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1

The software industry remains far short of the mature engineering disciple needed to
meet the demands of our information age society. Symptoms of the problem are large
sums spent on cancelled software projects [38], costly delays [19], and software reliability
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Abstract

Rapid prototyping is a promising approach for formulating accurate software re-
quirements, particularly for complex systems with hard real-time constraints. Com-
puter aid is needed for realizing the potential benefits of this approach in practice,
because the problems associated with software evolution are greatly amplified in the
context of iterative prototyping and exploratory design.

Our computer-aided prototyping system CAPS provides automated support for
many aspects of requirements analysis and software prototvping. including: (1)
maintaining logical dependencies between assumptions about nceds of different
groups, software requirements, and design decisions, (2) managing design history, al-
ternatives and dependencies, (3) planning, assigning and scheduling job assignments
for teams of designers in the presence of uncertainty, (4) checking and propagating
design constraints, (5) maintaining consistency between graphical and text views of
a design, (6) constructing real-time schedules, (7) generating control code, and (8)
retrieving and instantiating reusable software components.

The principles and methods that make this possible and the practical application
of the system are explained via examples.

Introduction

problems [13].

Lack of formalization of rapidly emerging application areas makes software engineer-
ing more difficult than other engineering disciplines. Requirernents for complex systems
are nearly always problematic initially and evolve throughout the life of the systems.
Requirements and specification problems have been found to be the dominant cause of
faults in the Voyager/Galileo software [34], and we believe this applies to most large and

complex systems.
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Evolutionary prototyping can alleviate this problem by providing an efflicient approach
to formulating accurate software requirements [27]. Simple models reflecting the main
issues associated with the proposed system are constructed and demonstrated, and then
reformulated to better mateh customer concerns, based on specific eriticisms and the issues
they elicit. This process aids understanding because independent issues are separated anc
treated in isolation as much as possible, via communication based on the simplest models
possible. The models are refined only as needed to resolve open issues, and the issues
arising at one level of detail are resolved as much as possible before considering the next
level of detail, or the next aspect of the system. This helps to focus the attention of the
customers, designers, and analysts because only a few selected aspects of the system are
changing at any point in the process.

Antomation is necessary to enable the rapid, economical and effective change needed
for evolutionary prototyping. Our hypothesis has been that increasing the degree of
automation for system development and evolutionary prototyping should improve the
quality of the systems produced. A sound basis for the engineering automation is needed
to realize evolutionary prototyping for large and complex systems. which typically have
real-time constraints. We have explored formal models of various aspects of software
development and evolution to achieve reliable and quantifiable automation of subtasks.
Formal models have enabled analyvsis and assessment of the accuracy and efficiency of
proposed algorithms and heuristics.

It has been necessary to interleave this theoretical work with experimental validation
and adjustment of the models to better fit practical reality. This has been necessary be-
cause software development and evolution are extremely complex problem domains, and
engineering automation systems have correspondingly complex requirements that strongly
manifest all of the difficulties identified above. Thus we have applied the evolutionary
prototyping approach to the development of techniques and software for supporting the
evolutionary prototyping approach itself. We have found this strategy successful for devel-
oping accurate models, cffective automation and decision support methods for evolution of
software and system requirements. This paper summarizes our experiences and presents
some of our recent progress on carrving out the plan outlined above.

The rest of the paper is organized as follows. Section 2 describes our strategies for
achieving automation support for evolutionary prototyping and summarizes progress to
date. Section 3 discusses a formal model of software evolution and explores some auto-
mated processes that can be supported by the model. Section 4 illustrates our ideas with
an example. Section 5 contains conclusions.

2 Strategy for Automation Support

The main components of our strategy are developing languages and methods based on
formal models of selected aspects of the problem. In each case we sought the simplest
models adequate for achieving our purposes, and based the languages and methods on
these models. We started with the simplest possible models and refined them only as
needed, based on experimental application of the models to assess their adequacy. Our
guiding principle was to avoid model features unless we has a convincing practical scenario
that required those features. Consequently we were always searching for simplifications
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and reformulated models whenever we found a way to eliminate a model concept. This
was done becanse we wanted the resulting methods and tools to be casy to use and learn.
We expected simpler models to speed up the processes of analyvsis and design by reducing
the number of mandatory choices. This is particularly appropriate in the context of
prototyping, where it is important to get the major decisions correct rapidly, without
spending cffort on fine-tuning. Our experience has confirmed this hypothesis. We have
also found that removing concepts from the models and the attention of the designer
can introduce stringent requirements for design antomation capabilities. Removed design
attributes must be derived automatically, accurately, and in a way that provides good
designs.

The first area to be modeled was the behavior of real-time systems, because the pro-
totyping approach requires the ability to demonstrate proposed system behavior. The
simplest formulation we could find was a refinement of data flow models that incorporates
declarative control and timing constraints. The prototype system description language
PSDL [25] was developed based on this model. The model was extended to include dis-
tributed computation [30] and a formal semantics of the language was developed [22].
The model and language have been found to be adequate for representing a variety of
complex systems, including a generic C3I station [29] and a wireless acoustic monitor for
preventing sudden infant death syndrome [36].

Real-time scheduling and software integration are other key issues for rapid realization
of complex systems. We developed related models in these two areas, based on the model
of system behavior.

Real-time scheduling depends on models of the timing requirements and on models of
the capabilities of the target hardware. The behavioral model underlying PSDL contains
a model of real-time requirements, which we extracted for this purpose [26]. This model
was used to develop our initial scheduling methods, and it proved adequate. The initial
hardware model was empty, which was adequate for scheduling with respect to fixed,
single processor architectures. We realized that scheduling depended on hardware models
when we started addressing scheduling methods for more general hardware configurations.
We developed a series of more sophisticated hardware models [30], and found that these
together with the original model of real-time requirements were adequate for supporting
scheduling methods for multi-processor and distributed target hardware configurations 7.
32]. Ongoing work is exploring models and methods that can schedule larger distributed
real-time computations within practical resource limits.

Software integration is the process of ensuring that all the parts of a software system
work together to achieve their intended purpose. Software integration depends on models
of interactions between subsystems and control constraints, including those derived from
timing requirements and the schedules used to realize them. We addressed software inte-
gration by developing software architectures and methods for architecture-based program
generation. Automated program generation is necessary in our context because we had
to support rapid, low cost change, and small changes to timing requirements can affect
large portions of the code.

The software architecture for prototypes embodies a general structure for realizing
interactions and real-time schedules for systems that have @ mix of time-critical and
non time-critical computations. The structure used to automatically realize connections
between subsystems was derived from the system interaction part of the behavioral model
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underlying PSDL. The strocture that realizes the schedules uses a high-priority thread
for computations with hard deadlines and a low-priority thread for computations without
deadlines.

The software architecture was implicitly defined by a program generator driven by
a description of desired svstem behavior expressed in PSDL and a real-time schedule
constructed by a scheduling algorithm. This program generator was itself generated using
an attribute grammar processor. This approach works but is not particularly clegant or
casy to adapt to other problems.

Our initial capability for gencrating executable prototypes from simple and quickly
constructible models of the problem domain enabled experimental validation of the con-
jecture that prototyping and demonstrations of systems behavior were valuable aids to
requirements determination. The initial experiments supported the validity of this con-
jecture, which motivated us to put more effort into software reuse and evolution.

Software reuse is a critical part of prototyping for real-time systems because efficiency
is of the essence in the time-critical parts of these systems. The highest levels of efficiency
can only be achieved by intensive engineering and refinement of sophisticated algorithms
and data structures, which usually takes large amounts of time and effort, and produces
designs that depend on intricate chains of reasoning. The ecasiest way to take advantage
of such components in a process that must be cheap and rapid is to use a previously
constructed library of standard and well-optimized components. Thus we explored formal
models of how such libraries could be organized and scarched to quickly find the most
appropriate components for cach particular context [24]. Search methods must trade
off precision (retrieving only relevant components) against recall (finding components
if they are relevant). We have developed a software component search method that
can simultancously achicve high levels of precision and recall, based on algebraic queries
representing symbolic test cases.

Software evolution is a critical aspect of prototyping [27]. In the carly stages of
requirements formulation the purposes of the proposed system are highly uncertain and
major changes arc expected. Planning, version control, team coordination, and project
management are key issues in this context. Another important issue is how to repeatedly
and rapidly change a design without having it degenerate into an unstructured maze that
cannot be quickly understood and modified. The next section summarizes our progress
on software evolution.

3 Software Evolution

Our initial step towards formalizing software evolution in the large was a graph model of
the evolution history [28]. This work led to the insights that the essence of project history
lies in dependencies among versions of project documents and the activities that produce
them, that the formal structures of project history and project plans are essentially the
same, and that integrated modeling and support for software configuration management
and project management enables higher automation levels for both [1]. More recent work
suggested that hypergraphs may be useful [33], and that integration with personnel models
and rationale models enables decision support for the problematic early stages of critique
analysis and change planning [8].
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To achieve simplicity, we seck to model the products and processes involved in soltware
evolution using a minimal set of general object types, and introdnce specialized subelasses
only when necessary for accurate modeling. The current version of the model has only
three main types: component, step, and person.

The type component represents any kind of versioned software-related object, inehid-
ing critiques, issues, requirements, designs, programs, mannals, test cases, plans. ete.
These are the information products produced by software evolution processes.

The type step represents instances of any kind of scheduled software evolution activity,
such as analysis, design, implementation, testing, inspection, demonstration, cte. Steps
are activities that are usually carried out by people, and may be partially or completely
automated. When viewed in the context of evolution history, steps represent dependencies
among components. Steps that are not yet completed represent plans. Steps are a subclass
of component because they can have versions, to provide a record of how the project plans
evolved.

The type person represents the people involved in the software evolution activity.
including the stakeholders of the software system, software analysts, designers, project
managers, testers, software librarians, system administrators, etc. \We need to represent
the people involved to be able to trace requirements back to the original raw data, and
to link it to the roles the authors of critiques play in the organizational structure. This
is a part of the rationale of the system that helps to identify viewpoints and analyze
tradeoffs between conflicting requirements. The people in the development team must
be modeled because of concerns related to project scheduling and authorization to access
project information. Person is also a subclass of component, and therefore versioned, to
provide a record of how the roles and qualifications of the people involved in the project
change with time.

We have recently developed an improved model of system cvolution that better ac-
counts for hicrarchical structures of components and steps. The associated refinement
concept is useful for helping developers and planners to cope with the complexity of large
projects. This model is summarized as follows.

An evolution record is a labeled acyclic directed hypergraph [V, E, I, 0, C, S] where

1. N is a set of nodes, representing unique identifiers for components,
2. E is a set of edges, representing unique identifiers for steps.
3. I: E — 2" is a function giving the set of inputs of each edge,

4.0 : E — 2V is a function giving the set of outputs of each edge. such that
O(e) NO(€') # 0 implies e = €',

5. C : N — component is a function giving the component associated with each
node, and

6. S: E — step is a function giving the step associated with each edge.

The hypergraph must be acyclic because its edges represent input/output dependen-
cies for the processes that create components. These dependencies induce precedence
constraints for the project schedule. because an activity cannot start until all of its input
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components are available. The restriction on the ontputs savs that cach component is
produced by a unique step. This establishes clear lines of responsibility and produces a
record of anthorship when each step completes.

Let H denote the set of evolution records.

A hierarchical evolution record is an acvelic directed graph [n.e] with Iabel maps
h,r and decomposition maps d,,, d. where

1. nis a set of nodes representing unique identifiers for evolution records.
2. e is a set of edges representing unique identifiers for evolution record refinements,

3. h:n — H is a function giving the evolution record associated with cach node,
such that (ny,n,) € e implies h(n;) is a subhypergraph of h(n,). This means that
h(ny).N C h(n,).N, h(n}).E C h(ny).E, h(ny).I C h(ny).1. h{(n;).0 C h(n,).0,
h(n,).C C h(ny).C, and h(n;).S C h(n,).S.

4. 7 : e — step is a function giving the step that is refined by cach edge,

5. d, : N — 2V is a function giving the set of subcomponent nodes of cach com-
ponent node appearing in the evolution record h(n;) for any node n; € n, where
N = Up,en M(ni).NV.

6. d. : E — 2% is a function giving the sct of substep edges of cach step edge ap-
pearing in the evolution record h(n;) for any node n; € n, where E = U, ¢, h(n,).E.

7. The graph has a single root (a node with no incoming edges) and a single leafl (a
node with no outgoing edges).

8. Any two paths p; and p, from the root node with the same step label set {r(c)|e €
m} = {r(e)|e € p»} end in the same node.

9. If (n1,n2) € e, then there is an Ey € h(n)).E with S(E)) = 7(c), § # d.(E|) C
h(ng).E, and for each Ey € d.(E)), I(E2) € Unere,) @n(N1) € h(ng).N and
O(E,) C UN.eO(E|)dn(Nl) C h(ny).N.

Each node of a hierarchical evolution record represents a view of the evolution history.
The root node is the most abstract view, containing only the top level steps and the top
level components those steps produce. The leaf node is the most detailed view, which
contains the top level steps and components together with all direct and indirect substeps
and subcomponents.

A step is refined by adding all of its substeps to the evolution record, along with the
input and output components of the substeps. The last condition in the definition says
that the step associated with the link between two views must be decomposed into at
least one substep in the detailed view, that the inputs and outputs of the substeps must
be subcomponents of the inputs and outputs of the superstep, and that the input and
output components of the substeps must appear in the detailed view.

The hierarchical evolution record has a large number of nodes, which are not intended
to be stored explicitly in an implementation. The model is intended as a framework
for navigation through the possible views of the evolution record at different levels of
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abstraction. Practical implementations will materialize only those view nodes that e
visited.

This model can be used to automatically schedule steps, automatically locate and
deliver the proper versions of the input components to the developer assigned to carry
out. the step, and to automatically check in the new components produced when the step
is completed. Tt can also be used to generate defanlt plans, to maintain the consisteney
of plans, and to help managers and developers navigate through the plan and document
structures of an evolutionary prototyping or development effort.

4 Example

Figure 1 shows an example of a top level evolution record. In this example, the first
version of the requirement (1) is used to derive the first version of the prototype (1),
which is demonstrated to system stakeholders and elicits the criticism (C1). When a
step to derive the second version of the requirement (R2) from the criticism is proposed.,
the system automatically proposes a step to create the second version of the prototype
(P2), because the prototype depends on the requirement and the requirement will be
updated. The proposed steps will be scheduled automatically when they are approved by
the project management.

Figure 1: Top Level Evolution Record

Figure 2 shows the refinement of step S1 of the top level evolution record shown in
Figure 1. Both S1 and its substeps S1.1 and S1.2 are present in the refined evolution
record. The top level steps are shown with thicker lines. The component R1 is decom-
posed into the subcomponents Ral and Rb1 because these components are inputs to the
substeps, and P1 is decomposed into Pcl and Pdl because these are the outputs of the
substeps.

Figure 3 shows a further refinement of the evolution record shown in Figure 2 that
expands all of the top-level steps. We have left out the top level steps to avoid cluttering
the diagram. Note that the subrequirement Rb1 is shared by both versions of the require-
ment [, because it is not affected by the elicited criticism, and that the subsystem Pdl
of the prototype that depends only on this subrequirement is also shared by both versions
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R1 Pl

Ral

S4

Figure 2: Refinement of Step S1

of the prototype . Our goal is to provide tools based on this model that will make it
casier to discover and manage large scale structures of this variety.

The decomposition mappings for the subcomponents are denoted by geometrical con-
taimment in the figures. The decomposition relations for the steps are indicated only via
the structure of the step names. Note that the graphical display would get crowded if the
decomposition relations were explicitly displayed as hyper-edges, even for this very small
example. In realistic situations, there can be many more nodes in the evolution records.
We are currently exploring automatic mechanisms for determining and displaying small
neighborhoods of these structures that are relevant to particular planning and analysis
tasks and are small enough to be understood. Some initial results along these lines can
be found in [23].

5 Conclusions

Our previous research has explored formal models of the chronological evolution history
[28]. This model has been applied to automate configuration management and a variety
of project management functions [1]. The ideas presented in this paper provide a basis for
improving these capabilities, particularly in the area of computer aid for understanding
the record of the evolution of the system to extract useful information from it. Some
recent work on improving the project scheduling algorithms based on these models has
enabled scheduling 100,000 tasks in less than a minute [14]. These results suggest that
the project scheduling support will scale up to projects of formidable size.

We are currently working on models and notations that support explicit definitions of
software architectures for solving given classes of problems independently from the rules
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Figure 3: Further Refined Evolution Record

that determine a particular instance of the architecture for solving a given instance of the
class of problems. This should make it easier for software architectures and associated
program gencration capabilities to evolve.

Architecture evolution provides a practical path for quickly obtaining automation ca-
pabilities for new problem domains, and to gradually improve those capabilities by adding
solution techniques that expand the problem domain and incorporating optimizations for
specialized subproblems that improve performance.

Formalizing these aspects of software architectures and developing the corresponding
engineering automation methods will eventually enable us to certify that all programs
possibly generated from a mature architecture are free from given classes of faults or that
they work correctly for all possible inputs. These steps will bring us closer to the point
where product-quality software can be economically produced using the same engineering
automation technology that enables evolutionary prototyping and helps analysts home
in on good requirements models. Our vision is to eliminate the current conflict between
rapid development and high software quality.

Our ultimate research goal is to create conceptual models and software tools that allow
automatic generation of variations on a software system with human consideration of only
the highest-level decisions that must change between one version and the next. Realization
of this goal will lead to more flexible software systems and should make prototyping and
exploratory design more effective.
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