
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

2002-07

Human Factors Based Tools for Dependable
Interactive Systems Development

Luqi; Guan, ZhiWei
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/65081

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NP S-SW-02-009 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Human Factors Based Tools for Dependable 
Interactive Systems Development 

Technical Report 

By 

Luqi, ZhiWei Guan 

July2002 

Approved for public release; distribution is unlimited. 

Prepared for: NSF 



PROJECT SUMMARY 

The objectives of the proposed research are to develop an integrated framework and supporting tools for the 
development of a dependable interactive system. This proposed research promotes steps toward the integration of 
human factors within the software activity model by considering human characteristics in the development of 
interactive systems. Development areas impacted include system specification, software model verification, and 
system testing simulation. The basic concept of this proposal is to consider the human as part of the system during 
the analysis of system :functionalities and properties. Human inclusion in the entire system, not just software, during 
verification and testing simulations would improve the dependability of interactive systems. 

This proposal framework would build an iterative loop for the development of interactive systems from system 
specification, to model verification, and to prototype validation. 

The proposed human involved system specification would provide a specification method, for human involved 
system behavior and interactive system behavior attributes. Research will be conducted on the decomposition of 
goals of human involved software interactive systems. Interlink of interactive sub-goals and the relationship 
between goals and action will also be addressed. Analysis of the interactive system behavior attribute will provide a 
description of the overall attributes for system interaction requirements specification. 

Following the development of software, software design models will be built and developed based on the 
description of system requirements and attributes. In this proposed work, the extraction of a software behavior 
model from whole software design model, describing what, when and how software would perform its operation, 
will be studied. Model checking will be employed to ensure the software model is consistent with the requirements 
of system operation. The state explosion problem of model checking will be avoided by extracting the software 
behavior model and the black-box description of human behavior. 

Based on the verified software interactive :functions, a prototype system can be built. We will develop a 
"Wizard of Human" (W oH) interactive system testing simulation technology to test the interactive system. The 
Wizard Human AutomaTic Fault Injection Testing Simulation (WHAT-FITs) is based on the test cases generated 
from the system requirement specification. W oH serves as an agent to perform the human action based on the 
requirement specification. Human error fault injection based on the definition of human behavior and system 
interaction states, which include safety constraints, :function correctness, security constraints, time constraints and 
quality of service, will be applied to ensure software constraints. The overall satisfaction of software constraints 
would insure the dependability of the implemented interactive system. A graphic display of counter-example model 
checking will be illustrated based on the prototype design system. The display oftest results and interpretation based 
on software constraints will be presented. Development feedback will help users fulfill dependable system 
develop:o:ient. 

This proposed work would eliminate the misunderstanding between interaction requirements and software 
design thereby improving the reliability and dependability of interaction, as the design model will be verified and 
the software implementation will be validated with the interaction specification of the system. Safety of the system 
will be improved as human behavior is considered in the interactive system development process reducing software 
disasters in mission/life critical situations. The total cost of system development will be reduced with the automatic 
testing of human interaction. Further human behavior analysis of software implementation will be reduced, as the 
W oH has acted as the human to check the consistency of software design behavior in advance. 

This research is covers areas, which include system specification, verification, and testing. The purpose of 
technology integration is to introduce improvement and to allow the integrated components to complement each 
other, increasing the overall efficiency as a whole. By integrating these techniques, we can improve the formalism of 
interactive system development, reduce the cost of human action involved interactive system testing, reduce 
development and maintenance time, and improve the dependability of interactive software. Additional benefits will 
include information for human operation training and continuous support for interactive software evolution. 

This research could have broad impact on the area of critical aerospace and communication domain, including 
mission control for manned and unmanned missions, air traffic control, and onboard aerospace vehicles. 
Consideration of human interaction at the beginning of software development will increase the reliability and safety 
as well as reduce the risk of software failure. 

A-1 



PROJECT DESCRIPTION 
C.1 Objectives and significance 
The dependable systems include autonomous system and combination of human operated and automated systems. 
For interactive system, especially safety critical system, although the advanced automation of the system make much 
improvement of software dependability, the complexity of the system interaction always makes the confusion of 
what the automat are doing potentially comes out. The reason for the behavior inconsistency is incomplete and 
ambiguous description and application of system behavior during the system development. The main objective of 
the proposal work is to enable the human action to be considered into the system development process to help the 
clearance of software interaction, so that to improve the system dependability. We proposed to develop a framework 
and several technologies that are needed to realize the dependable interaction behavior insurance, which include the 
system interaction specification, software behavior model verification, automatic interaction testing with wizard 
human operation and human error injection. 

The proposed interaction requirement specification tool will enable the explicit description of system behavior in the 
requirement phase, in which human behavior description is included as part of the system specification. The safety 
and li\·cncss properties of interaction will be specified. To ensure the software design model to be cunsistent with 
what software supposed to be doing, the software behavior model will be abstracted from the system design model 
and be applied with model checking. The verification of sollware model will increase sollware function correctm:ss 
and reliability. 

Furthermore, to make sure the software implementation is performing as it supposed to. Validation of system 
implementation will be performed. Wizard Human AutomaTic Fault Injection Testing Simulation (WHA T-FITs) 
technology will test the software operations. Wizard Human would perform the human actions based on the human 
behavior specification. Human error will be generated based on the human behavior and runtime interface patterns. 
Fault injection of human error will test the software reliability and safety. The tested software performance will be 
evaluated according to the software constraints definitions. 

Further counter example of model checking and the test result and experience ofWHAT-FITs will be display to the 
end user with easy and useful knowledge to perform the system modification, so that to increase the final software 
dependability. 

C.1.1 Significance and benefits 
This technology will enable the following to occur: 

1. The entire requirement of interaction behavior of system (human involved software) will be considered at 
the beginning of software development. 

2. The constraints of interaction (safety and liveness properties) will be explicitly specified. 
3. Software behavior model can be abstracted from the software design model based on the interaction 

specification. 
4. Verification of software behavior with behavior requirement specification and interaction constraints by 

using properly selected model checking method. 
5. Generation oftest scenarios from the interaction behavior specification. 
6. Creation of Wizard Human based on the human behavior description in the system interaction 

specification. 
7. Intentional human error generation mechanism for Wizard Human to perform the error injection at the each 

possible selectable state transition. 
8. Integrated WHA T-FITs environment to perform the software interaction testing. 
9. Graphic display of the counter-example of model checking and result and scenario interpretation of 

WHAT-FITs. 
C.1.2 Technical barriers 

Previews methods for achieving reliable interactive system, including statistical testing ad mathematical proofs of 
software properties, have the disadvantage of being slow, labor intensive and expensive. Also the absent description 
of human behavior will not make sure all the designed transitions behaved as it designed to during the real human 
software operation. What is needed is a theoretical basis and systematic methods for construction formal 

C-1 



PROJECT DESCRIPTION 
development framework for a variety of dependable interactive system. The iterative procedure of interaction fonnaJ 
specification, software design formal model checking, and rule-based fault injection test simulation will make the 
refinement of human involved sofuvare operations, and improve the dependability of the interactive system. 

C.2 Technical approach 
C.2.1 Formal Specification of Human Involved System Behavior 

The proposed work under this task is to improve and extend the current software requirement specification style to 
allow for more detail description of human involved system behavior requirement. The current software 
specifications include the properties descriptions of software. For interactive system, the specified properties would 
be the description of human and software interaction, which can be described as stat transitions based on the certain 
condition. It can give out a clear description of what the software should do for user, and what software can do based 
on the trigger of user's action. In the past literature, the software behavior is considered with high confidence. 
Human's actions are totally ignored. In our consideration, if the supposed system behavior (both supposed softwa re 
bch::ivior and human behavior) ca11 be dcscribed clearly ;111d cu111plctcly, it c;111 be uscd ;1s thc high-trust critcri.i 1·u1 
whole software developme11t. Also, further analysis and refineme11t of the system behavior specification will help 10 

generate reasonable and human nature prone system behavior, which would improve the trustworthy or the system, 
which is also defined as system's "dependability". 

This proposal would provide a specification method, to specify the human involved system behavior. This 
description approach would be goal-based, rather than state-based approach. Both the constraints of safety and 
liveness properties of the interaction will be described. Research would be done on the decomposition of goal of 
software/human-based system, interlink of sub-goal, the relationship of goal and action. Also, the strategies of goal 
driven interaction, and the sequence of action and state will be studied and described. Totally, the description of 
goal-based system interaction may include the newly defined elements, such as goal, action, strategy, action 
element, evaluation criteria. The extending usage of temporal logic will be studied to fit the description requirement. 

Beside the description of interaction requirement, we will also explore open specification methods for other 
properties of interest in distributed environment within the uniformed framework, such as the time constraint of 
interactive, safety requirement, interlock negotiation strategy. 

Our past work has been done in the requirement solicitation by using graphic illustration. Passed successful 
experience of computer aided requirement specification proved that it can help the clear generation of requirement 
and easy of usability. The properties described in the current Computer Aided Prototype System include the time 
constrains and control constraints [52][53]. In this proposal work, we will try go forward to provide a more 
comprehensive description of interaction and employ a graphic environment for realize the specification of 
interaction system. 

C.2.2 Software Behavior Model Extracting and Verification 

Based on the system requirement specification, software design model will be built. There are many aspects will be 
concerned in the software model, such as aspects of interactive behavior, data control, time sequence, parameterized 
functionality. In this proposed work, the extraction and abstraction of software behavior model from system 
specification will be studied, which will be applied with model checking with the original behavior specification. 
Sofuvare behavior model describe what, when and how software should perform the operation with its environment, 
which of cause include human. The abstraction of software behavior model will be done based on the analysis of the 
software sub-goal, action sequence, and state transition step by step. Primary considered software behavior model 
would be consisted by state, pre-condition, status, actions, and post-conditions. 

Second, we need to go further to check the abstracted software behavior model to ensure the software design to be 
correct, precise, and unambiguous. Model checking will be used to check if the software design model is consistent 
with specified behavior model, for special interactive aspect. The successful application of model checking in 
hardware system greatly increased the hardware reliability and dependability. For mitigation of model checking 

C-2 



PROJECT DESCRIPTION 
from hardware to software is the state explosive problem. The state of software is increased very fast together with 
the complexity of software. In this proposal, we supposed to justifiably apply model checking to verify the software 
interactions. The abstraction of the software behavior model will shrink the source of software state checked to be 
relatively more precise, and limited. The purpose of checking the software interaction design model is to increase 
the function availability, reliability, and survivability of software interaction. 

For interactive system, the prope1iy with high concerned should be studied. First, interactive system may include 
many information exchange and communication. The process of software and human may be high concurrent. 
Especially, the synchrnnous of interaction should be checked at the first priority. Second, the real time properties of 
interaction would be verified. To identify timeliness properties of interactive system that may in some extend affect 
the dependability of the interactive system. 

C.2.3 Wizard Human A11tu111aTic Fault J11jectio11 Testi11g Si111ulatio11 (/VIIAT-FIT~) 

\Vith \·s:rilicJ so f1 \\·,1rs: interactive functiuns, the reliability, s,1fcty and su1'\'i\ability of system bd1a\·ior shuuld be rs:
conccrned based on overall consideration of whole sys tem, whic h include human, environment and so ftware. !11 thi s 
prnpusal work we will c.lt.:vclop ·•\Vizard JJuman" lntcr;.icLin:: System Testing Simulatiu11 Leclrnolugy. The testing 
simulation is performed based on the test scenario generated from the system requirement spec ification . To avoid 
the numbers of test case exploring, the test simulation cases is concerned with critical goal driven situations. 
Situations with mode change, feedback display, and user explicit actions will be firstly concerned. 

The "Wizard Human" serves as a wizard agent, which will act like human. The difference between wizard of human 
and real human in the test simulation is that action of wizard of human is based on the rules mitigated from human 
centered system interaction specification. According to fue interaction specification, the human action rules can be 
formalized, which we called "mental rule". Mental rule is fue action base for human to performing the interaction. 
During the testing, the application of mental rule is based on the evaluation of testing context situation. The context 
situation includes software states and the environment context at the time of interaction. After actions based on 
mental rule are perfo1med, the software performances will be recorded, which include data structure transfened and 
the resulted satisfaction of software attributes. Software attributes is to evaluate the system overall properties, which 
include safety constraints, function conectness, security constraints, time constraints and quality of service. 

Also, human enor for testing will be generated based on the mental model and the runtime action behavior. The 
generated human enors will be used to realize all of the possible opposite actions. Human error based fault injection 
mechanism will greatly improve the efficiency of software testing. Especially, the liveness properties of interaction 
will be validated. 

During the WHA T-FITs process, system is performed following the test scenarios. Once the testing simulation 
reaches the interface of wizard human and system, the runtime interaction situation will be identified according to 
the software states. Actions according to the wizard human's mental model will be applied. Human error fault will 
be injected into the system performance. After the performance of action, the following state of software will be 
checked with the post-condition of mental rule. Safety concern, function result, time satisfy, and quality of action 
will be measured and evaluated. The satisfactory of post-condition of interaction means success of a test case 
simulation. If the check of post-condition is fail, the reason of failure can be identified, which can be retraced along 
with the test scenario, software state, and related human actions and source errors. 

C.2.4 The visualization of result and interpretation of verification and testing 
Software behavior model checking will give out the counterexample of software state transmission. Visualization of 
the counter-example in the software prototype development process will help the designer to perceive the design 
problem. The visualization of test result will also give the illustration of system performance with human error. The 
defects of interaction design such as action inconsistent, mode confusion, and data inconsistent will be analyzed and 
illustrated. 

C-3 



PROJECT DESCRIPTION 
Also, during the test simulation, user and software experience will be monitored, which include the frequency, 
sequence, and the timing of usage of mental rule. Further analysis of human behavior specification can be performed 
based on the experience data. Umeasonable behavior design and specification will be analyzed. It will give 
extremely useful information for the early eliminate of behavior design defects. Also, for those feasible behavior 
designs, the statistic analysis of behaved actions can give the practically useful suggestions for future training of 
operators to perform the system interactions. 

C.3 General plan of work 
C.3.1 Plan overview 

We envision the software prototype system that we currently have as the starting point for additional further 
research. There are several extension will be done according to the characters of the interactive software. The 
specification of human involved interactive system will be studied. The measurable attribute of safety, reliability and 
usability ofthc interactive system, such as safety constraints, function correctness, security constr:iints, time 
constraints and quality of service, would be specified. For special, the concurrency and real time of interaction will 
be identified and described . The measurable attribute of concurrency and real time constr.:i ins of interacti ve system 
will be studied .Jilli spec ified. 

Based on the system requirement spe<.:ification, the model of the hu111;1n invulved system wil l be built and refined. 
The tools for system modeling can employ current computer aided prototype system. The abstraction of software 
behavior model from whole software model will be studied. Related tools will be built to enhance the current 
modeling tool. In additional, the tools for software behavior model checking will be built for determining whether 
systems have desired dependability properties. The model checker will be employ current widely used model 
checker, selected from SMV, SPIN, FDR, etc. The selection of model checker is based on the study of the suitable 
for checking of concurrency and real time attributes of interaction. The checkable properties for model checker are 
the defined measurable attributes in the system requirement. 

With the checked model of software, the prototype system can generate software implementation. By providing the 
testing simulation, dependability property of software can be validated and evaluated. Test scenarios will be 
generated from the system specification. Wizard Human AutomaTic Fault Injection Testing Simulation environment 
will be built to test the performance of software implementation by human error injection. Also, as the representative 
of human, wizard of human will be involved in the system and will act as human agency. 

Further more, an additional facility for visualization of checking result and the testing result will be studied. It will 
provide the user more easy way and useful channel to perceive the defect of software. Graphic display of software 
model will be built to illustrate the analysis result of testing. 

C.3.2 Broad design activities 
The steps in creating an integrated development framework of interactive system are as follows: 

1) Study the current requirement specification methods and their focalization, which are mostly special 
purpose designed. Investigate appropriateness of methods for using in the human-software interactive 
system specification. 

2) Study the attributes, such as real time and concurrency, and define the constraints, such as safety, 
reliability, and availability, for interaction system specification. 

3) Modify the current software prototype system for capability of modeling the interactive character in the 
system. 

4) Modify the current software prototype system for capability of illustrating the system attribute for both 
functional evaluation and nonfunctional evaluation. 

5) Study the model abstraction method for software behavior extraction with related attributes of interactive 
system, and select and apply appropriate modeling checking method for the interactive properties. 

6) Extend the capability of prototype system by including the test scenarios generation from the system 
specification. The scenarios generation method will be studied based on the interactive characters, such as 
interactive time constrain, concurrency, and so on. 

7) Generate human errors for fault injection in the testing based on the human behavior specification and the 
possibility of action selection designed in the software. 

C-4 



PROJECT DESCRIPTION 
8) Creation of the WHA T-FITs environment by building the wizard human agent, which performed based on 

the mental rule abstracted from the behavior specification of system with human related aspect. 
9) Graphic result illustration of counter-example of model checking and the result of testing simulation in the 

prototype interactive system. 
C.3.3 Deliverables 
1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

Extended specification method for system interaction behavior description with human actions included. 
Interaction behavior attributes description for dependability of the interactive system. 
Software behavior model absh·action teclmology based on the system interaction attributes . 
Appropriate model checking method for verification of interactive properties and software behavior model. 
Test scenarios generation technology from system interaction specification. 
Generation technology of"Mental rule" of Wizard human from system specification with human aspect. 
Human errors generation technology for fault injection in the testing. 
Wizard Human AutomaTic Fault Injection Test Simulation environment. 
Graphic display of counter-example of model checking and testing scenario in current prototype system. 

C. 3. _/ f)DCl'i/lfiOII Of'f/1'() (' (.' lful'L' 

13uilding on our strrngths, we will perform the following : 
I) Further de, clup tile description Lrnguagc with full consideration or bckl\ ior properties of itllCLH.:ti 1c 

system, in which the description of human behavior will be included. 
2) Further develop the description of interaction properties and measurable attributes of interactive system in 

the software design modeling. 
3) Further include the software verification method for model checking of interaction properties. 
4) Further include the graphics display of counter-example of interaction model checking. 
5) Construct prototype software tools that realize methods enabled by (1)(2)(3)( 4). 

Also, we will build a test scenario generator, which can automatic generate the test scenario from the system 
interaction specification. The specification of human behaviors will be extracted from system specification and 
generate "mental rule", which will serve as the action rules for the wizard human in the testing simulation. Human 
error generation rules based on the human behavior specification and test scenario state will be built. Following the 
test scenarios, the testing simulation will be performed, in which the interaction between the software and human 
will be realized by applying the action based on wizard human's mental rule. Result and experiences of testing 
simulation process will be recorded by the testing simulation monitor. Based on testing result and experience record, 
information visualization will provide help to further human factor analysis of system behavior description. 

To achieve the work describe above, we will take the following steps: 
1) Create test scenario generator from the system behavior specification 
2) Build a wizard human agent for system simulation by implanting its mental rule, which is abstracted from 

the human interaction description in the system requirement specification. 
3) Build a human error generator based on the system behavior description and the action performance rule 

for the interaction style. 
4) Build the testing simulation environment, perform the testing simulation following the test scenario 

generated from (1), interact with Wizard Human Agent build from (2), inject the human interaction error 
generated from (3), and record all the result and process of simulation. 

5) Provide graphic display of testing results and the suggestions for further human factor analysis of testing. 
6) Perform a domain analysis for a simple application. 
C.3.5 Evaluation factors 

C.3 .5 .1 Reduction in Development and Maintenance Time 

A reduction in development time is the main reason to provide the automatic engineering facilities to software 
development. Base on precise and complete description of system behavior, the formal model checking can be done 
automatically and can verify the software interaction with interactive constrains, such as concurrency, real time 
constrains. The automatic verification of interaction behavior will greatly reduce the errors in the software design, 
which will eventually reduce the development time and maintenance time for re-design of software. 

C- 5 



PROJECT DESCRIPTION 
By building the Wizard Human Automatic Testing Simulation, most of interaction behavior can be tested without 
real human operating. Most interaction errors will be fmd out with the completely execution of interaction behavior 
autonomously. It will greatly help the error elicitation before the real system testing. Eventually, much reduction of 
system development and support can be achieved. 

C.3.5.2 Reduction in Test Cost 

The interaction activity in interactive system is the one of the main functionality . To valid and verify the interaction 
behavior, pass efforts are concentrated on the system testing. System performance testing has several drawbacks. 
First, cause of the complex design of system, the system beh:ivior stat is tremendous. The complete testing of 
interaction behavior is impossible. Normal solution to this is to select critical part of system to perform the real lest. 
But, this incomplete testing cannot find the beh:ivior fault during the system longer performance . Also the 
propagation of interactive error will om.it. This incomplete testing cannot give guarantee of dependability of system. 
For Second, test is time consuming and high cost. For each test, the human labor and environment setting will make 
tile cos t of te s ting p rocess inue;1se. 

In this proposed work, the test sceuario is generated arter pcrfonniug model che1:kiug uf system design. The 
verification of system design will elicit the system design error for first routine. Based on the verified system design, 
the number of generated test scenario would be shrink. This would highly reduce the test cost from the test cases 
nwnber aspect. In addition, the proposed substitution of human with wizard human agent greatly decreased the cost 
ofhwnan testing labor. It will not only reduce the cost of human test labor, but also improve the efficiency oftest 
simulation. Although the generation of the action rule of wizard human should be done in additional, the benefit of 
wizard human test simulation is greatly cover the extra effort. So, with two steps facilities, the reduction in test cost 
is achieved. 

C.3.5.3 Improvement of Dependability based on the Interaction Attribute Specification 

The requirement of interactive system has not been considered completely in the pass research. The less study of 
interaction requirement will feed the hidden danger for system design. By providing the specification of interactive 
requirement, the concurrency, real time properties of system would be measured during the system design and 
verification. This would increase the insurance of correctness of system design. The defmition of the interactive 
measurable attribute make the system's interaction can be quantitative evaluated 

C.3.5.5 System Evolution 

Interactive system is becoming more and more complex. The behavior of system is a dynamic and uncertainty. The 
system mostly is built on the qualitative description of behavior and human labor enumerative testing. This make the 
evolution of the interactive system is extremely difficult. With proposed framework for interactive system 
development framework and tools, system behavior will be explicitly specified in the system requirement analysis 
phase. The measurable attribute of system interaction will be implicated in the system design. The insurance of the 
interaction behavior in the system design and the implementation with the behavior specification will automatic 
done. For the interaction system with these facilities, the new interaction requirement and feature is easy to added 
into the former system specification. The consistence of interactions and the additional side effects will be 
automatically checked and insured. The tools for software design and implementation would help to perform the 
system evolution, which would include changing functions, adding modules, improving the attribute requirement 
and etc. 

C.3.6 Schedule 
1) Study the current requirement specification methods and their focalizations; investigate appropriateness of 

methods for using in the human-software interactive system specification. ( 6 months) 
2) Study the description of interaction behavior and related attributes, such as real time and concurrency, and 

define the constraints, such as safety, reliability, and availability, for interaction system specification. (12 
months) 

C-6 



PROJECT DESCRIPTION 
3) Modify the current software prototype system for capability of modeling the interactive character in the 

system. (3 months) 
4) Modify the current software prototype system for capability of illustrating the system attribute for both 

functional evaluation and nonfunctional evaluation. (3 months) 
5) Study the model abstraction method for software behavior extraction with related attributes of interactive 

system, and select and apply appropriate modeling checking method for the interactive properties. (6 
months) 

6) Extend the capability of prototype system by including the test scenarios generation from the system 
specification. The scenarios generation method will be studied based on the interactive characters, such as 
interactive time constrain, concurrency, and so on. (G months) 

7) Generate human errors for fault injection in the testing based on the human behavior specification and the 
possibility of action selection designed in the software. (G months) 

8) Creation of the WHAT-FITs environment by building the wizard human agent, which performed based on 
the mental rule abstracted from the behavior specification of system with human related aspect. (6 months) 

9) G1·;1phic result illu st1 ·a ti o11 01cou11tcr-cx;1111pk u11nodc l chec king :111d th e re sult 01tcsti11g s i1 rn1L.tti o11 i11 the 
prototype interac tive sys tem. (3 months) 

C.J. 7 Comparison 111it'1 other researc:/1 
The dependable systems include autonomous system and combination of human operated and automated systems. 
The interaction are being more and more important for safety-critical system, for example aircraft traffic control 
system, the failure of which can cause injury or death to human beings. Consequently, the software of these 
interactive systems needs a high level of dependability. For interactive system, the complexity of the system always 
seems makes the confusion of what the automat are doing potentially comes out, which greatly harm the quality of 
interactive system. The reason of proliferation of mode confusion in interactive system is the inconsistency between 
software system activity mode and human activity mode. The deeper reason of mode inconsistency is that how 
software really performs (software implementation) cannot fit well with what user want software to do (interaction 
requirement). So, during the interactive software development procedure, the precisely mapping of interaction 
requirement to the software implementation is the bottleneck to improve the dependability of interactive system. 
Furthermore, the most important chains in the mapping ofrequirement to implementation are requirement 
elicitation, design verification and implementation validation. 

Work related to this topics discussed in this paper includes research in the areas of interaction requirement 
specification, software design model extraction and verification, human error fault injection, and requirement-based 
automatic testing. 

The interactive system is a kind of hybrid system. It includes not only function requirements, which are the 
functional correctness of interaction behaviors, but also include the nonfunctional properties, which include the 
safety, reliability, availability, efficiency and usability. For insurance of both functional requirement and non
functional requirement, it is impossible to consider them separately. For example, it is infeasible to measure the 
system availability without consideration of behavior correct. So, it is necessary to provide the non-functional 
attributes descriptions of interactive system at the beginning of the system specification, which normally focus on 
the functional description. The specification of measurable attributes of system will not only provide precisely 
criteria for system design, but also help to verify the consistency between the system design and implementation 
with the system requirement. So, the requirement specification of interactive system should include the descriptions 
of not only behaviors, but also properties. Passed works ofrelated software specification have decentralized the 
focus. Davin and Mieke used hybrid automata to description the discrete and continuous properties of hybrid 
interactive system [ 44]. Francis Jambon had tried to illustrate the safety and usability by using B formal method [3 7-
38]. Nancy provided intent specification to capture the design rational and assumption made through out the design 
process, and place great effect on the requirement specification and developed the SpecTRM methodology and its 
requirements specification method SpecTRM-RL for the safety of interactive system. [3-8].Ozols also performed the 
safety requirement modeling by using state machine graphs [28]. Paul Curzon concentrated the work on the 
formalization of correctness and usability proof by using finite state machine description [ 45]. Luqi had provided the 
time constrains related software functional specification [52,53]. Harrison had explored interactors to structure 
statecharts for interaction [19-22]. John rushby described the interactive properties by using Mur0 specification [33-

C - 7 



PROJECT DESCRIPTION 
35]. The proposed work will analysis the properties of interactive system, and provide an complete specification of 
behavior for both software and human, and provide the properties specification for further software design and 
implementation. 

The model checking has been proved to be an efficient method to check the system state h·ansmission with property 
[14][15]. Model checker like SPIN [46] , PROD [47], SMV [48,49], and FDR [50] are commonly used. And the 
application of model checking in the interactive system is also performed in past few years. John Rushby used 
model checking Mur0 to discover consistence of two described behavior based on the mental model suggested by 
human factor experts [3 3-35]. Bruno Blaskovic used SPIN and PROD to verify the communication process [16]. 
Ozolos perform the verification by carrying out interactive proofs to meet for the state machine. Atlee and Gannon 
used SMV to verify the timing requirement of system [27) . Harrison used model checking SMV to verify the 
interface model changes of interactive system [19-22). Gerald and Victor also did work to analyzing mode confusion 
by comparison of applying several model checking methods [ 17). Tn this proposal work, we will not only study on 
the model checking for the time property, safety properties, but also will check the properties for specified 
i111n:1ct io11 tcc h11 iq 11cs, such as undo 111ccku1isn1, \,· lti ch \\i ll grc:11l y :1fkL·t the sys lL'111 s:1kty :111d tkpe11d:1h ili ty 

further \·alidation of interactin:: sys lL'm unplc1rn:: ntatio11 is to ensure the prototyped intnactive sys tem to be 
performed under the beginn ing assumption, especially human behzivior integrated overall system performance . 
Dennis discussed the real time property monitor based on the requirement specification [55). Our WHAT-FITs test 
environment will validate the interaction properties based on the system behavior specification. To improve the 
efficiency of testing, our proposed work include building a wizard human to perform the human actions based on the 
requirement specification, so that to make the testing automatic and reduce the human labor for testing. Also, during 
the testing, fault injection is one of important methods to evaluating the dependability of computer systems ·with 
inject the intentional design fault [3 OJ. Jeffrey Voas used software fault injection to simulate human operator error 
scenarios to determine the occurrence [33]. For interactive system, the most dangerous trigger is not only the 
software fault, but also the human error. Our proposed work will generate human errors based on the behavior of 
wizard human to perform human fault injection. The automatic of human error generation and the human action 
performance will greatly increase the testing efficiency and the confidence achieved. 

C.4 Broader impacts 
If the dependable interactive software can be automatically generated, verified, and validated then the following can 
take place: 

1) The misunderstanding between the interaction requirement and the software design will be eliminated as 
the design model will be verified and the software implementation will be validated with the interaction 
specification of the system. 

2) We will be able to eliminate the fault of interactive system operations during the software design phase and 
implementation phase. 

3) Safety of the system will be improved as the human behavior is considered in the interactive system 
development process, consequently reduce the possibility of the software disasters will be affect the human 
life. 

4) Reliability of the interactive system will be improved with the formal model checking of software design 
model and testing of the software implementation. 

5) The costly process of exhaustively human labor testing each of the interaction scenarios can be phased out, 
as the proposed framework will perform the interaction testing automatically with simulated wizard human 
action. 

6) The time for further human behavior analysis of software implementation will be reduced, as the wizard 
human has acted as the human to check the consistence of software design behavior. 

7) The future analysis of the interaction system requirement and training planning will be possibly performed 
with the recorded data of testing experience and software operation sequences. 

C.4.1 Transition of technology 
Technology transfer will be addressed by integrating the proposed interactive software development framework and 
tools with existing prototype system development. By re-using and extending successfully applied PSDL language, 
extending the current prototype system design with interaction model checking, and creatively building the wizard 

C- 8 



PROJECT DESCRIPTION 
human automatic fault inject testing simulation, the general acceptance of our approach is enhanced. Also, 
publishing result in OMO, ACM, and IEEE sponsored conference and make extended prototype system available 
can facilitate acceptance. 

The Software Engineering Automatic Center at the Naval Postgraduate School offers M.S. and Ph.D. degrees. The 
students at NPS will contribute to this research and development effort. Their involvement will facilitate information 
trnnsfer into the DoD fmiher. We also plan to integrate emerging technologies into the courses we teach. 

C.4.2 Experimentation and integration plan 
The work will be performed by the faculty of the Software Engineering Automatic Center at the Naval Postgraduate 
School and their Ph.D. and M.S . students. The principle investigators will be responsible for coordination of the 
following plan previously stated in section 3.6 for schedule: 

1) Sh1dy the current interaction requirement specification methods, which are mostly special purpose 
designed. Investigate appropriateness of methods for using in the human-software interactive system 
specification. 

2) Creak the ex tension of current design modeling of modding, with explicitly derinition or thL' 111casur:1bk 
metrics for interactive system . 

.3J Modify the current sofiware prototype system for G1pability of lllodeling the human character in the 
system. 

4) Modify the current sofiware prototype system for capability of illustrating the system attribute for both 
functional evaluation and nonfunctional evaluation. 

5) Select proper attributes of interactive system, and select appropriate modeling checking method for the 
interactive properties. 

6) Extend the capability of prototype system by including the test scenarios generation from the software 
model. The scenarios generation method will be studied based on the interactive characters, such as 
interactive time constrain, concurrency, and so on. 

7) Creation of the WHA T-FITs environment by building the wizard human agent which performed based on 
the mental rule abstracted form the model specification of human related aspect. 

8) Generate human errors for fault injection in the testing based on the human behavior features and the 
possibility of action selection designed in the software. 

9) Analysis and interpretation of the result and experience of simulation. Further analysis and interpretation 
principle will be studied, according to which further suggestions can be given out. 

10) Graphic result illustration of counter-example of model checking and the result of testing simulation in the 
prototype interactive system. 

C-9 



REFERENCES CITED 
J. Paloma Diaz, Ignacio Aedo, & Fivos Pane/sos, Modeling the Dynamic Behavior of Hypermedia Applications, IEEE 

transaction on software engineering, Vol. 27, No . 6, June 2001 

2. Gerard J. H. and Margaret H., An automated verification method for distributed system software based on model 
extraction, IEEE transaction on software engineering, vol.28, No.4, April 2002 

3. Aifario Rodriguez, Marc Zimmerman, 1vfasajiu11i Katahira, Ma.xime de Villepin, Benjamin Ingram, and Nancy Leveson, 
Identifying Mode Confusion Potential ill Soft>Vare Design, Digital Aviatio11 Sys/ems Co11ference, October 2000. 

4. Nancy Leveson, Intent Specifications: All Approach to Building Human-Centered Specifications, IEEE Trans. 011 
Software E11gi11eering, January 2000 

5. Na11cy G. Leveson, L. Denise Pinne/, Sean David Sandys, Sl111ichi Koga, Jon Damon Reese. Analyzing Soft1vare 
Specifications for 1'vlode Confusion Potential, Prese11ted at the Workshop 011 /-lw11a11 Error a11d System Develop111e11/, 
Glascow, March 1997. 

6. Nancy G. l.eveso11 and Everett Palmer (NASA ;Imes Research Center). Desig11i11g Auto11111tion lo RC'tf11cc Operator Errors. 
/111/1e l'rocc:edi11gs uf.~j ·strnzs. 1\lw1, llllll C):hemelics Co11/en'11ce, Oci. /997 

7. Molly !Jrull'n {Ill(/ Nancy G. Levesu11, Motfeli11g Conrrol/er Tusl,sfor Sajery /11111/ysis, /'resc11tet! al 1/,c /Vo,-ksfwp u11 
/-/11111011 Error a11d System Develop111e11/, Seal/le, April 1998 

8. Mario Rodriguez, Marc Zi111111er111a11, lviasaji1111i Katahira, Maxime de Villepin, Benjamin Ingram, a11d Nancy Leveson 
.Identifying Mode Confusion Potentf{([ in Soft,v{(re Desigll Digit{([ Avfotion Systems Conference, October 2000 

9. Laurence Rognin, Jemi-Paul Blanqu{(rt, J,np{(Cf of Commu11ic{(tio11 011 Systems Depe11d{(bflity Human F{(ctors 
Perspectives, SAFECOM'99, LNCS 1698,pp. 113-124, 1999 

J 0. Lucia Bile/a Leite Filgueiras, Hu,n{(Jl Performance Relfability in the Desig11-for-Us{(bility Life Cycle for S{(fety Hum{(ft
Computer Interfaces, SAFECOM'99, LNCS 1698, pp. 79-88, 1999 

11. Jin Mo and Yves Crouzet, A Method for Opemtor Error Detectio11 B{(sed on Plew Recog11itioll, SAFECOM'99, LNCS 
1698,pp. 125-138, 1999 

12. Rogerio de Lemos and Amer Saeed, S{(fety A1wlysis Techniques for V{(fid{(ting Formal Models During Verifimito11, 
SAFECOM'99, LNCS 1698, pp. 58-66, 1999 

13. Atif M. Martha P. and Mary Lou S., Hierarchic{([ GUI Test C{(se Genemtion Using Autom{(ted Planning, IEEE 
transactions on software Engineering, vol.27, No.2, Feb. 2001 

14. B.R. Haverkort; H. Hermanns; J.-P. Katoen: On the use of model checking techniques for dependability eval11{(tio11, 19th 
IEEE Symposium on Reliable Distributed Systems, pp.228--237, Erlangen, Germany, October 16--18, 2000 

15. F. Schneider, S. M. Easterbrook, J. R. Callah{(n and G. J. Holzmann, V{([id{(ti11g Requirements for F{(ult Tolemnt Systems 
using Model Checking, Third IEEE Conference on Requirements Engineering, Colorado Springs, CO, April 6 - 10, 1998. 

16. Bruno Blaskovic, Petar Knezevic, and Mirko Randie, Model Checking Appro{(ch for Communication Procedures 
Validaiton, IEEE, pp 532-535, 2001 

17. Gerald Liittgen, Victor Carreno, Analyzing mode confusion via model checking, NASAICR-1999-209332 !CASE Report 
No. 99-18, Institute for Computer Applications in Science and Engineering Mail Stop I 32C, NASA Langley Research Center 
Hampton, VA 23681-2199, pp. 67, May 1999. 

I 8. Steven P. Miller and James N. Potts, Detecting Mode Confusion Through Formal Modeling and Analysis, NASAICR
l 999-208971, pp. 69 January 1999 

19. J. Creissac Campos & M. D. Harrison, Model Checking Interactor Specifications. Automated Software Engineering, 
8(3/4):275-310, August. 2001 

D -1 



REFERENCES CITED 
20. Pocock, S., Harrison, M., Wright, P & Johnson, P. THEA: a technique for human error assessme11t early in desig11. To 

appear Proceedings Interact 'O 1, Japan. 2001 

21. Loer, K.·& Harrison, M.D. Formal interactive systems analysis and usability inspection methods: two incompatible 
worlds? In Palanque & Paterno (Eds) Interactive Systems: Design, Specification and Verification. Springer Lecture Notes 
in Computer Science 1946. pp. 169-190. 2001 

22. Willans, J, and Harrison, 1'v!.D. (in press) A toolset supported (/pproac!t for designing (//Id testing virtual e11viro11me11t 
tec!t11iques. International Journal of Human Computer Studies. 

23. S111i!l1, S.P., Duke, D.J. & Massink, M. T!te !tybrid 1porfd of Pirt11al environments. Computer Grapltics Forum. 18(3) C297-
307 /999 

24. James Corbett, Mattltew Di vyer, Jn/111 Hatcli[f. Robhy, Expressing C!teckahle Properties of Dy11u111ic Systems: T!te 
Bandera Specification L(l11gu(lge, June, KSU CIS Tecltnical Report 2U0l-04. 2001. 

25. l<wule/1, IJ. ~'UUU. Facing llfl toji111fls. lite Cu111p111er.Jo11mal, rnl 43, /i/i. 'J.i-/()(1, 20UU. 

26. Ric:liy JV. /Jui/er, etc, ufor111a/ met!tods a11proac/1 to rite <11111/ysis of mode conji1.1io11, 
It I Ip: / lslte111eslt . I a re. nasa .gol'lf1ttlpaperslb11t I er-el a 1-d asc 98. pd/ 

27. J.M. Atlee and J. Gannon, Model C!tec!ci11g Timing Req11ire111e11ts, Computer Science Tecltnical Report CS93-25, 
University of Waterloo, September 1996. 

28. M.A. Ozols, K. A. Eastaughjfe, A. Cant, S. Collignon. DOVE: A Tool/or Design Modelling and Verification in Safety 
Critical Systems, Proceedings of the 16th International System Safety Conference, Seattle, US September 1998. 

29. B. Blaskovic, P. Knezevic, M. Randie, University a/Zagreb, Zagreb, Croatia, Model Checking Approach for 
Communication Procedures Validation, EUROCON'2001, pp.532-535 

30. Mei-Chen Hsueh, Timothy K. Tsai, Ravishankar K. Iyer, Fault I11jectioll Tecfzlliques and Tools, IEEE Computer, April, 
(Vol. 30, No. 4), pp. 75-82, 1997 

31. Gerald Liittgen, Victor Carreiio, Analyzing Mode Col!fusioll via Model Checking. 120-135, LNCS 1680, pp. 120 

32. Jeffrey Voas, Analyzing Software Sensitivity to Human Error, Failure & Lessons Learned in Information Technology 
Management, Vol. 2, pp. 201-206, 1998 

33. John Rushby, Modeling the Human in Human Factors, Volume 2187. SafeComp 2001: Proceedings of the 20th 
International Conference on Computer Safety, Reliability, and Security}.Edited by Udo Voges., Springer-Verlag, Budapest, 
Hungary., September, pp. 86-91, 2001. 

34. Judy Crow, Denis Javaux (University of Liege), and John Rushby, Models al!d Mechanized Methods that Integrate Human 
Factors into Automation Design, HCI-AERO 2000: International Conference on Human-Computer Interaction in 
Aeronautics. Edited by Kathy Abbott and Jean-Jacques Speyer and Guy Boy. Toulouse, France. September, 2000. Pages 
163-168. 

35. John Rushby, Using model checking to help discover mode confusions and other automation surprises, The 3rd Workshop 
on Human Error, safety, and system development (HESSD '99), Liege, Belgium, 7-8 June, 1999. 

36. Paul E. Ammann, Paul E. Black, and William Majurski, Using Model Checking to Ge11erate Tests from Specijicatio11s, 
Proceedings of 2nd IEEE International Conference on Formal Engineering Methods (ICFEM'98), Brisbane, Australia 
(December 1998), edited by John Staples, Michael G. Hinchey, and Shaoying Liu, IEEE Computer Society, pages 46-54. 

37. Francis Jambon., From Formal Specijicatio11s to Secure Implementations. Computer-Aided Design of User Inte1faces 
(CADUI'2002), edited by Kolski, Christophe and Vanderdonckt, Jean, Valenciennes, France, Kluwer Academics, 2002, pp. 
43-54 

D-2 



REFERENCES CITED 
38. Francis Jambon, Patrick Girard and Yamine Ai'f-Ameur.,Interactive System Safety and Usability enforced with the 

development process. Engineering for Human-Computer Interaction (8th IFIP International Conference, EHCl'0J, Toronto, 
Canada, May 2001), vol. 2254, Lecture Notes in Computer Science, edited by Little, Reed Murray and Nigay, Laurence, 
Berlin, Springer, 2001, pp. 39-55 

39. Jan MacColl, David Carrington, Specification-Based Testing of lnternctive Systems (1997), Iv/arch 20, 1997, 
http:// archive. csee. uq. edu. aul~ian 111/ 

40. D. Clarke, I.Lee. Testing Real-Tim e Constraints in a Process Algebraic Setting. In Proceedings of the 17th lntemational 
Conference on Software Engineering, 1995. 

41. Gordon D. Baxter, A. 1\lfonk el al, It's about time: Reasoning about riming requirements in hu111a11-111achine systems, 
Berlin 200 I, Springer, /,1tp ://arjn11a.ncl.ac.uklpublicalio11s/ 

42. D. Leadbetter, A . Hussey, P. Lindsay, A. Neal and M. l-lw11phreys. Tmvards Model Based PredictiolT of Hu1111111 Error 
Rates in [11teracth•e Systems, Aus/ra/im1 C'o111p111er Science C'01111111111icalir111s: A 11slralasia11 ( Iser /11/er(ace C'o11(erc11ce 200 I. 
:!3(5), pp.42-4Y. 2UIJI. 

43. LJ. Navarre,/'. l'a/a11que, N. 1Jas1ide OIi({ 0. Sy. A Jl/ode/-/Jased [1111/ ji1r Jn1emctil'e l'ro101n1i11;; of fli,;!tly !n1ernc1ii-e 
Applications. I 21'1 IEEE, fll! emationa/ Workshop 011 Rapid S)1slc111 l'ro101;-pi11g, Mo111crey (USA). IEEE, 200 / . 

44. G.Doherty, M. Massink, G. Faconti Using Hybrid Automata to Support Human Factors Analysis of a Crilical System, 
Formal Methods in System Design 19 (2) S. Gnesi and D. Latella (Eds), Kluwer Academic Publishers, (September 2001) 

45. P. Curzon and A. Blandford, Using a Verification System to Reason about Post-Completion Errors. Participants 
Proceedings of DSV-IS 2000: 7th International Workshop on Design, Specification and Verification of Interactive Systems, 
at the 22nd International Conference on Software Engineering, Edited by Philippe Palanque and Fabio Patern? pages 292-
308, June 5-6 2000, Limerick, Ireland. 

46. ON-THE-FLY, LTL MODEL CHECKING with SPIN, http://netlib.bell-labs.com/netliblspinlwhatispin.html 

47. PROD 3.3.09, An Advanced Tool for Efficient Reachability Analysis, http://www.tcs.hut.fi/So/twarelprodl 

48. Ken McMillan, Lecture notes for NATO summer school 011 verification of digital and hybrid systems, http://www
cad. eecs. berkeley. edu/-kenmcmilltutorial/toc. html 

49. The SMV home page. smv is installed locally on the Suns (e.g., dipsy), in /bhamlums/solaris/pdlpackageslsmvlsmv. The 
examples are in lbham/umslsolarislpd/packages/smvlexamples/. 

D-3 


	NPS-SW-02-009_0001
	NPS-SW-02-009_0002
	NPS-SW-02-009_0003
	NPS-SW-02-009_0004
	NPS-SW-02-009_0005
	NPS-SW-02-009_0006
	NPS-SW-02-009_0007
	NPS-SW-02-009_0008
	NPS-SW-02-009_0009
	NPS-SW-02-009_0010
	NPS-SW-02-009_0011
	NPS-SW-02-009_0012
	NPS-SW-02-009_0013
	NPS-SW-02-009_0014

