 1 ) ;
12 dh42= r f 0 ( 2 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ∗x ( 2 ) ;
13 dh43= r f 0 ( 3 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 1 0 ) ∗(1− ps0 ( 4 ) ) ) ) ∗x ( 3 )

;
14 ou t p u t = [( − r f 0 ( 1 ) ∗x ( 1 ) ) +( dh12 ) +( dh13 ) +( dh14 ) ; . . .
15 (− r f 0 ( 2 ) ∗x ( 2 ) ) +( dh21 ) +( dh23 ) +( dh24 ) ; . . .
16 (− r f 0 ( 3 ) ∗x ( 3 ) ) +( dh31 ) +( dh32 ) +( dh34 ) ; . . .
17 (− r f 0 ( 4 ) ∗x ( 4 ) ) +( dh41 ) +( dh42 ) +( dh43 ) ] ;

MATLAB Sytem of Equations with a different rate, route probability for each route:

1 f unc t i on ou t p u t = gm8c ( t , x , r f 0 , pk0 , ps0 )
2 dh14a= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 ) ;
3 dh14b= r f 0 ( 2 ) ∗ ( ( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 ) ;
4 dh14c= r f 0 ( 3 ) ∗ ( ( pk0 ( 3 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 ) ;
5 dh14d= r f 0 ( 4 ) ∗ ( ( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 1 ) ;
6

7 dh41a= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
8 dh41b= r f 0 ( 2 ) ∗ ( ( pk0 ( 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
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9 dh41c= r f 0 ( 3 ) ∗ ( ( pk0 ( 3 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
10 dh41d= r f 0 ( 4 ) ∗ ( ( pk0 ( 4 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
11

12

13 dh24a= r f 0 ( 1 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 2 ) ;
14 dh24b= r f 0 ( 2 ) ∗ ( ( pk0 ( 6 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 2 ) ;
15 dh24c= r f 0 ( 2 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 2 ) ;
16 dh24d= r f 0 ( 4 ) ∗ ( ( pk0 ( 8 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 2 ) ;
17

18 dh42a= r f 0 ( 1 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
19 dh42b= r f 0 ( 2 ) ∗ ( ( pk0 ( 6 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
20 dh42c= r f 0 ( 3 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
21 dh42d= r f 0 ( 4 ) ∗ ( ( pk0 ( 8 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
22

23 dh34a= r f 0 ( 1 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 ) ;
24 dh34b= r f 0 ( 2 ) ∗ ( ( pk0 ( 1 0 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 ) ;
25 dh34c= r f 0 ( 3 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 ) ;
26 dh34d= r f 0 ( 4 ) ∗ ( ( pk0 ( 1 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 3 ) ;
27

28 dh43a= r f 0 ( 1 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
29 dh43b= r f 0 ( 2 ) ∗ ( ( pk0 ( 1 0 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
30 dh43c= r f 0 ( 3 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
31 dh43d= r f 0 ( 4 ) ∗ ( ( pk0 ( 1 2 ) ∗(1− ps0 ( 5 ) ) ) ) ∗x ( 4 ) ;
32

33 ou t p u t = [( − r f 0 ( 1 ) ∗pk0 ( 1 ) ∗x ( 1 )− r f 0 ( 2 ) ∗pk0 ( 2 ) ∗x ( 1 )− r f 0 ( 3 ) ∗pk0
( 3 ) ∗x ( 1 ) . . .

34 − r f 0 ( 4 ) ∗pk0 ( 4 ) ∗x ( 1 ) ) +( dh41a ) +( dh41b ) +( dh41c ) +( dh41d ) ; . . .
35 (− r f 0 ( 1 ) ∗pk0 ( 1 ) ∗x ( 2 )− r f 0 ( 2 ) ∗pk0 ( 2 ) ∗x ( 2 )− r f 0 ( 3 ) ∗pk0 ( 3 ) ∗x

( 2 ) . . .
36 − r f 0 ( 4 ) ∗pk0 ( 4 ) ∗x ( 2 ) ) +( dh42a ) +( dh42b ) +( dh42c ) +( dh42d ) ; . . .
37 (− r f 0 ( 1 ) ∗pk0 ( 1 ) ∗x ( 3 )− r f 0 ( 2 ) ∗pk0 ( 2 ) ∗x ( 3 )− r f 0 ( 3 ) ∗pk0 ( 3 ) ∗x

( 3 ) . . .
38 − r f 0 ( 4 ) ∗pk0 ( 4 ) ∗x ( 3 ) ) +( dh43a ) +( dh43b ) +( dh43c ) +( dh43d ) ; . . .
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39 (− r f 0 ( 1 ) ∗pk0 ( 1 ) ∗x ( 4 )− r f 0 ( 2 ) ∗pk0 ( 2 ) ∗x ( 4 )− r f 0 ( 3 ) ∗pk0 ( 3 ) ∗x
( 4 ) . . .

40 − r f 0 ( 4 ) ∗pk0 ( 4 ) ∗x ( 4 ) ) +( dh14a ) +( dh14b ) +( dh14c ) +( dh14d ) +(
dh24a ) +( dh24b ) . . .

41 +( dh24c ) +( dh24d ) +( dh34a ) +( dh34b ) +( dh34c ) +( dh34d ) ] ;

MATLAB Code :

1 %% Model 8 Master
2 x0 = [ 0 . 3 0 0 . 30 0 . 30 0 . 1 0 ] ; % i n i t i a l c o n d i t i o n f o r x ( 1 ) , x

( 2 ) . . . ,
3 %where x ( 1 ) + x ( 2 ) + . . . = 1
4 pk0 = [ . 0834 .0833 .0833 .0834 .0833 .0833 . 0 8 3 4 . . .
5 . 0833 .0833 .0834 .0833 . 0 8 3 3 ] ;
6 %P r o b a b i l i t y o f s e l e c t i n g pk r o u t e k = { 1 , 2 , . . . , 1 2 }
7 %pk0 = [ . 0 .1667 .1666 . 0 . 0 .1667 .1667 . 0 . 0 .1667 .1666

. 0 ] ;
8 %P r o b a b i l i t y o f s e l e c t i n g pk r o u t e k = { 1 , 2 , . . . , 1 2 } f o r model

8b
9 %pk0 = [ . 0 .3334 . 0 . 0 . 0 .3333 . 0 . 0 . 0 .3333 . 0 . 0 ] ;
10 %P r o b a b i l i t y o f s e l e c t i n g pk r o u t e k = { 1 , 2 , . . . , 1 2 } f o r model

8b
11 %pk0 = [ . 0 5 .1167 .1167 . 05 . 05 .1167 .1166 . 05 . 05 .1167

.1166 . 0 5 ] ;
12 %P r o b a b i l i t y o f s e l e c t i n g pk r o u t e k = { 1 , 2 , . . . , 1 2 } f o r model

8c
13 pk0 = [ . 0 2 5 .1416 .1417 .025 .025 .1417 .1416 .025 .025

.1417 .1417 . 0 2 5 ] ;
14 %P r o b a b i l i t y o f s e l e c t i n g pk r o u t e k = { 1 , 2 , . . . , 1 2 }
15 %r f 0 = [ 2 . 7 2 . 7 2 . 7 1 . 1 ] ;
16 %Rate forward from Hid ing Area 1 ( r f 0 ( 1 ) ) , Hid ing Area 2 (

r f 0 ( 2 ) ) , . . .
17 %Hiding Area 3 ( r f 0 ( 3 ) ) and Opera t i ng Area ( r f 0 ( 4 ) )
18 %r f 0 = [ 0 . 0 3 . 7 3 . 7 0 . 0 ] ; %Block / Turn
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19 %r f 0 = [ 0 . 0 5 . 0 0 . 0 0 . 0 ] ; %Block / Turn
20 r f 0 = [ 0 . 7 3 . 7 3 . 7 0 . 7 ] ; %Di s r up t
21 ps0 = [ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 ] ; % sen so r p r o b a b i l i t y o f

d e t e c t i o n
22

23 % ph_s = rb / ( r f+rb ) , po_0 = r f / ( r f+rb ) r f
24 %x0 =[ rb / ( r f+rb ) r f / ( r f+rb ) ] ; % r e s e t t h e i n i t i a l

c o n d i t i o n
25 t f i n a l = 5 . 0 ;
26 [ t , x ]= ode45 (@( t , x ) gm8c ( t , x , r f 0 , pk0 , ps0 ) , [ 0 t f i n a l ] , x0 ) ;
27 c l f ;
28 f i g u r e ( 1 )
29 p l o t ( t , x ( : , 1 ) , ’ r ’ , t , x ( : , 2 ) , ’ b ’ , t , x ( : , 3 ) , ’ g ’ , t , x ( : , 4 ) , ’m’ , ’

l i n ew i d t h ’ , 2 )
30 hold on
31 p l o t ( t , x ( : , 1 ) , ’ r + ’ , t , x ( : , 2 ) , ’ b^ ’ , t , x ( : , 3 ) , ’ g∗ ’ , t , x ( : , 4 ) , ’m

−− ’ )
32 t i t l e ( [ ’ R e s u l t s f o r Three Hid ing Areas , One Ope r a t i n g Area , ’

. . .
33 ’ Twelve Routes , One Senso r P l a c ed on Each Route : r f 1 = ’

. . .
34 , num2str ( r f 0 ( 1 ) ) , ’ r f 2 = ’ , num2str ( r f 0 ( 2 ) ) , ’ r f 3 = ’

, . . .
35 num2str ( r f 0 ( 3 ) ) , ’ r f 4 = ’ , num2str ( r f 0 ( 4 ) ) , ’ Ph1 = ’ , . . .
36 num2str ( x0 ( 1 ) ) , ’ Ph2 = ’ , num2str ( x0 ( 2 ) ) , ’ Ph3 = ’ , . . .
37 num2str ( x0 ( 3 ) ) , ’ Po = ’ , num2str ( x0 ( 4 ) ) ] )
38 x l ab e l ( ’ Time ’ )
39 y l ab e l ( ’ P r o b a b i l i t y ’ )
40 l egend ( ’ Ph1 ’ , ’ Ph2 ’ , ’ Ph3 ’ , ’ Po ’ )
41 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
42 %% Model 8 Cumula t i v e P r o b a b i l i t y o f D e t e c t i o n
43 f i g u r e ( 2 )
44 p_nd = x ( : , 1 ) +x ( : , 2 ) +x ( : , 3 ) +x ( : , 4 ) ; % escape or non−
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d e t e c t i o n p r o b a b i l i t y
45 p l o t ( t ,1−p_nd , ’ r ’ , ’ l i n ew i d t h ’ , 2 )
46 hold on
47 p l o t ( t ,1−p_nd , ’ r s ’ )
48 t i t l e ( [ ’ R e s u l t s f o r Three Hid ing Areas , One Ope r a t i n g Area , ’

. . .
49 ’ Twelve Routes , One Senso r P l a c ed on Each Route : r f 1 = ’

. . .
50 , num2str ( r f 0 ( 1 ) ) , ’ r f 2 = ’ , num2str ( r f 0 ( 2 ) ) , ’ r f 3 = ’

, . . .
51 num2str ( r f 0 ( 3 ) ) , ’ r f 4 = ’ , num2str ( r f 0 ( 4 ) ) , ’ Ph1 = ’ , . . .
52 num2str ( x0 ( 1 ) ) , ’ Ph2 = ’ , num2str ( x0 ( 2 ) ) , ’ Ph3 = ’ , . . .
53 num2str ( x0 ( 3 ) ) , ’ Po = ’ , num2str ( x0 ( 4 ) ) ] )
54 x l ab e l ( ’ Time ’ )
55 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
56 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )
57 %Want R e s u l t s f o r t =1 ,2 ,3 ,4 ,5
58 t _ d e s i r e d = [ 1 , 2 , 3 , 4 , 5 ] ;
59 y _ d e s i r e d = s p l i n e ( t , (1 − p_nd ) , t _ d e s i r e d ) ;
60 y _ d e s i r e d
61 %% Model 8 Numer ica l S o l u t i o n Check
62 dh12b= r f 0 ( 2 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ;
63 dh13b= r f 0 ( 3 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 1 2 ) ∗(1− ps0 ( 6 ) ) ) ) ;
64 dh14b= r f 0 ( 4 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 2 ) ) ) ) ;
65 dh21b= r f 0 ( 1 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ;
66 dh23b= r f 0 ( 3 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 8 ) ∗(1− ps0 ( 2 ) ) ) ) ;
67 dh24b= r f 0 ( 4 ) ∗ ( ( pk0 ( 3 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 4 ) ∗(1− ps0 ( 4 ) ) ) ) ;
68 dh31b= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 1 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 1 2 ) ∗(1− ps0 ( 6 ) ) ) ) ;
69 dh32b= r f 0 ( 2 ) ∗ ( ( pk0 ( 7 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 8 ) ∗(1− ps0 ( 2 ) ) ) ) ;
70 dh34b= r f 0 ( 4 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 1 0 ) ∗(1− ps0 ( 4 ) ) ) ) ;
71 dh41b= r f 0 ( 1 ) ∗ ( ( pk0 ( 1 ) ∗(1− ps0 ( 1 ) ) ) +( pk0 ( 2 ) ∗(1− ps0 ( 2 ) ) ) ) ;
72 dh42b= r f 0 ( 2 ) ∗ ( ( pk0 ( 5 ) ∗(1− ps0 ( 5 ) ) ) +( pk0 ( 6 ) ∗(1− ps0 ( 6 ) ) ) ) ;
73 dh43b= r f 0 ( 3 ) ∗ ( ( pk0 ( 9 ) ∗(1− ps0 ( 3 ) ) ) +( pk0 ( 1 0 ) ∗(1− ps0 ( 4 ) ) ) ) ;
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74

75 A= [( − r f 0 ( 1 ) ) ( dh12b ) ( dh13b ) ( dh14b ) ;
76 ( dh21b ) (− r f 0 ( 2 ) ) ( dh23b ) ( dh24b ) ;
77 ( dh31b ) ( dh32b ) (− r f 0 ( 3 ) ) ( dh34b ) ;
78 ( dh41b ) ( dh42b ) ( dh43b ) (− r f 0 ( 4 ) ) ] ;
79

80 [V,D]= e i g (A)
81 %V are t h e E i g e n v e c t o r s Columns V ( 1 ) , V ( 2 ) . . .
82 %D are t h e E i g e n va l u e s or Lambda
83

84 c0=V\ x0 ’
85

86 t n = t
87

88 poph=c0 ( 1 ) .∗V( 1 : 4 ) .∗ exp (D( 1 , 1 ) ∗ t ) +c0 ( 2 ) .∗V( 5 : 8 ) .∗ exp (D( 2 , 2 ) ∗
t ) + . . .

89 c0 ( 3 ) .∗V( 9 : 1 2 ) .∗ exp (D( 3 , 3 ) ∗ t ) +c0 ( 4 ) ∗ t .∗V( 1 3 : 1 6 ) .∗ exp (D
( 4 , 4 ) ∗ t ) ;

90 p l o t ( t ,1− poph ( : , 1 )−poph ( : , 2 )−poph ( : , 3 )−poph ( : , 4 ) , ’ bs ’ )
91 hold on
92 p l o t ( t ,1−p_nd , ’ r + ’ )
93 t i t l e ( [ ’ Comparison o f ODE45 and Numer ica l S o l u t i o n s f o r ’ . . .
94 ’ Three Hid ing Areas , One Ope r a t i n g Area , Twelve Routes , ’

. . .
95 ’One Senso r P l a c ed on Each Route : r f h 1 = ’ , num2str ( r f 0

( 1 ) ) , . . .
96 ’ r f h 2 = ’ , num2str ( r f 0 ( 2 ) ) , ’ r f h 3 = ’ , num2str ( r f 0 ( 3 ) ) , ’

r f o = ’ , . . .
97 num2str ( r f 0 ( 4 ) ) ’ Ph1 = ’ , num2str ( x0 ( 1 ) ) , ’ Ph2 = ’ ,

num2str ( x0 ( 2 ) ) . . .
98 , ’ Ph3 = ’ , num2str ( x0 ( 3 ) ) , ’ and Po = ’ , num2str ( x0 ( 4 ) ) ] )
99 l egend ( ’ Numer ica l S o l u t i o n ’ , ’ODE45 S o l u t i o n ’ )
100 x l ab e l ( ’ Time ’ )
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101 y l ab e l ( ’ P r o b a b i l i t y o f D e t e c t i o n ’ )
102 hold o f f

A.2 Subterranean Survey

A.2.1 Survey Questions
Name of Interviewee: US Army Branch:

When and where did your unit deploy to an urban environment?

How did your unit plan to enter and/or operate in an urban environment?

What doctrinal process(es) did your unit follow during Urban Operations?

During your unit operational deployment, did adversaries ever utilize subterranean voids
(tunnels, pipes, transportation lines...etc.) to evade the US military pursuit? If so, when,
where and how were they used.

Did your unit use Unattended Ground sensors (UGs)? UGs are sensors able to detect
movement, sound, light, and magnetic signatures. . . etc. If so, please describe when, where
and how they were used.

Did your unit train for subsurface/subterranean operations? If so, what doctrinal guide did
your unit use?

A.2.2 Survey Responses
Name of Interviewee: Not Applicable

US Army Branch:

Response 1: Engineer

Response 2: Infantry

Response 3: Armor

Response 4: Engineer
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When and where did your unit deploy to an urban environment?

Response 1: The 1st Infantry Division (1ID) staff served as the Combined Joint Force Land
Component Command-Iraq (CJFLCC-I) during Operation Inherent Resolve (OIR) in 2015.
We operated out of bases in Baghdad, Iraq.

Response 2: 2017-2018, 2ABCT/1CD deployed to the ROK, including some urban and
some rural areas

Response 3: As a Division Plans Officer, deployed to Bosnia (June 1998 to Dec 98). As a
battalion operations officer deployed to Kosovo from June 2000 to Dec 2000. As a Squadron
Commander, deployed to OIF I (APR 2003 – March 2004) and OIF III Feb 2005 – Mar
2006).

Response 4: 2003-2004, Kirkuk, Iraq, 2005-2006, Kandahar, Afghanistan, 2011-2012,
Farah, Afghanistan

How did your unit plan to enter and/or operate in an urban environment?

Response 1: It was a division level staff, so we did not conduct urban operations per se, but
we were facilitating Build Partner Capacity (BPC) sites to train Iraqi units to conduct urban
operations against Daesh fighters, to recapture Iraqi cities being held by them.

Response 2: We had to plan for both air assault/movement as well as mechanized (IFV)
movement.

Response 3: ? Initially, entry into the urban environment, was forced entry. Once units
began rotations into assigned zones, TTPs changed based on the location and time period of
deployments. In operating in urban terrain, dismounted troops with support from armored
platforms conducted area security operations to stabilize and improve living conditions of
the population. In some cases, forces are positioned within the population to improve access
and enhance security.

Response 4: In 2003, and 2005 we would try to operate at night as much as possible to limit
the potential of interaction with unintended people and traffic. Our unit would typically use
available MGRS maps, and recent significant activity reports to develop areas of interest
where we would take extra precautions.
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What doctrinal process(es) did your unit follow during Urban Operations?

Response 1: We were training Iraqi engineer units the principles of SOSRA (Suppress,
Obscure, Secure, Reduce, Assault) to breach through the many obstacles that Daesh fighters
had emplaced. The infantry units leading the BPC site training were instructing the Iraqi
soldiers in room clearing techniques.

Response 2: TLPs, but mostly we did urban ops and the very initially published sub-T ops.
We fleshed out a lot of TLPs that we used on our own, with some cooperation with AWG.

Response 3: We relied on aspects of FM 2.0 to conduct IPB; FM 5-0 for planning, and FM
3-0 for operational references.

Response 4: At the time, the doctrine for operating in urban terrain was the Infantry Battle
Drills. “Enter and Clear a Room” or building. We would establish support by fire positions
at intersections around city blocks to prevent targets from escaping. Then, one or two
squads would enter and clear the block.

During your unit operational deployment, did adversaries ever utilize subterranean voids
(tunnels, pipes, transportation lines...etc.) to evade the US military pursuit? If so, when,
where and how were they used.

Response 1: Yes, Daesh fighters used tunnels to avoid our Intelligence, Surveillance, and
Reconnaissance assets. Tunnels may have been used to bypass Iraqi fortifications to attack
Iraqi Forward Operating Bases (FOBs).

Response 2: We didn’t have “adversaries,” per se, but when my platoons played OPFOR,
we used all kinds of terrain.

Response 3: I know that culverts were used to hide contraband and move across major
roads. Sub terrain was also used to store munitions, weapons and devices. Although I
did not see any evidence of tunnels, I often worried about them as a means of penetrating
operating bases and outposts – like the tunneling that occurred on Bagram Air Base.

Response 4: They did, In Farah Afghanistan, there were large wadi systems. Insurgents
would enter the wadis to escape, sometimes on motorcycles. They would also emplace
IEDs to slow our pursuit. In another instance, [my unit] chased two insurgents into a cave
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complex in a mountain where they escaped. [My unit] was unable to follow them due to my
equipment, and the height of the drop into the cave. My team leader used a rope to lower us
into the cave, but they were long gone by the time we were able to secure and enter. Also,
occasionally, snipers would make small holes in walls that we called “murder holes” to take
shots at us while we moved around.

Did your unit use Unattended Ground sensors (UGs)? UGs are sensors able to detect
movement, sound, light, and magnetic signatures. . . etc. If so, please describe when, where
and how they were used.

Response 1: Our unit was not conducting Urban Operations directly but was training the
Iraqi units to do so. I don’t believe the Iraqi units were equipped with UGs.

Response 2: We did not use UGS.

Response 3: The Air Force dropped a series of UGs along the Syrian Iraq border in 2005
to record movements across the border via seismic measurements.

Response 4: We used ground-penetrating radar to detect objects placed in roads and
buildings. Occasionally, we would place wires and grates over entrances. This would allow
us to detect disturbances.

Did your unit train for subsurface/subterranean operations? If so, what doctrinal guide did
your unit use?

Response 1: Not to my knowledge. There was a concern of Daesh fighters tunneling under
the walls of US FOB’s but I was not aware of any assets committed to counter this other than
pushing the campaign forward and recapturing territory from Daesh. Daesh was known to
use explosive booby traps in territory it was about to lose, so Iraqi units may have avoided
tunnels as much as possible because of the deliberate Explosive Ordnance Disposal (EOD)
efforts needed to clear them.

Response 2: We had drafts of the SubT doctrine, but primarily we used urban ops manuals
with close attention to CBRNE stuff, etc.

Response 3: No subterranean training.
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Response 4: In preparation for deployment, my unit trained in a man-made cave complex at
JMRC, in Hoenfels Germany. Our training included entering and clearing the cave complex
similar to shoot house training. The cave complex did not have a roof so that observers
could critique our operation.
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