
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1998-04

Formal Models and Prototyping

Luqi
Technische Universistät München

Luqi. "Formal models and prototyping." Requirements Targeting Software AND
Systems Engineering, RTSE '97 TUM-19807 (1997): 183-194.
https://hdl.handle.net/10945/65146

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

TUM
INSTITUT FUR INFORMATIK

RTSE'97 - Workshop on
"Requirements Targeting Software

and Systems Engineering"

Manfred Broy
Bernhard Rumpe

TUM-19807
April 98

TECHNISCHE UNIVERSITAT MUNCHEN

Formal Models and Prototyping*

Luqi
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Abstract

Rapid prototyping is a promising approach for formulating accurate software n •
quircments, particularly for complex systems with hard real-time constraints. Com
puter aid is needed for realizing the potential benefits of this approach in prai:t.ic-,•,
because the problems associated with software evolution arc greatly amplilic,l in t.h,·
context of iterative prototyping and exploratory design.

Our computer-aided prototyping system CAPS provides aut.omat.erl support. for
many aspects of requirements analysis and software prototyping. including: (I)
maintaining logical dependencies between .L~smnptions about ne,•ds nf different.
groups, software requirements, and design decisions, (2) managing dcsigu history, al
ternatives and dependencies, (3) planning, assigning and scheduling jol, assig11n1r.nt.s
for teams of designers in the presence of uncertainty, (4) checking and propagating
d<'-~ign constraints, (5) maintaining consistency between graphical and I.ext. views of
a design, (G) constructing real-time schedules, (7) generating control code, and (8)
retrieving and instantiating reusable software components.

The principles and methods that make this possible and the practical application
of the system arc explained via examples.

1 Introduction

The software industry remains far short of the matur<' engineering disciple needed to
meet the demands of our information age society. Symptoms of the problem arc large
sums spent on cancelled software projects [38], costly delays [19], and software rcliabilit,·
problems [13].

Lack of formalization of rapidly emerging application areas makes soft,rnre rngineer
ing more difficult than other engineering disciplines. RC'quirernents for complex systems
arc nearly always problematic initially and e,·oh·e throughout the life of the systems.
Requirements and specification problems have been found to be thr dominant cause of
faults in the Voyager/Galileo software [34] , and we beli<',·e this applies to most large and
complex systems.

"This research was supported in part by the l'\ational Science founrla,ion under grant number CCR
!)058~-53 and by the Army Research OfTice under grant number 309S9-~l.-'. .

RTSE'97, p.183

E\'Ol11tionary prot.01.y pi11~ C"a11 alli·viat.f' this prohlPm hv prm·icli11 i; a11 Plli,·i,•111 appro;i.-11
t.o formulating accurate soft.ware r<'<p1in1111f'nls [27j. SimplP 1nocl1•ls rr•ll1•e·I inµ, I he• 111;ii11
isstl['S assor.iat.,·cl with thr. proposPcl system ani rcmst.rnrt.r.cl a11cl cle •111011slralPd , a11cl 1111·11
rc•forn1ulatPd t.o bet.I.er mat.ch customer concerns, b;L~C'd on sprcific nit il'is111s a11d t llf' iss 11 Ps
t hey Plirit. This proc,~ss aids u11clPrstanding bc•causc i11de•prnclP11I i~~111·s an• sPparat,•cl and
t.rc·atc·d in isolation ;L~ much as possi ble•, via communication hasrd <HI t llf' simpJ,.st. n1ocl,·ls
possihlP. The models ani refined only a<; nccdrcl to resolve opc•n i~suc•s, and t.llf' iss11C's
arising at one level of detail arc resolved as much a<; possibl e before· consicl,·ri ng t l11' n<•xt
level of detail , or the next a<;pect of the system. This helps to focus t. 11<' attention of th,·
cnstomrrs, designers, and analysts because only a few selectNI aspr<-ts of t. hP systc~,n an·
changing at any point in the process.

Automation is necessary to enable the rapid , economical and cffrct.in• change· IH'C'dcd
for crnlntionary prototyping. Our hypothesis has been that increasing the dc•gn·P u f
automation for system development and evolutionary prototyping shonld impro,·p I llf'
quality of the systems produced . A sound basis for the engineeri11g automation is JH't'clPd
to realize evolu tionary prototy ping for large and complex systems. which typically haw
real-1 ime constrai nts . \Ve have explored formal models of Yarious aspects of soft.ware•
development and evolution to achic,·e reliable and quantifiable automation of subtasks.
Formal models have enabled analysis and assessment of the accuracy and efficiency of
proposed a lgorithms and heuristics.

It has been necessary to interlea,·e this theoretical work with experimental validation
and adjustment of the models to better fit practical reality. This has been necessary hP
canse software development and ernlution arc extremely complex problem domains, and
engineering automation systems hm·c correspondingly complex requirements that. strongly
manifest all of the difficulties identified above. Thus we h,n-e applied the crnlnt.ionar_,.
prototyping approach to the development of techniques anrl software for supporting I.II('
evolutionary prototyping approach itself. We ha,·e found this s trategy successful for rlen:1-
oping accurate models, effective automation am! dC'cision support methods for ernlut.ion of
soft,rnre and system requirements. This paper summarizes our experiences and presPnt s
some of our recent progress on carrying out the plan outlined abow.

The rest of the paper is organized as follows. Section 2 describes our strategies for
achic,·ing automation support for e,·olutionary prototyping and summarizes progress to
date. Section 3 discusses a formal model of software e,·olution and explores some auto
mated processes that can be supported by the model. Section -I illustrates our ideas with
an example. Section 5 contains conclusions.

2 Strategy for Automation Support

The main components of our strat egy are developing languages and methods based on
formal models of selected aspects of the problem. In each case ,,·e sought the simplest
models adequate for achieving our purposes, and based the la nguages and methods on
these models. We started with the simplest possi ble model.:= and refined them only as
needed , based on experimental applica tion of the models to assess their adequacy. Our
guiding principle was to avoid model features unless we has a cc,nvincing practical scenario
that required those features. Consequently we were always s.,arching for simplifications

RTSE'97, p.184

and n-form11lat.ecl modr.ls wh<'ncvPr W(! found a way t.o (•liminal<' a mod,·1 ('OIU-Ppl . This
was dom! because W(! wantt'rl Lil!' res11ltinµ; mrt.hods and tools t.o lw e:L~Y t.o 11si, and l<'arn .
\Ve exp(!c:l.ed simpler models to sperd up the proccSS(!S of analysis and cksiµ;n by r<'(hwi11µ;
the 1111mher of mandatory choices. This is part.ic11larly approprial.t! in t.lw r.011tPxl. of
prototyping, where it is import.ant. lo get. the major d(!cisions mrm:t. rapidly, \\'ii ho11t.
spending effort. 011 finc-t.1111i11g. Onr experience has confirnwd t.his hypot.h(!Sis. \\'P lum·
also found that removing concepts from the models and t.hr al.U'11t.ion of t.lH' d('siµ;ru!r
c:an introduce stringent. req11irement.s for design a11to111ation capahilir.ics. Removed d<'siµ;n
at.tributes m11st he derived automatically, accurately, and in a way that. provid(!S good
designs.

The first area to be modeled was the behavior of real-time systems, because t.hr pro
totyping approach requires the ability to demonstrate proposed system behavior. TIH'
simplest formulation we could find was a refinement of data flow models that incorporates
declarative control and timing constraints. The prototype system description lang11ag<'
PSDL [25] was developed based on this model. The model was extended to incl11de dis
tributed computation [30] and a formal semantics of the language was developed [22].
The model and language have been found to be adequate for representing a variety of
co!11plex systems, including a generic C3I station [2!l] and a wireless acoustic monitor for
preventing sudden infant death syndrome [36] .

Real-time scheduling and software integration arc other key issues for rapid realization
of complex systems. 'vVe developed related models in these two areas, h,L~(!cl on thr. mocJp)
of system behavior.

Real-time scheduling depends on models or the timing rr.quirement.s and on models of
the capabilities of the target hardware. The behavioral model underlying PSDL contains
a model of real-time requirements, which we extracted for this purpos(! [26]. This model
was used to develop our initial scheduling methods, and it pro\·ed arlcqual.<!. Tlw initial
hardware model was empty, which was adequate for scheduling with rr.spect. to fix<'cl ,
single processor architectures. \Ve realized that scheduling depended 011 hardware models
when ll'e started addressing scheduling methods for more general hardware configurations.
\Ve de\·clopcd a series of more sophisticated hardware models [30] , and found that thcsr
together with the original model of real-time requirements were adequate for supporting
scheduling methods for multi-processor and distributed target hardll'are configurations [7,
32]. Ongoing work is exploring models and methods that can schedule larger distributed
real-time computations within practical resource limits.

Software integration is the process of ensuring that all the parts of a software system
work together to achieve their intended purpose. Software integration depends on models
of interactions between subsystems and control constraints, including those derived from
timing requirements and the schedules used to realize them. \ \ -e addressed software inte
gration by developing software architectures and methods for architecture-based program
generation. Automated program generation is necessary in our context because we had
to support rapid, low cost change, and small changes to timing requirements can affect
large portions of the code.

The software architecture for prototypes embodies a general structure for realizing
interactions and real-time schedules for systems that have a mix of time-critical and
non time-critical computations. The structure used to automatically realize connections
bet\\·een subsystems was derived from the system interact ion part of the behm·ioral model

RTSE'97, p.185

1111d,·rlyi11g PSDL. T iu· st nu:t 1m~ t.hat. n!aliws t.h<' sd1<'d11l<'s II S<'S a high- prior ity t hn•;11J
for ro111p11tat.io11s with hard d,•adlinf's a11d a low-priority t hn•ad for 1·0111p11t at io11s wil ho111
d,•adlitH'S.

TIH• software an:hit.Prturc, was implicitly defined hy a program g<'tH•rator drin•11 1,y
a dPscriptio11 of dl'sin·d sysl1•111 behavior exprcss<!d in PSDL a11d a n·al-t.in"' sdl(•d 1d"
rnnstrnct.cd by a sdH'dt ding algorithm . T his program g,•1H•ralor was its,.Jf g<' tH•ral <'d using
an at.trilrnt.P gra111 111 ar processor. This approach works l,111 is not part:indarl.1· 1'!1•ga111 or
easy to adapt to other problems.

Our initial capability for generating executable prototypes from si mple and quickly
const.rnctible models of the problem domain enabled experimental rnlidation of t.hP con
jecture that prototyping and demonstrations of systems beh,n-ior were valuahll' aids t.o
rrquire111Pnt.s determin ation . The initial experiments snpportrd the validity of this con
jecture, which motivated us lo put more effort into software reuse and Pvolut.ion.

Software reuse is a critical part of prototypi ng for rral -r ime systems hPcnuse effi ciency
is of the essence in the time-critical parts of these systems. The highest levels of pfficil'ney
can only he achirved by intensive engineering and refinement of sophist icated algorithms
and data structures, which usually takes large amounts of time and effort, and produces
designs that depend on in tricate chains of reasoning. The easiest. 1rny to tak,~ adrnnt.agl'
of such compo,wnt.s in a process that must be cheap and rapid is t.o use a prc1·in11sly
constructed library of standard and well-optimized compo11c11ts. Thus we explon•d formal
models of how such libraries could be organized and sPar<:hcd to quickly find t.lw most.
appropriate components for each particular context. [24] . Search met.hods must t.racl<'
off precision (retrieving only relevant components) against. recall (finding Clm1po11cnts
if they arc relevant}. We have developed a software component search IIH!l.hod that.
can simultaneously achie1·e high levels of precision and recall, based 011 algebrai c: queries
representing symbolic test cases.

Software evolution is a critical a~pcct of prototyping [27]. !11 the early stages or
requirements formulation the purposes of the proposed s~·stcm arc highly uncertain and
major changes arc expected. Planning, version control, t eam coordination, and project.
management arc key issues in this context. Another important issue is how to repeatedly
and rapidly change a design without having it degcneratr into an unstructured maze that.
cannot be quickly understood and modified . The next srction summarizes our progress
on software e1·olution .

3 Software Evolution

Our initia l step towards formalizing software evolution in the large was a graph model of
the evolution history [28] . This work led to the insights tha t the essence of project history
lies in dependencies among 1·ersions of project documents and the activit.irs that produce
them, that the formal structures of projec t history and project plans arc essentially the
same, and that integrated modeling and support for soft11·are configuration management
and project management enables higher automation levels for both [l] . More recent work
suggested that hypergrnphs may be useful [33], and that int egration with personnel models
and rationale models enables dec ision support for the problematic early stages of critique
analysis and change planning [8].

RTSE'97, p .186

To ad1i<!V<! simplicity,\\'!! S<'<!k l.o 111od1•l t.h<! prod11<:1.s awl pro1·1•ssl's i11\"llh"l'll i11 s11f"I \\'an•
1•\·0l111.ion using a mini111al sci. of g<'n<'ral ohj1!ct types, and introd1w1• SfH!l'ializ1·d s11h..Jass1•~
only wh1•n IH'C<!ss;u-v for accurate modeling. The current. vPrsio11 of th<! 111011<•1 has n11I _\·
thn!c main types: co111po11c11t., step, a11d person.

The type compon<·nt. represents any kind of versioned sofl.warr-rPlat.<•d ohj,·,·t , i11d11d
ing critiques, issues, r<!quiremr.nts, dr.signs, programs, manuals, test. ,·as,·s , plans. <'I.I'.
These arc the i11fonnatio11 products produced hy software p\·olut.ion 1,ro1·1•ss<'s.

The type step r<'prcscnts instances of any kind of scl11!dul<'d software 1•\·0l11t.ion a<"l.i\·ity.
such a5 analysis, design, implementation, testing, inspection, demonstration, cl.1·. St,•ps
arc activities that arc usually carried out by people, and may be partially or rnrnpll!I.Ply
automated. \IVhcn viewed in the context of evolution history, steps represent dcpendcnc-iPs
among components. Steps that are not yet completed represent plans. Steps arc a subclass
of component because they can have versions, to provide a record of how the projf'ct. plans
evolved.

The type person represents the people involved in the software evolution acti\'it.y.
including the stakeholders of the software system, software analysts, designers, projr.ct
managers, testers, software librarians, system administrators, etc. \\'c need to represent.
the people involved to be able to trace requirements back to the original raw data, a11d
to link it to the roles the authors of critiques play in the organizational strncturc. This
is a part of the rationale of the system that helps to identify \"iewpoints and anal_\·z,,
tradeoffs between conflicting requirements. The people in the de\·r.lopmenl. t1iam mnst.
be modeled because of concerns related to project scheduling and authorization to access
project information. Person is also a subclass of component, and therefore \·ersioncd, to
provide a record of how the roles and qualifications of the people inrnh-ed in the proje1·1.
change with time.

We have recently developed an improved model of system evolution that better ar·
counts for hierarchical structures of components and steps. The associated refinement.
concept is useful for helping developers and planners to cope with the complexity of large
projects. This model is summarized as follows.

An evolution record is a labeled acyclic directed hypergraph [.\", E, I, 0, C, SJ where

l. N is a set of nodes, representing unique identifiers for components,

2. E is a set of edges, representing unique identifiers for steps.

3. / : E -+ 2N is a function gi\·ing the set of inputs of each edge,

4. 0 : E -+ 2N is a function giving the set of outputs of each edge. such that
O(e) n O(e') i- 0 implies e = e',

5. C : N -+ component is a function giving the component associated with each
node, and

6. S : E -+ step is a function giYing the step associated with each edge.

The hypergraph must be acyclic because its edges represent input/output dependen
cies for the processes that create components. These dependencies induce precedence'
constraints for the project schedule. because an activity cannot start until all of its input

RTSE'97, p.187

c01111H>111·11ts an· available. Tlw n•stri,·tio11 011 th,· 011t.p11ts sa,·s that l';wh 1·ll111po111·11t i.,
prnd111·<'d l,y a 1111iq1u~ st.!'p. Tl1is Pst.ahlislll's d,·ar lirll's of r<'S(Hl11sihilit,· and prnd11.-<'s a
n·rnrd of aut.lrorship whc11 <'ach st.c•p ro111pl<'t1·s.

L<'t. f-f dc•11ot.c the srt. of cvo l11t.io11 r<'rords .
A hierarchical evolution record is a11 ;wycli,· dirrct.<'d graph [11 . ,·] "·it h lah<'l 111;1ps

h, r a11d dl'co111posit.io11 maps rl,., rl, wlll'r<'

I. n is a set of nodes rPprPsc11ti11g 1111iq1u• id,•111.ificrs for rvol11t.io11 rc•rnrds.

2. P is a set of edges rcpresr11ti11g unique idP11t.ificrs for e,·olutio11 record rc·fi11<'1111·11ts ,

3. lz : 11. • H is a function giving the evolution record associated wit.Ir each nod,·,
such that (n I ,n2) Ee implies lz(n 1) is a subhypcrgraph of h(n1). This 111ca11s that
h(ni).N c::; h(n2).N, lz(n 1).£ c::; lz(112).£ , h(ni).I c::; h(n1).J. h(n.i).O c::; h(n1).0,
lz(n 1).Cc::; h{n2).C, and lz(ni).5 c::; lz(n2) .S.

4. r: e • step is a function gi,·ing tlu• step that is refined by c•ach Pdg<' ,

5. rl,, : N • 2N is a function giving the set of subcomponent nodes of each com
ponent node appearing in the evolution record lz(ni) for any 11odl' Hi E 11, where

N = Un,En h(ni).N.

G. d, : E • 2£ is a fund.ion giving t.lw S<'t of substep edges of Pach step edge ap
pearing in the evolntion record lz(ni) for a11y node 11.i E 11, wh<'r<' E = Un, En lz(n,).E.

7. The graph has a single root (a node wit.Ir no incoming edgc·s) awl a si11gle leaf (a
node with no outgoing edges).

8. Any two paths JJi and p2 from the root node with the same step label set {r(c)I,· E
pi}= {r(e)jc E JJi} end in the same nodP.

9. If (n 1 , n 2) E c, then there is an E1 E lz(n 1).E with S(Ei) = r(c), (/J # rlc(E 1) c::;
h(n2).E, and for each E2 E dc(E1), J(E2) c::; UN,El(Eil d,,(Ni) c::; /i(112).1Y and
O(E2) c::; UN, EO(Eil d,,(Ni) c::; lz(n2).N.

Each node of a hierarchical evolution record represents a ,·iew of the evolution history.
The root node is the most abstract view, containing only the top le\·cl steps and the t.op
le,·el components those steps produce. The leaf node is the most detailed ,·iew, which
contains the top level steps and components together with all direct and indirect substeps
and subcomponents .

. .\ step is refined by adding all of its substeps to the ernlution record , along with the
input and output components of the substeps. The last condition in the definition says
that the step associated \\'ith the link between two vie\\'s must be decomposed into at
least one substep in the detailed ,·iew, that the inputs and outputs of the substeps must
be subcomponents of the inputs and outputs of the superstep, and that the input and
output components of the substeps must appear in the detailed view.

The hierarchical evolution record has a large number of nodes, "·hich arc not intended
to be s tored explicitly in an implementation. The model is intended as a framework
for na,·igation through the possible views of the crnlution record at different le,·e ls of

RTSE'97, p.188

alist.rac:t io11 . Pract.ical impk111P11l.at io11s will 111al.r.rializc• 0111 _\· I hose · \·i,·1\· 11oclc ·s I hat ;11 , ,

\· is it<'cl .
This mod<'I ca11 lw usrd t.o a u t.omat.ir:ally sd1rclulc· s t.c•ps , a11to111a1 il'ally lc w;1f ,. a11cl

clc ·li\'C·r I.iii' p rope r \'rrsio11s of the input. co111po11C'IIIS lo I.hr dc•n•lopn ;L~s i~11c•cl 10 C'illT1·
0111. t.hc: step , a11d to aut.nmatically check i11 t.hc 11ew compo 11 <'11l s procl1wc•cl 11·111·11 1.111• slc·p
is complct.ccl . IL can also be used t.o general.I' clcfaull plans , to 111ai111ai11 I. II!' ni 11sistc•11n·
o f plans, a11cl t.o help man age rs a11d dcvcloprrs 11a\·igatr through I. II!' pl a11 a11cl cl cH' IIIIH 'III
s t.rnc lmes of a11 evolutionary prototyp ing or clc•\'clop11u•111 effort .

4 Example

Fig url' 1 sho\\'s a11 example of a top level e\'o lut.i o11 record. In th is rxampl l' , the first
\'N s io11 of the requirement {/i'l) is used to derive the first vc•rsio11 of t. lw prototypc· (Pl).
\\'hich is demonstrated to system stakeholders and elicits the cr iticism (C' I) . \ \ ' h<'n a
s tep lo derive the second ve rsion of the requirement (R2) from t.111' rrit.icism is prnposPcL
the system automatically proposes a step to create the second \'C'rsio11 of the prnl.otyp c·
(P2) , because the prototype d epends on the requirement and thr requirement will IJC'
updated. The proposed steps will be scheduled automatically when they are approved hy
the project management.

Figure 1: Top Level Evolution Record

Figure 2 shows the refinem ent of step Sl of the top ll' \'Cl ernlution record sho\\'11 in
Figure 1. Both Sl and its substeps Sl. 1 a nd S 1.2 arc present in the refin l'd evolution
record . The top le\·el steps are shown with thicker lines. The component Rl is decom
posed into the subcomponents Ral and Rbl because thesr components arc inputs to th r
subs leps, and Pl is d ecomposed into Pel and Pdl because these are the outputs of thr
substeps.

Figure 3 shows a furth er refinement of the evolution record s hown in Figm c 2 that
r xpa nds all of the top-lewl steps. \\'e have left out the top le \·el steps to avoid cluttering
the diagram. :--:ate tha t the subrequirement Rbl is shared by both \'ers ions of the require

ment R, because it is not affected by the elicited criticism, and that the ~ubsystem Pd!
o f t he prototype that d epends only on this s ubrcquirement is also shared by both versions

R.TSE'97, p.189

Pl

S4

®
Figure 2: Refinement of Step Sl

of the prototype P. Our goal is to provide tools b,L~rcl on this model that will mak<, it
e,L5ier to discover and manage large scale structures of this variety.

The decomposition mappings for the snbcomponents arc d<•noted by geometrical cun
taimncnt in the figures. The decomposition relations for the steps arc indicated only via
the structure of the step names. l\otc that the graphical display would get crowded if the
decomposition relations were explicitly displayed as hyper-cdgrs, even for this very small
example. In realistic situations, there can be many more nodes in the ernlntion records.
\\'e arc currently exploring automatic mechanisms for determining and displaying small
neighborhoods of these structures that are relevant to particular planning anrl analysis
tasks and are small enough to be understood . Some initial results along these lines can
be found in [23].

5 Conclusions

Our previous research has explored formal models of the chronological e,·olution history
[28]. This model has been applied to automate configuration management and a variety
of project management functions [l]. The ideas presented in this paper pro,·ide a basis for
improving these capabilities, particularly in the area of computer aid for understanding
the record of the ernlution of the system to extract useful information from it. Some
recent work on improving the project scheduling algorithms based on these models has
enabled scheduling 100,000 tasks in less than a minute [14]. These results suggest that
the project scheduling support will scale up to projects of formidable size.

We are currently working on models and notations that support explicit definitions of
software architectures for solving given classes of problems independently from the rules

RTSE'97, p.190

RI Pl

Ra!

~ /

R2 / P2

/
S1.2 e

S3.1

S-U

Figure 3: Further Refined Evolution IlPc-ord

that determine a particular instance of the architecture for soh·ing a given instance of t.hP
class of problems. This should make it easier for software ard1itPct11res and associat1•d
program generation capabilities to evolve.

Architecture evolution pro,·ides a practical path for quickly obtaining automation ra
pabilities for new problem domains, and to gradually improve I.hose capabilities by adding
solution techniques that expand the problem domain and incorporating optimizations for
specialized subproblems that improYe performance.

Formalizing these aspects of software architectures and dewloping the corresponding
engineering automation methods will eventually enable us to certify that all programs
possibly generated from a mature architecture are free from gi,·cn classes of faults or that
they work correctly for all possible inputs. These steps will bring us closer to the point
where product-quality software can be economically produced u;ing the same engineering
automation technology that enables evolutionary prototyping and helps analysts home
in on good requirements models. Our vision is to eliminate the current conflict between
rapid development and high software quality.

Our ultimate research goal is to create conceptual models and software tools that allo\,.
automatic generation of variations on a software system with human consideration of only
the highest-leYel decisions that must change between one version and the next. Realization
of this goal \\·ill lead to more flexible software systems and should make prototyping and
exploratory design more effecti\·e.

RTSE'97, p.191

References

I I I S. f3aclr, L11<p . .-\1110,nat io11 S11pport. ror Conn11-r,•111 Sort\\'a r<· E11gi1wr·ri11g . f',,,, .
nf l.h,· fill,. l11/1·nuilw11.1Ll Co1LJ1·1n1cl'. Softwlln: Ellf/llll'l'rl/l.1/ 1L11.rl t,·11.,,111/,·,l,1, l\'11,11
1t1'1TiHIJ, .l11r111ala, Latvia, .!1111<' 20-23, l!J!J-1, , j(i 0:3.

121 r. [3;i1H·r <'I al., Thr Al,mu·h l'rojl'r.l GIP. Volw11.1· II: Th,· l'm_1Jnw,. (.'/w.11._111 Sys/, ·111
Cll'-S, L,·c·111J<• Notc·s i11 Computer Sl'ir•11cc 2!)2, Spri11g,·r l!J8,.

131 \I. [lcrzins. On l\ lrrg ing Sort.\\'arc Enhancc•mrnt.s A!'/r, /r,.for111.11./.u·1L, \'ol. 2.1 :\o.
G, Nm· l!JSG. pp G07 Gl!J.

1-1] \'. f3nzins. L11qi , A11 lnt.rodnction to t.lH~ Spl'cifirntion Langnagc• Spc•c-. IEl~F
Soflwan:, \·01. , No. :2 , :\far l!J!JO , pp. 7,1- 8-1.

l-:i] \'. [lcrzins. L11qi, Soflwm·c En_1Jincc1-ing with Abstrnc/.io1Ls: An /nt1:9rnlnl A11 -
prnach lo Soft ware Development using Ada, Addison-\\'l'sll'y P11hlishi11g C'01 11 -
pany, l!J91 , ISBN O 201 -08004-4.

[G] V. Berzins, Software i\lcrge: l\lodcls and i\letho<ls, .Joumal of Sy.stern., /11/1:_qm
lion, Vol. ! , :'-lo. 2, pp. 121 - 141 Aug 1991.

[7] \'. B<'rzi11s, Luqi. l\l. Shi11g, flcal-Timc Schcdnling for a Prototyping Lauguag,·.
Journal of System., !ntrljmtion, Vol. G, Nu. 1-2, pp. •l I 72 , 1996.

[SJ \'. ilcrzins, 0. lhrahim, Luqi , A !1.equin!1111:nts Ernlut ion ~dodc·l for Cou1p11t ,·r
Aicl<·d Protnlypiug Pmcccdinys of the 9th lnlenwtimwl Conf1m:nn: mi Sofl.111t1n·
Enqinrcring awl Knowlrdyc E11yinccriny, Madrid, Spain , Jurn• 17-20, 1997. pp.
38-47.

[9] D. Dampi<'r. Luqi, \ '. [l<'rzins, Aut.omat.cxl i\lcrging of Soft.ware Protot.yprs . .Jo11r
nal of Systems Integration, Vol. 4, No. 1, February, 19!).J, pp. 33 49.

!IO] \'. ilcrzins. Soft\\'a re :'llcrge: Semantics of Combining Changes t.o Programs . .4 CM
TOl'LAS, \'ol. IG , No. G, Nov. 1994, 1875- 1903.

iJ I] \' . Berzins, Software J\Ierying and Slicing, IEEE Computl'r Society Press Tutorial.
1995, !Sil i\ 0-818G-G792-3.

[I :2] \' . Berzins. D. Dampier, Software Merge: Combiniug Changl's to Decompn,itions .
.Joumal of Systems Integration, special issue on CAPS (Vol. 6, i\o. 1- 2, :'llan:h
l!J9G), pp. 1:35- 150.

i l.3] :\!.Dowson.The ARIA\E 5 Soft\\'are Failure, ACAi Software Engineering .Vot es.
\'ol. 22 No. 2, i\larch 1997, p. 8-1.

(l.J] .J . Evans, Sort\\'are Project. Scheduling Tool, i\IS Thesis. Com put.er Scienn•. \a\·al
Postgradua te School. Se p. 1997.

[I-5] i\ I. Feather. . .\ System for Assisting Program Changr. AC1H Tran.rnctwns ort
Programming L1rn911ages and Sy.items, Vol. st No. I, .Jan 1982, pp . 1- 20 .

11TSE'97, p.192

[!GJ i\1. FPal.lll'r . :\ Sun·,·.,· and Classifical ion or so1111· Pro~n1111 C:lta11µp ,\pp1 ""dll's
and TPchnicpws , in ('1m11m11 S/lr:r.ijimlwn ,md Ch,uu11• (Pnu:rr:rlw,,., of l/r, · /FIi'
TC2/ IVG 2.1 WorkiHf/ C,mfr:nmr:r.), L.G .L.T. :\l<-rrtrns. Eel. . :\nrth-lloll.111d.
1987, pp. IG5 19.j.

[17[M. Fc•atlll'r. Ccrnsl.rnct.i11g SpPc:ificat.ions hy Combining Para I kl Elahorat ions.
IEEE Tnm.rnr.lirm., t>H Sofl11.11l1'c Enyiw:1:1·i11q, \'ol. 15 :\o. 2, F,·h 1989. pp. !'JS
208 .

[18[S. Fickas , Ant.omat.ing the Tra11sformatio11al Developnll'nl. of Soft\\'an•, IEEE
Transactions on Software E11yinecri11y, Vol. 11 l'\o. II, I\m· 1985, pp. 12G8 12',7.

[19] \.V . Gibbs, Softwar<''s Chronic Crisis, Scir,nlifir: A1t1!!ri1:1111, SEP 199.:1, pp. 8G · 9-1.

[20] \V. Johnson , M. Feather, Buildiug an Evolution Change Librnr_,-, 12th fotcnw

tio11al Co11ferc11ce on Software Engi11eerin!J, 1990, pp. 238- 248.

[21] E. Kant, On the Efficient. Syuthesis of Efficient. Programs, Artificial foldli!fw cr·,
Vol. 20 No. 3, t\lay 1983, pp. 253-3G. Also appears in [35[, pp. 157- 183.

[22] 8. Kraemer, L11qi , \' . Berzins, Compositional Semantics of a Real-Timi' Proto
typing Language IEEE Trn11s111:tions on Softwan~ E11!Ji11cc1·i11_q, Vol. 19, No. 5, pp.
453- 477, May 1993.

[23] D. Lauge, Hypermedia Analysis and Navigat.iou of Domains, MS Th<'sis , Com
puter Scicmce, 1\aval Postgraduate School, Sep. 1997.

[24] Luqi , M. Ketabchi , .-\ Computer Aided Prototyping System, IEEE Soft1111L1'c, Vol.
5 No. 2, i\lar 1988, pp. GG -72.

[2-:i] Luqi , V. Berzins, ll. Yeh , A Prototyping Language fur !foal-Time Soft.\\'arc~. IEEE
Transactions 011 Software En9i11ccrin!J, Vol. 14 No. 10. Oct. 1988, pp. 1409 - 142-1.

[26] Luqi, Handling Timing Constraints in Rapid Prototyping Prncccdi119s of lhc 22nd
Annual Hawaii International Conference on System Scicnr.es, IEEE Computer
Society, .Jan . 1989, pp. 417- 42-1.

[27] Luqi , Soft.ware Evolution via Rapid Prototyping, IEEE Computer·, Vol. 22, i\o.
5, !\fay 1989, pp. 13- 25 .

[28] Luqi , A Graph :\lode! for Software Evolution , IEEE Tmnsaction.s 011 Software
Engineering, Vol. 16. :\o. 8, pp. 917- 927, Aug. 1990.

[29] Luqi, Computer-Aided Prototyping for a Command-and-Control System Using
CAPS, IEEE Software. Vol. 9, No. 1, pp. 56- 67, Jan. 1992.

[30] Luqi, Real-Time Constraints in a Rapid Prototyping Language, .Journal of Com
puter Languages, Vol. 18 , No. 2, pp. 77- 103, Spring 1993.

[3 1] Luqi , Specifications in Soft\\'are Prototyping, Prnc. SE/(E 96, Lake Tahoe. i\'\ ".
June 10-12, 1996, pp. 189-197.

RTSE'97, p.193

1:121 L11qi, Sd1C'dt1ling n,•al-Ti111c• Soflll'an· Prololyp<'S, Pmr1·1·tl11u1-s 4 ,,,.,. ,!11,/ ,,,,, I

rwlumttl Sy11111osiu111 on 011r:rnlzon, ll1·.w:1Ln-h 111ul ils !11111/1111./w11s. (; 11il111 . (' lti11 ,1.
Dc·c<'111iiPr l 1-13, l!J!JG, pp. Gl4 -G:23.

[:J.1) Lnqi , .J. Goguen, formal 11.frt.hods: Prrnnis<'s and Prnlil<'n1s. f/:,'/ -;E S11ft11 •1Ln ·. \'"I.
14. :'\o. I. .Jan. 1 !J!J7, pp. 73- 8::i.

[31) B. Lutz, Analyzing Soft.ware Brq11in·11u·11ts: Errors in Saf<'J _,·-Crit il'al E111IH'ddc·d
Systr111s, TR !J2-27, Iowa Stal.I' l'nin•rsit.y, AUG I!J'}2 .

[35) C. Rich, fl. \\'atcrs, Eds., Readmys in A T'lificwl lrilcllu;rw:1· ttwl Soft.1111m · E11y1-

11ccring, l\lorgan Kaufmann, 198G.

[3G) D. Rusin, Lnqi, M. Scanlon, SIDS \-\'irck·ss Ac:onstil' :\lonit.or (S\\',\\I), I'm, ·.
21st Int. Conj. on lung Sounds. ChPstrr, England , lnt<'rnal io11al Lt111j.\ Sn1111ds
Association, Sep. 4-G, 199G.

[37) D. Smith, G. Kotik, S. Wcstfolcl, flPsl'arch on Knowlcdgc-Gasrcl Softwarr En,·i
ro11111cnts at Kestrel lnstitntc, IEEE Trm1saclio11s on Software E11gi11erriw1. \'ol.
11 l'\o. 11, No,· 1!J85, pp. 1278- 1295.

[38] Chaos, Technical Report, Thr Standish Group. Dc·nnis, 1\1..\. l!l!J.i,
http://ww\\·.sta11dishgroup.com/chaos.htn1I.

[39] W. Swartout., R. Balzer, 011 th<' lncvit.abli: iutr:rt\\·ining of Spcr·ifirat.ion and i111-
plcmc11tat.io11, Comrmmication of the A CM, Vol. 2-5 :'\o. 7, .Inly 1 !J82, pp. -t:38 ,[-J(l.

Also apprars in Softwar·c Sper:ific11tion lcr:lmiqucs. :'\. Gl'l1a11i , A.O. l'drGct.t.ril'k ,
Eels., 198G, pp. 41 - 45.

RTSE'97, p.194

	luqi0
	luqi1
	luqi2
	luqi3
	luqi4
	luqi5
	luqi6
	luqi7
	luqi8
	luqi9
	luqi10
	luqi11
	luqi12

