
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988-10

The Design of Software Interfaces in Spec

Berzins, Valdis
IEEE

V. Berzins, "The design of software interfaces in Spec," Proceedings. 1988
International Conference on Computer Languages, Miami Beach, FL, USA, 1988, pp. 266-270.
https://hdl.handle.net/10945/64259

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

The Design of Software Interfaces in Spec

Va/dis Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

This paper presents a language for giving black-box specifications
in the early stages of software design. The underlying computa­
tional model combines message passing with temporal events in a
precisely defined way. The features of the language, especially
those important for large scale design are presented by means of
examples.

Keywords Black-box specifications, abstractions, specification language,
computer aided software engineering, distributed systems, real-time sys­
tems.

1. Introduction

Spec is a formal language for writing black-box specifications for
components of software systems. Black-box specifications are essential for
realizing the benefits of abstractions in the software development process
[2]. The critical early stages of software development are dominated by the
tasks of building conceptual models of the proposed software and defining
its interfaces. The Spec language is used in the functional specification
stage for recording black-box specifications of the external interfaces of the
proposed system, and in the architectural design stage for recording black­
box specifications of the internal interfaces of the proposed system.

A formal specification language such as Spec is needed for defining
the desired behavior of the proposed system before it is built, because
English and other informal notations are too imprecise. Precision is impor­
tant because in a large project many people have to agree on the interpreta­
tion of the specifications to produce a correct implementation. Written
specifications are attractive as a communications medium in very large pro­
jects because the effort of writing a formal specification is independent of
the number of people reading it, whereas communications overhead tends to
increase with the size of the project in more informal techniques. Formal
notation is important because it enables mechanical processing, opening the
way to higher levels of computer-aided design than are currently used in
software development [4]. Programming languages such as Ada are formal,
but are not well suited for writing black-box specifications because they
have been designed for describing the algorithms and data structures realiz­
ing a module rather than the behavior a module presents at its interface.

There has been much previous work on providing programming
language support for abstractions [8, IO, 14, 19,23]. Much of the previous
work on formal specifications has focused on the problem of proving the
correctness of programs [9, 11, 16, 21, 25]. Spec has been intended pri­
marily for supporting the use of abstractions in the design of software sys­
tems. Surveys of related work can be found in [7, 24]. Spec has evolved
from an earlier specification language [I J and a rapid prototyping language

for the design of large real-time systems [20], guided by extensive class­
room experience in using formal specifications in multi-person projects [2].
The most important advances over the earlier language are the integration
of time into the underlying model, the development of an inheritance
mechanism [3], and the separation of granularity and comrol state con­
siderations from the event-level interfaces of a module. The Spec language
is suitable for specifying parallel, distributed, or time sensitive systems as

U.S. Government Work. Not protected by
U.S. copyright.

266

well as conventional systems.

Spec differs from algebraic specification languages such as Larch
[12, 13] because it is based on models rather than theories. While it is feasi­
ble to write Spec axioms in the conditional equation form commonly used
in algebraic approaches, the use of models and axioms of other forms can
sometimes lead to simpler specifications. The restricted form of Larch is
helpful for supporting automated tools for program verification, while the
expressiveness of Spec is useful in developing large scale designs. Larch is
based on the premise that interfaces involving state changes are inherently
dependent on the implementation language. Larch provides general pur­
pose facilities for defining immutable data types along with a framework for
adding an implementation-language dependent layer for defining state
changes and concrete interfaces. Spec is based on the premise that inter­
faces with state changes, exceptions, concurrent interactions, and time
dependencies can all be specified independently of implementation
language, and that the definition of a language dependent concrete interface
is a matter of packaging rather than semantics. This reflects the difference
between the prescriptive nature of specifications used as a design tool and
the descriptive nature of specifications used primarily to prove properties
about systems.

Model based approaches such as VDM [6] have a few similarities to
Spec. However, Spec has been designed to handle systems with a wide
range of features, e.g. concurrency and time dependent constraints, while
VDM is primarily intended for specifying sequential systems [7].

The GIST language is based on a global state model approach that
describes behavior independently of interfaces [17], and is intended for use
in the early stages of requirements analysis where properties of the entire
application are being determined without assigning boundaries or allocating
functions to either the proposed software system or its environment. Spec
makes no attempt to address this stage, and is intended for use in the later
functional specification and architectural design stages, where properties of
proposed external and internal interfaces are specified. Localization of
information, treatment of distributed systems, and treatment of real-time
constraints are explicit design goals of Spec. The goals of Spec and GIST
are complementary and the two can be used together at different phases of
software development.

Spec is based on the event model of computation, and uses predicate
logic for the precise definition of the desired behavior of modules. The
most important ideas of this language are modules, messages, events,
atomic transactions, and defined concepts. Events can be used for defining
timing constraint~. while localized states and atomic transactions are impor­
tant for specifying distributed or concurrent systems. Spec supports reuse
of abstractions via inheritance and generic modules. Spec also has features
important for specifying large conventional systems, such as import/export
controls for defined concepts, and view and inheritance mechanisms.

2. The Event Model

The Spec language uses the event model to define the behavior of
black box software modules. The event model has been influenced by the
actor model [15, 26]. The main differences from the actor model are the
treatment of time and temporal events, and the treatment of multi-event
transactions[!]. In the event model, computations are described in terms of
modules, messages, and events. A module is a black box that interacts with
other modules only by sending and receiving messages. A message is a
data packet that is sent from one module to another. An event occurs when

a message is received by a module at a particular instant of time.

Modules can be used to model external systems such as users and
peripheral hardware devices, as well as software components. Modules are
active black boxes, which have no visible internal structure. The behavior
of a module is specified by describing its interface. The interface of a
module consists of the set of stimuli it recognizes and the associated
responses. A stimulus is an event, and the response is the set of events
directly triggered by the stimulus. The events in the response consist of the
arrivals of the messages sent out by the module because of the stimulus.

Messages can be used to model user commands and system
responses. Messages represent abstract interactions that can be realized in a
wide variety of ways, including procedure call, return from a procedure,
Ada rendezvous, coroutine invocation, external 1/0, assignments to non­
local variables, hardware interrupts, and exceptions. A message has a con­
dition, a name, and a sequence of zero or more data values. The condition
has the value normal for messages representing nonnal interactions, and
the value exception for messages representing abnonnal interactions such
as exceptions. The name of a message identifies the service requested by a
nonnal message or the exception condition announced by an exception
message. The data values represent either inputs or results, and may be
present for any kind of message. The triggering event is an implicit attri­
bute of each message, used for identifying the destination for reply mes­
sages.

Each module has its own local clock and can send messages to itself
at times determined by its local clock. The arrival of such a message is
called a temporal event. Temporal events allow modules to initiate actions
as well as responding to external stimuli.

Events at the same module happen one at a time, in a well-defined
order. lbis order can be observed as a computation proceeds, and
corresponds to the ordering of the local times at which those events occur.
Events at different places need not have a well-defined order because the
local clocks of different modules are not guaranteed to be precisely syn­
chronized with each other. lbis is realistic since perfect synchronization of
clocks at different locations is not possible in practice. Clocks can be syn­
chronized only by sending messages with a non-zero delay. Clock syn­
chronization depends on unverifiable assumptions about the unknown mes­
sage delays involved (e.g. delays in both directions are equal) and the rela­
tive rates of the local clocks.

Because there is no completely accurate global time reference, the
only guaranteed orderings between events are derivable from discrete
sequences of the following types of steps:

(I) Two events at the same module are ordered by their local times.

(2) The event which triggered the sending of a message comes before
the event in which that same message is received.

Message transmission is assumed to be reliable, which means every
message sent eventually arrives at its destination. In the absence of explicit
specifications constraining the delay, messages can have arbitrarily long
and unpredictable transmission delays. Specifications for message delays
are inherently approximate unless the origin and destination of the message
are the same.

The response of a module to a message is influenced only by the
sequence and arrival times of the messages received by the module since it
was created. This means there is no action at a distance: all interactions
must involve explicit message transmissions. This restriction is a formali­
zation of tl1e requirement that each module must correspond to a coherent
abstraction.

The event model and the Spec language admit nondeterminism due to
partially specified communication delays or partially specified responses.
Complete specifications admit only deterministic behavior. In Spec it is
possible to specify that a response must be deterministic (repeatable)
without completely specifying the other properties of the response.

Each module has the potential of acting independently, so that there is
natural concurrency in a system consisting of many modules. Since events
happen instantaneously and the response of a module is not sensitive to any­
thing but the sequence of events at the module, the event model implies
concurrent interactions with a module cannot interfere with each other at
the level of individual events. Atomic transactions can be used to specify
constraints on the order in which a module can accept events. Atomic tran­
sactions can be used to specify synchronization constraints involving chains
of events in distributed systems. Atomic transactions must be used with

267

care, because they can interact with each other or with timing constraints to
produce unsatisfiable specifications. Deadlocks are a well known example
of such situations.

Modules can be used to model concurrent an<l distributed systems, as
well as systems consisting of a single sequential process. The event model
helps to expose the parallelism inherent in a problem, since a stimulus can
have a set of unordered responses occurring at different locations.

3. Specifying Software in Terms of Events

The Spec language provides a means for specifying the behavior of
three different types of modules: functions, state machines, and abstract
data types. Messages can also be used to model generators or iterators
[18,22]. The properties of these kinds of modules and message are
described below, with examples of each.

3.1. Functions

The response of a function module is influenced only by the most
recent stimulus, so that function modules do not exhibit internal memory.
Completely specified function modules calculate single-valued functions in
the mathematical sense. An example of a specification for a square_root
function is shown below.

FUNCTION square_root {precision: real} WHERE precision> 0.0

MESSAGE(x: real)
WHENx>=0.0
REPLY(y: real)
WHERE y >= 0.0 & approximates(y * y, x)

OTHER WISE REPLY EXCEPTION imaginary _square_root
CONCEPT approximates(rl r2: real)

-- True if rl is a sufficiently accurate approximation of r2.
-- The precision is relative rather than absolute.

V ALUE(b: boolean)
WHERE b <=> abs((rl - r2) / r2) <= precision

END

Function modules usually provide only a single service, and are usually
designed to accept anonymous messages. The square_root function accepts
anonymous messages containing a single real number. The response of a
module to a message can be defined with several cases introduced by
WHEN clauses. The predicate after each WHEN is a precondition, describ­
ing the conditions under which the associated response must be triggered by
an incoming message with a given name and condition. The preconditions
in each WHEN statement are stated independently, so that the order of the
WHEN statements does not matter.

OTHER WISE is an abbreviation for the case where none of the other
WHEN statements apply. In the example above, the OTHERWISE means
the same thing as WHEN x < 0.0. In the Spec language each series of
WHEN statements must be terminated by an OTHERWISE, to make sure
all cases are covered. If a case is to be left undefined, the designer must say
so explicitly.

A REPLY describes the message sent back in response to a stimulus.
The reply is sent to the module originating the message that arrived in the
stimulus, determined by the implicit origin attribute of the message. If
REPLY is followed by EXCEPTION then the condition of the reply mes­
sage is exception, representing an exceptional event, and otherwise the con­
dition of the reply message is normal, representing a normal response.
EXCEPTION can also appear after MESSAGE in the specification of an
exception handler, indicating that the stimulus must be an exception condi­
tion.

An outgoing message such as a REPLY can have a WHERE clause,
which describes a postcondition that must be satisfied by the outgoing mes­
sage. The WHERE keyword is followed by a statement in predicate logic
describing the relation between the contents of the message that was
received and the contents of the reply message. This predicate states how
to recognize a correct result, but it does not specify how to compute the
required output.

Whenever a message arrives which matches a MESSAGE header of a
module and satisfies the precondition (WHEN) of one of the cases, then a
response must be sent which matches the REPLY header and sati-sfies the
associated postconditions (WHERE). A message matches a header if the
message has the specified name, condition, and number of data values, and

if each data value belongs to the specified data type. A message satisfies a
predicate if the predicate is true in the state where the formal argume?ts of
the visible message specifications are bound to the actual data values m the
message. Only the incoming message is visible in a precondition, while the
incoming message and all associated outgoing messages are visible in a
postcondition.

Messages without any WHEN clauses have a single case whose
precondition is always true. lf the precondition for more than one ~ase i~
satisfied, all of the associated responses must be sent and the constramts o,
all the associated postconditions must be met simultaneously. Overlapping
preconditions are not recommended because they can lead to inconsisten­
cies.

The concept approximates defines the intended meaning of
"sufficiently accurate approximation" in tenns of the generic parameter pre­
cision. The generic parameter allows a single templale for a square root
module to be adapted to many applications with different precision require­
ments. Some notion of approximation is needed to specify a practical
square root function because it is not possible to implement exact s~uare
roots using machine arithmetic. In this case the size of the acceptable mter­
val is delined relative to the size of the input value rather than as an abso­
lute constant. Introducing an explicitly defined concept modularizes the
specification. This helps simplify the postcondition and supports stepwise
refaiement and localization of information. The definition of the concept
c,m be delayed or left as an informal comment when the concept ic
identified and the postcondition is developed.

3.2. Machines

A machine i:; a module with an internal state, i.e. machines arc mut­
able modules. An example of a machine is shown below.

!llACHlNE inventory
·- assumes that shipping and supplier are other modules

STATE\stock: map{item, integer 1)

IN\' ARI ANT ALL\i: item :: stock[ij >= (I J

!N111ALL Y ALL(i: item:: stock[i1 = fl)

MESSAGE re~eive(i: item, q: integer)
-- Process a shipment from a supp1ier.

WHEN q> 0
TRANSITION stock[i] = *stock[i] + q

-- Delayed respoases to backorders are not silown here.
OUIERWISE REPLY EXCEPTION empty_shipmem

MESSAGE order(io: item, qc,: integc1)
-- Prvcess an order from a customer.

WHEN O < qo <= slock[io]
SEND ship(is: item, qs: integer) TO shipping

\','HERE is = io, qs = qo
TRANSITION stock[io] + qo = *stock[io]

WHEN U < qo > stock[io ~
SEND ship(is: item, qs: integer) TO shipoic:_l
WHERE is= io, qs = stock[io]

SEND back_onlerl ib: item, qb: integer) TO suppli~-­
WHERE ib = io, qb + qs = qa

TRANSITION stock[io J = ()
OTHERWISE REPLY EXCEPTION empty _ort!er

END

Tlie behavior of a machine is describeJ in tem,o of a conceptual model of
tt:; ,)?<1t:.::·. rath~r than directly 1n terms of thi.:• messages that arrived in th...:-.
n:1st. b~caus·::-such dcscrirti~ns are usually shorter an<l easier to understand.
The n1mpo11ents •)f the conceptual model of tlie stat~ are declrucd after the
k~vword STA TE. and restrictions on the set of meaningful states are given
afler the kevword lNV ARIANT. Restrictions on the initial state are give,1
alter the kevword !NITIALL Y. The restrictiom after IN'V ARIA.NT must
t,e satistie(l ·in all reachable states, while the restrictions after INITIALLY
must be satislieJ only in the first state.

State cim1ges arc described by predicate, Jher the keyword TRA..l\f­
SJTlON. In such statement~, plain variable~ of tl1e form x refer to the valuf?·

.-,r" in the current state (just after the arrival of the stimulus), while vari­

.iblcs of the fom1 *x refer to the value of x in the previous state (just before
tile .,.-rival of the stimulus). Tlie transitions in the example are equatiom
rather than assignment statement:;. Equation., can describe the transition

268

either forwards or backwards in time, whichever is simpler (cf. the first two
transitions). 111e *x notation can only be used in the INVARIANT, !lie
TRANSITIONS, and in WHERE clauses describing the output in terms of
the new state. The Spec language follows the convention that components
of the state of a machine or the model of an abstract data type do not change
unless the component is explicitly mentioned in a TRANSIDON clause.

The SEND statement is used instead of REPLY to describe messages
sent to destinations other than !lie origin of the incoming ·message. A
SEND statement means that a message satisfying the description must be
sent to the given destination. SEND statements are useful for describing
clislributed systems with a pipeline structure. There can be only one
REPLY, but there can be any number of SEND's. If there is more than one
SEND, the message transmissions can be performed concurrently or one at
a time in any order, without waiting for any responses. The example has
such a multiple response to the order message in the case where there arc
not enough items on hand lo fill the order completely.

3.3. Types

A type module defines an abstract data type. An abstract data type
consists of a value set and a set of primitive operations involving the value
set. In the event model, a type module manages !lie value set of an abstract
data type, creating all of the values of the type and performing all of the
primitive operations on those values. Each message accepted by the type
module corresponds to one of !lie operations of the abstract data type. The
messages of a type module usually have names, since abstract data types
usually provide more than one operation.

A module is mutable if the response of !lie module to at least one
message it accepts can depend on messages that arrived before the most
recent incoming message. A module is immutable if the response of the
module to every possible message is completely detennined by tl1e most
re.,cnl message it has received. Mutable modules behave as if tliey had
internal stales or memory, while immutable modules behave like mathemat­
i~al fui,ctions. A module is immutable if and only if it is not mutable. An
examplr of a specification for an immutable abstract data type is shown
below.

TYPE rational
INHERIT equality{rational}
MODEL(num den: integer)
INV ARIAt'ff ALL(r: rational:: r.den ~= OJ

MESSAGE ratio\num den: integer)
\\.'HEN den -= 0

REPLY(r: rational)
WHERE r.num = num, r.den = den

OTHERWISE REPLY EXCEPTION zero_denominator

MESSAGE add\x y: rational) OPERATOR+
REPL Y(r: rational)
WHERE r.num = x.num * y.den + y.num • x.den,

r.den = x.den * y.den

MESSAGE multiply(x y: rational) OPERATOR*
REPL Y(r: ration~J)
\.\THERE r.num = x.num * y.num, r.den = x.den * y.den

MESSAGE equal(x y: rational) OPERATOR~
REPL Y(b: boolean)
,\1-lERE lr <==> fx.num * ~1 .den :=.: y.nur..L * x.rien:

EN[;

Data types have conceptual models, which are used to visualize and
Jcscribe the value set of tbe type. TI1e conceptual mo<lel is used to specify
lh~ beliavior of a typ~, and forms the mental picture of the type for the pro­
gnunmec; who use the operations of the type. Tr1c conceptual model is
chosen for clarity, and is usually different than the data structure used in tlie
implementation. In case the data type must be r~-impltmented to improve
\J~rfonn:rnce, the data structure used in the implementation will change, bu!
th~ conceptual model will nut .

Each instance of the type can be represented as a tuple containing the
da:a components declared after the MODEL keyword. The restriction~ on
the components of the model are described in the INVARIANT, which
selects a subset of th~ tuple data type defined by the MODEL to serve as the

conceptual representation. The INVARIANT is a predicate that must be
true for all meaningful conceptual representations.

The invariant on the conceptual representation should be adjusted to
make the descriptions of the operations as simple as possible. The invaria!ll
on the conceptual representation does not involve the implementation data
structure and does not restrict the designer's choice of implementations.
The invruiants on the implementation data structures will often be much
more complicated than the conceptual invariants, because implementation
invariru1t, often determine efficiency. Most books on data structures are
really about the art of choosing implementation invariants that enable
efficient algorithms.

Inside the module defining an abstract data type, predicates describ­
ing the effects of the operations can be written in tenns of the conceptual
representation. Inside the module defining an abstract type instances of the
type can be described as if they were tuples containing the components
specified in the MODEL. The notation x.y can be used to refer to the y
component of the abstract data value x. The specifications of other modules
may describe the values of abstract types onl.y in terms of the MESSAGEs
it provides and the CONCEPTs it EXPORTs.

It is sometimes convenient to express complicated conditions as lists
of independent constraints. The predicates after INVARIANT, WHEN, and
WHERE can be lists of expressions separated by comma,. A list of state­
ments is true if and only if all of the statements in the list are true individu­
ally, so that in tlris context a comma means the same thing as &. The
comma has a lower precedence than all of the other operators, so that it can
be used to separate statement, at the top level without need for parentheses.

An exrunple of a defurition for a mutable type is shown below.

TYPE queue It: type)
INHERIT mutable{queue}

-- Inherit definitions of the concepts "new" and "defined'".
MODEL(e: sequence)

-- The front of the queue is at the right en1.
INVARIANT true

-- Any sequence is ~ valid modei for a queec.

MESSAGE create
-·· A newly created empty quev,:.

REPLY(q: queuc{tl) WHERE q.e = l J
TRANSITION new(q/

MESSAGE enqueue(,.: t, q: queue(t l)
-- Add x to tht> back e>f the queut'.

TRANSITION q.e = append([x]; *q.c,l

?-.IBSSAGE <l~queue(q: queue{ t))
-- Renrnve and return tne front element of the queu~.

WHEN not_cmptyt,;1
REPLY(x:-.·
TRANS!TION *q.e = append(g.~. [x])

OTHERV.1SEREPLY EXCEP11ON queue __ nnderflow

l\1l~SAGE n1,!t __ empty(q: que:-.ue{t }':
-- Trut• if q is not empty

REP'...,Y\t,: boolean) Wf-LERE b <=> {'-!-~ -= !
ENfJ

iu mtHal1fe tvre~ th:.: instances of the typ{· have JntcrriaJ state:.., and op·:r-.1-

dorn, :n,_· r,ru~·id.ed fur (;hangirJg th(.· iutenJa! srnte...:: of ~c ins~ances. TR.~\I,­
SfTiUN clauses ;u~ allowed m type:) ii'> weH as machines. A 1ype is nmt­
ab!(' i, an,i nnlv ifit has a nun-trivial TRA..1\/SJT!ON clause !i.e. a TRA.t"ISl·
TlON tlia! 1mi1lii.:s -= ,: for some component x.) Mutating operalio!J~.
such as c1.queuc in ilK· exan1:>k ahe;v~. arf dcsctihcd using 1RANSJTIO~·~
clause~;

VoJcc,t Hicnltl) i:} in m1porwn~ jssue f:--); mutabI~ types bec:mse an~!·
the program varial~le.-.: hvuod to the :-i:arn? mur:-tbh~ o?jei;t wilt be affec~ed if>~
stat~ changing 01•crador: i .. , applieC ~-, th,· o't1Jt-·1. A new ob3ecl L:

g-m~rantee<l t) l>e di:--:tinct frnw 2.U objt.:cts defined in the previous state. Iht.:
concepL; ne.t· arid de.fined i:1J'.:' not oa1i of the Spec language. but th~.:,r :,Te
provided by a prc•delined generi,, modul,~ m11t;1ble whos~ instance:; can re

:1;;~~~·::sb~,-~~~;;'~!:~1:r~~~c}t~\,ft'.~~~~: ~~~'..~,~:8i,;•~~::,:;~/r~~;,I:1c~:~

of many systems. We recommend avoiding mutable types in user inter­
faces.

3.4. Generators

A generator is a message that generates a sequence of values one at J

tin1e. An exan1ple of a specification for a generator is shown below.

FUNCTION primes
IMPORT prime FROM nat
IMPORT sorted FROM sequence{nat}

MESSAGE(limit: oat)
GENERATE(s: sequence{nat))
WHERE inc.:reasing_order(s),

ALL(i: nat :: i IN s <=> l <= i <= limit & prime(i))

CONCEPT increasing_order(s: sequence { nat})
V ALUE(b: boolean)
WHERE b <=> sorted{ less_or_equal@nat }(s)

END

The "@" is used in Spec to determine the type of an overloaded operator o<
constant in places where it is not clear from the context. The GENERA TE
keyword means the srune thing as a REPLY except that the result is a
sequence whose elements are delivered one at a time rather than all at once
This means that the elements will be generated one at a time, and processed
incrementally, rather than being generated all at once and returned in a sin­
gle data structure contai.tring all of the elements, as would be the case for a
REPLY of type sequence. In a program a generator is used to control a da:a
driven loop. Generators can also be used in specifications of other modules,
for exrunple to define the range of a quantified variable. Generators ar~
interpreted ;,s sequence-valued ,unction., when they appe~ in
specifications.

Any message with a GENERATE is a generator, so that generators
can be defined as operations of an abstract data type l', a machine. This i'"
an impot1:in! application of generators. because ii is t'lh<'rwist' difficulr t·,
scan all of the elements nf an abstract collection ,,,ithout exposing the da'.J
structure used lo implement the collectior,

4. Features for Specifying Large System~

Th, Spec hmguage contains a number of featurt>s tlic,t an.· ne~,Je-;
rnc,stly for specifying large system.,. Some of these features include generic
modules. defined concepts, and an inheritance mecharusm. An exampfe
illustrating the development of a compleie system using Spec and a more
detailecl descrirtion of lhe lang1iage can be found in [5}.

<4.l. Generic Module,

A parametrized module speciiks a family of muduies rather than ai:
in-.lividual module. {ieneric modules are importam for achievil,g re-use of
snecification::i mid designs because tlli.~y can be adaph>.l to i\ wider variety nf
a~pp1icahnn:; tl1an tlv~ir tnon! spe..:-ifk instances. A p,uame;.tizcd m0duk
looks like an ordin:~ty modu,e defini1ion except tha: li1ere can be paramete,:;
:liier tht mod uh: nanle. wi\;i an optional WHERE dause restricting ti:•'
values of th<:' parame!ers. 1be specifications for sqn:.u-!' _root and queut
~iven in the previous section are examples of para1neui.!ed modules. Such
:1. definition defittes one module for each ;~g~l set pf v:1lues for the para.m,:-·
,ers of the module The paramNers can range over data values values, func­
tions or types.

4.2 Concept•,

Con~epl'.i arc :mportant for explaining arh~ lP8ti.ng the be-havicr 0:
m,iduleo, ,md should be rc;leci.l'<l in reference manu:1:cl and test orack; 1\
con~f'p1 ~n tJ,t~ languag~ i:-, !.l constant symbJ:, predicate symbo:, o~
function symbol i..:an be usf•d ln construct1:1r r:--ie iof:ic;.Ll asseition:..
defmin~ lhe behavior of modules. Concepts w1thout iom1a1 argun1ents arr~
int('q1reted as constams. A con~tmt can be either a symboilc name fc•r :
dm:1 \a[ue or a sywbo1ic 1rn.me ior a data type. Concepts with fornwl argu­
mcn,;: an~ mterprcte,l :is prcd.ic.11e syrnools if !hey r,ave one VALVE and it;
type is oookan, mid as ~·unction symbols otherwi8e.

Even· concepl is attached to some mode,lc, ,md is local to that rnodu' ·
,,n,css it i., exported nr inl1erited. Only con;;epts can be exportecl. Ir a ,_.,.,,.

cept is exported, then it can be explicitly imported by other modules and
used in their definitions. The export/import mechanism is used to record
logical dependencies between modules, so that mechanical aid can be

provided for tracing the impact of a proposed change to a definition.

A facility for introducing named concepts with explicit definitions
and interfaces is important for organizing and simplifying descriptions of
complex software systems. It is not a good idea to express a complicated
constraint a~ a single very long expression in predicate logic, just as it is not
a good idea to implement a large system as a single monolithic module: the
result is too difficult for people to understand. Concepts have the same pur­
pose in a specification language that subprograms do in a programming
language, namely to provide a mechanism for orderly decomposition.

Concepts can also be used to mix formal and informal specifications,
by a formal definition of a precondition, postcondition, invariant, or transi­
tion in terms of some concepts, and then providing informal definitions for
the concepts. The formal definitions of the concepts can be filled in later,
when the design has stabilized, or can be left out entirely if the details are
not critical. The ability to mix formal and informal specifications in a dis­
ciplined manner can be important in practical projects with tight schedules.

Concepts represent the properties of the software that are needed to
explain or describe the intended behavior of the software system. Concepts
are delivered to the customer in the manuals explaining how the system is
supposed to operate, where they may be explained less formally than in the
functional specifications and architectural design. Concepts do not nor­
mally represent components of the code to be delivered, although it may be
useful to implement them for testing purposes.

A function should be defined as a module of type FUNCTION if it is
part of the model of the software system, and it should be defined as a con­
cept that is part of a module if the function is needed to specify the behavior
of the module, but is not part of the model of the system at the current level
of description. If a function is needed to specify the behavior of a module
at a high level of the architectural design, and is also one of the components
used to realize that module at a lower level, then it should be defined as a
concept attached to the module at the higher level and exported. At the
lower level it should be specified as a FUNCTION module, which imports
the concept from the higher level module and has a trivial definition in
terms of the imported concept

4.3. Views and Inheritance

The Spec language has an inheritance mechanism which can be used
for specifying constraints common to the interfaces of many modules and
for view integration. Specifying constraints common to many interfaces is
essential for achieving interface consistency in very large systems. The
interface of a system to each class of users can be a separate view of the
system, perhaps specified by different designers. A total picture of the sys­
tem is formed by expanding the definition of a module that inherits all of
the individual views. The inheritance mechanism and the rules for combin­
ing different versions of messages and concepts inherited from multiple
parents are described in more detail in [3].

5. Conclusions

Spec is a specification language with a broad range of applications.
The language is primarily intended for recording black box interface
specifications in the early stages of design. The language has a precise
semantics and a simple underlying model. Experience has shown that it is
sufficiently powerful to allow the specification of many kinds of software
systems, and sufficiently flexible to allow software designers to express
their thoughts without forcing them into a restrictive framework. The
language is sufficiently formal to support mechanical processing. Some
tools for computer-aided design of software that are currently under investi­
gation are syntax-directed editors, consistency checkers, design completion
tools, test case generators, and prototype generators.

1. V. Berzins and M. Gray, "Analysis and Design in MSG.84:
Formalizing Functional Specifications", IEEE Trans. on Software
E11g. SE-11, 8 (Aug. 1985).

2. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software
Development", Comm. of the ACM 29, 5 (May 1986), 402-415.

3. V. Berzins and Luqi, The Semantics of Inheritance in Spec, Computer
Science, Naval Postgraduate School, 1987. NPS 52-87-032.

4. V. Berzins and Luqi, "Languages for Specification, Design and
Prototyping", in Handbook of Computer-Aided Software
Engineering, Van Nostrand Reinhold, 1988.

5. V. Berzins and Luqi, Software Engineering with Abstractions: An
Integrated Approach to Software Development using Ada, Addison­
Wesley, 1988.

6. D. Bjoerner and C. Jones, Formal Specification and Software
Development, Prentice Hall, Englewood Qiffs, NJ, 1982.

7. B. Cohen, W. T. Harwood and M. I. Jackson, Tire Specification of
Complex Systems, Addison Wesley, Reading, MA, 1986.

8. "Ada Programming Language", American National Standards
Institute/MlL-STD-1815A, DoD, 1983.

9. J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright,
'' Abstract Data Types as Initial Algebras and the Correctness of Data
Representations", in Proc. Co,rf. on Computer Graphics, Pattern
Recognition, and Data Structures, 1975, 89-93.

10. A. Goldberg and D. Robinson, Smalltalk-BO: The Language and its
Implementation, Addison Wesley, Reading, MA, 1983.

ll. J. V. Guttag, E. Horowitz and D.R. Musser, "Abstract Data Types
and Software Validation", Comm. of the ACM 21, 12 (1978).

12. J. V. Guttag and J. J. Horning, "A Larch Shared Language
Handbook", Science of Computer Programming 6 (1986), 135-157.

13. J. V. Guttag and J. J. Horning, "Report on the Larch Shared
Language", Science of Computer Programming 6 (1986), 103-134.

14. M. Herlihy and B. H. Liskov, "A Value Transmission Method for
Abstract Data Types", Trans. Prog. Lang and Systems 4, 4 (Oct.
1982), 527-551.

15. C. Hewitt and H. Baker, "Actors and Continuous Functionals", in
Formal Description of Programming Concepts, North-Holland, New
York, 1978, 367-387.

270

16. C. A. R. Hoare, "Proof of Correctness of Data Representations",
Acta Informatica 1, 4 (1972), 271-281.

17. L. Johnson, "Overview of the Knowledge-Based Specification
Assistant", in Proc. Second Annual RADC Knowledge-based
Assistant Conference, RADC(COES), Grifiss AFB, NY, 1987.

18. B. H. Liskov, A. Snyder, R. Atkinson and J. C. Schaffert,
"Abstraction Mechanisms in CLU", Comm. of the ACM 20, 8 (Aug.

1977), 564-576.

19. B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. Schaffert and R.
Scheifler, CLU Reference Manual, Springer Verlag, 1981.

20. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real­
Time Software", to appear in IEEE TSE, 1988.

21. R. Nakajima, "IOTA", IEEE Trans. on Software Eng., Feb. 1985.

22. M. Shaw, W. A. Wulf and R. L. London, "Abstraction and
Verification in ALPHARD: Defining and Specifying Iteration and
Generators", Comm. of the ACM 20, 8 (Aug. 1977), 553-564.

23. M. Shaw, Alphard: Form and Content, Springer Verlag, 1981.

24. W. Turski and T. Maibaum, The Specification of Computer
Programs, Addison Wesley, Reading, MA, 1987.

25. W. A. Wulf, R. L. London and M. Shaw, "An Introduction to the
Construction and Verification of Alphard Programs", IEEE Trans. on
Software Eng. SE-2, 4 (Dec. 1976), 253-265.

26. A. Y onezawa, "Specification and Verification Techniques for
Parallel Programs Based on Message Passing Semantics", Ph. D.
Thesis, MlT, I 977.

