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ABSTRACT 

The double pendulum is a system of two connected masses, one tethered to a 

point in space and the other tethered to the first mass. The double pendulum exhibits 

chaotic motion under the influence of an external force such as the gravitational force. 

The chaotic motion is sensitive to the initial conditions or positions of the masses, 

resulting in an infinite number of possible motion paths. The chaotic motion paths 

produced by the double pendulum can be exploited to produce binary sequences. This 

thesis focuses on determining if the chaotic motion of the double pendulum can be used 

as a pseudorandom number generator (PRNG) by modeling the motion and using 

different methods of extracting bits from the motion paths to produce pseudorandom 

binary sequences. The pseudorandom binary sequences are then evaluated using tests for 

randomness as defined by the National Institute of Standards and Technology (NIST). 

The methods of bit extraction can then be compared based on their NIST test 

results to ultimately determine the practicality of the double pendulum as a PRNG. 

Considerations can be made for different methods of bit extraction or the use of 

different chaotic motions. 
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CHAPTER 1:
Introduction

1.1 Background
The Department of Defense (DOD) is reliant on secure communications and the pervasive
use of pseudorandom binary sequences in modern communications technology. Crypto-
graphic security depends on the use and generation of pseudorandom numbers. A pseudo-
random number generator (PRNG) creates a pseudorandom number based on a seed and
is then used in the encryption process as the key. In order for the encryption to be secure,
the PRNG must be unpredictable so as to prevent an attacker from deriving what the key
could be based on observed bits. Chaotic systems exhibit unpredictable behavior that could
be exploited for use in pseudorandom number generation. As stated in [1], chaotic systems
are extremely sensitive to initial conditions, meaning that for a marginal change from one
initial condition to another, the resulting behaviors based on each set of initial conditions
will differ drastically between the two. Chaotic systems may be suitable for pseudorandom
number generation given their unpredictability and sensitivity to initial conditions.

Various chaotic systems are described in [2], such as Duffing oscillators, Van der Pol
oscillators, and double pendulums. Of these systems, the double pendulum is comparatively
simple to model. This thesis focuses on using the chaotic motion of the double pendulum
to develop a PRNG. The second chapter of this thesis describes the double pendulum
and derives the equations of motion to be used in a model. The third chapter covers
the methodology by which we attempt to create pseudorandom sequences from the chaotic
motion of the double pendulum and then test the sequences for randomness using a statistical
test suite designed by the National Institute of Standards and Technology (NIST). The fourth
chapter describes the results of the NIST tests, along with implications associated with the
various testing scenarios. The fifth chapter discusses the conclusion of our testing as well
as possible future work. All coding is conducted using MATLAB and Python, where the
associated codes can be found in the appendices.
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CHAPTER 2:
The Double Pendulum

In this chapter, we describe and derive the equations of motion for the double pendulum.
The derivation is based on Appendix B of [1].

2.1 Description
In two-dimensional space, the double pendulum consists of two masses, m1 and m2. m1 is
attached to a fixed point in space by the first arm with a specified length, l1. The first mass
is attached to the second mass by a second arm with a specified length, l2. For simplicity,
we assume that the arms do not have mass; that gravity, g = 9.8 m/s2, only acts on the
two masses; that no friction exists anywhere in the system. We assume the system exists
in the xy-plane of the Cartesian coordinate system, and that gravity acts in the negative
y-direction. We choose the origin as the fixed point to which the first arm is attached. The
angle θ1 is measured counterclockwise from the y-axis to the first arm and the angle θ2 is
measured counterclockwise from the vertical line drawn from m1 to the second arm. See
Figure 2.1. The position of m1 is defined as (x1, y1) and the position of m2 is defined as
(x2, y2), where

x1 = l1sinθ1 , y1 = −l1cosθ1 (2.1)

x2 = l1sinθ1 + l2sinθ2 , y2 = −l1cosθ1 − l2cosθ2. (2.2)

3



Figure 2.1. The Double Pendulum

2.2 Derivation of Equations
In order to utilize the chaotic motion of the double pendulum, we require the equations of
motion for the masses. We derive the equations of motion by finding the Lagrangian of the
system and then using the Euler-Lagrange equation to find equations for θ1 and θ2, which
can then be used in the position equations defined in the previous section. The Lagrangian
is defined as

L = K −U,

where K is the kinetic energy of the system and U is the potential energy of the system.
The kinetic energy is

K =
1
2

m1v
2
1 +

1
2

m2v
2
2 =

1
2

m1( Ûx2
1 + Ûy

2
1) +

1
2

m2( Ûx2
2 + Ûy

2
2). (2.3)
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From equations (2.1) and (2.2) we find

Ûx1 = l1 Ûθ1cosθ1 , Ûy1 = l1 Ûθ1sinθ1

Ûx2 = l1 Ûθ1cosθ1 + l2 Ûθ2cosθ2 , Ûy2 = l1 Ûθ1sinθ1 + l2 Ûθ2sinθ2.

Equation (2.3) then becomes

K =
1
2

m1l2
1
Ûθ2
1 +

1
2

m2[l2
1
Ûθ2
1 + l2

2
Ûθ2
2 + 2l1l2 Ûθ1 Ûθ2cos(θ1 − θ2)].

The potential energy is

U = m1gy1 + m2gy2 = −m1gl1cosθ1 − m2g[l1cosθ1 + l2cosθ2].

Finally,

L = K −U

=
1
2

m1l2
1
Ûθ2
1 +

1
2

m2[l2
1
Ûθ2
1 + l2

2
Ûθ2
2 + 2l1l2 Ûθ1 Ûθ2cos(θ1 − θ2)]

+ m1gl1cosθ1 + m2g[l1cosθ1 + l2cosθ2].

From the Lagrangian, we utilize the Euler-Lagrange equations to find the equations of
motion in terms of angular acceleration, which will allow us to develop a set of first-order
differential equations to define the model. The Euler-Lagrange equations are

d
dt

(
dL
d Ûq j

)
=

dL
dq j

, (2.4)

where q is the position variable, in this case θ1 and θ2. Starting with θ1, we have

dL
dθ1
= −m2l1l2 Ûθ1 Ûθ2sin(θ1 − θ2) − (m1 + m2)gl1sinθ1, (2.5)

dL
d Ûθ1
= m1l2

1
Ûθ1 + m2[l2

1
Ûθ1 + l1l2 Ûθ2cos(θ1 − θ2)], and

d
dt

(
dL
d Ûθ1

)
= m1l2

1
Üθ1 + m2[l2

1
Üθ1 + l1l2 Üθ2cos(θ1 − θ2) − l1l2 Ûθ2sin(θ1 − θ2)( Ûθ1 − Ûθ2)]. (2.6)
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Using equations (2.4), (2.5), and (2.6), we solve for Üθ1 to obtain

Üθ1 =
−m2l2 Üθ2cos(θ1 − θ2) − (m1 + m2)gsinθ1 − m2l2 Ûθ2

2sin(θ1 − θ2)

(m1 + m2)l1
. (2.7)

Similarly, for θ2 we have

dL
dθ2
= m2l2[l1 Ûθ1 Ûθ2sin(θ1 − θ2) − gsinθ2], (2.8)

dL
d Ûθ2
= m2l2

2
Ûθ2 + m2l1l2 Ûθ1cos(θ1 − θ2), and

d
dt

(
dL
d Ûθ2

)
= m2l2

2
Üθ2 + m2l1l2[ Üθ1cos(θ1 − θ2) − Ûθ1sin(θ1 − θ2)( Ûθ1 − Ûθ2)]. (2.9)

Using equations (2.4), (2.8), and (2.9), we solve for Üθ2 to obtain

Üθ2 =
−gsinθ2 − Üθ1l1cos(θ1 − θ2) +

Ûθ2
1l1sin(θ1 − θ2)

l2
. (2.10)

We then substitute equation (2.7) into equation (2.10) and vice versa to find Üθ1 and Üθ2 in
terms of at most once differentiated variables. This yields

Üθ1 =
−gsinθ1 + Mgsinθ2cos(θ1 − θ2) − Msin(θ1 − θ2)[l1 Ûθ2

1cos(θ1 − θ2) + l2 Ûθ2
2]

l1[1 − Mcos2(θ1 − θ2)]
(2.11)

Üθ2 =
−gsinθ2 + cos(θ1 − θ2)[Ml2 Ûθ2

2sin(θ1 − θ2) + gsinθ1] + l1 Ûθ2
1sin(θ1 − θ2)

l2[1 − Mcos2(θ1 − θ2)]
, (2.12)

where M = m2
m1+m2

.

2.3 Model
Using equations (2.11) and (2.12), we can establish a set of first order differential equations
which will be the model we use for the double pendulum. Then,

τ1 = θ1 , τ2 = θ2 , τ3 = Ûθ1 , τ4 = Ûθ2 (2.13)

6



Ûτ1 = Ûθ1 = τ3 , Ûτ2 = Ûθ2 = τ4 , Ûτ3 = Üθ1 , Ûτ4 = Üθ2. (2.14)

Substituting components from equations (2.13) and (2.14) into equations (2.11) and (2.12),
the model becomes

Ûτ1 = τ3

Ûτ2 = τ4

Ûτ3 =
−gsinτ1 + Mgsinτ2cos(τ1 − τ2) − Msin(τ1 − τ2)[l1τ2

3 cos(τ1 − τ2) + l2τ2
4 ]

l1[1 − Mcos2(τ1 − τ2)]
and

Ûτ4 =
−gsinτ2 + cos(τ1 − τ2)[Ml2τ2

4 sin(τ1 − τ2) + gsinθ1] + l1τ2
3 sin(τ1 − τ2)

l2[1 − Mcos2(τ1 − τ2)]
.

7
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CHAPTER 3:
Methodology

In this chapter, we explain the various methods used to generate or extract pseudorandom
bit sequences from the model we derived. We also discuss how those sequences are tested
for randomness.

3.1 Sequence Generation
Using MATLAB, a double pendulum is generated using the model we previously de-
rived along with a set of parameters applied over a period of time. The parameters are
m1,m2, l1, l2, θ1, θ2, and g. MATLAB solves the model for θ1, θ2, Ûθ1, and Ûθ2 as functions
of time using the function ode45. The initial conditions for sequence generation are the
same for each sequence, where θ1(0) = θ1, θ2(0) = θ2, Ûθ1(0) = 0, and Ûθ2(0) = 0. Once the
double pendulum has been generated, the x and y positions of the first and second masses
are extracted using equations (2.1) and (2.2). Other information, such as angular speed, is
extracted as necessary. Six different methods were utilized to generate sequences: linear,
radial, derivative comparison, height comparison, energy comparison, and image. Prelim-
inary testing indicated that the energy comparison and image methods were most effective
in generating pseudorandom sequences, and hence results analysis will focus primarily on
these two methods.

3.1.1 Linear Method
For the linear method, we only consider the motion of the second mass and where it crosses
a set of chosen lines. Two horizontal lines and two vertical lines are chosen such that the
second mass will cross them in its motion for a given time period. The lines are given
values, either 1 or 0, such that when the second mass crosses that line, the associated value
is appended to the sequence to be generated. However, this introduces elevated numbers of
double values such as "00" or "11" into the sequence. Given a random sequence, we would
expect each bit to appear with probability 1/2, and such repeated bits, typically called runs
of length 2, to appear with probability 1/4. To overcome this problem, a second pendulum
with different parameters is generated and its motion is analyzed simultaneously with the

9



first pendulum. The value of the bits generated by crossing the lines can also be altered to
be different from that of the first pendulum, but the position of the lines remains the same.
Lines were established at x = -1.1, x = 1.1, y = 0, and y = -1.5 for sequence generation.
The code checks for a crossing condition by progressing through the x and y positions of
the pendulums, comparing the present and previous values for crossing the lines in either
direction. See Figure 3.1.

Figure 3.1. Linear Method Diagram

3.1.2 Radial Method
For the radial method, the position of the second mass is computed as a vector originating
at the origin using the equation

d =
√

x2
2 + y

2
2 (3.1)

Similar to the linear method, the sequence is generated based on the second mass crossing
over circles of chosen radii. Equation (3.1) is used to calculate the present and previous
values of the position of the second mass, then the values are compared to determine if
a circle has been crossed. The circles are assigned values, either 1 or 0, such that the
associated value is appended to the sequence when the mass crosses the circle. To add more
variability, the values assigned change based on the quadrant, I-IV, in which the crossing

10



occurs. Circles with radii 1 and 1.9 centered at the origin were established for sequence
generation. See Figure 3.2.

Figure 3.2. The Double Pendulum

3.1.3 Derivative Comparison Method
In the derivative comparison method, the instantaneous angular speed of the first and
second masses, Ûθ1 and Ûθ2, is calculated from two generated pendulums using the respective
equations derived previously. The angular speed for the second masses are compared. If the
second mass of the second pendulum has a higher angular speed than the second mass of
the first pendulum, then we check the angular speed of the first mass of the first pendulum.
If the angular speed of the first mass is positive or 0, the next value in the sequence is a
1, otherwise 0. If the second mass has a lower angular speed, then the opposite occurs
where if the angular speed of the first mass is negative, the next value in the sequence is a
1, otherwise 0. This comparison is made for every point in the generated pendulums.

3.1.4 Height Comparison Method
The height comparison method works in the same way as the derivative comparison method
except that instead of angular speeds, it compares y positions only.

11



3.1.5 Energy Comparison Method
The energy method uses separated variants of the kinetic and potential energy equations
to determine the kinetic and potential energies of both masses of a generated pendulum.
We then compute the average kinetic energy and average potential energy for each of the
masses. If the kinetic energy of the second mass crosses its average kinetic energy and the
kinetic energy of the first mass is greater than its average kinetic energy, then a value of 1 is
appended to the sequence. If the kinetic energy of the first mass is less than its average, then
a value of 0 is appended to the sequence. The same comparison is made simultaneously
using the potential energies instead.

3.1.6 Image Method
For the image method, the motion of the second mass of the double pendulum is plotted and
a binary image is made from a chosen window on the plot. The sequence is then the binary
image, read from left to right, top to bottom. The window in which the image is generated
is maximized in order to achieve longer sequences. Since the image is always the same size,
all sequences generated using the image method are the same length. The window used in
this method has x coordinate limitations of -0.1 to 0.1 and y coordinate limitations of -.51
to -.49 in order to acquire the most motion in one image.

3.1.7 Limitations
Each method has limitations with respect to the length of the sequences they generate, the
composition of the sequences, as well as the time required to generate a sequence of a desired
length. The energy method produces undesirable results when there is little to no chaotic
motion; the motion appears similar to that of a normal pendulum, which produces relatively
non-random sequences. The image method also produces undesirable results when there is
little to no chaotic motion. The windowmay not contain any motion, resulting in a sequence
consisting entirely of 0’s.

3.2 Experimental Setup
Based on sample size and the maximum input size recommendations from NIST, we use a
significance level, α, of 0.01 to generate 100 sequences that are at least one million bits in

12



length using the energy method and the image method. The sequences are generated and
tested on an ASUS Model GL533VD laptop with the following specifications:

Operating System: Windows 10 Home
System Type: 64-bit

CPU: Intel i7-7700HQ (2.8 GHz, 4 cores)
RAM: 1x16 GB @ 2400 MHz

Integrated Graphics: Intel HD Graphics 630
GPU: NVIDIA GeForce GTX 1050 (4 GB GDDR5)

The energy method and image method receive more focus than the other methods due to the
fact that they consistently generate long enough sequences, at least 1 million bits in length,
in the least amount of time. For example, using the linear method, a double pendulum that
ran over a time span of 400000 seconds would be required to make a sequence of at least
one million bits. Generating this double pendulum takes considerably longer than using
the energy method with a double pendulum generated over a time span of 200000 seconds
which also makes a sequence of at least one million bits. The experimental setup involves
generating 100 sequences using each method and varying one parameter while keeping the
others constant. The default parameters are as follows:

m1 = 1kg m2 = 1kg

l1 = 1m l2 = 1m

θ1 =
π
2 rad θ2 =

π
2 rad

g = 9.8 m/s2

We vary each mass from 0.5 to 1.5 kg, vary each length from 0.5 to 1.5 m, and vary each
angle from −π/2 to π/2 rad, with 100 points in each range for 100 different parameters
for each variable, therefore creating 100 different sequences for each variable, per method.
Gravity remains constant for all sequences generated.

3.3 Randomness Testing
In order to determine if the sequences generated are random and viable for cryptographic
applications, we utilize a statistical test suite developed by the NIST, [3]. The suite consists

13



of fifteen different tests to evaluate the randomness of the sequences we generated. Passing
or failing a single test does not necessarily imply that the sequence being tested is random
or non-random, but passing more tests allows us to state that there is sufficient statistical
evidence to infer that the sequence is random. The test suite was coded in Python from [4]
and verified using the examples from [3].

3.3.1 Monobit Frequency Test
The Monobit Frequency Test determines if the proportion of 1’s to 0’s in a sequence is
close to 1/2, which is the same proportion for a truly random sequence. In this sense, the
sequence is balanced since it contains an equal number of 1’s and 0’s. This test is the first
test conducted in the battery of tests because failing it implies failure of all subsequent tests.

3.3.2 Block Frequency Test
The Block Frequency Test is similar to the Monobit Frequency Test except that instead of
determining the proportion of 1’s and 0’s in the entire sequence, it examines the proportions
in blocks of a specified length M . The frequency of 1’s should be M/2 assuming the
sequence is random. For our tests, we use M = 128.

3.3.3 Runs Test
The Runs Test determines the total number of runs in the sequence, where a run is a number
of 1’s bounded by 0’s or vice versa. The test determines if the sequences has too many or
too few runs in comparison to a random sequence. In a random sequence, a 1 or a 0 has
a probability of appearing of 1/2, so the probability of having a run of length n is 1/2n.
Hence, in a truly random sequence, a pattern of runs should not exist.

3.3.4 Longest Run of Ones Test
The Longest Run of Ones Test determines the longest run of 1’s in a block of length M in
the sequence. The test is separated into three parts based on the length of the block, where
M = 8, 128, or 104. This test compares the longest run of 1’s to what would be expected
from a truly random sequence of the same length given the block size.
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3.3.5 Binary Matrix Rank Test
The Binary Matrix Rank Test determines the rank of matrices generated from the sequence,
which identifies linear dependence between parts of the sequence which can be compared
to that of a truly random sequence of the same length. Based on the NIST recommendations
for this test, the matrices generated have 32 rows and 32 columns in our tests.

3.3.6 Spectral Test
The Spectral Test essentially conducts a Fourier transform on the sequence and determines
if a periodic nature exists, which would indicate that the sequence is non-random.

3.3.7 Non-overlapping Template Matching Test
The Non-overlapping Template Matching Test uses an aperiodic template sequence and
steps through the sequence to determine if the template exists within it. If the template
does not exist, the template moves by one bit. If the template matches, it skips the length
of the template to the next set of bits in the sequence, hence the non-overlapping nature
of the test. Too many or too few occurrences of the template indicate that the sequence is
non-random. For our tests, we used the aperiodic template 000000001 based on the input
size recommendations from section 2.7.7 of [3].

3.3.8 Overlapping Template Matching Test
The Overlapping Template Matching Test is the same as the Non-overlapping Template
Matching Test except that the template will always move to the next bit regardless of
matching. For our tests, we use the template 111111111 with K = 5, M = 1032 based on
the input size recommendations from section 2.8.7 of [3], where K is the number of degrees
of freedom and M is the length in bits of a substring of the test sequence.

3.3.9 Maurer’s "Universal Statistical" Test
Maurer’s "Universal Statistical" Test determines if the sequence can be compressed given a
block of length L. A compressible sequence would be non-random. For our tests, we used
L = 7 and Q = 1280 based on the input size recommendations from section 2.9.7 of [3],
where Q is the number of blocks in an initialization sequence.
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3.3.10 Linear Complexity Test
The Linear Complexity Test determines the length of a linear feedback shift register (LFSR)
that would be needed to generate the sequence. If the LFSR is too short, the sequence is
non-random.

3.3.11 Serial Test
The Serial Test determines the number of overlapping patterns across the whole sequence.
If a sequence is random, then any given pattern is as likely to appear as a different pattern
in the sequence.

3.3.12 Approximate Entropy Test
The Approximate Entropy Test is the same as the Serial Test, except that it compares the
frequency of overlapping patterns of adjacent lengths against those of a random sequence.

3.3.13 Cumulative Sums Test
The Cumulative Sums Test determines how much the partial sums of an adjusted sequence
deviate from 0. The sequence is adjusted so that 1’s remain 1’s and 0’s become -1’s. A
sequence that is random will have few deviations from 0, whereas a non-random sequence
will have large deviations.

3.3.14 Random Excursions Test
The Random Excursions Test is similar to the Cumulative Sums Test, except that it examines
the frequency of occurrence for 8 different states, -4, -3,..., 3, 4 , in a random walk within
the sequence. Deviations from the expected distribution of frequencies given a random
sequence would indicate that the sequence is non-random.

3.3.15 Random Excursions Variant Test
The Random Excursions Variant Test is the same as the Random Excursions Test, except
that it examines the frequency of occurrence for 18 different states vice 8 different states,
which are -9, -8, ..., 8, 9.
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CHAPTER 4:
Results and Analysis

In this chapter, we present and analyze the results of the NIST tests for the energy and the
image sequence generation methods. Based on section 4.2 of [3], the results are interpreted
using the proportion of sequences that pass the tests and checking for uniformity of p-values
across the tests.

4.1 Energy Method Results and Analysis
As mentioned in the previous chapter, 100 different sequences were generated over varying
parameters for mass, arm length, and angle for a total of 600 sequences. The following
subsections discuss the results and analysis of the NIST tests for the energy method. For
figures showing the pass proportions for each of the tests, the green line represents 1-α and
the red lines represent the confidence interval as determined using section 4.2.1 of [3]. In
general, sequences generated using the energy method passed 7 out of the 15 tests, but only
the Block Frequency Test was passed with proportions exhibiting statistical significance in
3 out of the 6 different variations. All of the sequences generated by the energy method
have a ratio of 1’s to 0’s of about 50%, so this justifies why the sequences passed the Block
Frequency Test in higher proportions. None of the sequences passed the Runs Test because
the sequences contain too many runs in comparison to that of a truly random sequence. The
runs are short, usually two bits in length, but are frequent. The frequency of these runs is
likely due to the energy method’s bit formation based on the average energy.

4.1.1 First Mass Variation
The first mass was varied from 0.5 kg to 1.5 kg over 100 values for a total of 100 sequences
generated using the energy method. We see that all of the sequences passed the Block
Frequency Test, but this is the only test passed that is statistically significant. We also
see that the distribution of p-values is heavily skewed to values between 0 and 0.1, but is
otherwise uniformly distributed. The results are shown in Figures 4.1 and 4.2.
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Figure 4.1. Energy Method - First Mass Variation NIST Test Results

Figure 4.2. Energy Method - First Mass Variation P-Value Distribution

4.1.2 Second Mass Variation
The second mass was varied from 0.5 kg to 1.5 kg over 100 values for a total of 100
sequences generated using the energy method. Similar to the first mass variation, the Block
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Frequency Test is the only test where all sequences passed. A fewer percentage of these
sequences passed the Monobit Frequency Test in comparison to those sequences generated
by first mass variation. Again, the p-values are heavily skewed to between 0 and 0.1 as with
the first mass variation. The results are shown in Figures 4.3 and 4.4.

Figure 4.3. Energy Method - Second Mass Variation NIST Test Results

Figure 4.4. Energy Method - Second Mass Variation P-Value Distribution

19



4.1.3 First Length Variation
The length of the first arm was varied from 0.5 m to 1.5 m over 100 values for a total of 100
sequences generated using the energy method. With the first length variation, none of the
tests pass with statistical significance. Substantially fewer sequences passed the Monobit
Frequency Test, but more sequences passed the Random Excursion tests. From the p-value
distribution, we see that overall fewer sequences failed, but the distribution is skewed to
between 0 and 0.1. The results are shown in Figures 4.5 and 4.6.

Figure 4.5. Energy Method - First Length Variation NIST Test Results
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Figure 4.6. Energy Method - First Length Variation P-Value Distribution

4.1.4 Second Length Variation
The length of the second arm was varied from 0.5 m to 1.5 m over 100 values for a total
of 100 sequences generated using the energy method. By varying the second length, the
sequences passed the Block Frequency Test with statistical significance. Fewer sequences
passed the random excursion tests in comparison to varying the first length. Approximately
35% of the sequences passed the Monobit Frequency Test and approximately 20% of the
sequences passed the Cumulative Sums Test, whereas no sequence passed either of those
tests for the first length variation. The p-values are skewed to between 0 and 0.1 with a
higher count than the first length. The results are shown in Figures 4.7 and 4.8.
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Figure 4.7. Energy Method - Second Length Variation NIST Test Results

Figure 4.8. Energy Method - Second Length Variation P-Value Distribution

4.1.5 First Angle Variation
The angle between the first arm and the vertical was varied from −π/2 rad to π/2 rad over
100 values for a total of 100 sequences generated using the energy method. The sequences
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generated by varying the first angle did not pass any of the tests with statistical significance.
The results are shown in Figures 4.9 and 4.10.

Figure 4.9. Energy Method - First Angle Variation NIST Test Results

Figure 4.10. Energy Method - First Angle Variation P-Value Distribution
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4.1.6 Second Angle Variation
The angle between the second arm and the vertical was varied from −π/2 rad to π/2 rad
over 100 values for a total of 100 sequences generated using the energy method. The results
are similar to the first angle variation and are shown in Figures 4.11 and 4.12.

Figure 4.11. Energy Method - Second Angle Variation NIST Test Results

Figure 4.12. Energy Method - Second Angle Variation P-Value Distribution
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4.1.7 Linear Complexity
Using the Berlekamp-Massey algorithm Python code found in [5], the linear complexity
profile is determined for the energy method. Although not all sequences passed the linear
complexity test, the sequences exhibit excellent linear complexity as shown in Figure 4.13.

Figure 4.13. Energy Method - Linear Complexity Profile

4.2 Image Method Results and Analysis
As mentioned in the previous chapter, 100 different sequences were generated over varying
parameters for mass, arm length, and angle for a total of 600 sequences. The following
subsections discuss the results and analysis of the NIST tests for the image method.

4.2.1 First Mass Variation
The first mass was varied from 0.5 kg to 1.5 kg over 100 values for a total of 100 sequences
generated using the image method. In comparison to the energy method, a much smaller
proportion of sequences passed the tests, and none of them passed with statistical signifi-
cance. The distribution of p-values for the image method is similar to the energy method
in that most of the p-values are between 0 and 0.1. However, we see that the rest of the
distribution is not uniform and gradually increases towards the range of 0.9 to 1. The results
are shown in Figures 4.14 and 4.15.
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Figure 4.14. Image Method - First Mass Variation NIST Test Results

Figure 4.15. Image Method - First Mass Variation P-Value Distribution

4.2.2 Second Mass Variation
The second mass was varied from 0.5 kg to 1.5 kg over 100 values for a total of 100
sequences generated using the image method. The results are very similar to those for the
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first mass variation and are shown in Figures 4.16 and 4.17.

Figure 4.16. Image Method - Second Mass Variation NIST Test Results

Figure 4.17. Image Method - Second Mass Variation P-Value Distribution
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4.2.3 First Length Variation
The length of the first arm was varied from 0.5 m to 1.5 m over 100 values for a total of
100 sequences generated using the image method. The results are similar to those for mass
variation, but less than 10% of the sequences passed the Binary Matrix Rank Test and less
than 5% passed the Spectral Test. The results are shown in Figures 4.18 and 4.19.

Figure 4.18. Image Method - First Length Variation NIST Test Results
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Figure 4.19. Image Method - First Length Variation P-Value Distribution

4.2.4 Second Length Variation
The length of the second arm was varied from 0.5 m to 1.5 m over 100 values for a total of
100 sequences generated using the image method. The results are similar to those for the
first length variation except that fewer sequences passed the Binary Matrix Rank Test and
slightly more sequences passed the Spectral Test. The results are shown in Figures 4.20 and
4.21.
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Figure 4.20. Image Method - Second Length Variation NIST Test Results

Figure 4.21. Image Method - Second Length Variation P-Value Distribution

4.2.5 First Angle Variation
The angle between the first arm and the vertical was varied from −π/2 rad to π/2 rad over
100 values for a total of 100 sequences generated using the image method. Fewer sequences
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passed the tests in comparison to the mass or length variations overall. The results are
shown in Figures 4.22 and 4.23.

Figure 4.22. Image Method - First Angle Variation NIST Test Results

Figure 4.23. Image Method - First Angle Variation P-Value Distribution
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4.2.6 Second Angle Variation
The angle between the second arm and the vertical was varied from −π/2 rad to π/2 rad
over 100 values for a total of 100 sequences generated using the image method. More
sequences passed the Random Excursion Tests, but almost none of the sequences passed
the Linear Complexity Test. The results are shown in Figures 4.24 and 4.25.

Figure 4.24. Image Method - Second Angle Variation NIST Test Results
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Figure 4.25. Image Method - Second Angle Variation P-Value Distribution

4.2.7 Linear Complexity
Using the Berlekamp-Massey algorithm Python code found in [5], the linear complexity
profile is determined for the image method. In contrast to the energy method, while some
sequences passed the linear complexity test, the majority of sequences generated by the
image method do not exhibit linear complexity as shown in Figure 4.26.
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Figure 4.26. Image Method - Linear Complexity Profile
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CHAPTER 5:
Conclusion and Future Work

This thesis sought to exploit the chaotic motion of a double pendulum to generate pseu-
dorandom sequences. The results show that, unfortunately, the methods we used were
inadequate to produce sequences that could be classified as pseudorandom based on the
NIST tests. The variations made to each of the methods yielded only one test being passed
with statistical significance in one of the methods, which is insufficient to say that the se-
quences were random without passing other tests in the suite. Additionally, the distribution
of p-values was not uniform for any of the variations in either the energy method or the
image method, and was skewed towards failure. Future work could consist of identifying
where the methods used in this thesis failed or how they could be improved so as to generate
better sequences. Additional methods to generate sequences from the double pendulum
should be developed and analyzed. Consideration should also be given to other chaotic
systems besides the double pendulum to determine if the same or better results can be
achieved from them.

35



THIS PAGE INTENTIONALLY LEFT BLANK

36



APPENDIX: MATLAB and Python Code

The appendix includes MATLAB code used to define the double pendulummodel, generate
the binary sequences, and analyze the results. Also included is the Python code used to
test the sequences. The original overall test code is supplied by Alex Gutzler and can be
found in [6]; it has been modified for this thesis. The Python code for the NIST tests can be
downloaded from [4].

A.1 Double Pendulum MATLAB Function
The following code is a MATLAB function containing the model derived in Chapter 2 to
be solved with the ode45 function.

%Equations of motion setup for double pendulum

%Desc: Defines first-order differential equations of motion for the double

%pendulum based on input parameters time (t), initial positions/velocities

%(y), mass (m), and length (l). Time serves only for evaluation via ode45

%and is not actually used in this function. Initial positions/velocities

%must be in the form of a 1x4 vector, where y(1) = initial angle of first

%mass (theta_1, in radians), y(2) = initial angle of second mass (theta_2,

%in radians), y(3) = initial angular velocity of first mass (usually 0),

%and y(4) = initial angular velocity of second mass (usually 0). Mass must

%be a 1x2 vector containing the mass values for the first and second masses

%of the pendulum (m(1) and m(2) respectively, in kg). Length must be a 1x2

%vector containing the length between the origin and the first mass (l(1),

%in meters) and the length between the first mass and the second mass

%(l(2), in meters). The output is a 4x1 vector for use in the ode45

%function.

function dydt = doublepend(t,y,m,l)

dydt = zeros(4,1);

M = m(1)+m(2);

a = sin(y(1)-y(2));

b = cos(y(1)-y(2));

g = 9.8; %gravity, m/s^2
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y1 = y(3);

y2 = y(4);

y3 = (-M*g*sin(y(1))+m(2)*g*sin(y(2))*b-m(2)*y(3)*y(3)*l(1)*a*b-m(2)...

*l(2)*y(4)*y(4)*a)/(l(1)*M-m(2)*l(1)*b^2);

y4 = (-g*sin(y(2))*M+m(2)*l(2)*y(4)*y(4)*a*b+M*g*sin(y(1))*b+l(1)*y(3)...

*y(3)*a*M)/(l(2)*M-m(2)*l(2)*b^2);

dydt = [y1 y2 y3 y4]’;

end

A.2 Sequence Generation MATLAB Code
The followingMATLAB code uses themodel function to first generate a pendulum based on
the input parameters, then uses the energy and image method to generate binary sequences.
The generated binary sequences are saved as text files to be tested using the Python code.

clear

close all

clc

%Base Parameters

%NOTE: Base parameters must be commented out as necessary for testing

m = [1 1]; %Mass vector in kg

l = [1 1]; %Length vector in meters

g = 9.8; %Gravity in m/s^2

th1 = pi/2; %Initial theta_1 in radians

th2 = pi/2; %Initial theta_2 in radians

%Parameters to be tested

%th1 = linspace(-pi/2,pi/2,100);

%th2 = linspace(-pi/2,pi/2,100);

%NOTE: For the following parameters, the vectors l and m must be defined

%in the loop.

%m1 = linspace(0.5,1.5,100);

%m2 = linspace(0.5,1.5,100);

%l1 = linspace(0.5,1.5,100);

%l2 = linspace(0.5,1.5,100);

tspan = [0 25]; %Time vector in seconds, where first value is initial time
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%and second value is final time.

opts = odeset(’Refine’,15,’RelTol’,1e-7,’AbsTol’,1e-5); %Options for ode45

%to refine the solution

for i = 1:length(th1) %Must be altered to match parameter to be tested

tic

%l = [l1(i) 1];

%m = [m1(i) 1];

%NOTE: The parameters of ode45 must be altered to match what is being

%tested. In this case, we are testing th1.

[t,y1] = ode45(@(t,y1) doublepend(t,y1,m,l),tspan,[th1(i) th2 0 0],opts);

%Evaluate equations of motion

x12=l(1)*sin(y1(:,1))+l(2)*sin(y1(:,2)); %Second mass x-position

y12=-l(1)*cos(y1(:,1))-l(2)*cos(y1(:,2)); %Second mass y-position

KE11= 0.5.*m(1).*y1(:,3).^2.*l(1).^2; %Kinetic energy of first mass

KE12 = m(2).*0.5.*(y1(:,3).^2.*l(1).^2+y1(:,4).^2.*l(2)^2+2.*y1(:,3)...

.*y1(:,4).*l(1).*l(2).*cos(y1(:,1)-y1(:,2))); %Kinetic energy of

%second mass

PE11 = -m(1).*g.*l(1).*cos(y1(:,1)); %Potential energy of first mass

PE12 = - m(2).*g.*(l(1).*cos(y1(:,1))+l(2).*cos(y1(:,2))); %Potential

%energy of second mass

mu1 = mean(KE11); %Average kinetic energy of first mass

mu2 = mean(KE12); %Average kinetic energy of second mass

pu1 = mean(PE11); %Average potential energy of first mass

pu2 = mean(PE12); %Average potential energy of second mass

k = 1; %Initiate index for energy method

%ENERGY METHOD

for j = 2:length(KE12)

if((KE12(j)<mu2 & KE12(j-1)>mu2) | (KE12(j)>mu2 & KE12(j-1)<mu2)...

& KE11(j) > mu1)

C(k) = 1;

k = k+1;

end

if((KE12(j)<mu2 & KE12(j-1)>mu2) | (KE12(j)>mu2 & KE12(j-1)<mu2)...

& KE11(j) < mu1)

C(k) = 0;
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k = k+1;

end

if((PE12(j)<pu2 & PE12(j-1)>pu2) | (PE12(j)>pu2 & PE12(j-1)<pu2)...

& PE11(j) > pu1)

C(k) = 1;

k = k+1;

end

if((PE12(j)<pu2 & PE12(j-1)>pu2) | (PE12(j)>pu2 & PE12(j-1)<pu2)...

& PE11(j) < pu1)

C(k) = 0;

k = k+1;

end

end

Cs = num2str(C); %Convert sequence from vector to string

Cs(isspace(Cs)) = ’’; %Remove spaces

dlmwrite([’etht1-’,num2str(i),’.txt’],Cs,’’) %Save sequence as text

%IMAGE METHOD

figure(’units’,’normalized’,’outerposition’,[0 0 1 1]) %Maximize window

%size

plot(x12(1:floor(length(x12)/10)),y12(1:floor(length(y12)/10)),’k’) %Plot

%motion of second mass

xlim([-.1 0.1]) %Window x-limits

ylim([-.51 -.49]) %Window y-limits

im = getframe(gca); %Capture image

close all

im = im.cdata(:,:,1); %Get first layer (all layers are the same)

cc = double(im); cc = cc == 0; %Convert image to type double, then invert

%image so that the black lines are 1’s and the white spaces are 0’s

s = size(cc); %Get size of image

C = reshape(cc,1,s(1)*s(2)); %Reshape image into a vector column by column,

%row by row as the sequence

Cs = num2str(C); %Convert sequence into string

Cs(isspace(Cs)) = ’’; %Remove spaces

dlmwrite([’itht1-’,num2str(i),’.txt’],Cs,’’) %Save sequence as text

clc
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Lines 79-84 determine the estimated time remaining to complete all 100

sequences; not required, but convenient

trun = round(toc);

perco = i;

perre = 100 - perco;

tremm = floor(perre*trun/60);

trems = perre*trun - 60*tremm;

fprintf(’%3.1f %% complete, %3.0f min %3.0f sec remaining\n’,...

[perco tremm trems])

%Variables are cleared to save memory between loop iterations

clear t y1 x12 y12 KE11 PE11 KE12 PE12 mu1 mu2 pu1 pu2 k C Cs im s cc...

trun perco perre tremm trems

end

A.3 Python Testing Code
The following Python codes consist of a code which tests all the sequences and a conversion
code. The raw results are saved to "pickle" files, then converted to ".mat" files to be analyzed
in a separate MATLAB code.

A.3.1 Overall Test Code
The original overall test code is supplied by Alex Gutzler and can be found in [6]. The code
has been modified for this thesis.

import sys

import numpy as np

import os

import random

import time

import matplotlib.pyplot as plt

import scipy.special as spc

import pickle as p

import NIST_Suite_Updatedcopy as nist # This is the Python code containing all

#of the NIST tests; it must be included in the same folder as this file
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np.set_printoptions(threshold=sys.maxsize)

# Dictionary of Tests

tests = {’testlist’: [nist.monobitfrequencytest,

nist.blockfrequencytest,

nist.runstest,

nist.spectraltest,

nist.nonoverlappingtemplatematchingtest,

nist.overlappingtemplatematchingtest,

nist.serialtest,

nist.cumultativesumstest,

nist.aproximateentropytest,

nist.randomexcursionsvarianttest,

nist.linearcomplexitytest,

nist.maurersuniversalstatistictest,

nist.randomexcursionstest,

nist.binarymatrixranktest,

nist.longestrunones10000]}

rlist = [’Mono’, ’Block’, ’Runs’, ’Spectral’, ’Non-Overlap’, ’Overlap’,

’Serial’, ’CumSum’, ’Approx Entroy’, ’Random Ex Var’, ’Linear Complex’,

’Universal’, ’Random Ex’, ’Rank’, ’Longest Runs’]

results = {str(item): np.array([]) for item in rlist}

# Where to grab file(s) to be tested from.

cwd = os.getcwd()

rd = os.path.join(cwd,’FolderName\\’) #Replace FolderName with actual name of

# folder containing all of the sequences (.txt files)

namelist = os.listdir(rd)

namelist = namelist[0:100]

bl = 10**6 #length in bits to be tested

# Read each file into an array, remove unwanted characters, then run the tests
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for item in namelist:

remove_from_strings = [" ", "[", "]", ",", "\\n", ".","’","\n"]

readst = [’1’,’0’,"’","[","]"]

t0 = time.time()

inputdata = open(rd+item,’r’)

x = inputdata.readlines()

inputdata.close()

x = str(x)

data = x

# # Remove unwanted characters

for s in remove_from_strings:

data = data.replace(s, "")

# Run tests

data = data[0:bl]

s = 0

for i in range(0,len(data)):

s = s+int(data[i]) #Determine the number of 1’s in the sequence

print(’Testing commenced’)

for i in range(0,len(rlist)):

if s < 20000: #If the number of 1’s in the sequence is less than 2%,

#then the sequence will fail all tests

if i == 6:

results[rlist[i]] = np.append(results[rlist[i]],np.zeros(2))

elif i == 9:

results[rlist[i]] = np.append(results[rlist[i]],np.zeros(18))

elif i == 12:

results[rlist[i]] = np.append(results[rlist[i]],np.zeros(8))

else:

results[rlist[i]] = np.append(results[rlist[i]],0)

continue

#The image method caused errors for the longest run of ones test when varying

#th1 and th2. The next 2 lines are required to bypass those errors and result

#in failure for that particular test.
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# elif i == 14:

# results[rlist[i]] = np.append(results[rlist[i]],0)

else:

results[rlist[i]] = np.append(results[rlist[i]],tests[’testlist’]\

[i](data))

print(item)

print(’Test Complete’)

print("--- %.5s seconds ---" % (time.time()-t0))

# Average results across all trials

avgresults = {str(item): np.array([]) for item in rlist}

numpass = {str(item): np.array([]) for item in rlist}

for i in range(0,len(rlist)):

if i == 6:

avgresults[rlist[i]] = np.append(avgresults[rlist[i]],

np.mean(results[rlist[i]].reshape(-1, 2), axis=0))

numpass[rlist[i]] = np.append(numpass[rlist[i]],

np.sum(results[rlist[i]].reshape(-1, 2)>.01,axis=0))

elif i == 9:

avgresults[rlist[i]] = np.append(avgresults[rlist[i]],

np.mean(results[rlist[i]].reshape(-1, 18), axis=0))

numpass[rlist[i]] = np.append(numpass[rlist[i]],

np.sum(results[rlist[i]].reshape(-1, 18)>.01,axis=0))

elif i == 12:

avgresults[rlist[i]] = np.append(avgresults[rlist[i]],

np.mean(results[rlist[i]].reshape(-1, 8), axis=0))

numpass[rlist[i]] = np.append(numpass[rlist[i]],

np.sum(results[rlist[i]].reshape(-1, 8)>.01,axis=0))

else:

avgresults[rlist[i]] = np.append(avgresults[rlist[i]],

np.mean(results[rlist[i]]))

numpass[rlist[i]] = np.append(numpass[rlist[i]],sum(results[rlist[i]]\

>.01))

with open(’ith2-avgresults.pickle’,’wb’) as f:

p.dump(avgresults,f)

with open(’ith2-results.pickle’,’wb’) as f:
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p.dump(results,f)

with open(’ith2-numpass.pickle’,’wb’) as f:

p.dump(numpass,f)

A.3.2 NIST Test Code
The NIST test code can be downloaded from [4]. However, the original code is designed
for Python 2.66 and must be formatted for Python 3.7 to work properly.

A.3.3 Conversion Code
import pickle as p

import numpy

import scipy.io

namelist = [’eth1’, ’eth2’] #list of file prefixes of files to be converted

for i in namelist:

ar = p.load(open(i+’-avgresults.pickle’,’rb’))

r = p.load(open(i+’-results.pickle’,’rb’))

n = p.load(open(i+’-numpass.pickle’,’rb’))

scipy.io.savemat(i+’-avgresults.mat’,mdict = {’ar’:ar})

scipy.io.savemat(i+’-results.mat’,mdict = {’r’:r})

scipy.io.savemat(i+’-numpass.mat’,mdict = {’np’:ar})

A.4 MATLAB Analysis Code
The following MATLAB code uses the results obtained from the NIST tests to determine
the pass proportions as well as the p-value distributions.

clear

clc

close all

na = {’eth1’ ’eth2’}; %list of file prefixes of files to be analyzed

sub = {’-results.mat’};

ci = [.99-3*sqrt(.99*.01/100) 1]; %confidence interval
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t = 0:16;

cu = ones(1,17); cl = ci(1)*ones(1,17); g = .99*ones(1,17);

k=1;

for i = 1:length(na)

res{k} = load([na{i} sub{1}]);

k = k+1;

end

k = 1;

fn = fieldnames(res{1}.r);

%The following loop determines the percentage of sequences passing each

%test. Since some tests included multiple parts, the divisor is greater

%than 100 for those cases.

for i = 1:length(na)

for j = 1:length(fn)

if j == 7

np(j,k) = sum(res{i}.r.(fn{j})>=0.01)/200;

elseif j == 10

np(j,k) = sum(res{i}.r.(fn{j})>=0.01)/1800;

elseif j == 13

np(j,k) = sum(res{i}.r.(fn{j})>=0.01)/800;

else

np(j,k) = sum(res{i}.r.(fn{j})>=0.01)/100;

end

end

k = k+1;

end

k = 1;

%Generate figure for pass proportions

for i = 1:length(na)

figure(k)

plot(1:15,np(:,i),’k.’,’MarkerSize’,10)

hold on

plot(t,cl,’r’,t,cu,’r’,t,g,’g’)

xlim([1 15]); xlabel(’Test’); ylabel(’Pass Proportion’); xticks(1:15);

xticklabels(fn); xtickangle(45);
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k = k+1;

end

%Generate figure for p-value distribution

for i = 1:length(na)

figure(k)

rr = cell2mat(struct2cell(res{i}.r)’);

histogram(rr,10,’BinWidth’,0.1,’BinLimits’,[0 1])

xlim([0 1]); xlabel(’P-Value’); ylabel(’Counts’);

k=k+1;

end
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