
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1990-07

Applying a Computer Aided Prototyping
System to the Software of an Autonomous
Underwater Vehicle

Bihari, Thomas E.; McGhee, Robert B.; Luqi; Lee, Yuh-jeng
Workshop on Software Tools for Distributed Intelligent Control

https://hdl.handle.net/10945/64730

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Applying a Computer Aided Prototyping System

to the Software of an Autonomous Underwater Vehicle

I. Introduction

Thomas E. Bihari*, Robert B. McGhee, Luqi, Yuh-jeng Lee

Department or Computer Science
Naval Postgraduate School
Monterey, Calif omia 93943

(408) 646-2449

• Adaptive Machine Technologies, Inc.
1218 Kinnear Road

. Columbus, Ohio 43212
· (614) 486-7741

CONF-9007134
Page 11

This workshop addresses an important direction for tool development Within the current
state of the practice, a great deal of duplicated effort is spent developing similar software
systems within .a particular application domain, such as distributed, intelligent vehicle
control. The experience gained during these projects is wasted if it cannot be used to aid the
development of subsequent, similar projects.

We believe that this experience can provide the basis for developing a common ground for all
the applications in a domain. The development of domain-specific architectures and tools
supporting the essential processes and properties of particular application domains will allow
reuse of the domain knowledge and domain-specific solution techniques that comprise the
most expensive part of the effort to develop new systems.

Expensive tool implementation efforts can be wasted if tool construction is started without a
clear idea of the problems the tools are supposed to solve and without a systematic and
formalized set of solution techniques to be incorporated in the tools. Constructing tools is
both labor intensive and skill intensive, and involves knowledge both of software engineering
principles and of the application domain. Because this combination is hard to find, tools
developed by software engineering researchers are often "demo driven" and lack
applicability, while those developed by application domain experts are often ad hoc and lack
strong foundations.

The best tools are those which are based on strong theoretical principles, and also driven by
a strong, vocal user community. This can be difficult to achieve when developing tools that
push the state of the art, regardless of whether the effort is done by industry or by
universities. The perceived reward structure for researchers in the tool provider and user
communities usually makes such interaction seem undesirable - more work with little direct
payoff. DOD support is essential in building an interaction between the ,roviders and users
of domain-specific software development tools. Appropriate modes of interaction should be
identified and supported.

CONF-9007134
Page 12

This paper presents the result of a study of the potential for interaction between two on­
going research projects at the Na val Postgraduate School. . The Computer-Aided Prototyping
System (CAPS) project 1 is developing models and support tools for rapid prototyping of
embedded real-time software. The Autonomous Underwater Vehicle (AUV) project 2 is
developing a computer-controlled submersible·vehicle.

The purpose of this study was to examine the goals of the A UV project and its resulting
software requirements, and the goals and capabilities of the CAPS project, and to determine
the benefiL~ of pursuing joint research in the application of CAPS to the AUV software.

II. The Computer-Aided· Prototyping System Project

The goal of the Computer Aided Prototyping System (CAPS) project [Luqi88] [Luqi88a]
[Luqi88b] [Luqi89] is to enable rapid prototyping of parallel and distributed real-time
software, as a way of increasing productivity and decreasing software costs. The CAPS
project focuses on automated methods (or retrieving, •adapting, and combining reusable
components based on normalized module specifications; establishing feasibility of real~time
constraints via scheduling algorithms; simulating unavailable components via algebraic
specifications; automatically generating translators and real-time schedules for suppf)rting
execution; constructing a prototyping project database using derived mathematical models;
providing automated design completion and error checking facilities in a designer interface;
and establishing a convenient graphical interface for design and debugging.

CAPS is a set of software tools, sharing a common basis consisting of a rapid-prot1Jtyping
software development methodology, an enhanced-dataflow computational model and a
prototyping language. The CAPS tool set includes a graphical editor, a syntax directed
editor, a database of existing software components, a database of existing software designs,
a translator which converts the prototyping language into a particular implementation
language (e.g., Ada), static and dynamic task schedulers, a debugger, and others. The tool
set is running on a Sun SPARCstation under UNIX and X-Windows, and is portable to any
system with UNIX and X-Windows. The product produced by the system is Ada code,
which is portable to any system with an adequate Ada compiler. The system can be used to
design distributed and intelligent systems [Luqi89a].

CAPS' support for the rapid-prototyping methodology makes it possible for prototypes to be
designed quickly and to be executed to validate the requirements. CAPS manages the entire
prototyping process, from the development of the software design, through the retrieval or
creation of reusable Ada software components, to the generation, execution, and analysis of
the resulting Ada program. CAPS users may iterate through this process until they are
satisfied with the software's behavior.

1. The CAPS project is directed by Dr. Luqi and is supported by the National Science Foundation under grant
number CCR-8710737.
2. The AUV project is directed by Dr. A.J. Healey and is supported by Naval Postgraduate School funding.

Bihari, McGhee, Luqi, Lee Page 2

CONF-9007134
Page 13

The CAPS computational model and tools provide the designer of a software system with a
way to draw an augmented dataflow diagram which contains the necessary timing anr1

control constraints for specifying embedded software systems. The model maximizeJ
parallelism by enforcing timing and control constraints only where necessary. The graphical
design and the constraints drawn through the CAPS graphical editor for an embedded control
system are based on the syntactical structure of the Prototype System Description Language
(PSDL) [Luqi88a].

The specification part of the PSDL program describes the bc1sic attributes of required
software components. (CWTently the components are Ada units, but other languages can
also be supported.) This information is used by a tool which searches for appropriate
reusable components stored in the software base. If no suitable component is found in the
existing software base, the designer ma/ choose to create a completely new component from
scratch or to create a new component by combining or modifying an existing set of
components. When the design is completed, the PSDL program is translated into Ada code
which has the structures for realizing the timing and control constraints built in. , The Ada
,program is then compiled.

The designer may then execute the program and evaluate the prototype's behavior against
the behavior that he expected it to have. If the comparison results are not satisfactory, the
designer may modify the prototype and evaluate the prototype again. This process continues
until the prototype meets the requirements.

CAPS was designed to be used for developing prototypes for real-time systems. In CAPS, a
hard real-time constraint is a bound on the response of a process which must be satisfied
under all operating conditions. CAPS specifications can represent a variety of real-time
constraints, including (1) maximum execution times for modules, (2) minimum calling
periods, (3) synchronization of processes with sporadically-arriving external data or
interrupts, (4) delays required by limitations on input/output devices, (5) maximum response
times, and (6) periodic system actions.

The CAPS model and tool set have been applied to real-time software designs in several
areas, including C3I [Luqi89] and process control [Luqi88a].

III. The Autonomous Underwater Vehicle Project

III.l. Overview of the AUV-II

The AUV-II is the second in a series of autonomous underwater vehicles developed at the
Naval Postgraduate School. It. is described in detail in [Cloutier90] [Healey89] [Kwak90].
Briefly, the AUV-II is a self-contained vehicle, approximately 16 inches wide, 10 inches
deep, and 93 inches long. It displaces approximately 387 pounds and is powered by on­
board batteries.

The AUV-II is a research vehicle designed as a testbed for research in mission planning,
path planning, sonar data analysis and world modeling, navigation through obstacle fields,
and other intelligent behaviors.

Bihari, McGhee, Luqi, Lee Page 3

CONF-9007134
Page 14

The A UV-II is propelled by two main screws (port and starboard aft) and four tunnel
thrusters (fore and aft vertical, and fore and aft athwartships). These may be used to control
five qegrecs of freedom; the AUV-II's roll axis is not controlled. However, when the AUV-
11 is moving with sufficient speed, -the control surfaces (bow planes, stem planes, and fore
and aft rudders) may be used in conjunction with the screws and thrusters to control all six
degrees of freedom, including roll.

The AUV-II's sensor system consists o(four pencil-beam sonar transducers mounted in the
AUV-II's nose, a full suite of inertial sensors (three rate gyros, three accelerometers, a
vertical gyro and a directional gyro), a flux gate compass, a paddle-wheel speed sensor, and
individual motor RPM sensors.

Because the AUV-II is a research vehicle, its computation&l requirements are subject to
change. It is important that the on-board computer hardware be modifiable and extensible,
by adding more raw computing power, memory, and J/O devices, and by adding different
types of these components.

The on-board computer is centered around a 12-slot GESPAC G-96 bus. The bus currently
hosts one GESPAC MPU-201-IF single-board computer (25 MHz Motorola 68020 and 68882
processors, 2.5 Mb of RAM, and up to 4 Mb of EPROM), and 5 other boards containing
interfaces to a 200 Mb hard disk, parallel and serial communication ports, analog-to-digital
input channels interfaced to the AUV-Il's sensors, and digital-to-analog output channels
interfaced to the AUV-II's effectors. There are currently 6 free bus slots. These are
expected to be used for additional GESPAC MPU-30HF (68030-based) boards, a
Transputer board, and other devices as necessary.

The GESPAC computer uses Microware's OS-9 real-time operating system. OS-9 is a full
operating system, with a file system, native compilers and other development tools. OS-9
uses a time-slicing, prioritized, task scheduler. Intertask communication is via global
memory, pipes, signals, and BSD4.2 sockets for inter-processor communication.

In addition to the AUV-II itself, a laboratory computer identical to that in the AUV-11, and a
graphical simulation of the AUV-11 and its environment (running on a Silicon Graphics
workstation), are available for software developm·ent.

111.2. Characteristics of the AUV .. n Software

The AUV-II's software is described in detail in [Cloutier90]. Our main interests for this
study were not in the particular guidance and control algorithms, but in the duties performed
by the software, the software's real-time requirements, the overall software design, and the
expected life cycle of the software.

The AUV-II's software is designed as a layered architecture in which higher levels pass
requested vehicle states to lower levels. The lower levels attempt to meet. the requests,
possibly modifying them to make them feasible, and may pass information back to the higher
levels, allowing the higher levels to modify .future requests. There are currently three levels.
The top level consists of the Mission Planner (which is off-board), and the Mission
Replanner (an. on-board planning subsystem which may ovenide the off-board planner).

Bihari, McGhee, Luqi, Lee Page4

CONF-9007134
Page 15

These subsystems generate sets of paths describing particular missions.

The middle level consists of the Guidance sub-system, which receives paths from the
Mission (Re)Planner and calculates individual "postures" to be achieved by the AUV-II.
The bottom level consists of the Autopilot. subsystem, which servos the AUV-II's effectors
to achieve the requested postures. This is perfonned on a 100 ms pericxi ..

To provide input to the A11topilot's servo control loc•p, the state of the AUV-II must be
determined from the inertial, depth, and speed sensors, This must be done by the Navigation
sub-system at rates sufficient to provide an accurate current state. The Al TV-II state is
currently updated every 100 ms. Project goals call for data from the sonar sensors to be
integrated with other sensor data, and with pre-loaded obstacle maps, in several phases.
Initially, sonar data will be used to correct inertial sensor drift. Eventually, sonar data will
be used for collision avoidance and for revising the existing world mcxiel. Sonar data will be
collected at 100 ms periods, and world modeling will occur at somewhat longer periods.

The relative steering effectiveness of the thrusters vs the control surfaces depends on the
AUV-II's forward velocity. It is anticipated that the control surfaces' effectiveness will vary
from zero at zero velocity to approximately four times that of the thrusters at maximum
velocity. Therefore, the AUV wll'motion control strategy, and the control software, has been
divided into two modes: Hovering Mode and Transit Mode. The software must be able to
cleanly switch between these modes while in operatior..

In addition to these "normal" operationr.1-i reflex actions like collision avoidance may be
triggered by special circumstances and must produce quick responses, sometimes overriding
existing activities.

The software characteristics of the A UV-II are both similar to and different from those of the
Adaptive Suspension Vehicle (ASV), a three-ton, self-contained, six-legged walking
vehicle1 with which we have been associated in the past [Bihari89]. Both vehicles perform
sensing, world modeling, motion planning, and servo control in real time.

For the most part, the AUV-II's guidance and control software is not required to meet
extremely tight real-time requirements. Sensing and servo control periods are on the order
of 100 ms or greater, with some allowable slippage. This is easily within the capabilities of
existing computer hardware, real-time operating system, and software technologies. The
ASV has tighter real-time requirements than the AUV-11. For example, the ASV's leg
servo control software executes with periods of 10 ms or less, with serious consequences if
servo cycles are missed. The ASV's real-time requirements are well-defined and generally
situation-independent, however.

The AUV-11 is required to be completely autonomous, while the ASV has an on-board
operator perfonning many of the high-level world modeling and motion planning duties. The
AUV-11 must maintain a larger view of time (e.g., for an entire mission). For example,

1. Spons(){ed by the Defense Advanced Research Projects Agency under contracts MDA903-82-K~0058,
DAAE0?-84-K-ROOl, and MDA972-88-C-0031.

Bihari, McGhee, Luqi, Lee Page 5

CONF-9007134
Page 16

planning may take a significant amount of time, and the a.mount of time may be situation­
dependent The AUV-11 must be capable of reasoning about time, and of "planning to plan",
and the enforcement of the resulting timing constraints must be handled by the underlying
operating system and support tools.

Furthennore, much of the infonnation contained in the AUV-II system is time-dependent.
That is, the AUV --II's perception of the state of itself, obstacles, and mission plans is
dependent on the relationship between the current time and the time at which the inf onnation
was created (e.g., the age of the data). Portions of the AUV-II's software may resemble a
temporal database.

The AUV-Il is experimental, and the software's duties range from low-level sensor data
processing and servo control to high-?evcl planning and world modeling. Ideally, the AUV-11
software development environment would support the integration of a variety of programming
paradigms, including procedural, functional, object-oriented, logic-based, and rule- or frame­
based. Practically, a system supporting Ada and Common Lisp could provide a basis for
most of these paradigms. (This would be a step forward in the state of the practice. Almost
all existing AUVs, including the AUV-II, are programmed in C.)

In summary, the AUV-11 software system has the following characteristics:

From a software architecture standpoint:

1. It is hierarchically structured, and it can best be understood by viewing it at different
levels of abstraction for different purposes.

2. It consists of subsystems, some of which are tightly coupled, others of which are loosely
coupled (and execute at different rates).

3. It operates in at least two separate modes.

4. It must occasionally perform reflex actions which override normal operations.

5. Most of the computations have real-time constraints.

6. It includes time-dependent representations of the states of the AUV-II and environment.

From a software management standpoint:

1. Th~ specification, design, and implementation of the entire system (mechanical hardware,
electrical and electronic hardware, md software) will evolve as existing research questxons
are answered and new questions are asked.

2. Small changes to the software can be expected to occur frequently. That is, software
development will follow an experimental, iterative, implement-execute-evaluate cycle. The
software may also need to be specially configured for specific missions.

3. Multiple versions of the software may be "active" at the same time, as different

Bihari, McGhee, Luqi, Lee Page6

researchers conduct independent experiments using specialized components integrated with
a common software base.

4. The software base can be expected to outlive (in a project sense) most of the software
developers. Software development methodology support and enforcement is important.

5. It must be possible for different people to understa11d and manipulate the system at
different levels of abstraction (e.g., as "black boxes"), so they not have to learn the entire
system in order to perform useful research. It must ncit talce too long to "come up to speed".

6. Different languages and programming paradigms may be most effective for different
components (or different versions of the same component). A uniform framework for
managing these disparate components is needed.

IV. The Potential for Further CAPS-A UV Projed Cooperation

CONF-9007134
Page 17

In theory, the interaction of a real-time software tool t,rovider (the CAPS projeict)with a
real-time software tool user (the AUV project) has many advantages. The CAPS project
would benefit from the availability of a realistic appli(:ation. The A UV project would benefit
from an improved software development methodolog~1 and support tools. In practice, the
interaction of two such research projects must be real~stic and well-defined if it is to be
beneficial to both parties.

In our view, CAPS provides an appropriate and extremely useful methodology for developing
real-time control software like that of the AUV projec:t. The concepts supported by CAPS
generally match those we expect for the AUV-II's lif~: cycle. The integrated tool set should
lead to easier software development and strict enforce:ment of the software development
methodology. PSDL seems to contain the features necessary for the AUV software.

There are practical considerations, however. For example, the current A UV software is
written in C, while CAPS supports only Ada at this time. The CAPS tools currently run
under X Windows on a Sun SPARCstation, while the AUV tools are running on an IBM
PC/AT compatible. Resolution of these practical ma1:ters could consume valuable "research"
time. Some care is also needed because a complete treatment of the problem requires
solutions to two unsolved research problems: real-time databases and real-time scheduling.
Domain-specific assumptions and approaches must be developed to provide adequate
solutions to these problems. Some progress in these directions has already been made
[Galik88] [Guentenburg89] [Huskins90] [Mostov90] [Sun90] [White89],. but these
solutions have not yet been incorporated into the cun·ent implementation of CAPS.

We see the potential for a step by step increase in interaction between the CAPS and AUV
projects. This should begin by establishing a realistic set of goals. Those goals might
include, for example:

1. Formulate the AUV-II software design in PSDL and critique the design.

2. Translate the AUV-II's existing C code to Ada, and move the AUV-II development

Bihari, McGhee, Luqi, Lee Page 7

,11 II ,11 , , 1,

CONF-9007134
Page 18

environment to a platform with appropriate Ada tools and the X-Windows support needed by
CAPS (e.g., Sun or DEC MicroVAX).

3. Form the AUV-II's Ada modules into CAPS reusable components and develop a
complete A UV-II software version under CAPS.

And so on.

It is important to avoid over-integrating the two pmjc~ts. In order to avoid delaying the
progress of either project, the projects should maintain ir,depcndent critical paths. For
example, the A UV programmers should continue to develop C ccxic until the Ada
development envfronment is fully operational. A significant benefit might be gained by
interaction at the design level (e.g., GoaJ 1) regardless of the eventual implementation of
AUV-11 software under CAPS.

V. Conclusion

The number and complexity of intelligent, autonomous, real•time systems are expected to
grow, driven by the need to perform missions for which human supervision is unavailable or
not cost-effective. The development and maintenance of software for such systems is an
important area of research. 'We believe that progress in this area is achieved best by the
cooperation of the providers of real-time: software engineering ttchnology (e.g., CAPS) and
the users of that technology (e.g., AUV). Appropriate modes or interaction must~ found.

References

[Bihari89] Bihari, T., Walliser, T. and Patterson, M., "Controlling the Adaptive Suspension
Vehicle", IEEE COMPUTER, pp. 59-65, June 1989.

[Cloutier90] Cloutier, M., "Guidance and Control System for an Autonomous Vehicle",
Masters Thesis, Naval Postgraduate School, June 1990.

[Galik.88] Galik, D., "A Conceptual Design of a Software Base Management System for the
Computer Aided Prototyping System", Masters Thesis, Naval Postgraduate School,
December 1988.

[Guentenburg89] Guentenburg, H., "Automatic Generation of an Aircraft Inertial Navigation
System", Masters Thesis, Naval Postgraduate School, May 1989.

[Healey89] Healey, A., Papoulias, F., and MacDonald, G., "Design and Experimental
Verification of a Model Based Compensator for Rapid A UV Depth Control", Proceedings of
the 6th Unmanned, Untethered, Submersible Technology Conference, Washington, D.C., June
12-14, 1989.

[Huskins90] Huskins, J., "Issues in Expending the Software Base Management System
Supporting the CAPS", Masters Thesis, Na val Postgraduate School, June 1990.

[Kwak.90] Kwak, S., Ong, S. and McGhee R., "A Mission Planning Expen System for an
.A.utcnomous Unde!":1/a.ter Vehicle'\ IEEE Symposium on Autonomous Underwater Vehicle

Bihari, McGhee, Luqi, Lee Page 8

CONF-9007134
Page 19/f D

Technology, pp. 123-128, June 1990.

[Luqi88] Luqi and Berzins, V., "Rapidly Prototyping Real-Time Systems", IEEE,Software,
pp. 25-36, September 1988.

[Luqi88a] Luqi, Berzins, V. and Yeh, R., "A Prototyping Language for Real-Time Software",
IEEE Transactions on Software Engineering, pp. 1409-1423, October 1988.

[Luqi88b] Luqi, "Knowlcdge-B~ Support for Rapid Software Prototyping", IEEE Expert,
pp. 9-18, Winter 1988.

[Luqi89] Luqi and Davis., T., "A Software Prototype of the Message Processor in Navy C3I
Station", Naval Postgraduate School Technical Report NPS52-90-010, August 1989.

[Luqi89a] Luqi, Berzins, V., Kraemer, B., and White, L., "A Proposed Design for a Rapid
Prototyping Language", Naval Postgraduate School Technical Report NPS52-89-045, March
1989.

[Mostov90] Mostov, I., "A Model of Software Maintenance for Large Scale Military
Systems", Masters Thesis, Naval Postgraduate School, June 1990.

[Sun90] Sun, J., "Developing Portable User Interfaces for Ada Command & Control
Software", Masters Thesis, Naval Postgraduate School, June 1990.

[White89] White, L., 0 The Development of a Rapid Prototyping Environment", Masters
Thesis, Naval Postgraduate School, December 1989.

OS-9 is a registered trademark of Microware Corp.
Ada is a registered trademark of the U.S. Government, ADA Joint Program Office.
G-96 is a registered trademark of GESPAC SA.
UNIX is a registered trademark of AT&T.
All other brand or product names are trademarks or registered trademarks of their respective
holders.

Bihari, McGhee, Luqi, Lee Page 9

11 J 1,

