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ABSTRACT 

 During the past decade, direct measurements of ocean turbulent friction velocity 

and current velocity profiles have been conducted in polar regions using Autonomous 

Ocean Flux Buoys (AOFBs). Recent use of Synthetic Aperture Radar (SAR) imagery 

augmented by digital image processing techniques has proven to be an effective means of 

monitoring ice conditions. This study examines the relationship between ice-ocean drag 

coefficients and SAR-derived open water area, feature perimeter and ice ridge length. 

Drag coefficients are calculated from AOFB current speed and friction velocity 

measurements collected between 5 October and 29 October 2018 in the Beaufort Sea. 

Threshold and image processing techniques were applied to a total of 82 SAR images at 

6 logarithmically spaced radial upstream distances from the AOFB to classify the three 

ice feature types. The results indicate that sparse statistics associated with the size and 

image processing limitations within the near field of the AOFB, coupled with a lack of 

high resolution satellite imagery, stifled the SAR’s ability to accurately characterize the 

relationship between ice-ocean drag coefficients and ice feature density distributions 

within upstream radial sectors within the buoy-centered 20 x 20 km SAR images. 
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I. INTRODUCTION 

A. MOTIVATION 

In the last fifteen years, summer Arctic sea ice extent has been diminishing at rates 

that exacerbates known responses, like cloud radiative forcing and ice-ocean albedo 

feedbacks, while initiating new and unforeseen effects, such as albedo-related terrestrial 

warming. The impact of these changes is already being realized through the way the 

atmosphere-ice-ocean interface distributes energy into the atmosphere and upper ocean 

through variations in sea ice. As a result, ice-frozen areas in the Arctic may become 

permanently open water. These changes present opportunities for expanded navigation, 

resource accessibility and extraction, such as oil and natural gas, as well as the primary 

cause for escalations between bordering countries. This is a real problem with worldwide 

focus and implications that are of particular interest to the U.S. Navy (USN), being contrary 

to the USN’s strategic outlook for the Arctic, which is to ensure the Arctic remains a stable, 

conflict-free region (Chief of Naval Operation’s Strategic Outlook for the Arctic 2019). 

B. STUDY OBJECTIVES  

Previous remote-sensed data and imaging technologies have used visible imagery 

for ice motion observation and ice state estimation. For example, downward-looking video 

cameras have been used on aircraft to access new ice formation and open water 

determination (Tschudi et al. 1997). Moreover, shipboard vessels with organic camera 

systems have been used to accurately estimate and compare sea ice concentration with 

satellite passive microwave radiometers. Although camera imagery, particularly visible, 

can be used to provide sea ice information on a sub-grid scale (Zhang and Skjetne 2018), 

the inability to capture sea ice data in cloudy weather and reduced visibility is a major 

problem. Furthermore, in the last decade the temporal and spatial coverage of Synthetic 

Aperture Radar (SAR) imagery has provided a potential source of long time-series 

mapping of ice conditions across the Arctic, including areas surrounding unmanned remote 

sensing platforms (e.g., Autonomous Ocean Flux Buoys [AOFBs]). This study seeks to 

investigate the relationship between AOFB-derived local ocean friction velocities and ice-
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ocean drag coefficients to SAR-derived ice surface characteristics, and ice types at radial 

distances from AOFBs. This study seeks to answer the questions: does the application of 

image processing techniques enhance an understanding of the relationship between ice-

ocean drag coefficients and ice feature distribution and concentration? Can satellite and 

observational techniques be used to infer  ice dynamic roughness? SAR imagery time series 

coincident with AOFB observations will be sectored by ice floe drift and analyzed to 

compare upstream ice roughness features with observed ocean friction velocities and 

calculated drag coefficients. We hypothesize that local roughness characteristics directly 

affecting the AOFB stress measurements are typical of 10 km scale model grid cells, 

enabling a SAR analysis technique applicable to regional scale models that provides high 

resolution representation of ice-roughness induced turbulence at sub-grid scale levels. 

C. BACKGROUND 

Due to a collection of processes underlying Arctic amplification (AA), the 

empirical record of disproportionately higher temperatures in the Arctic region than other 

regions on the planet, the sea-ice cover of the Arctic ocean is on the verge of totally 

disappearing in summer. The atmosphere-ice-ocean interface (Arctic system) is 

experiencing a steady reduction in late summer sea ice extent and multi-year ice (MYI) at 

rates not seen in recent history. The National Snow and Ice Center (NSIDC) defines sea 

ice extent as “a measurement of the area of ocean where there is at least some sea ice,” and 

MYI as “ice that has survived at least one melt season.” The change to the Arctic sea ice 

cover has been captured by satellite observations dating back to 1979 (Figure 1). Minimum 

summer (September) of -7.8% and maximum winter (March) of -1.8% ice extent estimates 

before the modern satellite period (1953–1979) have declined at a steady rate. This 

negative trend increased to -9.1% for September and -2.9% for March during the period 

from 1979–2006 (Stroeve et al. 2007) and implies a continuing downward trend could 

prevent winter sea ice regeneration. Regional Arctic models that account for atmospheric 

and oceanic coupling agree that within the next 10–50 years, the Arctic will be nearly ice 

free in the summer. Observations measured on the Arctic coast, near Point Barrow, Alaska, 

suggest a direct correlation between the distribution of oceanic speed in the upper ocean 

and ice concentration changes. During the cold season, the strong Alaska Coastal Current 
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has been documented to carry ~67% of the oceanic heat from the Chukchi Sea into the 

Beaufort Sea. This is noteworthy because it affects upper ocean mixing and generates 

eddies that migrate across the Beaufort basin and provide warm water entrainment that can 

contribute to ice melting (Maslowski et al. 2014).  

 
Observations are colored red. The multi-model ensemble mean is represented by the solid black 
line and standard deviation represented by the black dotted line. 

Figure 1. September sea ice extent model comparison. 
Source: Stroeve (2007). 

In addition to AOFBs, co-located Ice-Tethered Profiler (ITP) and Ice Mass Balance 

(IMB) buoys have been deployed as instrument clusters on ice floes since 2005.  

These instruments have observed an area of abnormally warm water from the surface to 

~60m depth, implying the dynamic transport of heat into the mixed layer from mesoscale 

eddy influence (Figure 2). Therefore, mesoscale eddy induced entrainment of warmer 

temperature during the winter can effectively slow down sea ice growth (Haynes 2010). 
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Subsequently, thinner sea ice cover leading into the melt season (June/July) compounds 

the previous effects and allows melting of existing sea ice much earlier than the preceding 

year. 

 
(a) Sea surface temperatures (°C) from the Moderate Resolution Imaging 
Spectroradiometer (b) temperature (color shading; °C) and velocity (vectors; 
cm s ^-1) at a surface layer of 0–5 m from the Naval Postgraduate School 
(NPS) Arctic Modeling Effort model. 

Figure 2. Observed surface temperatures within the Alaskan Coastal 
Current.  Source: Malowski (2014).  

The loss of MYI and increased open water fraction will have profound geopolitical 

effects. Declining summer sea ice extent and increasing open water fractions have relaxed 
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the stigma of the Arctic being unsuitable for exploration. National security concerns will 

escalate, as undiscovered reserves of oil, natural gas and large deposits of rare earth metals 

become a globally viable commodity, particularly for countries along the Arctic border 

(National Security Strategy, 2017). Russia is strengthening its position to corner the 

growing commercial markets in the Arctic through an impressive production of the largest 

and most powerful nuclear icebreakers ever built (RFE/RL 2019). Furthermore, as 

transpolar routes continue to open up (Figure 3), the potential for ship-to-sea ice and or 

iceberg interaction will increase (Commander Kristen Serumgard, Commander, 

International Ice Patrol 2019). 

 
Figure 3. U.S. Navy consensus assessment of sea ice extent 

minima. Source: United States Navy graphic (2014). 
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The presence of MYI around the Canadian archipelago, which has clogged the 

channels of the Northwest Passage, is rapidly decreasing (Martin et al. 2016). All these 

observed changes mark a distinguishing point in history where the Arctic could be void of 

sea ice. This problem demands a thorough understanding beyond the old paradigm of the 

Arctic system as an unchanging seasonally forced region.  

1. Arctic Amplification 

Cloud radiative forcing, ice-ocean albedo and Pacific-and-Atlantic origin warm 

current advection are a collection of feedback systems that enhances the Arctic’s sensitivity 

to temperature increases associated with carbon-dioxide-driven global warming. The 

steady decline in late September sea ice extent through the late 1990s motivated the Surface 

Heat Budget of the Arctic (SHEBA) experiment to investigate how ocean properties within 

the ocean change to maintain an equilibrium for sea ice cover at all seasons of the year. 

Their results indicate the important role of cloud cover that changes the longwave radiation 

transport to and from the ice-atmosphere interface (Serreze and Barry 2011) and the 

enhancement of sea-ice melt or growth rate with ice-ocean albedo variation (Morrison et 

al. 1999) and Pacific-Atlantic warm-current advection (Maslowski et al. 2014).  

a. Cloud Radiative Forcing 

Based on direct observations in the Arctic region, several greenhouse-gas-driven 

Global Circulation Model (GCM) simulations (Walsh and Chapman 1998) indicate a 

proportional relationship between cloud radiative forcing and the rate of net surface 

warming (Intrieri et al. 2002). Evidence collected during the SHEBA experiment shows 

the predominance of broken (5 to 7 oktas) to overcast (8 oktas) skies in the winter-spring 

produced a deficit of incoming shortwave radiation leading to surface ice warming due to 

solar energy reflecting back to the surface as longwave radiation as it attempts to pass 

through clouds (in-cloud trapped shortwave radiation). Additionally, the high snow/ice 

albedo and cloud covered conditions typical of Arctic winters accounted for elevated net 

radiative energy fluxes greater than the clear-sky and lower sea ice albedo in the summer. 

Accordingly, with the exception of the summer, cloud radiative processes in the Arctic trap 

heat compared with lower latitudes, due to differences in surface albedo and predominate 



7 

Arctic cloud cover. Arctic conditions effectively store the longwave radiation emitted from 

the surface and reradiate it back (Figure 4). In the lower latitudes, most of the incoming 

radiation is reflected back to the atmosphere to produce a net cooling effect in the absence 

of longwave cloud ice trapping (Curry and Ebert 1992). Complex cloud radiative processes 

at the atmosphere-ice interface are one of the processes leading to amplified responses to 

climate change in the Arctic. A framework level understanding of significant Arctic 

processes and their responsive feedbacks is essential to achieving cohesion between 

observations and modeling of prospective climate change in the Arctic region (Maslowski 

et al. 2012). 

 
Display on the left represents a static Arctic. Display on the right represents the reaction to a warming 
climate. The dotted line is the lower troposphere isotherm. SW is shortwave radiation flux, LW is longwave 
radiation flux, Sens. Heat is sensible heat flux, Lat. Heat is latent heat flux. 

Figure 4. Arctic surface energy budget in response to changes in sun 
exposure. Source: Serreze et al. (2011). 

b. Ice-Ocean Albedo Feedback 

Sea ice constitutes approximately 7–10% of world’s oceans and covers ~4-6% of 

the Earth’s surface, yet it has a large impact on the global climate disproportionate to its 

mass, which, particularly when coupled with wind forcing, makes the Arctic more sensitive 

to temperature variability than any other place on Earth (Wadhams 2003). On average, the 

Arctic Ocean reflects ~6% of incoming shortwave radiation and absorbs ~94%. Empirical 

data shows that a snow-covered Arctic reflects ~85% of incoming solar radiation and sea 
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ice reflects ~60% of all incoming solar radiation back into the atmosphere (Strum et al. 

2002). The ice-ocean albedo feedback is based on the increasing absorption/decreasing 

reflection of incoming solar radiation that occurs through the summer as snow-covered ice 

melts to bare ice, which melts to open water. As the ice melts, open water fraction and solar 

radiation transmission through the bare ice and melt-ponds rapidly increase the flux of solar 

heat into the upper ocean. Shortwave radiation entering the ocean is absorbed rapidly in 

the upper 15m, where it contributes to basal ice melt near or formation of a near-surface 

temperature maximum if a dynamically isolated fresh melt layer has formed. Consequently, 

a significant removal of Arctic snow decreases the overall concentration of Arctic sea ice. 

This increases the probability of through-ice radiative intrusion that makes sunlight more 

available for ice-cover penetration and heating of the upper mixed layer (Gallaher et al. 

2014). Based on two Community Earth System Model (CESM) simulations, the first using 

a 1% per year carbon dioxide run with standard sea ice cover and the second with the same 

carbon dioxide input, but with fixed Arctic sea ice cover. Seasonality and geographic area 

have direct influence on sea ice cover variability and feedback mechanism generation in a 

greenhouse gas induced warming environment (e.g., AA). As sea ice coverage diminishes, 

longwave radiation reflected back into the atmosphere increases, which leads to strong 

temperature gradient development between the overlying atmosphere and sea ice (~10-30 

ºC). Subsequently, AA events primarily develop during the cold season as strong 

thermodynamic gradients produce stress on surface ice leading to divergence and latent 

release and sensible heat fluxes to the atmosphere. These phenomena intensify when 

coupled with preexisting atmospheric water vapor and other feedbacks (Taylor et al. 2013). 

c. Pacific- and Atlantic-Origin Warm Current Advection 

Advection of warm Pacific and Atlantic water into the Canadian Basin is an 

important potential moderator of sea ice volume and extent. The distinct geographical 

influence of these thermodynamic driven currents requires an understanding of their 

climatological circulations (Maslowski et al. 2004). In the western Arctic during the 

summer, warm Pacific water flows through the Bering Strait and melts ice to the north into 

the Chukchi and Beaufort seas (Shaw et al. 2009). In the winter, the Pacific water cools 

and ice forms a boundary along the continental slope of the Chukchi Sea, separating the 
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shallow depths (~50 m) of the shelf region and deep waters of the Beaufort Sea. The 

shallow waters in the shelf region can be mixed down to form ice, but the deep waters of 

the Beaufort Sea (~3000 m) make it virtually impossible for ice to form due the longer 

requirement of mixing and cooling via wind forcing. By contrast, in the eastern Arctic 

during the winter, warm Atlantic waters, several degrees above freezing, split at the 

Norwegian Sea, one branch flowing between Norway and Svalbard through the Barents 

Sea opening, and the other through Fram strait as the West Svalbard Current (WSC). Both 

currents provide a constant influx of warm water available to melt ice through the winter, 

which contributes to setting the sea ice extent boundary (but not in the central Arctic where 

the Atlantic water subduct hundreds of meters down into the pycnocline). In the summer, 

the heat content of the Atlantic Ocean increases and melts more ice (Aagaard et al. 1987). 

As was the case of the Pacific warm water advection, the continuous flow pattern of the 

Atlantic warm waters restricts the seasonal extent of sea ice. Additionally, the tilt of the 

Earth’s axis provides 24-hour sunlight exposure for maximum warming to melt more ice 

versus less warm water in the wintertime. These thermodynamic and dynamic processes 

prevent winter-time ice formation across Fram strait due to the WSC and determines the 

position of ice in the Barents Sea and the Greenland shelf. Not only is the sea ice developing 

in the winter season thinner, but it is weaker and has less volume. Almost all high-

resolution model outputs, averaged and integrated over decadal timescales (Maslowski et 

al. 2004), forecast an increase in global warming (Hu et al. 2013) and ensuing continuing 

reduction of Arctic sea ice cover (Pedersen et al.2019). To that point, as of September 19, 

2019, the NSIDC has estimated that Arctic sea ice extent is 4.3 million square kilometers 

(Figure 5), which is the lowest seasonal minimum extent in the satellite record since 

measurement began in 1979 (NSIDC 2019).  
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The pink line indicates the median ice edge. The white area is the observed sea ice extent. 

Figure 5. September minimum sea ice extent. Source: National Snow 
and Ice Data Center (2019). 

2. A Review of Arctic Field Experiments  

The Arctic Ice Dynamics Joint Experiment (AIDJEX) in 1975 was the first 

extensive western Arctic sea ice experiment to explore the effects of oceanic and 

atmospheric responses to sea ice movement. Through analysis of upper ocean development 

from four AIDJEX drift stations over the summer season, the notional layering of the upper 

water column was quantified. This is significant because the annual melt cycle and 

freshwater inputs influence an otherwise nearly unchanging salinity profile throughout the 
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year. River influx from neighboring continents coupled with snowmelt provide the 

mechanism for ice formation. Additionally, this layering forms a relatively shallow, cyclic 

freshwater layer above a well-developed pycnocline. Frozen in to a MYI floe and drifting 

nearly a year (1997–1998), from the middle of the Beaufort Sea to just over the Northwind 

Ridge (McPhee 2008), the SHEBA research team aboard the Coast Guard Icebreaker Des 

Grosiellier documented changes in available summer melt water and sea ice extent.  

Taking measurements spanning the mixed layer into the stratified part of the ocean, the 

SHEBA ocean profiler collected upper ocean temperature and salinity measurements with 

concurrent thermal microstructure measurements near the center of the Beaufort Gyre that 

indicated it was 10% fresher than samples collected during the AIDJEX in the same 

vicinity and season in 1975 (McPhee et al. 1998). This observed freshening of the mixed 

layer from ~30-45-meter depth was attributed to extreme melting from the previous 

summer season (McPhee et al. 2008). A primary effect of declining summer sea ice extent 

was the need to understand the evolving marginal ice zones in the Canada Basin. The 2014 

Marginal Ice Zone experiment (MIZ), initiated and funded by the Office of Naval 

Research, investigated a range of dynamic, thermodynamic and wave processes controlling 

the late summer MIZ. Gallaher et al. 2014 found that the lack of outside oceanic influence 

(e.g., long period swells) and comparable wind forcing events between the observation 

period and the climatological mean suggest that thermodynamic processes control melt-

back and the formation of a large area marginal ice zone in the Canada Basin. In response 

to longer periods of sun exposure, sea ice kinematics reduce sea ice cover, hence decreased 

ice albedo, which leads to increased absorption of solar radiation, greater warming and 

melt pond generation. Further sea ice melt coupled with the existence of melt-ponds leads 

to a decrease in ice strength/thickness, increase in ice drift and ice-ocean stress, and 

turbulent oceanic heat flux into the mixed layer. These sequence of events causes turbulent 

mixing through the ocean mixed layer to be limited by the formation of a fresher melt water 

layer just below the ice (Figure 6). The interplay between radiative input, accumulated 

surface (snow and ice) and basal melt and melt-pond generation was responsible for 50% 

of the total summer heat within the winter IOBL (Gallaher et al. 2016).  
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Figure 6. Schematic demonstration of drained melt pond water influence on 

the IOBL-OML within the sea ice and the upper ocean domain. 
Source: Gallaher et al. (2016). 

The 2014 MIZ Department of Research Initiative (MIZ DRI) effectively quantified 

the impact increased open water fraction had on sea ice evolution within the MIZ.  

The Office of Naval Research (ONR) motivated Stratified Ocean Dynamics of the  

Arctic DRI (SODA DRI) sought to evaluate how these changes regulate upper ocean 

stratification, circulation, and acoustic propagation within the Arctic and the effect  

on momentum and buoyancy transfer within the atmosphere-ice-ocean interface. 

Observations have been gathered throughout an annual cycle, and over an extensive 

latitudinal range (Lee et al. (2016). 

3. Physical Changes Associated with Decline of Arctic Sea Ice Cover 

In neutral or weakly stratified conditions in the ocean surface layer vertical heat 

fluxes may be measured using eddy-correlation methods and Equation 1.1 (McPhee 2008) 
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 ' ',o pQ C w Tρ=  (1.1) 

where 0ρ  is the density of seawater and pc  is the specific heat of seawater. Ensemble 

averages of 15 minutes are typically used to estimate Q. 

The eddy correlation technique estimates the strength of vertical heat transport as a 

result of turbulent eddy motion in the Ice Ocean Boundary Layer (IOBL), a logarithmic 

boundary layer where stress is independent of depth, and the Ekman layer where the 

influence of the Earth’s rotation (Coriolis-dependency) is important. The breadth of the 

constant stress layer generally extends only a few meters below the ice-ocean interface, 

and while the Ekman layer extends down to the pycnocline, typically 40m (Figure 7).  

The speed difference between sea ice and the upper ocean generates ice-ocean 

stress (τ ) that produces turbulent flow within the IOBL. Tangential variation at the ice-

ocean interface characterized by the velocity scale 2 2 1/4
* (( ' ') ( ' ') )u u w v w= + , in which 

' 'u w  and ' 'v w  are the lateral Reynolds stress components of the nine-element Reynolds 

stress tensor. Because ice-ocean drag varies with the ice basal roughness, hydraulic 

roughness has contributions from small-scale features like ice scalloping to larger-scale 

features like ice floe edges, rafted ice, and deformed ice ridges. The ice-ocean drag 

coefficient can be expressed as 2
* ( )d iceu c u= , where 

2
*

d
ice ice

uc
u v

=
+

 is the ice-ocean drag 

coefficient and iceu  is the scalar ice velocity. The effective ice base roughness directly 

influences sea ice layer thickness, current variance with depth and rate of turning at the 

base of the IOBL (Cole et al. 2017).  

It is this effect which makes the sea ice cover such an important component of 

Arctic change. Conclusions from the previous Arctic field experiments have explored 

different physical processes linking Arctic warming and ice pack melt-back. Thinner and 

weaker sea ice cover produces an environment in which heightened ice drift sensitivity to 

geostrophic forcing generate both thermodynamic and dynamic effects.  
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a) A hodograph view, and b) Black vector is the geostrophic current. (u0) is the velocity at 
the logarithmic boundary and Ekman layer interface. (u6) is a represents the measurement 
depth for winter conditions. β0 is the turning angle of the ice-ocean drag coefficient. 

Figure 7. Diagram of ice and upper ocean currents. 
Source: Cole et al., (2017). 

Because the magnitude of these effects are directionally dependent (anisotropic), 

sea ice moving at different speeds and directions relative to one another can cause the ice 

cover to shear and converge/diverge (Kwok 2001). These ice deformation events remove 

energy imparted into the ice and usually manifest in ridging and rafting during ice 

convergent conditions (Rigor et al. 2002) or lead formation in-divergent events (Dyne et 

al. 1992). The effect of energy dissipation associated with sea-ice movement modifies ice 

thickness distribution within the Arctic system. For example, ice divergent events in the 

winter add sea ice volume by re-freezing relatively linear open water features (leads) in the 

sea ice cover. The exposure area of a newly formed ice leads in contact with the atmosphere 

above significantly influences local ocean-atmosphere exchange (Dyne et al. 1992). In 

addition to how resistant sea ice is to wind forcing, its delivery of momentum throughout 
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the water column is also controlled by the top and bottom surface roughness (Martin et al. 

2016). Ice-ocean drag coefficients for both the air-ice and water-ice interfaces are a 

function of ice hydraulic roughness and stability of near-surface stratification (Martin et al. 

2016). Surface roughness of the ice affects atmospheric drag, while form drag produced by 

large features, like the edges of ice type features (leads, melt ponds, and floes), and 

underside roughness affect near-surface transport of energy and momentum (Lupkes et al. 

2013). The ONR Marginal Ice Zone experiment in 2014 studied these processes by 

deploying several drifting instrument clusters (C2, C3, C4 and C5) in the eastern Canada 

Basin to observe different component changes at the atmosphere- ice-ocean interface. 

Velocity measurements between the log and Ekman layer ( 0u ) and observations ~4.5 m 

(AOFB) and ~6.5 m (ITP-V) below the ice surface were used to measure the local fraction 

turbulent velocity *u . The corresponding turning angles ( 0, 4 6andβ β β ) of the ice-ocean 

drag coefficient estimates (
0 4 6
, ,d d dc c c ), derived from turbulence observations near the top 

of the Ekman layer (Figure 8) documented a seasonal correlation between increased under-

ice roughness and higher ice-ocean drag coefficients (Cole et al. 2017). This was 

characterized by the Ekman (15-30 m) and log layer (0.7–1.5 m) depths shallow enough to 

fit inside the seasonal mixed layer.  

The average ice draft (2-m) calculated from drifting IMBs over a 5-km scale at each 

cluster and a 1.5-m log-layer estimated from daily mean Ekman depth measurements, 

produced estimated surface Ekman layers (3.5-m depth) well above the 8m depth of the 

ITP stress measure. The depth of the log layer was estimated using the daily mean Ekman 

depth and was supported by homogeneity between the log and Ekman layers friction 

velocities at cluster C2. Consequently, each cluster experienced different ice-ocean drag 

coefficients based on season, deployment location and underlying ocean characteristics. 

Deployed on a MYI floe, cluster C2 experienced the largest ice-ocean drag coefficients and 

roughness length decreases early in the study period (March) due to basal melting and 

decline in pack ice concentration (Cole et al.2017).  
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a) Ice-ocean drag coefficient at 6m depth with weekly median in gray, b) weekly median ice-ocean drag 
coefficient at 6m (Cd6) and surface depth (Cd0) values, and c) weekly median of 6m (β6 (thick)) and surface 
(β0 (thin)) turning angle estimates. 

Figure 8. Ice-ocean drag coefficient and turning angle estimates at 
C2–C5. Source: Cole et al., (2017).  

4. Naval Mission Objectives in the Arctic 

a. ONR Marginal Ice Zone (MIZ) Program 

Of all the missions the U.S. Navy has engaged in, the Arctic region presents unique 

challenges. Sea warming associated with sea level rise from glacial melt in Greenland and 

Antarctica, coupled with perennial ice pack changes in the Arctic are but a few factors 

contributing to an increase in USN responsibility. The Navy Office of Naval Research and 

the USN are working with global partners to measure Arctic changes and quantify the 

impact to Naval operations. Notwithstanding the cessation of the Navy’s Task Force 

Climate Change initiative, a strategy introduced in 2009 with the key objective of 
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improving the cross-sectoral integration of future public perspective and U.S. strategic 

policy on the issue of climate change, the Navy’s mission outlined in the USN Arctic Road 

Map remains the same: 1) gather a better physical understanding of Arctic dynamical 

processes to support freedom of navigation, 2) develop better ways of observing the Arctic 

to defend the homeland and contribute to maritime domain awareness, and 3) incorporate 

collected data into an accurate prediction system. The USN’s invested interest in Arctic 

research is evidenced through several Department Research Initiatives (DRIs). The MIZ 

project described in earlier sections, the Arctic Sea-State air-sea interaction project, and 

most recently the Stratified Ocean Dynamics in the Arctic project (SODA). The Office of 

Naval Research (ONR) motivated SODA project seeks to evaluate how changes in the 

upper Arctic waters regulate ocean stratification and circulation within the Arctic and the 

effect on momentum and buoyancy transfer within the atmosphere-ice-ocean interface 

(Figure 9). Observations are gathered throughout the entire year cycle in the Canada Basin 

(Lee et al. (2016) and is providing a comprehensive data set of upper ocean processes. This 

thesis research draws on data collected from the SODA DRI.  
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Figure 9. Schematic show (top) the winter and (bottom) summer processes 
that control upper ocean stratification and sea ice evolution in the 

MIZ. Source: Lee et al., (2016). 
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II. SAR AND IMAGE PROCESSING BACKGROUND
AND CONCEPTS 

Sections A provides an overview of Synthetic Aperture Radar imaging techniques. 

Section B summarizes image processing concepts used in this thesis project.  

A. SAR IMAGERY 

1. SAR Background

Air defense and over-the-horizon surveillance strategies during World War II 

provided the framework for technological advances in the employment of remote sensing 

systems. The invention of Radio Detection and Ranging (radar) by German inventor and 

energy (backscatter) back to the receiving SAR sensor. As shown in Equation 1.2, the 

surface area viewed by a SAR is based on sensor altitude and surface area at a specific 

moment in time. 

(1.2) 

where S  is the size of the instantaneous footprint of the along-track footprint, R  is the 

distance the radar sensor is from the ground, L  is the side length of the antenna (specifies 

the antenna’s beam width 
R
λβ = where λ  is the generated wavelength and the lateral 

distance of the antenna. SLAR systems sort the returned satellite echoes in both range and 

azimuth direction, while signals backscattered from the ground arrive back to the satellite 

sensor at different times based on its location within the swath, and can only be 

distinguished if the range R  difference is greater than half the transmitted pulse length 

(range resolution) as defined in Equation 1.3. 

(1.3) 
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where ρ  is the range resolution in meters, c  is the speed of light and pτ  is the pulse length. 

The object of remote sensing systems is, as accurately as possible, to discriminate between 

objects on the ground. This contrasts them from SLAR systems, in that their ability to 

distinguish between targets in the azimuth direction depends on the width of the azimuth 

footprint S and is restricted by the side length L. This limitation degrades the azimuth 

resolution (approximately equal to the instantaneous footprint) with increasing range R , 

and makes the application of SLAR systems on space-borne platforms unfeasible, based 

on the pulse length’s reliance on distance to the ground.  

2. SAR Basic Concepts

In 1952, a Good-year Aircraft Cooperation engineer, named Carl Wiley (Cumming 

and Wong 2005) discovered a connection between the lengthways-trace coordinate relative 

to a transmitted radar beam of a backscattered object, and the instantaneous doppler shift 

of the signal backscattered to the radar by that object. He hypothesized that the frequency 

of satellite signals could improve spatial resolution along the track of the satellite beyond 

traditional SLAR systems. Wiley’s concept, “aperture synthesis” capitalized on the 

relationship between the antenna length L and radar resolution (Figure 10). This process 

magnified the radar resolution by integrating multiple shorter antennas, in order to increase 

the antenna length that serves as the foundation for all modern radar systems.  
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Figure 10. Synthetic aperture for target P along track. Source: 

Meyer (2018).  

a. Geometric Property Considerations associated with SAR imaging 
systems 

SAR operates at a swath width between 30 and 500 km, with spatial resolutions 

between 1 to 200 m. This makes it ideal for observing local and regional ice property 

changes that distinguish the condition of the sea ice cover. The SAR’s looking angle (θ ) 

and sloping angle to the underlying surface (α ) influences how the SAR image will appear. 

For example, foreshortening, layover and shadowing are common geometric distortions in 

side-looking view configured SAR systems (Figure 11). In foreshortening, small looking 

and slope angles cause objects to appear closer than they really are. In layover, when the 

looking and slope angles are equal, backscatter from sloping surface on the ground are 

unevenly distributed and cause top and bottom features to appear disjointed. Although the 

effects of foreshortening and layover can be minimized by increasing the looking angle, 

larger looking angles do create shadow zones that obscure objects from the sensor’s view.  
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Figure 11. Primary geometric distortions on SAR images. 
Source: Meyer (2018 

b. Radiometric Property Considerations Associated with SAR Imaging 
Systems 

The Arctic icepack consists of sea ice in many types and stages of development 

(Dierking 2013). SAR imaging systems are capable of identifying some physical properties 

based on the return intensity of the four different transmit / receive polarizations (Zhang 

and Skjetne 2018). Received signals are processed into geo-located two-dimensional (2-D) 

matrices. Each paired row and column are represented by an element called a pixel, which 

stores intensity values, typically as unsigned 8- or 16-bit values. The angle between the 

incoming microwave pulse, the ice surface (incident angle) and polarization projected by 

the SAR determines the brightness sea ice exhibits in a given pixel. Changes between 

neighboring cells through a SAR image are the result of the amplitude and phase variation 

from pixel to pixel, leading to the granular (speckle) appearance characteristic to SAR 

imagery (Figure 12). 
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Figure 12. Sample space-borne SAR dataset acquired by 

ESA’s C-band sensor ERS-2. Source: Meyer (2018). 

The distribution of signal scattering within each pixel depends largely on the 

dielectric properties of the ground scatterers. Accordingly, in summer, as open water 

fraction increases, open water produces low SAR backscatter levels. During the late fall-

early winter, snow concentration on the surface of growing sea ice causes higher 

backscatter compared with ice without snow. Increasing sea ice cover and strong winds 

also contribute to changes in surface roughness, resulting in higher backscatter values. 

Typical radar frequencies used in satellite supported SRA systems are in 

wavelength/frequency divisions covering L-band (15-30 cm, 1–2 GHz), C-band (3.8-7.5 

cm, 4–8 GHz), X-band (2.4-3.8 cm, 8–12.5 GHz) and Ku-band (1.7-2.4 cm, 12.5-18 GHz). 

Radarsat-2 and Sentinel-1 satellite data used in this research employ C-band signals to 

characterize the environment (Figure 13). The C-band wavelength is ideal for monitoring 

ice deformation signatures associated with lead and ridge formation due to its strong 

backscatter from rough surfaces at short wavelengths (~5.66 cm) and penetration 

capabilities.  
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Figure 13. Microwave bands designations. SAR systems 

generally utilize the frequency bands in green. Source: 
Meyer (2018).  

B. IMAGE PROCESSING 

1. Image Processing Background 

Over the past 15 years, the extensive accessibility of low-cost hardware and a wide 

range of software tools for image manipulation and processing, has made the extraction of 

information from digital images easier for content interpretation (Marques 2011). 

Numerous computer techniques for retrieving and inspecting data from images have been 

developed, and at times serve as a substitute for human visual interpretation. Image 

processing has emerged as a viable application within computer science spanning many 

human fields of activity. For example, within the medical occupation, imaging techniques 

associated with computerized axial tomography scans produce three-dimensional (3D) 

images of the brain’s composition and structure from an assortment of large series 2-D X-

ray images (Seletchi and Duliu 2006). For years, for law enforcement and military, cameras 

modified with range finders (range cameras) and radars with radiative detection capabilities 

(forward-looking infrared radar) have provided a critical advantage, from troop and vehicle 

movement detection to intelligence gathering operations and target recognition (Marques 

2011). In the Arctic, advances in characterizing ice parameters have included ice 

concentration calculation, sea ice classification and ice floe identification. For example, 
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the intensity variations across a 2-D scene of the ice pack generally exhibits higher intensity 

(brighter) values than water. Subsequently, using threshold methods (Markus and Dokken 

2002) or the application of sea ice concentration algorithms on European Remote Sensing 

(ERS) to SAR images (Johannessen et al. 2013) allows ice concentration estimation. 

Classification of ice types in SAR images through cluster analysis and labeling, using 

lookup tables to quantify varying ice types based on backscatter signatures, has also 

demonstrated a viable means of distinguishing between MYI and First-Year Ice (FYI) 

boundaries (Kwok et al. 1992). 

2. Image Processing Concepts and Terminology 

a. Image Types 

An image consists of an endless number of 3-D projections that are conformed to a 

2-D visual representation of a scene (e.g., an object, bird or person) captured by an ocular 

device (e.g., radiometer, camera, or lens). Each pixel, within a monochrome (grayscale) 

image, has an associated numerical value constituting the intensity of the pixel, normally 

in a (0, 255) 8-bit, or (0, 65535) 16-bit range. The nominal structure for grayscale images 

typically have 8 bits per pixel construction where pixel values of 0 corresponds to “black,” 

and a pixel value of 255 corresponds to “white,” and values in between indicate varying 

shades of gray (Figure 14). Images that are composed of two discrete pixel options (1 or 0) 

are called binary images. Based on analysis requirements, intensity images have a variety 

of data class options to display in the Matrix laboratory (MATLAB) software. Grayscale 

images used in this research are composed of integers (uint8 and uint16) to represent pixel 

intensity. These images are called indexed images and are composed of a matrix of integers 

and a color map. Unsigned integers (uint), where u  stands for unsigned (all positive 

values), and int means integers (whole numbers), represent a wide range of intensity 

values. Images can also be represented as double precision numbers within MATLAB 

allowing MATLAB arithmetic functions to be applied.  
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Figure 14. Grayscale image with a 6 × 6 matrix of large 
numerical value pixel representing higher intensity pixels. 

b. Basic Relationship between pixels 

Feature analysis of images can exploit the relationship between pixels in smaller 

matrices of similar value. For example, a 4 and 8-neighbors’ construction are two common 

image processing operations that reveal how pixels are connected vertically and 

horizontally to a reference pixel (Figure 15). A 4-neighbor pixel matrix identifies and 

groups a pixel’s position based on a four-sided contact aspect (above, below, right, and 

left) of a reference pixel (p) in the image. The manner in which pixels are connected to (p), 

whether diagonal, vertical or horizontal, can be used to reduce the image pixel variance 

from true intensities of the real world (de-noise), estimate pixel intensities at unknown 

locations based on known pixel intensities (interpolation), and partition an image into 

regions (segmentation), to name a few. As a result, a set of intensity values at one location 

can be used as a gauge of similarity for adjacent pixels (adjacency). For instance, two pixels 

can be viewed as either a 4 or 8-adjacent matrix if there are an equivalent number of 

neighboring pixels of the same formation scheme. A mixed adjacency process can be 

applied to supplement inherent ambiguities (e.g., redundant paths) associated with 8-

adjacency. The intrinsic path between two pixels (p and q) is a series of pixel operations, 

always starting with the pixel labeled as p and ending with the pixel labeled as q. A 4 or 8-
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path construct implies that number of connected pixels and are called a component, which 

can be placed into related data groups called structure arrays. 

 
Figure 15. Schematic of neighborhood of pixel p: (a) 4-

neighborhood; (b) diagonal neighborhood; (c) 8-
neighborhood. Source: Marques (2011). 
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III. DATA COLLECTION AND METHODS 

This thesis will utilize data collected from the Naval Postgraduate School (NPS) 

AOFB 41 and AOFB 42 data sets, Woods Hole Oceanographic Institute (WHOI) ITPs, and 

Sentinel 1A medium-resolution (MR) Extra-wide Swath Mode (EW) and RADARSAT-2 

ScanSAR Wide Swath Mode (SCWA) SAR imagery collected from several sources by the 

Ocean Physics Department at the Applied Physics Laboratory-University of Washington. 

Data for both buoys were collected on a drift trajectory beginning in the Beaufort Seas and 

terminating ~350 nautical miles west of the Canadian Arctic Archipelago’s Ellef Ringnes 

Island, with AOFB 41 terminating ~50 nautical miles to the northeast of AOFB 42 (Figure 

16).  

 
Figure 16. Schematic of NPS AOFB track trajectories for 

buoys 41and 42 used in this research. Source: NPS AOFB 
(2019).  



30 

Sentinel 1A SAR and RADARSAT-2 imagery are unclassified, free and approved 

for public release through open data policy adopted by the European Union for the 

Copernicus program and the Government of Canada, respectively (European Space 

Agency (ESA 2019), Government of Canada). Image processing techniques are employed 

in this analysis to quantify OWF area, OWF area perimeter, and ice ridge length count 

surrounding each buoy at the time of each image.  

The SAR images are transformed from geographic coordinates and presented in the 

polar stereographic projection to easting and westing coordinates, where the origin is at the 

pole, the + X axis is along +90 longitude, the +Y axis is along + 180, and the units are 

measured in meters. 

A. AUTONOMOUS OCEAN FLUX BUOYS (AOFB) 

The AOFB is a custom-built instrument system constructed within the Ocean 

Turbulence Department at the NPS and designed to measure turbulent fluxes within the 

Arctic mixed layer just below the ice-ocean interface. Under both NSF and ONR funding, 

the NPS AOFB program deploys buoys from drifting ice floes to gather long time series 

observations within the ice-ocean interface over annual cycles. In 2018, two AOFBs were 

deployed in the Beaufort Sea (NPS AOFB 41 & 42) during the SODA project. AOFB 

consists of two main parts: 1) a surface buoy that rests on the ice surface that provides 

power to and gathers data from a range of instruments on the buoy including GPS position, 

meteorology measurements, current profile measurements and the turbulent flux sensor 

package. All data are recorded then sent by Iridium satellite link to a server at NPS. An 

instrument frame suspend from the surface buoy at 2m below the ice supports the ADCP, 

turbulent flux package and upward-looking altimeter to measure ice growth and melt. Two-

way communication between the buoy and the NPS network takes place two times per day. 

This ensures near real-time data update stake place, and to remotely modify sampling 

schemes each instrument to conserve power and troubleshoot specific issues. The custom-

built flux package includes an NPS-designed acoustic travel-time 3D current sensor with 

an inertial motion unit, an inductive conductivity cell and platinum resistance thermometer, 

and a fast response thermistor (Stanton et al. 2011, Shaw et al. 2008). The flux package 
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sensor suite measures dynamic and thermodynamic ocean processes (momentum, heat, and 

salt fluxes) using a direct eddy correlation technique which resolves the small turbulent 

fluxuations ( 'u  , 'v   and 'w  ) that arise from the turbulent  eddy circulations in an inertial 

subrange. For more information visit http://www.oc.nps.navy.mil/stanton/fluxbuoy 

B. ICE-TETHERED PROFILERS (ITPS)  

ITPs, developed by the WHOI usually accompany the NPS AOFBs on the same ice 

floes (Figure 17). As an autonomous system designed to measure upper ocean temperature 

and salinity profiles, ITPs add oceanographic value with an ability to profile the upper 

ocean for up to three years (WHOI 2007). Above the surface, the ITP instrument suite sits 

on the ice floe and consist of a power supply pack, iridium satellite and antennae for near-

real time data transfer to WHOI and GPS unit (WHOI 2007). The surface suite also 

supports a plastic-jacketed wire rope tether that extends through the ice to 800m. The 

subsurface package contains a low power Conductivity, Temperature, Depth sensor with 

an associated mechanical wire track apparatus to move the profiler vertically along the 

tether.  

http://www.oc.nps.navy.mil/stanton/fluxbuoy
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Figure 17. Schematic of WHOI ITP and NPS AOFB. Source: 

WHOI ITP and NPS AOFB. (2019). 

1. AOFB and ITP Association  

Due to failure of the GPS receiver on AOFB41, in this study, data from the ITP104 

and ITP105 position date (GPS) were used for the purpose of deriving polar stereographic 

x and y position data to calculate ice velocity (Figure 18). Data from the SAR images, 

AOFB and ITP were time-matched using their common GPS time stamps for each data set. 
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Figure 18. Example AOFB GPS and derived ice velocity and vector 
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C. SEA ICE IMAGE PROCESSING APPLICATION 

1. Image Processing Methods 

This research utilized MATLAB code written to perform image processing 

techniques on medium-resolution satellite images coincident with AOFB trajectories. Pixel 

thresholds were selected for each image to produce OWF area, and joined pixel methods 

used to estimate OWF area perimeter values and ice ridge length. MATLAB functions and 

scripts were used to process the image data, using functions from the MATLAB Image 

Processing Toolbox, MATLAB website, and the NPS Turbulence Group processing 

toolbox. SAR images gathered together by the Applied Laboratory at the University of 

Washington were stored onto the NPS Turbulence server. Metadata files for each image 

were utilized to extract relevant image data to select appropriate images based on the time 

stamp of the image coincident to the closest buoy position. This procedure identified 82 

satellite images that covered either AOFB41 or 42 locations, or “hit” images. Selected 

images were sub-sampled to 20-by-20 km centered on the buoy position at the time the 

SAR image was recoded and stored along with full resolution easting and westing positions 

of every pixel. The primary disqualifying criterion for image selection was that images 

were within ±6 hours of each AOFB and ITP time sync. A “hit” index was created from 

image metadata to look for all matching SAR occurrences based on current buoy number 

position. The closest AOFB time to the image time was used to select extract 2m depth 

friction velocity, ice velocity and 3m current from the AOFB instruments and stored into a 

data structure for further analysis. Image and buoy positions were converted to meters 

(easting and westing). Each of the stored zoomed in images was first retrieved in a program 

that displayed the pixel histogram in order to select appropriate threshold values for the 

open water / ice boundaries, and the few very bright ice ridge length features. Two 

programs were used to select and produce zoomed in 20x20 km sub images. The stored 

sub-images were retrieved in the feature analysis program. Before each sub-image is 

sectored for upstream feature analysis, the 20x20 km SAR images are loaded into 

MATLAB for pixel distribution analysis. 
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2. Determining OWF Area, OWF Area Perimeter, and Ridge Length 
Features         

The aim of applying intensity-based image segmentation and edge detection 

algorithms is to identify OWF area, OWF area perimeter, and ice ridge length SAR images 

in the vicinity of a given buoy location. Ice ridges are made from ice fragments that 

subduct, buckle and break, then aggregate under the influence of strong wind forcing. The 

resulting ice convergence produces cracks, ice keels and ice ridges. These protrusions 

above and below the ice surface significantly increase the hydrodynamic roughness of the 

ocean/ice and ice / atmosphere boundary layers. Open water areas including leads 

(typically long open water features that form as cracks widen) form important paths for 

heat energy from the ocean in the winter (Dyne et al. 1992, McPhee and Stanton,1996) and 

paths for strong solar heating in the summer (Gallagher et al. 2014). The role of local open 

water areas in changing the local ocean-ice drag coefficient is investigated here by 

comparing the open water statistics of Radarsat-2 and Sentinel-1’s SAR images with 

ocean-ice drag coefficients derived from the current strength and turbulent friction velocity 

measured by the SODA AOFB’s. To accomplish this, image properties were analyzed and 

sectored into +-20-degree sectors directed upstream of the AOFB location at the time of 

the SAR image. These sectors were divided into image masks with six radial range bins of 

0–500m, 500–1000m, 1000–2000m, 4000–8000m, 8000–16000m from the AOFB 

position.  

The selected SAR images represented as a 2-D array are used to extract information 

about sea ice properties at the Arctic ocean-ice interface. Pixel value thresholds for the dark 

areas representing open water, and bright features representing ice ridges guided by pixel 

value histograms. The perimeter of open water features was determined using image 

analysis algorithms that utilize pixel neighborhoods and connectivity, and object-based 

operations within the MATLAB function “edge.” Selecting an appropriate threshold range 

is a critical step in defining features within a SAR image and selecting pixel values outside 

the range of the ice features of choice will decrease the visible contrast within the image to 

isolate those features. The process of determining threshold values for each image 

consisted of reviewing the original SAR image and its associated histogram 
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a. OWF Area Threshold Determination 

The 20x20 km SAR image centered on the buoy location is used to locate low pixel 

intensity pixels within the image along with the histogram distribution which should rest 

significantly less that the images median intensity value. After reviewing the SAR image 

and histogram, a pixel threshold value is selected that reveals the open water areas seen in 

the raw SAR image in a binary mask image (Figure 19). 

 
Figure 19. Schematic outlining OWF area threshold 

determination process. 

b. OWF Area Perimeter Threshold Determination 

Open water area perimeter is measured for each feature using image analysis 

algorithms that utilize pixel neighborhoods and connectivity, and object-based operations 

within the MATLAB function edge. The edge detection function in MATLAB calculates 

the change in pixel intensity between regions, by calculating the first derivative across the 
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intensity profile of the image. The use of the first derivative directly characterizes the 

difference in intensity across the ice-water boundary, thus detecting the presence of edges 

within the image for processing and analysis. There are primarily five widely known image 

detection algorithms (Roberts, Sobel, Prewitt, Robinson and Canny) of which vary, mainly 

by the masking technique each employs (Burnham et al. 1998). In this study, the Canny 

method was chosen because, unlike the others, it calculates the greatest maximum pixel 

value change (gradient) using a 2-D smoothing scheme (Gaussian filter) with a predefined 

standard deviation set by sigma. The edge function in MATLAB determines the gradient 

by calculating the change in the Gaussian filter. The Canny method has the lowest 

probability of misrepresenting image noise by employing a two-threshold technique ideal 

for detecting strong and weak boundaries associated with the mixed properties linked with 

FYI distribution. (MATLAB Inc. 2019). An example procedure used for OWF area 

perimeter is shown in Figure 20 and contained in the following syntax: T2 = edge (T2, 

“canny,” T, sigma); where T2 the input SAR image, T is a 1 by 2 vector of the two 

thresholds (Tlow Thigh) values previously explained, and sigma is the standard deviation 

of the Gaussian smoothing filter, and T2 is the output image(After applying thresholds to 

all SAR images, ice feature count calculations for OWF area, OWF area perimeter and 

ridge length are determined by dividing the number of threshold pixels by the total number 

of pixels within a specified sector. 
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Figure 20. Schematic outlining OWF area perimeter threshold 
determination process. 

c. Ridge Length Threshold Determination 

High intensity pixels within each SAR images are as ice ridge features. The 

associated pixel value histogram gain is used to guide a high pixel value threshold for the 

bright ice ridge features by interactively comparing the original image with the resulting 

ice ridge mask for different threshold choices (Figure 21). 
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Figure 21. Schematic outlining ridge length threshold 
determination process 

The effect of the open water area, open water feature perimeter, and ice ridge 

concentrations on the measured ocean/ice drag coefficients were explored by measuring 

these feature concentration in range-binned sectors upstream of the AOFB dC  

observations. The available SAR images covering the AOFB / ITP locations during 

October 2018 in the Beaufort Sea from SODA clusters 2 (AOFB 41) and 3 (AOFB 42) 

were used in this analysis. Ice current drift bounded by a sector polygon with a 20-degree 

arc either side forms a series of sector masks that are overlaid on each SAR feature image 

mask (Figure 22). The pixel counts within the range sector bin are used to normalize feature 

pixel counts within that sector, resulting in feature concentration estimates at each range 

bin (Figure 23). The ice in this study area far from coastal boundaries is in free drift, so 

moves in response to wind forcing events. Surface winds move the ice, and generate a 

current relative to the ice in nearly the opposite direction, a forming turbulent boundary 

layer that imposes stress into the ocean below.  



40 

 
Buoy location at image center (red circle). Upstream analysis field (blue shading). Sector 
looking angle (two red lines extending from buoy). Wind forcing and current direction 
(yellow arrows).  

Figure 22. Diagram of the upstream feature analysis. 
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Top left is the original SAR image. Top right is threshold image. Bottom is the OWF area 
perimeter feature count per radial bin. 

Figure 23. Example of ice feature count plot.  
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IV. DATA ANALYSIS AND RESULTS 

A. OVERVIEW OF ICE-OCEAN ENVIRONMENTS 

1. AOFB 41 

SAR images from the start and end of the 15-day long image sequence available 

for this study (Figure 24) shows the ice pack changes during the October 14, 2018 to 

October 29, 2018. Dark areas in the image represent open water or new ice. During this 

time the ice pack distorted significantly in response to moderate wind events. The sea ice 

landscape is homogeneous at the beginning of the AOFB 41 deployment with SAR imagery 

indicating ~40-60% FYI and moderate sized OWF. Ice floe distribution consisted of 

variable sized, 100–300 m ice floes in appearance through the October through early 

November 2018 study period for AOFB 41. A mixture of circular open water fraction 

features is in higher concentration at close distances to the AOFB. A nearly uniform 

distribution of smooth ice, with linear ice ridges seen as very bright lines of pixels is seen 

throughout the area. The final SAR image (Figure 24 right image) shows a more irregular 

pattern with a long newly formed ice divergent induced ice leads ~10 km south of the 

AOFB location. A noticeable change in surface roughness marked by an increase in 

convergence induced ice ridges ~14 km west of the AOFB location.  
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Figure 24. Start (14 October 2018) and final (29 October 2018) 

SAR images from AOFB 41 deployment 

2. AOFB 42 

The AOFB 42 SAR image sequence spanned from October 5, 2018 through 

October 30, 2018 (Figure 25). The initial SAR image reveals a significantly different sea 

ice landscape compared with AOFB 41. The ice surface was characterized by medium to 

large MYI floes in close proximity with smaller fragments with increasing radial distance 

from the AOFB. Larger and more frequent linear shaped open water areas are seen near 

the AOFB. These OWF areas become more circular in size and frequency at ~5 km and 

greater from the AOFB. In contrast to the Buoy 41 deployment, the sea-ice displays a more 

heterogeneous sea ice field associated with a larger inclusion of MYI floes and smaller 

fragments. The final SAR image (Figure 25 right image) displays a difference in ice type 

(more of a FYI appearance) and reduced ice floe distribution consisting of a more 

homogeneous ice floe appearance. A significant reduction in open water area across the 

SAR image is likely due to a combination of local ice convergence and the start of ice 

growth. Ice ridge length increased in size and occurrence in all directions at ~ 14–16 km 

from the AOFB location. Vivid open water areas seen in the Buoy 42 start image 

significantly decreased. In contrast to the initial image (Figure 25 left), there are fewer 

areas of open water near the buoy site (image center) in the final image. SAR imagery for 
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Buoy 42 also reveals an increase in ice ridge length distribution in all directions out from 

the AOFB again indicating strongly convergent conditions at the end of the study period.  

 
Figure 25. Start (5 October 2018) and final (30 October 2018) 

SAR images from AOFB 42 deployment 
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V. RESULTS AND DISCUSSION 

A. CORRELATION RESULTS 

Correlational analyses were used to examine the relationship between calculated 

ice-ocean drag coefficients and threshold sea ice pixel counts for 6 logarithmic radial bins 

sector bins centered on the buoy position to explore if there are relationships between 

observed ocean-ice drag coefficients and upstream measurements of SAR feature densities. 

A scatter plot for each sector range bin have been calculated with an associated first order 

linear regression goodness of fit line. Linear correlation coefficient (R) values and error 

estimates calculated from the MATLAB function corrcoef  have been calculated for each 

scatter plot. 

1. Ice-Ocean Drag Coefficients vs. Ice Threshold Feature Counts 

Ice-Ocean Drag Coefficient and ice speed are compared across all the available 

SAR images spanning a 60-day interval for ice speeds greater than 0.05 ms-1 (Figure 26). 

Drag coefficient values are unreliable to lower mean currents.  

The primary hypothesis is that ice-ocean drag coefficients are controlled by SAR-

derived ice feature densities in a 40-degree wide sector upstream from the location of the 

in situ friction velocity measurements. AOFB measurement. Multiple sector range bins are 

used to test the upstream range of influence for each potential roughness feature. The three 

features are OWF, open water perimeter fraction, and ridge fraction. Correlation plots 

(Figures 26, 27, 28, 29) of the relationship between ice-ocean drag coefficient response 

and ice feature count density at different radial distance test these relationships.  
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Figure 26. Ice speed vs. ice-ocean drag coefficients 

 
 



49 

 
Figure 27. Ice-ocean coefficient vs. edge length 

The comparison between ice-ocean drag coefficients vs. edge length count (Figure 

27) has no data entries in the two nearfield range bins covering 0–1000 m. A very weak 

positive correlation between at 1000–2000 m exist. Overall the data reveals a statistically 

insignificant relationship between ice-ocean coefficient and edge length count. 
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Figure 28. Ice-ocean coefficient vs. OWF area count 

The correlation between ice-ocean drag and OWF area count are weakly correlated 

out to 1000. There is a slight weak negative correlation from 1000 out to 16000 m, but 

overall the data reveals a statistically insignificant relationship between ice-ocean 

coefficient and OWF area count due to SAR resolution limitations and near field area. The 
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large number of zero OWF values reflect either the limited spatial resolution of the OWF 

estimates or the insensitivity of dC to the local OWF. 

 

Figure 29. Ice-ocean coefficient vs. ridge length count 

The comparison between ice-ocean drag coefficients vs. ridge length count (Figure 

29) shows a weak correlation in the near field from 0–500 m. Correlations become 

negligible with increasing radial range. Overall the data reveals a statistically insignificant 

relationship between ice-ocean coefficient and ridge length count. 
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Figure 30. Ice-ocean coefficient vs. OWF area count across 

total 20x20 km ice field 

The comparison between ice-ocean drag coefficients vs. OWF (Figure 30) 

Correlations are negligible with increasing radial range and overall data reveals a 

statistically insignificant relationship between ice-ocean coefficient and ridge length count 

across the total 20x20 km ice field. This is not unexpected as the influence of OWF was 

expected to be strongest in the near-field just upstream from the AOFB.  
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Figure 31. Ice-ocean drag coefficient vs. edge length count 

across total 20x20 km ice field 

The comparison between ice-ocean drag coefficients vs. edge length count across 

the total 20x20 km ice field (Figure 31) shows a lack of predictability between a given ice-

ocean drag coefficient for edge density across the large 20 x 20 km domain.  
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Figure 32. Ice-ocean drag-coefficient vs. ridge length count 

across the total 20x20 ice field 

The comparison between ice-ocean drag coefficients vs. ridge length count across 

the total 20x20 km ice field (Figure 32) shows a weak relationship and statistically 

insignificant. 
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VI. CONCLUSIONS 

This study examines relationships between ice-ocean drag coefficients and OWF 

area, OWF perimeter and ridge length ice feature count using AOFB in-situ measurements 

collected between 5 October and 29 October 2018 in the Beaufort Sea and Southern Arctic 

Ocean. Thresholding and image processing techniques were applied to a total of 82 SAR 

images classify three ice feature types: OWF area, OWF perimeter and ridge length. It was 

hypothesized that there would be a statistically robust correlation between ice-ocean drag 

coefficients and the three SAR-derived ice feature densities in an upstream sector centered 

on the buoy location, with the strongest correlations in the near-field range (0-500 m). 

However, with the SAR images available to this study, correlations were very weak for all 

three feature types. Limitations in the analysis technique include the difficulties in 

determining pixel value thresholds for open water areas and ridges, and a lack of validation 

of these choices with direct observations of the features. This could be addressed in future 

studies with visible imagery and ice altimeter data not available here. Additionally, the 

limited (0–50m square) pixel size of the RADARSAT-2 and Sentinel-1 imagery only 

marginally resolved features, which is particularly important in the near-filed range which 

most influence the turbulent boundary layer measured by the AOFB. This was evidenced 

in all the ice feature count correlation plots, where the near field (0-500 m) radius bins 

displayed a weak relationship and negligible correlation with increasing distance in all the 

other bins. Although this is a consistent result, being able to count ice features in the near 

field, where *u  has a significant footprint influence is the key and justification for high 

resolution remote sensing systems. The ridge length count vs. coefficient plot result was 

unexpected in that, there as a stronger relationship between the drag coefficient in the 

medium ranges (2000–8000 m). Most importantly much longer time series and higher 

resolution SAR imagery are needed to gather more robust statistical estimates of these 

correlations.  
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VII. FUTURE WORK 

An important consideration for future studies would be the employment of higher 

resolution satellite imagery. All the correlation cases revealed an inability to resolve ice 

feature counts in the near ice field were friction velocity was most prevalent. This thesis 

demonstrates that the multi-variate dynamical complexities of the Arctic system. The 

introduction of machine learning has proven to be a viable source for routine automation 

such as GPS positioning and feature recognition to identify hidden analysis features and 

statistics. Another major focus is taking advantage of the vast array of new data being 

generated from field science expeditions such as Multidisciplinary Drifting Observatory 

for the Study of Arctic Climate. Four AOFB’s have been deployed in the Transpolar Drift 

as part of the year-long manned ice station, which will have consistent high resolution 

visible and SAR coverage.  
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