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I. Introduction

I N [1], we introduced a fast mesh-refinement strategy for
pseudospectral (PS) optimal control. This strategy was based

on Birkhoff PS techniques. A Birkhoff PS method is based on
using Birkhoff interpolants [2–4]. A Birkhoff interpolating function
generalizes Lagrange and Hermite interpolants [4] by using the values
of a heterogeneous mix of various orders of derivatives of a function
[3]. The use of suitable Birkhoff interpolants [3,4] offers an emerging
PSapproach [1,2], inwhich fast solutions canbegeneratedover a dense
grid. As shown in [1], the computational speed of the mesh refinement
is very fast [i.e., O!1"].
Unlike Lagrange and Hermite interpolation schemes, several

different Birkhoff interpolantsmay be designed over the samegrid. In
[1], we presented two viable Birkhoff interpolants that generated two
different PS discretizations over the same grid. As in [5,6], the grid in
[1] was completely arbitrary. The use of arbitrary grids allows us to
present clear ideas so that a proper choice of a particular grid can be
made based on the resulting mathematics. In this Note, we follow
[1,5,6] by using arbitrary grids for advancing the development of a
fast and unified framework for the PS computation of optimal
controls. We introduce a virtual optimization variable and show how
to unify the two cases presented in [1]. Beyond unification, we also
present simplicity in mathematical programming that isolates all the
Birkhoff terms to a linear system; as a result, all of the optimal
control data functions can then be handled separately and without
regard to the specificity of the grid points. The grid-agnostic
programming method allows us to rapidly test the performance of
various grid distributions. The results for Lobatto, Radau, and pure
Gauss-type grids for both Legendre—and Chebyshev–Birkhoff PS
methods are presented for a benchmark singular optimal control
problem [7–9]. The preliminary results indicate that a Birkhoff PS
method is remarkably robust in the sense that it is able to solve for
singular arcs across 12 different implementations associated with six
different Gaussian distributions. The mathematics of the virtual
optimization variable, the resulting unified implementation details,
the generation of efficient computational formulas for the Birkhoff
data functions, and the demonstration of the numerical robustness
of the Birkhoff PS method across a plethora of different Gaussian

grids for a singular optimal control problem are the subjects
of the Note.

II. Brief Review of Birkhoff PSOptimal Control Theory
One surprising aspect of the PS theory is that the discussions

become simple and more elegant when an arbitrary grid is used to
illustrate its features. This is, in part, because the use of a specific grid at
the outset tends to obfuscate an otherwise clear idea. To this end,we set

πN ≔ #τ0; τ1; : : : ; τN $ (1)

to be an arbitrary grid (or “mesh”) of points (see Fig. 1), such that

−∞ < τ0 ≤τ0 < τ1 < · · · < τN−1 < τN ≤τf < ∞ (2)

Following [1], we define two subsets of the grid πN given by

πNa ≔ #τ1; : : : ; τN $ (3a)

πNb ≔ #τ0; τ1; : : : ; τN−1$ (3b)

Thus,πN maybe representedeither byπN % #τ0; πNa $ orπN % #πNb ; τN $.
Let R ∋τ ↦ y∈R be a continuous bounded function with

bounded derivatives, as illustrated in Fig. 1. Then, two first-order
Birkhoff interpolants can be defined as [1]

INa y!τ" ≔ y!τ0"Ba
0!τ" &

XN

j%1

_y!τj"Ba
j !τ" (4a)

INb y!τ" ≔
XN−1

j%0

_y!τj"Bb
j !τ" & y!τN"Bb

N!τ" (4b)

in which INθ , θ ∈fa; bg are the two interpolation operators, and Bθ
j ,

θ ∈fa; bg, j % 0; 1; : : : ; N are (Birkhoff) functions that satisfy the
interpolation conditions

Ba
0!τ0" % 1; Ba

j !τ0" % 0; j % 1; : : : ; N

_Ba
0!τi" % 0; _Ba

j !τi" % δij; i % 1; : : : ; N (5a)

Bb
N!τN" % 1; Bb

j !τN" % 0; j % 0; : : : ; N − 1

_Bb
N!τi" % 0; _Bb

j !τi" % δij; i % 0; : : : ; N − 1 (5b)

The quantity δij in Eq. (5) is the Kronecker delta.
Remark 1: Equation (5) is obtained by simply imposing the

interpolation conditions:

INa y!τ0" % y!τ0";
d

dτ
!INa y!τ""

!!!!
τ%τj

% _y!τi"; i % 1; : : : ; N

(6a)

INb y!τN" %y!τN";
d

dτ
!INb y!τ""

!!!!
τ%τj

% _y!τi"; i% 0; : : : ;N− 1

(6b)

Remark 2: Although we will eventually limit the scope of our
computations to Birkhoff basis polynomials [i.e., polynomials that
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satisfy Eq. (5)], note that there is no assumption of polynomials in all
of the preceding equations.
Deferring a discussion of the details associated with vector-valued

functions to Sec. III.B, we consider scalar-valued functions in the
optimal control problem given by

x ∈R; u ∈R; τ ∈#τ0; τf$

!P"

8
>><

>>:

minimize J #x!⋅"; u!⋅"$ % E!x!τ0"; x!τf""

subject to _x!τ" % f!x!τ"; u!τ""

e!x!τ0"; x!τf"" % 0

(7)

Consider the application of Eq. (4a) to discretize problem P. To
achieve this goal, we define

xN!τ" ≔ x0B
a
0!τ" &

XN

j%1

vjB
a
j !τ" (8)

in which x0 and vj, j % 1; : : : ; N are the unknown optimization
variables over the arbitrary grid πN , with τ0 ≔ τ0 and τN ≔ τf.
Differentiating both sides of Eq. (8) and substituting the result in the
dynamic constraint _xN!τ" % f!xN!τ"; u!τ"", we get

x0 _B
a
0!τ" &

XN

j%1

vj _B
a
j !τ" % f!xN!τ"; u!τ"" (9)

Evaluating Eq. (9) over the grid πN % #τ0; πNa $ and using the result
to approximate the dynamics, we get a candidate discretization of
problem P given by [1]

X % !x0; Xa" ∈RN& 1; U % !u0; Ua" ∈RN& 1; Va ∈RN

!PN
a "

8
>>>>>>>><

>>>>>>>>:

minimize J Na #X;U; Va$ ≔ E!x0; xN"

subject to Va % f!Xa;Ua"

Xa % x0b0 & BaVa

IaVa % f!x0; u0" − x0 _B0!τ0"

e!x0; xN" % 0

(10)

in which

Xa≔!xN!τ1"; :::;xN!τN"" Ua≔!u!τ1"; :::;u!τN"" Va≔ !v1; :::;vN"

(11a)

Ia ≔ ! _Ba
1!τ0"; : : : ; _Ba

N!τ0""T b0 ≔ !Ba
0!τ1"; : : : ; Ba

0!τN""

Ba ≔ !Ba
j !τi""1≤i;j≤N (11b)

and f is reused as an overloaded function (see [8] p. 8) defined by

f!Xa;Ua" ≔ !f!x1; u1"; : : : ; f!xN; uN""

Remark 3:Only the state trajectory x!⋅" is approximated in terms of
Birkhoff basis functions. No specific assumption has been made on

the approximation of the control trajectory u!⋅". The value of the
control encoded in U is simply the sampled values of any function
that renders dynamic feasibility [8] at each point over the arbitrary
grid πN .
If we use Eq. (4b) to discretize problem P and follow the same

process as in arriving at Eq. (10), we get

X ≔ !Xb; xN" ∈RN& 1; U ≔ !Ub; uN" ∈RN& 1; Vb ∈RN

!PN
b "

8
>>>>>>>><

>>>>>>>>:

minimize J Nb #X;U; Vb$ ≔ E!x0; xN"

subject to Vb % f!Xb;Ub"

Xb % BbVb & xNbN

IbVb % f!xN; uN" − xN _BN!τN"

e!x0; xN" % 0

(12)

in which

Xb≔!xN!τ0"; :::;xN!τN−1"" Ub≔!u!τ0"; :::;u!τN−1""

Vb≔!v0; :::;vN−1" (13a)

Ib ≔ ! _Bb
1!τN"; : : : ; _Bb

N!τN""T bN ≔ !Bb
N!τ0"; : : : ; Bb

N!τN−1""

Bb ≔ !Bb
j !τi""0≤i;j≤N−1 (13b)

III. Unified Mathematical Programming Problem
Formulation

As noted in [1], Ba
0!τ" % 1 % Bb

N!τ" for all τ ∈#τ0; τf$.
This essentially follows from Eq. (4) and by considering the case
y!τ" % constant: Consequently, we have

_Ba
0!τ" % 0 (14a)

_Bb
N!τ" % 0 (14b)

As a result, both b0 and bN are simply equal to anN vector of ones.
Denoting this vector as 1, it is possible to produce a unified
mathematical programming problem for all cases after the intro-
duction of new variables and some rearrangement of the resulting
equations.

A. Reformulation of the Basic Problems

Define scalars v0 and vN for problems PN
a and PN

b , respectively,
according to

v0 ≔ IaVa (15a)

vN ≔ IbVb (15b)

Setting V ≔ #v0; v1; : : : ; vN $T as an “augmented” optimization
variable, Eqs. (10) and (12) can be rewritten as

X ∈RN& 1; U ∈RN& 1; V ∈RN& 1

!PN
a "

8
>>>>>>>><

>>>>>>>>:

minimize J Na #X;U;V$ ≔ E!x0; xN"

subject to V % f!X;U"

Xa % x0b0 & BaVa

IaVa % v0

e!x0; xN" % 0

(16a)

Fig. 1 Illustration of an arbitrary grid in a generic PS method [6].
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X ∈RN& 1; U ∈RN& 1; V ∈RN& 1

!PN
b "

8
>>>>>>>><

>>>>>>>>:

minimize J Nb #X;U; V$ ≔ E!x0; xN"

subject to V % f!X;U"

Xb % BbVb & xNbN

IbVb % vN

e!x0; xN" % 0

(16b)

Let Aa and Ab be two matrices defined according to

Aa ≔

2

64
1 −IN ..

.
0 Ba

0 0T ..
.

1 −Ia

3

75 (17a)

Ab ≔

2

4−IN 1 ..
.

Bb 0

0T 0 ..
.

−Ib 1

3

5 (17b)

Then, a unified discretization of problem P may now be written as

X ∈RN& 1; U ∈RN& 1; V ∈RN& 1

!PN
θ "

8
>>>>>>><

>>>>>>>:

minimize J N #X;U; V$ ≔ E!x0; xN"

subject to Aθ

"X

V

#
% 0

V % f!X;U"

e!x0; xN" % 0

(18)

An extension of the unification process to vector-valued data
functions is theoretically straightforward; however, we achieve new
insights by way of a specific organization of the variables, as
shown next.

B. Structured Mathematical Programming for the General Problem

Consider a generic optimal control problem given by

x ∈RNx ; u ∈RNu ; t ∈#t0; tf$

!P"

8
>><

>>:

minimize J #x!⋅"; u!⋅"; t0; tf$ % E!x!t0"; x!tf"; t0; tf"

subject to dx!t"∕dt % f!x!t"; u!t""

e!x!t0"; x!tf"; t0; tf" % 0

(19)

in which we now allow Nx > 1; Nu > 1, e:RNx × RNx → RNe , with
Ne ≥ 1, and the horizon tf − t0 > 0 also being an optimization
variable in addition to the clock times t0 and tf. The incorporation of
inequalities and path constraints in Eq. (19) is straightforward; we
deliberately avoid these constraints for brevity. The generation of an
efficient mathematical programming formulation of a discretization
of problemP involves three key steps: 1) a selection of an appropriate
function for the domain transformation, 2) a discriminating matrix
organization of the discretized vectors, and 3) a matrix–vector
mathematical programming problem formulation.

1. Domain Transformation

In following [8,10], we first perform a domain transformation
using a suitable function Γ:

t % Γ!τ; t0; tf;p" (20)

in which p ∈RNp is a parameter that can be selected or optimized
[10,11], and Γ is such that t0 % Γ!τ0; t0; tf;p" and tf %
Γ!τf; t0; tf;p". With τf % 1 % −τ0, the simplest choice of Γ for a
finite horizon problem is the affine function:

t % Γ!τ; t0; tf" ≔
$
tf − t0

2

%
τ &

$
tf & t0

2

%
(21)

For infinite horizon problems (i.e., if #t0; tf$ is replaced by #0;∞"),
a common choice [8,12,13] for Γ is

t % Γ!τ;p" ≔ p

$
1 & τ
1 − τ

%
; p > 0 (22)

in which τ ∈#−1; 1$. Thus, with a suitable choice of Γ, we transform
the differential equations according to

_x!τ" %
$
dΓ
dτ

%
f!x!τ"; u!τ"" (23)

In Eq. (23), we have abused notation for expediency. The symbol
x!τ" should be written more appropriately as x!Γ!τ; t0; tf;p"". We
have avoided such elaborations for simplicity of notation for u!⋅"; _x!⋅"
and dΓ∕dτ as well.
Remark 4: For finite horizon problems, spectral efficiency can be

enhanced by using a nonlinear time domain transformation τ ↦ t
instead of the affine formula given by Eq. (21). Indeed, in DIDO
[8,14], a state-of-the-art MATLAB® optimal control toolbox, a
nonlinear time domain transformation #−1; 1$ ↦ #t0; tf$ is used to
support anti-aliasing [15,16] and assist in the resolution of the system
trajectory [8,11,16,17].

2. Matrix Organization of the Discretized Vectors

Using Eq. (23), we can construct a version of problem PN
θ for

problemP by repeating the process of the previous subsection to each
variable. Although this is theoretically viable, it is practically unsatis-
factory. To generate an efficientmultidimensional version of problem
PN
θ that is symbolically connected to problem P in some desirable

manner, we define three matrices according to

X ≔ #x0; x1; : : : ; xN $ ∈RNx×!N& 1" (24)

V ≔ #v0; v1; : : : ; vN $ ∈RNx×!N& 1" (25)

U ≔ #u0;u1; : : : ;uN $ ∈RNu×!N& 1" (26)

in which xk ∈RNx , vk ∈RNx , uk ∈RNu , k % 0; 1; : : : ; N.
Remark 5: The matrix organization of the discretized optimal

control variables given by Eqs. (24–26) was first introduced in the
year 2001 as part of a MATLAB programming technique in DIDO
[8]. The variables X and U are packed in a single primal structure as
primal.states and primal.controls, respectively. The corresponding
domain transformed grid, πN , is contained in the same primal
structure under primal.time. Such DIDO programming techniques
are now quite popular and replicated in many other software
packages. See pp. ix–x and Sec. 1.1.2 in [8] for further details.

3. Matrix–Vector Mathematical Programming Problem Formulation

UsingX,V, andU as matrices of optimization variables, it follows
that a Birkhoff discretization of problem P can be framed as

X∈RNx×!N& 1"; U∈RNu×!N& 1"; V∈RNx×!N& 1"; t0∈R; tf∈R

!PN
θ "

8
>>>>>>>>><

>>>>>>>>>:

minimize J N #X;U;V;t0;tf$≔E!x0;xN;t0;tf"

subject to Aθ

"
XT

VT

#
%0

V%
&
dΓ
dτ

'
f!X;U"

e!x0;xN;t0;tf"%0

(27)

in which we have reused f as an overloaded operator (see [8] p. 8)
defined by
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f!X;U" ≔ #f!x0; u0"; f!x1; u1"; : : : ; f!xN; uN"$ ∈RNx×!N& 1"

Remark 6:Becausematrix properties are used to define it, problem
PN
θ is not a nonlinear programming (NLP) problem in a standard

form, in which the optimization variables are organized in terms of a
single vector. Note also that the constraint equations in Eq. (27) are
not described in terms of vectors; rather, they are given compactly in
terms of matrices and functions of matrices.
Remark 7: By inspection of Eq. (27), it follows that the number of

optimization variables grows as O!N"; the constant growth rate c is
given by c% !2Nx & Nu". In its matrix form, problem PN

θ is dense;
however, it can be transformed to a sparse NLP problem by
rearranging all the matrix variables to a single column vector. Under
this construct, the density of the (Jacobian of the) transformed data
functions varies as O!1∕N". The constant density drop rate is given
by c% !2Nx & Nu".
From Remarks 6 and 7, it follows that the “space” of discretized

optimal control problems is much smaller than the space of NLP.
In other words, not all NLP originate from transformations of
discretized optimal control problems. Consequently, it is inadvisable
to simply patch a discretized optimal control problem to an NLP
solver. Although such naive methods are quite popular, the resulting
minimalist’s approach severely limits the capability of an otherwise
more powerful idea [14]. To solve problem PN

θ effectively, an
optimal-control-centric algorithm is needed. The first step in this
direction was taken in [18] in the form of a spectral algorithm. An
advanced, guess-free version of this algorithm is implemented in
DIDO. This algorithm can solvemany reportedly hard problems [19]
with embarrassing ease; see [8,20] for details. Note also that it is
possible to use the optimal control theory itself to construct new
algorithms [21].

IV. Efficient Computational Formulas for the Birkhoff
Matrices

A fast optimal control programming algorithm mandates an
efficient computation of the constituent elements of problem PN

θ . A
quick examination of Eq. (27) shows that all the Birkhoff terms are
isolated and packed in the matrixAθ. The remainder of the equations
are problem specific. Hence, a fast computation of Aθ supports
performance gains across all problems. To this end, we consider the
problem of finding functions that satisfy Eq. (5). We select the space
of polynomials for these basis functions. These are the Birkhoff basis
polynomials [2]. In much the sameway as it is convenient to express
the components of a finite-dimensional vector by the use of an ortho-
gonal coordinate system, significant efficiencies can be obtained by
expressing a Birkhoff polynomial in terms of orthogonal poly-
nomials. To better understand the best choice of orthogonal poly-
nomials, we begin with a generic set of orthogonal polynomials
pk!τ"; k % 0; 1; : : : ; N, τ ∈#−1; 1$ of degree atmostN that spanPN ,
the space of polynomials of degree N.
From the assumption of orthogonality, we have

Z
1

−1
pn!τ"pm!τ"ω!τ" dτ

(
% 0; if n ≠ m

> 0; if n % m
(28)

in which ω!τ" is some nonnegative weight function. Setting

γk ≔
Z

1

−1
pk!τ"pk!τ"ω!τ" dτ (29)

it follows that any polynomial q!⋅" ∈PN may be expressed in terms
of its orthogonal components

q!τ" %
XN

k%0

ck

$
pk!τ"
γk

%
(30)

in which ck ∈R are the components of q!⋅" along the orthogonal
directions, pk; k % 0; 1; : : : ; N. The coefficient ck can be

computed by taking dot products on both sides of Eq. (30)
according to

Z
1

−1
q!τ"pl!τ"ω!τ" dτ %

XN

k%0

ck

Z
1

−1

$
pk!τ"pl!τ"ω!τ"

γk

%
dτ % cl;

l % 0; 1; : : : ; N (31)

A. Explicit Computational Formulas for Bθ

A quick examination of Eq. (5) shows that it is prudent to find the
derivative of Birkhoff polynomials and integrate it afterward; hence,
we follow [2] and use Eq. (30) to express _Bθ

j !τ" as a polynomial of
degree N − 1:

_Bθ
j !τ" %

XN−1

k%0

αθkj

$
pk!τ"
γk

%
(32)

in which αθkj ∈R are the k % 0; 1; : : : ; N − 1 unknown components
of _Bθ

j !⋅" for each j % 0; 1; : : : ; N. Integrating both sides of Eq. (32),
we can write

Z
τ

τ0

_Ba
j !ξ" dξ % Ba

j !τ" − Ba
j !τ0" %

XN−1

k%0

$
αakj
γk

% Z
τ

τ0

pk!ξ" dξ (33a)

Z
τN

τ

_Bb
j !ξ"dξ%Bb

j !τN"−Bb
j !τ"%

XN−1

k%0

$
αbkj
γk

%Z
τN

τ
pk!ξ"dξ (33b)

As noted in [2], the boundary conditions given in Eq. (5) simplify
Eq. (33) to

Ba
j !τ" %

XN−1

k%0

$
αakj
γk

% Z
τ

τ0

pk!ξ" dξ; j % 1; : : : ; N (34a)

Bb
j !τ" %

XN−1

k%0

$
αbkj
γk

% Z
τ

τN

pk!ξ" dξ j % 0; : : : ; N − 1 (34b)

Thus, the computation of Birkhoff polynomials now reduces to an
efficient computation of just the following three quantities: 1) αθkj,
2) ∫ τ

τ0
pk!ξ" dξ and ∫ τ

τN
pk!ξ" dξ, and 3) γk.

B. Computation of αθkj
Analogous to Eq. (31), we can compute αθkj by taking the dot

product on both sides of Eq. (32); this generates

αθlj %
Z

1

−1
_Bθ
j !τ"pl!τ"ω!τ" dτ; l % 0; 1; : : : ; N − 1 (35)

The integrand in Eq. (35) is a polynomial of degree at most
!2N − 2"; hence, using an appropriate Gaussian quadrature formula
[22–24], we can write

αθlj %
XN

n%0

_Bθ
j !τn"pl!τn"wn; l % 0; 1; : : : ; N − 1 (36)

in which τn; n % 0; : : : ; N are !N & 1" quadrature points that are, in
principle, independent of the points in πN . If this choice of
independence is made, then we will be unable to efficiently exploit
the Kronecker conditions stipulated in Eq. (5). For this reason, we
now choose the grid πN ≡ πNG to be based on Gaussian quadrature
formulas that allow us to set:

_Bθ
j !τn" % δθjn %

(
δjn; 1 ≤j; n ≤N; if θ % a

δjn; 0 ≤j; n ≤N − 1; if θ % b
(37)
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Remark 8:All equations before Eq. (36) are valid for a completely
arbitrary grid. The juxtaposition of Eqs. (36) and (37) explains why
we choose Gaussian grids.
Limiting our discussions henceforth to Gaussian grids, we get

αalj % _Ba
j !τ0"pl!τ0"w0 & pl!τj"wj j% 1; : : : ;N; l% 0; : : : ;N−1

(38a)

αblj%pl!τj"wj & _Bb
j !τN"pl!τN"wN j%0; :::;N−1; l%0; :::;N−1

(38b)

in which τ0; τ1; : : : ; τN are Gaussian points associated with the
choice of the orthogonal polynomials.
To determine _Ba

j !τ0" and _Bb
j !τN" in Eq. (38), we use the fact that

_Bθ
j !⋅" ∈PN−1; hence, we have the orthogonality condition:

Z
1

−1
_Bθ
j !τ"pN!τ"ω!τ" dτ % 0; j % 0; 1; : : : ; N (39)

in which pN is the orthogonal polynomial of degree N. Using the
same Gaussian grid πNG as before, Eq. (39) can be written as

XN

n%0

_Bθ
j !τn"pN!τn"wn % 0 j % 0; 1; : : : ; N (40)

Using Eq. (5), Eq. (40) simplifies to

_Ba
j !τ0"pN!τ0"w0 & pN!τj"wj % 0 (41a)

pN!τj"wj & _Bb
j !τN"pN!τN"wN % 0 (41b)

for j % 0; 1; : : : ; N.
Collecting all relevant equations and, in particular, the results from

Eqs. (14), (32), (38), and (41), we arrive at the following simple, fast,
and efficient computational formulas for αθkj:

αak0 % 0 αakj % wj

$
pk!τj" −

pN!τj"pk!τ0"
pN!τ0"

%
j % 1; : : : ; N

(42a)

αbkN % 0 αbkj % wj

$
pk!τj" −

pN!τj"pk!τN"
pN!τN"

%
j % 0; : : : ; N − 1

(42b)

for k % 0; 1; : : : ; N − 1.
Remark 9: Equation (41) also provides a computational formula

for constructing Ia and Ib.
Remark 10:The computational formulas given in Eq. (42) apply to

all choices of orthogonal polynomials.

C. Computation of ∫ τ
τ0
pk!ξ"dξ and ∫ τ

τN
pk!ξ"dξ

An orthogonal polynomial can be expressed in terms of a linear
combination of its derivatives [25]. Hence, computing its integrals
may be reduced to an evaluation of a linear combination of the
orthogonal polynomials. In limiting the scope of this Note, we
demonstrate the production of efficient computational formulas for
just the “big two” Gegenbauer polynomials, namely, Legendre and
Chebyshev [22].

1. Legendre: pk % Pk

If the generic orthogonal polynomialpk is chosen to be a Legendre
polynomial denoted by Pk, we have [23]

Pk!τ" %
1

2k & 1
! _Pk& 1!τ" − _Pk−1!τ""; k ≥ 1 (43)

Integrating both sides of Eq. (43), we get

Z
τ

τ0

Pk!τ" dτ %
1

2k & 1
!Pk& 1!τ" − Pk−1!τ" & Pk−1!τ0"

− Pk& 1!τ0""; k ≥ 1 (44a)

Z
τ

τN

Pk!τ" dτ %
1

2k & 1
!Pk& 1!τ" − Pk−1!τ" & Pk−1!τN"

− Pk& 1!τN""; k ≥ 1 (44b)

2. Chebyshev: pk % Tk

If pk is chosen to the Chebyshev polynomial of the first kind, Tk,
we have [22,23]

Tk!τ" %
_Tk& 1!τ"
2!k & 1" −

_Tk−1!τ"
2!k − 1" ; k ≥ 2 (45)

Integrating both sides of Eq. (45), we get

Z
τ

τ0

Tk!τ" dτ %
1

2!k & 1"
!Tk& 1!τ" − Tk& 1!τ0""

−
1

2!k − 1"
!Tk−1!τ" − Tk−1!τ0""; k ≥ 1 (46a)

Z
τ

τN

Tk!τ" dτ %
1

2!k & 1"
!Tk& 1!τ" − Tk& 1!τN""

−
1

2!k − 1"
!Tk−1!τ" − Tk−1!τN""; k ≥ 1 (46b)

D. Computation of γk
The quantity γk is given in closed form according to

Legendre: γk %
2

2k & 1
(47)

Chebyshev: γk %
(
π; if k % 0

π∕2; if k ≥ 1
(48)

Remark 11: The computation of γk and the integrals described in
Sec. IV.D do not depend upon the choice of grid associated with the
polynomial of choice. Consequently, the formulas provided apply to
all types of Legendre and Chebyshev grids.

V. Numerical Tests over a Singular Optimal
Control Problem

The Gong problem [7–9] is a deceptively simple singular optimal
control problem given by

Birkhoff
PS

(a)

(b)

J
a
c
o
b
i

Legendre

Chebyshev

Gauss-Lobatto

Gauss

Gauss-Radau

Fig. 2 Schematic for generating at least 12 variants of the Birkhoff PS
method.
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x ≔ !x; v" ∈R2; u ∈U ≔ fu ∈R: 0 ≤u ≤2g; t ∈#0; 1$

!G"

8
>>>>>>>><

>>>>>>>>:

minimize J #x!⋅"; u!⋅"$ %
R
1
0 v!t"u!t" dt

subject to _x!t" % v!t"

_v!t" % −v!t" & u!t"

!x!0"; v!0"" % !0; 1"

!x!1"; v!1"" % !1; 1"

(49)

The problem is singular because ∂2H∕∂u2 % 0, in whichH is the
PontryaginHamiltonian [8]. This problemhas previously servedwell
as an excellent test case for discriminating different discretization
schemes [8,9] and grid selections [7,8]. In fact, a vast number of
computational methods fail to solve this problem even though the
exact solution is very simple:

x!t" % t v!t" % 1 u!t" % 1 (50)

Typically, low-order computational methods (e.g., Runge–Kutta)
or improper implementations of PS methods fail to find a solution to
this problem [7,9]. This is not entirely surprising because low-order
computational methods require index-reduction transformations to
solve singular optimal control problems [19]. In sharp contrast, a
correct implementation of a PS method can find solutions to a broad
class of singular optimal control problems without going through a
laborious process of index reduction; see [20] for a detailed compara-
tive analysis. For all these reasons, the Gong problem serves an
excellent simple test case to explore the correctness of a Birkhoff PS
method.
Our unified mathematical programming formulation presented in

Sec. III allows us to quickly test a plethora of variants of the Birkhoff
PS method by way of different choices of orthogonal functions and
grid sections. Figure 2 shows how to generate at least 12 variants of
the Birkhoff PS method using the formulas presented in Sec. IV.
An implementation of all 12 variants of the Birkhoff PS method
generated virtually identical solutions to the Gong problem. The
result for one of thevariants [i.e., Chebyshev–Gauss–Lobatto (CGL)]
is shown in Fig. 3. Although the CGL result was anticipated, what
was surprising about the other variants of theBirkhoff PSmethodwas
that it was successful even forGauss- andRadau-based grid points. In
other words, a Birkhoff PSmethod is apparently able to overcome the
well-known deficiencies [7,8,10,26] of Gauss and Radau grids. Its
apparent universal efficacy suggests that a significant amount of
theoretical analysis remains to be done to understand and advance
Birkhoff PS optimal control programming techniques.

VI. Conclusions
The formulation of a pseudospectral (PS) mathematical

programming problem for an arbitrary grid is reasonably
straightforward; however, a proper implementation of its constituent
matrices, grid points, etc., requires a significant amount of
sophistication and computational finesse. To advance an efficient

implementation of a Birkhoff PS method, many details of the
computational process and formulas for a plethora of orthogonal
functions and grids have been provided so that various options may
be readily tested over sample problems. It is quite critical to
understand that, despite its superficial simplicity, a proper imple-
mentation of a PS method requires a thorough understanding of the
many nuances in optimal control programming. A naive patching of
the various computational elements of approximation theory and
optimal control can produce poor or even erroneous results. A correct
implementation of PS programming techniques can solve a wide
variety of singular optimal control problems without requiring a
painstaking index-reduction process. To advance a clearer under-
standing and implementation of the emergingBirkhoff PSmethods, a
unified grid-agnostic mathematical programming problem formu-
lation has been presented. Preliminary numerical tests indicate a high
degree of robustness of the Birkhoff PS method relative to different
choices of ultraspherical polynomials and various Gaussian grids. As
a means to further stress the apparent robustness of a Birkhoff PS
method, a singular optimal control problem was considered as a test
case. The particular singular optimal control problem thatwas chosen
in this Note was the Gong problem that has previously been able to
discriminate between different discretizations and grid selections.
Twelve variants of the Birkhoff PS method produced the correct
solution. The computational results suggest that there are likelymany
deeper aspects of the Birkhoff PS optimal control theory that await
discovery.
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