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We consider the problem of sequentially choosing observation regions along a line, with an aim of max- 

imising the detection of events of interest. Such a problem may arise when monitoring the movements of 

endangered or migratory species, detecting crossings of a border, policing activities at sea, and in many 

other settings. In each case, the key operational challenge is to learn an allocation of surveillance re- 

sources which maximises successful detection of events of interest. We present a combinatorial multi- 

armed bandit model with Poisson rewards and a novel filtered feedback mechanism - arising from the 

failure to detect certain intrusions - where reward distributions are dependent on the actions selected. 

Our solution method is an upper confidence bound approach and we derive upper and lower bounds on 

its expected performance. We prove that the gap between these bounds is of constant order, and demon- 

strate empirically that our approach is more reliable in simulated problems than competing algorithms. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many common surveillance tasks concern the detection of ac-

ivity along a border or perimeter. Monitoring the movements of

ndangered or migratory species through crossings using camera

raps, covertly tracking illegal fishing in territorial waters via adap-

ive satellite technology, and quantifying traffic across a border us-

ng drone technology are a few among many examples of impor-

ant potential aims in this domain. Equally, a number of common

cheduling challenges involve events arising through time. For in-

tance, scheduling call center staff to meet random arrivals, or de-

iding what times traffic cameras should be in operation to catch

peeding drivers. 

Approaches to the optimal design of observation strategies are

nvaluable not only at the operational level, but also at the strate-

ic level because they can inform decision makers about expected

utcomes for different budget scenarios and policies. In each of

hese tasks the notion of optimality can be equated to maximising

he rate of detection of events, or equivalently, detecting as many

vents as possible over some fixed time horizon. 
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We consider a scenario where observations are made by a team

f searchers (representing cameras, sensors, human searchers, etc.),

oordinated by a central agent referred to as the controller who

hooses which segments of a line segment each searcher will ob-

erve. As the line segment may be thought of as indexing space or

ime, the formulation captures a wide range of examples (we will

iscuss the spatial problem in what follows for ease of exposition).

e will assume that events arise according to a Poisson process

nd the likelihood of an event being detected depends on the allo-

ation of resource chosen by the controller. 

The problem of designing an optimal deployment of searchers

ecomes truly challenging when the number of available searchers

s insufficient to guarantee perfect detection of all events, which is

ften the case in tight fiscal environments. In such a setting the

ontroller faces a classic resource allocation problem , where the ac-

ion set is the set of possible allocations of searchers to segments

f the line and the controller aims to find an action which max-

mises the rate of detection. To compute this rate of detection the

ontroller must know the rate at which events occur along the

ength of the line and the probabilities with which searchers de-

ect events that have appeared at particular points (under a par-

icular allocation of searchers to parts of the line). It is, of course,

 strong assumption that such information is available, particularly

t the beginning of a new project. 
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In this work we consider the more realistic setting where the

rate at which events occur is unknown. When the rate at which

events occur is unknown the controller has two broad options: 

(a) to select an allocation which performs best in expectation

according to some prior information (if it exists) and stick

to that, 

(b) (if possible) to take an adaptive strategy, which alters the

allocation of searchers as observations are collected. 

In this second scenario a sequential resource allocation problem

is faced - where the controller wishes to quickly and confidently

converge on an optimal allocation while also ensuring appropriate

experimentation. This sequential problem is our principal concern

in this paper. 

To permit analysis of this problem we shall assume two dis-

cretisations to simplify the controller’s action set. We will consider

that opportunities to update the allocation of searchers occur only

at particular time points t ∈ N . Thus, the problem can be thought

of as taking place over a series of rounds. We will also suppose

that the search space has been divided into a number of cells such

that each searcher is allocated a connected set of cells in which to

patrol, disjoint from those allocated to other searchers. Imposing

this discrete structure on the problem is useful as it allows us to

draw on a large literature concerning multi-armed bandit problems

when designing and analysing solutions to the problem. 

Multi-armed bandit problems are relevant to this sequential re-

source allocation problem because they provide a framework for

studying exploration-exploitation dilemmas , which is the principal

challenge faced by the controller here. In order to reliably make

optimal actions, data must be collected from all cells to accurately

estimate the expected number of detections associated with an ac-

tion - i.e. the action space should be explored . However, data is be-

ing collected on a live problem - real events are passing undetected

when sub-optimal actions are played. As such there is a pressure

to exploit information that has been collected and select actions

which are believed to yield high detection rates over those with

more exploratory value. A balance must be struck. One may sup-

pose that this is a trivial issue which can be resolved by simply

searching in all cells in all rounds. However, searching more cells

will not necessarily lead to more accurate information or a higher

detection rate. Searchers become less effective at detecting events

the more cells they are allocated, because events may be unde-

tected if a searcher is aiming to detect over too large a region. In-

deed, an optimal action may well be to assign each searcher to just

a single cell. 

1.1. Related literature 

We select a Poisson process as the data generating model for

our problem. The Poisson process is famously widely used as a

model for spatial and spatiotemporal event data in many set-

tings, such as ecology ( Heikkinen & Arjas, 1999; Serra, Saez, Juan,

Varga, & Mateu, 2014 ), and arrival process modelling ( Benes, 1957;

Weinberg, Brown, & Stroud, 2007 ). There is a large literature on

inference for Poisson processes, which has lead to a variety of

sophisticated techniques, such as those involving Gaussian pro-

cesses ( Adams, Murray, & MacKay, 2009; John & Hensman, 2018 )

or kernel-based smoothing ( Diggle, 1985 ). However the theoret-

ical properties of the more complex methods are typically only

understood asymptotically ( Gugushvili, van der Meulen, Schauer,

& Spreij, 2018; Helmers, Mangku, & Zitikis, 2005; Kirichenko &

Van Zanten, 2015 ) and therefore in the interest of developing tight

guarantees on the performance of sequential decision making algo-

rithms, we favour a simple piecewise-constant model for the Pois-

son process rate in this paper. 
Search theory has its origins in WWII with the study of bar-

ier patrols during the Battle of the Atlantic ( Koopman, 1946 ).

he works of Stone (1976) and Washburn (2002) present a much

roader and more contemporary range of applications in search

heory and detection, and are by now the classic references on

he subject. More closely related to our work is Szechtman, Kress,

in, and Cfir (2008) , who study the perimeter protection prob-

em when the parameters of the arrival process are fully known,

or mobile and fixed searchers. Carlsson, Carlsson, and Devulapalli

2016) study the problem of optimally partitioning a space in R 

2 

o maximise a function of an intensity of events over the space.

heir problem bears resemblance to the full information version of

ur problem though our solution method is quite different due to

ur discretisation of the problem. Our work is, to the best of our

nowledge, the first to tackle the learning aspect of such a prob-

em. 

The sequential problem we consider is structurally similar to a

ombinatorial multi-armed bandit (CMAB) problem ( Chen, Wang,

 Yuan, 2013 ). To permit discussion of a CMAB we first describe

he simpler multi-armed bandit (MAB) problem (first attributed to

hompson, 1933 ), which is a special case. The (stochastic) MAB

roblem models a scenario where an agent is faced with a series

f potential actions (or arms), each associated with some underly-

ng probability distribution. In each of a series of rounds, the agent

elects a single action and receives a reward drawn from the under-

ying distribution associated with the selected action. The agent’s

im is to maximise her cumulative expected reward over some

umber of rounds, or equivalently minimise her cumulative regret

 defined as the difference in expected reward between optimal

ctions and actions actually selected. To succeed in this the agent

ust manage an exploration-exploitation trade-off as she learns

hich actions have high expected reward. 

The CMAB problem models a richer framework where the agent

ay select multiple actions in each round and her reward is a

unction of the observations from the underlying distributions as-

ociated with the selected actions. Chen et al. (2013) consider

 setting where this function may be non-linear. Numerous au-

hors ( Anantharam, Varaiya, & Walrand, 1987, Gai, Krishnamachari,

 Jain, 2012, Kveton, Wen, Ashkan, & Szepesvari, 2015b, Combes,

hahi, Proutiere, & Lelarge, 2015 , and Luedtke, Kaufmann, & Cham-

az, 2019 ) consider a special case (known as a multiple play bandit )

here the reward is simply a sum of the random observations and

he number of actions which may be selected in one round is lim-

ted. A number of other works have since extended the framework

f Chen et al. (2013) to model other novel features. Chen et al.

2016a) and Kveton, Szepesvari, Wen, and Ashkan (2015a) consider

 setting where playing a subset of arms may randomly trigger

dditional rewards from other arms, and Chen, Wang, Yuan, and

ang (2016b) considers a broader set of non-linear reward func-

ions. However the CMAB model and UCB approach of Chen et al.

2013) is the work closest to ours as the later developments model

eatures that are not present in our setting. The fundamental dif-

erences between our model and theirs are that we consider heavy

ailed rewards and a setting where reward distributions depend on

he selected action. 

Reward maximisation in a CMAB problem requires addressing

 similar trade-off between exploration and exploitation to that

aced in the MAB problem. For MAB-type problems, it has fa-

ously been shown that under certain assumptions optimal poli-

ies can be derived by formulating the problem as a Markov De-

ision Process and using an index approach ( Gittins, Glazebrook, &

eber, 2011 ). In CMAB problems however, these approaches are

nappropriate, not least, since the combinatorial action sets in-

uce dependencies between rewards generated by distinct actions

hich invalidates Gittins’ theory. See also Remark 1 in Section 2 .

ore recently, so called upper confidence bound (UCB) algorithms,
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rst proposed by Lai and Robbins (1985) and Burnetas and Kate-

akis (1996) , and popularised by Auer, Cesa-Bianchi, and Fischer

2002) , have attracted much attention as approaches that enjoy

fficient implementation and strong theoretical guarantees. These

euristic methods balance exploration and exploitation by select-

ng actions based on optimistic estimates of the associated ex-

ected rewards and can be applied to both MAB and CMAB prob-

ems. 

Auer et al. (2002) originally proposed a UCB approach for MAB

roblems with underlying distributions whose support lies entirely

ithin [0,1]. Chen et al. (2013) extended the principles of this

lgorithm to a version suitable for CMAB problems with nonlin-

ar rewards. Broader classes of unbounded distributions have been

onsidered by other authors. Cowan, Honda, and Katehakis (2018) ,

ubeck and Cesa-Bianchi (2012) , Bubeck, Cesa-Bianchi, and Lu-

osi (2013) , and Lattimore (2017) give UCB algorithms suitable for

se with unbounded distributions, studying distributions that are

aussian, have sub-Gaussian tails, known variance and known kur-

osis, respectively. Luedtke et al. (2019) have studied multiple-play

andits with exponential family distributions. However for CMAB

roblems with non-linear reward functions attention has focussed

n the [0,1] case. Accompanying each of these proposals of UCB

lgorithms is a corresponding proof which demonstrates the per-

ormance of that algorithm achieves the optimal order, albeit with

 sub-optimal coefficient. 

Stronger performance guarantees (i.e. those with improved

eading-order coefficients) have been obtained in MAB problems

sing Thompson Sampling (TS) type approaches ( Agrawal & Goyal,

012; Kaufmann, Korda, & Munos, 2012; Russo & Van Roy, 2016;

ang & Chen, 2018 ) and approaches which utilise the KL di-

ergence of the reward distributions ( Cappé, Garivier, Maillard,

unos, & Stoltz, 2013; Kaufmann, 2017 ). Combes et al. (2015) have

uccessfully extended the KL divergence based results to multi-

le play bandits with bounded rewards. However extending these

esults to the framework of our problem presents a significant

nalytical challenge, as the existing theory around KL-based UCB

ndices relies on independence of the reward generation and

ction selection mechanisms. Therefore in this work we focus

n the theoretical analysis of a more traditional UCB type ap-

roach. A TS alternative is presented and evaluated numerically in

ection 5 . 

.2. Key contributions 

This work makes a number of contributions to the theory of

ulti-armed bandits and broader online optimisation. Simultane-

usly, we give a practically useful solution to a real problem en-

ountered in many applications. We summarise the headline con-

ributions below: 

• Introduction of a formal model for sequential event detection

problems and an efficient integer programming solution to the

full-information version of the problem; 
• Introduction of the filtered feedback model for combinatorial

multi-armed bandits; 
• Development of a bespoke treatment of combinatorial bandits

with Poisson rewards, leading to a new martingale inequality

for filtered Poisson data and an accompanying UCB approach; 
• Regret analysis yielding an optimal order upper bound on finite

time regret of the UCB algorithm and a problem-specific lower

bound on asymptotic regret for any uniformly good algorithm. 

We also present extensive numerical work which displays the

obustness of the UCB approach in contrast to its competitors. 
.3. Paper outline 

The remainder of the paper is structured as follows.

ection 2 introduces a model of the sequential problem. In

ection 3 we solve the full information problem (the non-

equential resource allocation problem where the rate function of

he arrival process is known). The proposed integer programming

olution forms the backbone of the proposed solution methods

or the sequential problem. In Section 4 we introduce a solution

ethod, the Filtered Poisson Combinatorial Upper Confidence Bound

lgorithm, for the sequential resource allocation problem, and

erive a performance guarantee in the form of an upper bound on

xpected regret of the policy. Here, we also derive a lower bound

n the expected regret possible for any policy and thus show that

ur algorithm has a bound of the correct order. We conclude in

ections 5 and 6 with numerical experiments and a discussion

espectively. 

. The Model 

Before introducing solution methods we give a mathematical

odel of the problem. Throughout the paper, for a positive inte-

er W let the notation [ W ] represent the set { 1 , 2 , . . . , W } . 
The observation domain (line) comprises K cells which can be

earched by U searchers. We write 

 k = u, k ∈ [ K] , u ∈ [ U] 

o denote the deployment of searcher u to cell k , while 

 k = 0 , k ∈ [ K] 

s used when cell k goes unsearched. An action a :=
(a 1 , a 2 , . . . , a K ) ∈ { 0 , 1 , . . . , U} K describes a deployment of the

earchers across the line. We impose the requirement that a ∈ A ,

he action set , where 

 = { a : a i = a j = u ⇒ a k = u, ∀ i, j, k ∈ [ K] : i ≤ k ≤ j, 

i < j, and ∀ u ∈ [ U] } . 
hese conditions on A ensure that searchers are assigned to dis-

oint connected sub-regions of the perimeter. The actions are

niquely defined by indicator variables a iju ∈ {0, 1} for i , j ∈ [ K ], i < j

nd u ∈ [ U ] such that 

 i ju = 1 ⇔ agent u is assigned to the cells { i, i + 1 , . . . , j} only. 

Each action a ∈ A gives rise to a certain detection probability

k ( a ) ∈ [0, 1] in all cells k ∈ [ K ]. The detection probabilities capture

he effectiveness of each searcher in observing an event in a spe-

ific cell. We write γ( a ) for the K -vector whose k th component is

k ( a ). The detection probabilities are structured such that for any

 , b ∈ A and i ≤ j , 

 i ju = b i ju = 1 ⇒ γk (a ) = γk (b ) , ∀ k such that i ≤ k ≤ j. 

ence, the detection probability in a cell depends only on the sub-

egion assigned to the single agent searching that cell and is unaf-

ected by the sub-regions assigned to other searchers. We assume

hat if a cell is searched there will be some non-zero probability of

etecting events that occur. That is to say for any k ∈ [ K ], γ k ( a ) > 0

or any a ∈ A such that a k � = 0. 

We consider two cases with respect to knowledge of the detec-

ion probabilities: 

(I) The detection probabilities γ( a ) are known for all a ∈ A . This

scenario occurs when the controller knows γ( a ) from the

past. 

(II) The functions γ have a particular known parametric form

but unknown parameter values. This case is realistic when

properties of the detection probabilities are dictated by
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physical considerations, such as the searchers’ speed, the

visibility in particular locations or the time for which an

event is observable. 

Our sequential decision problem may now be described as fol-

lows: 

1. At each time t ∈ N an action a t ∈ A is taken, inducing a detec-

tion probability γ k ( a t ) in each cell k ∈ [ K ]; 

2. Events are generated by K independent Poisson processes, one

for each cell. We use X k to denote the number of events in cell

k (whether observed or not) occurring during the period of a

single search. We have 

X k ∼ P ois (λk ) , k ∈ [ K] 

where the rates λk ∈ R + are unknown, and write

λmax ≥ max k ∈ [ K ] λk for a known upper bound on the ar-

rival rates. We use X kt for the number of events generated in

cell k during search t . 

3. Should action a t be taken at time t , a random vector of events

Y t = { Y 1 t , Y 2 t , . . . , Y Kt } ∈ N 

K is observed. Events in the underlying

X -process are observed or not independently of each other. We

write 

Y kt | X kt , a t ∼ Bin (X kt , γk (a t )) , k ∈ [ K] . 

It follows from standard theory that 

Y kt | a t ∼ P ois (λk γk (a t )) , k ∈ [ K] , 

and are independent random variables. It follows that the mean

number of events observed under action a is given by: 

r λ, γ (a ) := γ(a ) T λ, 

where T denotes vector transposition and λ is the K -vector

whose k th component is λk . 

4. We write 

H t = { a 1 , Y 1 , . . . , a t−1 , Y t−1 } 
for the history (of actions taken and events observed) avail-

able to the decision-maker at time t ∈ N . A policy is a rule for

decision-making and is determined by some collection of func-

tions { πt : H t → A , t ∈ N } adapted to the filtration induced by

H t . In practice a policy will be determined by some algorithm

A . We will use the terms policy and algorithm interchangeably

in what follows. 

The goal of analysis is the elucidation of policies whose perfor-

mance (as measured by the mean number of events observed) is

strong uniformly over λ, γ and over partial horizons { 1 , 2 , . . . , n } ⊆
N . We write 

E A 

( 

n ∑ 

t=1 

r λ, γ (a t ) 

) 

for the mean number of events observed up to time n ∈ N under

algorithm A . If we write 

opt λ, γ := max 
a ∈A 

r λ, γ (a ) , 

then it is plain that, for any choice of A 

n · opt λ, γ ≥ E A 

( 

n ∑ 

t=1 

r λ, γ (a t ) 

) 

, 

with achievement of the left hand side dependent on knowledge of

λ. Assessment of algorithms will be based on the associated regret

function , the expected reward lost through ignorance of λ, given

for algorithm A and horizon n by 

Reg A λ, γ (n ) := n · opt λ, γ − E A 

( 

n ∑ 

t=1 

r λ, γ (a t ) 

) 

, (1)
hich is necessarily positive and nondecreasing in n , for any fixed

 . In related bandit-type problems the regret of the best algorithms

ypically grows at O (log ( n )) uniformly across all λ. We will demon-

trate both that this is also the case for the algorithms we pro-

ose and that the best achievable growth for this problem is also

 (log ( n )). 

emark 1. An alternative, indeed classical, formulation uses Bayes

equential decision theory. Here the goal of analysis is the deter-

ination of an algorithm A to maximise 

 ρ

[ 

E A 

( 

n ∑ 

t=1 

r λ, γ (a t ) 

) ] 

here the outer expectation is taken over some prior distribution

for the unknown λ. A standard approach would formulate this

s a Markov Decision Process (MDP) with an informational state at

ime t taken to be some sufficient statistic for λ. The objections to

his approach in this context are many. First, any serious attempt

o derive such a formulation which is likely tractable will require

trong assumptions on the prior ρ including, for example, indepen-

ence of the components of λ. These would each typically have a

onjugate gamma prior. Even then the resulting dynamic program

ould be computationally intractable for any reasonable choices of

 and n . Second, the realities of our problem (and, indeed, many

thers) are such that specification of any reasonably informed prior

s impractical. Confidence in the analysis would inevitably require

obustness of the performance of any proposed algorithm to speci-

cation of the prior. Indeed, our formulation centred on regret sim-

ly seeks robustness of performance with respect to values of the

nknown λ. Third, the MDP approach would require up front spec-

fication of the decision horizon n . This is practically undesirable

or our problem. Moreover, the value of n is not unimportant. It

ill determine the nature of good policies in important ways. For

xample, the “last” decision at time n is guaranteed to be opti-

ally “greedy” since there is no further need to learn about λ at

hat point. 

. The full information problem 

In order to develop strongly performing policies, it is critical

hat we are able to solve the full information optimisation prob-

em 

pt λ, γ := max 
a ∈A 

r λ, γ (a ) 

or any pre-specified λ ∈ (R + ) K . A naive proposal for a policy

ddressing the problem outlined in the previous section would

hoose an action a t at time t to solve the full information problem

or some estimate λt of the unknown λ available at time t . While

uch a proposal would fail to adequately address the challenge of

earning about λ, we will in the succeeding sections develop effec-

ive algorithms which choose allocations determined by solutions

f full information problems for carefully chosen λ-values. 

A challenge to the solution of the full information problem is

he non-linearity in a of the objective r λ, γ ( a ) inherited from the

on-linearity of the detection mechanism γ( a ). To develop efficient

olution approaches we produce a formulation as a linear integer

rogram (IP) in which this non-linearity is removed by precomput-

ng key quantities. In particular we write 

 λ, γ ,i ju = 

j ∑ 

k = i 
γk (a i ju ) λk 

or the mean number of events detected when agent u is allocated

o the subregion { i, i + 1 , . . . , j} where a iju is any a ∈ A such that

 i ju = 1 . Efficient solution of the full information problem relies on
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Algorithm 1 FP-CUCB (case (I)). 

Inputs: Upper bound λmax ≥ λk , k ∈ [ K] . 

Initialisation Phase: For t ∈ [ K] 

• Select an arbitrary allocation a ∈ A such that a t � = 0 

Iterative Phase: For t = K + 1 , K + 2 , . . . 

• Calculate indices 

λ̄k,t = 

∑ t−1 
s =1 Y k,s ∑ t−1 
s =1 γk,s 

+ 

6 max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

, k ∈ [ K] 

• Select an allocation a ∗
λ̄t 

such that r 
λ̄t , γ

(a ∗
λ̄t 

) = max a ∈A r λ̄t , γ
(a ) . 
recomputing these q λ, γ , iju for all 1 ≤ i ≤ j ≤ K , and u ∈ [ U ]. We now

ave that 

pt λ, γ = max 
{ a i ju , 1 ≤i ≤ j≤K,u ∈ [ U] } 

K ∑ 

i =1 

K ∑ 

j= i 

U ∑ 

u =1 

q λ, γ ,i ju a i ju 

such that 

K ∑ 

i =1 

K ∑ 

j= i 
a i ju ≤ 1 , u ∈ [ U] 

k ∑ 

i =1 

K ∑ 

j= k 

U ∑ 

u =1 

a i ju ≤ 1 , k ∈ [ K] 

a i ju ∈ { 0 , 1 } , 1 ≤ i ≤ j ≤ K, u ∈ [ U] . (2) 

he first constraint above guarantees that each searcher u is as-

igned to at most one sub-region while the second constraint guar-

ntees that each cell k is searched by at most one searcher. We

iew the solution of (2) as the optimal allocation strategy and the

ptimal value function as the best achievable performance for an

gent with perfect knowledge of γ and λ. 

When we require solutions to the full information problem for

he implementation of algorithms for the problem described in the

receding section, we solve an appropriate version of the above IP

ie, for suitably chosen λ) by means of branch and bound. While it

an be shown that the IP (2) belongs to a class of problems which

s NP-hard (see Appendix A ) we find that the solution of this IP is

ery efficient in practice. We believe that this is because the solu-

ion of the LP-relaxation of (2) often coincides with the exact so-

ution of the IP. Indeed, in empirical tests this occurred more than

0% of the time and in the remaining instances the gap between

he two solutions was always less that 1%. For all problem sizes

onsidered in this paper the pre-processing and solution steps can

e completed in less than a second using basic linear program

olvers in the statistical programming language R on a single lap-

op. 

. Sequential problem 

In the sequential problem, the controller’s objective is to min-

mise regret (1) over a sequence of rounds. To do so the con-

roller must construct a strategy which balances exploring all cells

o accurately estimate the underlying rate parameters λ, while

lso exploiting the information gained to detect as many events

s possible. In this section we introduce and analyse two up-

er confidence bound (UCB) algorithms as policies for the case of

ully known detection probabilities (case (I)) and the case where

nly the nature of the scaling of detection probabilities is known

case (II)). 

The model we introduced in Section 2 is closely related to

he Combinatorial Multi Armed Bandit problem (CMAB) model of

hen et al. (2013) . The CMAB problem models a scenario where

 decision-maker is faced with a set of K basic actions (or arms )

ach associated with a random variable of unknown probability

istribution. In each round t ∈ N , the decision-maker may select

 subset of basic actions to take (or arms to pull ) and receives a re-

ard which is a (possibly randomised) function of realisations of

he random variables associated with the selected basic actions.

he decision-maker’s aim is to maximise her cumulative reward

ver a given horizon. Chen et al. study a CMAB problem where the

ecision-maker receives semibandit feedback on her actions, mean-

ng she observes the overall reward but also all realisations of the

andom variables associated with the selected arms. Realisations

f the random variables are identically distributed for a given arm

nd independent both across time and arms. 

In our adaptive searching problem, electing to search a cell k in

 round t , i.e. setting a kt � = 0, is the analogue of pulling an arm k .

he total number of events detected in a round is the analogue of
eward. The fundamental, and non-trivial difference between our

odel and that of Chen et al. lies in the feedback mechanism.

ur framework is more complex in two important regards. Firstly,

e do not by default observe independent identically distributed

i.i.d.) realisations of the underlying random variable of interest X kt 

ach time we elect to search a cell. We observe a filtered obser-

ation Y kt whose distribution depends on the action a t selected in

hat round. This introduces complex dependencies within the se-

uence of rewards meaning standard concentration results for in-

ependent observations do not apply. Secondly, because of the U

ossibly heterogeneous searchers, we can have multiple ways of

earching the same collection of cells. While this is implicitly per-

itted within the framework of Chen et al., it is not explicitly ac-

nowledged nor to the best of our knowledge are any real prob-

ems with such a structure explored in related work. 

Our analytical challenge is to extend earlier work in order to

eet these novel features. Specifically we will propose a UCB al-

orithm for both cases of our problem and derive upper bounds

n the expected regret of these policies. UCB algorithms apply the

rinciple of optimism in the face of uncertainty to sequential deci-

ion problems. Such an algorithm calculates an index for each ac-

ion in each round which is the upper limit of a high probability

onfidence interval on the expected reward of that action and then

elects the action with the highest index. In this way the algorithm

ill select actions which either have high indices due to a large

ean estimate - leading it to exploit what has been profitable so

ar - or due to a large uncertainty in the empirical mean - lead-

ng it to explore actions which are currently poorly understood. As

he rounds proceed, the confidence intervals will concentrate on

he true means and fewer exploratory actions will be selected in

avour of exploitative ones. 

.1. Case (I): Known detection probabilities 

In our first version of the problem, case (I), the only unknowns

re the underlying rate parameters λ. We assume that detection

robability vectors γ( a ) are known for all a ∈ A . Therefore we do

ot need to explicitly form UCB indices for every action separately.

t will suffice to form a UCB index on each unknown λk for k ∈ [ K ].

ptimistic estimates of the value of each action will then arise by

alculating the q λ, γ , iju quantities with the optimistic estimate of λ

n place of known λ. 

Our proposed approach to the sequential search problem in

ase (I), the FP-CUCB algorithm (Filtered Poisson - Combinatorial

pper Confidence Bound), is given as Algorithm 1 . The algorithm

onsists of an initialisation phase of length K where allocations are
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selected such that every cell is searched in some capacity at least

once. Then in every subsequent round t > K , a UCB index 

λ̄k,t = 

∑ t−1 
s =1 Y k,s ∑ t−1 
s =1 γk,s 

+ 

6 max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

, (3)

is calculated for each cell k . This particular UCB index is chosen be-

cause it can be shown to bound λk with high probability. Specif-

ically, using de la Peña’s inequality ( de la Peña, 1999 ), it can be

shown that P ( ̄λk,t ≥ λk ) approaches 1 as t → ∞ at an appropriate

rate. A full derivation of this term is given in the proof of the fol-

lowing theorem. 

An action which is optimal with respect to the K -vector of in-

flated rates λ̄t = ( ̄λ1 ,t , . . . , ̄λK,t ) is then selected by solving the IP

(2) with λ̄t in place of λ. The inflation terms involve a parameter

λmax ≥ max k ∈ [ K ] λk . This is necessary to construct UCBs which con-

centrate at a rate that matches the concentration of Poisson ran-

dom variables, which is defined by the mean parameter. 

To analyse the regret of this algorithm we must first introduce

some additional notation for optimality gaps , the differences in ex-

pected reward between optimal and suboptimal actions. For k ∈ [ K ]

define, 

�k 
max = opt λ, γ − min 

a ∈A k 
r λ, γ (a ) , 

�k 
min = opt λ, γ − max 

a ∈A k 
r λ, γ (a ) , 

where A k = { a ∈ A : a k � = 0 } for k ∈ [ K ], and �max = max k ∈ [ K] �
k 
max ,

and �min = min k ∈ [ K] �
k 
min 

. The quantity �max is then the difference

in expected reward between an optimal allocation of searchers and

the worst possible allocation, while �min is the difference in ex-

pected reward between an optimal allocation and the closest to

optimal suboptimal allocation. The quantities �k 
max and �k 

min 
are

the largest and smallest gaps between the expected reward of an

optimal allocation and allocations where cell k is searched in some

capacity. All � terms depend on λ, γ but we drop this dependence

in the notation for simplicity. 

4.1.1. Upper bound on regret 

Now, in Theorem 1 we provide an analytical bound on the ex-

pected regret of the FP-CUCB algorithm in n rounds. 

Theorem 1. The regret of the FP-CUCB algorithm with λmax applied

to the sequential surveillance problem with known γ satisfies 

Reg FP-CUCB 
λ, γ (n ) ≤

∑ 

k :�k 
min 

> 0 

12 K 

2 

γk,min 

[
b(�k 

min 
) 

�k 
min 

+ 

∫ �k 
max 

�k 
min 

b(x ) 

x 2 
dx 

]
log (n ) 

+ 

(
π2 

3 

+ 1 

)
K�max , (4)

where 

b(x ) = λmax + 

x max (1 , 
√ 

λmax ) 

K 

+ 

√ 

λ2 
max + 

2 xλmax max (1 , 
√ 

λmax ) 

K 

, 

and γk,min = min a : a k � =0 γk (a ) . 

To give a proof of this theorem we must introduce a new way

of thinking about the action space. Consider that while we have

previously (for ease of exposition) defined actions in terms of al-

locations of searchers to cells, a ∈ A , the real impact on reward

comes from the vectors of detection probabilities, γ( a ), which arise

from these allocations. As multiple allocations may give rise to

the same vector of detection probabilities (if, for instance, two

searchers have identical capabilities, then switching their assign-

ments would have no impact on the quality of the search) the set
 = { γ(a ) , ∀ a ∈ A} of possible detection probability vectors most

arsimoniously describes the set of possible actions in this prob-

em. 

For an element g = (g 1 , . . . , g K ) ∈ G we then have expected re-

ard g T ·λ and optimality gap �g = opt λ, γ − g T · λ. Let G k be the

et of vectors g with g k > 0 and G k,B ⊆ G k be the set of vectors in

 k with sub-optimal expected reward - i.e. G k,B = { g ∈ G k : �g > 0 } .
et B k = |G k,B | and label the vectors in G k,B as g 1 

k,B 
, g 2 

k,B 
, . . . , g 

B k 
k,B 

in

ncreasing order of expected reward. We use the following notation

or optimality gaps with respect to these ordered vectors 

k, j = opt λ, γ − (g 

j 

k,B 
) T · λ j ∈ [ B k ] , k ∈ [ K] (5)

nd thus the gaps defined previously can be expressed as �k 
max =

k, 1 and �k 
min 

= �k,B k . We introduce counters D k,t = 

∑ t 
s =1 g k,s for

 ∈ [ K ], t ∈ N where g s is the detection probability vector selected

n round s . These allow us to keep track of the total detection prob-

bility applied to a cell up to the end of round t . 

The central idea in proving Theorem 1 is that if for a cer-

ain sub-optimal action g : �g > 0, all the cells k with g k > 0 have

een sampled sufficiently, the mean estimates ought to be accu-

ate enough that the probability of selecting that sub-optimal ac-

ion again before horizon n is small. We show that this sufficient

ampling level is O (log ( n )) and the “small” probabilities of select-

ng the sub-optimal action after sufficient sampling are so small as

o converge to a constant. Thus by re-expressing expected regret as

 function of the number of plays of sub-optimal actions, we can

ound it from above as the sum of a O (log ( n )) term derived from

he sufficient sampling level and a constant independent of n . 

To count the plays of sub-optimal actions we maintain coun-

ers N k , t , which collectively count the number of suboptimal plays.

e update them as follows. Firstly, after the K initialisation rounds

e set N k,K = 1 for k ∈ [ K ]. Thereafter, in each round t > K , let k ′ =
rg min j: g j,t > 0 

N j,t−1 (i.e. k ′ indexes the cell involved in the cur-

ent action which has the lowest counter), where if k ′ is non-

nique, we choose a single value randomly from the minimis-

ng set. If g T t · λ � = opt λ, γ then we increment N k ′ by one, i.e. set

 k ′ ,t = N k ′ ,t−1 + 1 . The key consequences of these updating rules

re that 
∑ K 

k =1 N k,t provides an upper bound on the number of sub-

ptimal plays in t rounds (since one of the first K actions may be

ptimal), and D k , t ≥γ k , min N k , t for all k and t (since cell k is always

earched with detection probability at least γ k , min ). While tracking

he sub-optimal plays in this way is more complex than maintain-

ng a single counter of the number of sub-optimal actions, it per-

its a convenient decomposition of regret that allows us to prove

heorem 1 . 

Proof of Theorem 1 : We prove the theorem by decomposing

egret into a function of the number of plays of suboptimal arms,

p to and after some sufficient sampling level. We then introduce

wo propositions which give bounds for quantities in the decom-

osition which are then combined to give the bound in (4) . The

roofs of these propositions is reserved for Appendix C . 

Let N 

l,su f 

k,t 
, N 

l,und 
k,t 

for l ∈ [ B k ] be counters associated with elements

f G k,B for k ∈ [ K ]. These counters are defined as follows: 

 

l,su f 

k,n 
= 

n ∑ 

t= K+1 

I { g t = g 

l 
k,B , N k,t > N k,t−1 , N k,t−1 > h k,n (�

k,l ) } , (6)

 

l,und 
k,n 

= 

n ∑ 

t= K+1 

I { g t = g 

l 
k,B , N k,t > N k,t−1 , N k,t−1 ≤ h k,n (�

k,l ) } , (7)

here h k,n (�) = 12 b(�) log (n ) K 2 

γk,min �
2 . A cell k is said to be sufficiently

ampled with respect to a choice of detection probabilities g l 
k,B 

f N k,t−1 > h k,n (�
k,l ) , and thus N 

l,und 
k,n 

, N 

l,su f 

k,n 
count the suboptimal

lays leading to incrementing N 

l 
k,n 

up to and after the sufficient

evel, respectively. 
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From the definitions (6) and (7) we have N k,n = 1 +
 B k 
l=1 

(N 

l,su f 

k,n 
+ N 

und 
k,n 

) . The expected regret at time horizon n

an also be bounded above using this notation as 

eg λ, γ (n ) ≤ E 

[ 

K ∑ 

k =1 

( 

�k, 1 + 

B k ∑ 

l=1 

(N 

l,su f 

k,n 
+ N 

l,und 
k,n 

) · �k,l 

) ] 

(8) 

here �k ,1 arises as a worst case view of the initialisation. We can

erive an analytical bound on regret by bounding the expectations

f the random variables in (8) . 

Firstly, for the beyond sufficiency counter we have 

roposition 1. For any time horizon n > K , 

 

( 

K ∑ 

k =1 

B k ∑ 

l=1 

N 

l,su f 

k,n 

) 

≤ π2 

3 

· K. (9) 

The full proof of Proposition 1 is given in Appendix C , but it

epends in particular on the following Lemma describing the con-

entration of filtered Poisson data. The derivation of the concen-

ration result for the observations Y 1 , . . . , Y t requires careful treat-

ent as the parameters of these distributions, and therefore the

bservations themselves, are not independent. The stochastic de-

endencies between the sequence of random variables γ1 , . . . , γs 

ay be highly complex, so rather than attempt to quantify these

elationships exactly, we appeal to martingale theory which allows

s to derive the concentration result without assuming indepen-

ence. We provide the necessary concentration result in the lemma

elow. 

emma 1. Let Y 1 , . . . , Y s be any sequence of Poisson random variables

ith means γ1 λ, . . . γs λ respectively, such that the sequence { Z j } s j=1 

s a martingale where Z j = 

∑ j 
i =1 

(Y i − E (Y i | Y i −1 , . . . , Y 1 )) . Then, given

arameters t ≥ s and λmax ≥λ the following holds: 

 

( ∣∣∣∣
∑ s 

j=1 Y j ∑ s 
j=1 γ j 

− λ

∣∣∣∣ ≥ 6 max (1 , 
√ 

λmax ) log (t) ∑ s 
j=1 γ j 

+ 

√ 

6 λmax log (t) ∑ s 
j=1 γ j 

) 

≤ 2 t −3 . (10) 

The proof of this Lemma is given in Appendix B . The conse-

uence of this Lemma is that the UCB indices (3) are of the correct

orm to guarantee that the probability of making suboptimal plays

eyond the sufficient sampling level is small. 

For the under sufficiency counter we have the following propo-

ition, also proved in Appendix C , 

roposition 2. For any time horizon n > K and k : �k 
min 

> 0 , 

B k 
 

l=1 

N 

l,und 
k,n 

�k,l ≤ h k,n (�
k,B k )�k,B k + 

∫ �k, 1 

�k,B k 

h k,n (x ) dx. (11) 

Combining the decomposition (8) , with the bounds (9) and

11) we have 

eg λ, γ (n ) ≤ E 

( 

K ∑ 

k =1 

( 

�k, 1 + 

B k ∑ 

l=1 

(N 

l,su f 

k,n 
+ N 

l,und 
k,n 

)�k,l 

) ) 

= E 

( 

K ∑ 

k =1 

( 

�k, 1 + 

B k ∑ 

l=1 

N 

l,su f 

k,n 
�k,l 

) ) 

+ E 

( 

K ∑ 

k =1 

B k ∑ 

l=1 

N 

l,und 
k,n 

�k,l 

) 
≤ K�max + E 

( 

K ∑ 

k =1 

B k ∑ 

l=1 

N 

l,su f 

k,n 
�k,l 

) 

+ 

∑ 

k :�k 
min 

> 0 

(
h k,n (�

k,B k )�k,B k + 

∫ �k, 1 

�k,B k 

h k,n (x ) dx 

)

≤
(

π2 

3 

+ 1 

)
K�max 

+ 

∑ 

k :�k 
min 

> 0 

(
h k,n (�

k 
min )�

k 
min + 

∫ �k 
max 

�k 
min 

h k,n (x ) dx 

)

= 

∑ 

k :�k 
min 

> 0 

12 K 

2 

γk,min 

[
b(�k 

min 
) 

�k 
min 

+ 

∫ �k 
max 

�k 
min 

b(x ) 

x 2 
dx 

]
log (n ) 

+ 

(
π2 

3 

+ 1 

)
K�max . �

In the remainder of this section we show that the bound ob-

ained in Theorem 1 is of optimal order, by deriving a lower bound

n the expected regret of the best possible policies. We also pro-

eed to show a second upper bound of sub-optimal order with re-

pect to n but that has the advantage of holding for any problem

nstance, and therefore does not depend on the optimality gaps,
k 
min 

and �k 
max , ∀ k ∈ [ K ]. 

.1.2. Lower bound on regret 

To analyse the performance of the best possible policies, we in-

roduce the notion of a uniformly good policy . A uniformly good

olicy ( Lai & Robbins, 1985 ) is one where 

 

( 

n ∑ 

t=1 

I { g t = g } 
) 

= o(n 

α) ∀ α > 0 

or every g : �g > 0 and every λ ∈ R 

K + . Clearly, then all uniformly

ood policies must eventually favour optimal actions over subop-

imal ones - with the suboptimal actions being necessary to accu-

ately estimate λ. For a given rate vector λ we define the set of

ptimal actions as 

( λ) = { g ∈ G : g 

T · λ = opt λ, γ} . 
e write S( λ) = G \ J( λ) to be the set of suboptimal actions. The

ifficulty of a particular problem depends on the particular config-

ration of λ and γ . We define 

( λ) = { k : ∃ g ∈ J( λ) s.t. g k > 0 } 
s the set of arms which are played in at least one optimal action

nd 

 ( λ) = { θ ∈ R 

K 
+ : g 

T · θ < opt θ, γ ∀ g ∈ J( λ) and 

θk = λk ∀ k ∈ I( λ) } 
s the set of mean vectors such that all actions in J ( λ) are subopti-

al but this cannot be discerned by playing only actions in J ( λ).

he larger the set B ( λ), the more challenging the problem is. If

( λ) = [ K] , then the problem is trivial as one can simultaneously

lay optimal actions and gather the information necessary to af-

rm that these actions are optimal. In such a case the lower bound

n expected regret is simply 0. 

We have the following lower bound on regret for any uniformly

ood policy. A key consequence of this result is the assertion that

olicies with O (log ( n )) regret are indeed of optimal order and thus
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that the regret induced by the FP-CUCB algorithm in case (I) grows

at the lowest achievable rate. This result is analogous to results

in other classes of bandit problem as shown by Lai and Robbins

(1985) and Burnetas and Katehakis (1996) . 

Theorem 2. For any λ ∈ R 

K + such that B ( λ) � = ∅ , and for any uni-

formly good policy π for the sequential surveillance problem with

known γ , we have 

lim inf 
n →∞ 

Reg π
λ, γ

(n ) 

log (n ) 
≥ c( λ) (12)

where c ( λ) is the optimal value of the following optimisation problem

over non-negative coefficients d = { d g , g ∈ S( λ) } , 
inf 
d ≥0 

∑ 

g ∈ S( λ) 

d g �g (13)

such that inf 
θ∈ B ( λ) 

∑ 

g ∈ S( λ) 

d g 

K ∑ 

k =1 

g k kl(λk , θk ) ≥ 1 . (14)

and kl (λ, θ ) = λ log ( λ
θ
) + θ − λ is the Kullback Leibler divergence be-

tween two Poisson distributions with mean parameters λ, θ respec-

tively. 

We prove this theorem fully in Appendix D , but here note that

a key step of its proof is to invoke Theorem 1 of Graves and Lai

(1997) , which is a similar result for a more general class of con-

trolled Markov Chains. It is possible to derive an analytical expres-

sion giving a lower bound on c ( λ) by following steps similar to

those in the proof of Theorem 2 in Combes et al. (2015) . However

we omit this here in the interests of succinctness as it is not an

especially useful or elegant expression. 

We note that the lower bound is based on the KL-divergence

of the cell means, and this suggests that, as in simpler MAB prob-

lems, an approach incorporating the KL-divergence in the UCB in-

dices could be asymptotically optimal. However, existing theory on

the convergence of such approaches ( Combes et al., 2015; Garivier

& Cappé, 2011 ) pertains only to the case of independent reward

generation action selection mechanisms. Therefore, it is not clear

how to approach the optimal design and analysis of such an ap-

proach. 

4.1.3. Gap-free bound on regret 

The logarithmic order bounds of Theorems 1 and 2 are useful as

they establish the order-optimality of the UCB algorithm. We note

that the coefficients of the two bounds are not the same, and the

upper bound may be very large in problem instances where the

�k 
min 

terms are very small. 

The main purpose, however, of the bounds in Theorems 1 and

2 is analytical, not numerical as they can be challenging to com-

pute in practice. The computation of the �k 
min 

and �k 
max terms

used in the upper bound requires evaluating the expected reward

of every possible action, which quickly becomes computationally

challenging for even modest values of K and U . The computation

of the lower bound again requires computation of the expected re-

ward of every possible action, to calculate the �g terms, and also

a minimisation over | S ( λ)| variables, subject to a non-linear con-

straint. This optimisation problem lacks an convenient analytical

solution and must be resolved numerically. 

Moreover, in absence of knowledge of the true reward generat-

ing parameters these bounds do little to inform one of expected

performance of the algorithm. For these reasons, we also present

the following upper bound on regret, which is order-suboptimal,

being of order O (K 

√ 

n log (n ) ) , but holds uniformly across any

choice of λ∈ [0, λmax ] 
K and does not depend on the optimality

gaps. 
heorem 3. The regret of the FP-CUCB algorithm with λmax applied

o the sequential surveillance problem with known γ satisfies 

eg F P−C UC B 
λ, γ

(n ) 

≤ 5 Kλmax 

2 

+ 

12 K max (1 , 
√ 

λmax ) 

γmin 

log (n )(1 + log (n )) 

+ 

√ 

92 K 

2 λmax n log (n ) 

γmin 

. (15)

Proof of Theorem 3 : We first consider the following decompo-

ition of regret, 

eg F P−C UC B 
λ, γ

(n ) = E 

( 

n ∑ 

t=1 

r λ, γ (a ∗) − r λ, γ (a t ) 

) 

= E 

( 

n ∑ 

t=1 

r λ, γ (a ∗) − r λ, γ (a t ) + r λ̄t , γ
(a t ) − r λ̄t , γ

(a t ) 

) 

= E 

( 

n ∑ 

t=1 

K ∑ 

k =1 

λk g 
∗
k − λ̄kt g kt + ̄λkt g kt − λk g kt 

) 

≤ E 

( 

n ∑ 

t=1 

K ∑ 

k =1 

(λk − λ̄kt ) g 
∗
k + ( ̄λkt − λk ) g kt 

) 

= 

n ∑ 

t=1 

K ∑ 

k =1 

E 

(
(λk − λ̄kt ) 

)
g ∗k + 

n ∑ 

t=1 

K ∑ 

k =1 

E 

(
( ̄λkt − λk ) g kt 

)
(16)

he terms of the first sum in (16) are very unlikely to be positive,

ncreasingly so as more data is collected. If we upper bound by

gnoring the case of negative terms we have: 

n ∑ 

t=1 

K ∑ 

k =1 

E ((λk − λ̄kt )) g 
∗
k 

≤
n ∑ 

t=1 

K ∑ 

k =1 

g ∗k P (λk > λ̄kt ) E (λk − λ̄kt | λk > λ̄kt ) 

≤
n ∑ 

t=1 

λmax 

K ∑ 

k =1 

P (λk > λ̄kt ) 

= Kλmax 

n ∑ 

t=1 

P 

(
K ∑ 

k =1 

λk > 

K ∑ 

k =1 

∑ t−1 
s =1 Y k,s ∑ t−1 
s =1 γk,s 

+ 

6 max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

)

≤ K λmax 

n ∑ 

t=1 

t −3 ≤ 5 K λmax 

4 

here the penultimate inequality is due to Lemma 1 . 

Now consider the second sum in (16) 

n ∑ 

t=1 

K ∑ 

k =1 

E 

(
( ̄λkt − λk ) g kt 

)

= 

n ∑ 

t=1 

E 

(
K ∑ 

k =1 

γk,t 

( ∑ t−1 
s =1 Y k,s ∑ t−1 
s =1 γk,s 

+ 

6 max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

− λk 

))

≤
n ∑ 

t=1 

Kλmax P 

(
K ∑ 

k =1 

∑ t−1 
s =1 Y k,s ∑ t−1 
s =1 γk,s 

− λk > 

K ∑ 

k =1 

6 max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 
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C  
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C  

b  
+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

)

+ 

n ∑ 

t=1 

E 

(
K ∑ 

k =1 

2 γk,t 

(
6 max (1 , 

√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

+ 

√ 

6 λmax log (t) ∑ t−1 
s =1 γk,s 

))

≤ 5 Kλmax 

4 

+ E 

(
n ∑ 

t=1 

K ∑ 

k =1 

12 γk,t max (1 , 
√ 

λmax ) log (t) ∑ t−1 
s =1 γk,s 

)

+ E 

(
n ∑ 

t=1 

K ∑ 

k =1 

γk,t 

√ 

24 λmax log (t) ∑ t−1 
s =1 γk,s 

)

≤ 5 Kλmax 

4 

+ 12 max (1 , 
√ 

λmax ) log (n ) E 

(
n ∑ 

t=1 

K ∑ 

k =1 

γk,t ∑ t−1 
s =1 γk,s 

)

+ 

√ 

24 λmax log (n ) E 

(
n ∑ 

t=1 

K ∑ 

k =1 

γk,t √ ∑ t−1 
s =1 γk,s 

)

onsider the expectation in the final term, we have, 

 

(
n ∑ 

t=1 

K ∑ 

k =1 

γk,t √ ∑ t−1 
s =1 γk,s 

)
≤

K ∑ 

k =1 

n ∑ 

t=2 

1 √ 

(t − 1) γmin 

≤ 2 K √ 

γmin 

√ 

n . 

imilarly for the other expectation, we have 

 

(
n ∑ 

t=1 

K ∑ 

k =1 

γk,t ∑ t−1 
s =1 γk,s 

)
≤

K ∑ 

k =1 

n ∑ 

t=2 

1 

(t − 1) γmin 

≤ K 

γmin 

(1 + log (n )) . 

ulling this all together we have the following gap-free bound on

egret: 

eg F P−C UC B 
λ, γ

(n ) ≤ 5 Kλmax 

2 

+ 

12 K max (1 , 
√ 

λmax ) 

γmin 

log (n )(1 + log (n )) 

+ 

√ 

92 K 

2 λmax log (n ) n 

γmin 

, 

s stated in Theorem 3 . �

.2. Case (II): Known scaling of detection probabilities 

In the second case we suppose that we do not know exactly

hat probability of successful detection each searcher has in each

ell, but that we have some idea of how these detection proba-

ilities change as the searchers are assigned more cells to search.

f, for example, the searcher is moving back-and-forth over l cells

t a constant speed s , then the time between successive visits to

 cell is 2 l / s , suggesting that the detection probability may decay

ike s /(2 l ) with the number of cells l . 

In order to be precise about this case we suppose that detection

robabilities have the form 

k (a ) = 

U ∑ 

u =1 

φu (a ) ω ku I { a k = u } , k ∈ [ K] , (17) 

here φu : A → [0 , 1] are known scaling functions , and ω ku ∈
(0 , 1] ∀ k ∈ [ K] , u ∈ [ U] are unknown baseline detection probabilities

 the probability of searcher u detecting events in cell k given that

s the only cell they are assigned to search. Functions φu are as-

umed to be decreasing in the number of cells searcher u must

earch. For instance, and as suggested in the preceding paragraph,

ne suitable function may be φu (a ) = ( 
∑ K 

k =1 I { a k = u } ) −1 , the re-

iprocal of the number of cells the searcher u is assigned. Searcher

ffectiveness may however decay more slowly as the number of
ells assigned grows if for instance events are visible for an ex-

ended period of time. 

In case (II) the action set and observed rewards remain entirely

he same as for case (I), it is the information initially available to

he controller that differs. Here, both λ, the K -vector of rate pa-

ameters, and ω = (ω 1 , 1 , . . . , ω 1 ,U , ω 2 , 1 . . . , ω K,U ) , the KU -vector of

aseline detection probabilities are unknown as opposed to solely

in case (I). Due to nonidentifiability we cannot make direct infer-

nce on λ or ω. However, simply estimating the products of certain

omponents is sufficient for optimal decision making as estimating

he expected reward does not depend on having separate estimates

f each parameter. Therefore we can simply consider KU unknowns

= (ω 1 , 1 λ1 , . . . , ω 1 ,U λ1 , ω 2 , 1 λ2 , . . . , ω K,U λK ) when referring to the

nknown parameters. 

As such this second case of the sequential search problem can

lso be modelled as a CMAB problem with filtered feedback. The

et of arms is given by searcher-cell pairs ku ∈ [ K ] × [ U ]. Each arm

u is associated with a Poisson distribution with unknown pa-

ameter τku = ω k,u λk . We continue to use A to specify the action

et and filtering is governed by scaling function vectors φ(a ) =
(φ1 (a ) , . . . , φU (a )) . Let φku , t denote the filtering probability asso-

iated with the searcher-cell pair ku in round t . It is 0 if a k , t � = u

nd φu ( a t ) if a k,t = u . 

Let reward in this setting be defined 

 λ, γ (a ) = 

˜ r τ, φ(a ) = 

U ∑ 

u =1 

φu (a ) 
K ∑ 

k =1 

τku I { a k = u } 

nd define optimality gaps in this setting for ku ∈ [ K ] × [ U ] as 

ku 
max = opt λ, γ − min 

a ∈A 
{ r λ, γ (a ) | r λ, γ (a ) � = opt λ, γ , a k = u } 

�ku 
min = opt λ, γ − max 

a ∈A 
{ r λ, γ (a ) | r λ, γ (a ) � = opt λ, γ , a k = u } . 

The appropriate FP-CUCB algorithm for case (II) then calculates

pper confidence bounds for each τ ku parameter instead of λk and

s in the FP-CUCB algorithm for case (I) this induces an optimistic

stimate of the value of every a ∈ A . We describe this second vari-

nt in Algorithm 2 . 

lgorithm 2 FP-CUCB (case (II)). 

nputs: Upper bound τmax ≥ τku , k ∈ [ K] and u ∈ [ U] . 

nitialisation Phase: For t ∈ [ KU] 

• Select an arbitrary allocation a ∈ A such that a t � = 0 

terative Phase: For t = K U + 1 , K U + 2 , . . . 

• Calculate indices 

τ̄ku,t = 

∑ t−1 
s =1 Y ku,s ∑ t−1 
s =1 φku,s 

+ 

6 max (1 , 
√ 

τmax ) log (t) ∑ t−1 
s =1 φku,s 

+ 

√ 

6 τmax log (t) ∑ t−1 
s =1 φku,s 

, ku ∈ [ K] × [ U] 

• Select an allocation a ∗
λ̄t 

such that ˜ r τ̄t , φ
(a ∗

λ̄t 
) = max a ∈A ̃  r τ̄t , φ

(a ) . 

Since our CMAB model in case (II) and second variant of FP-

UCB are of the same form as in case (I), the analogous results

o Theorems 1 and 2 can be derived. Specifically we have a regret

pper bound for FP-CUCB in Corollary 1 and a lower bound for

egret of any uniformly good algorithm in Corollary 2 . 

orollary 1. The regret of the FP-CUCB algorithm in case (b) defined

y τmax applied to the sequential search problem as defined previously
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Algorithm 4 Thompson Sampling (TS). 

Inputs: Gamma prior parameters α, β
Iterative Phase: For t = 1 , 2 , . . . 

• For each k ∈ [ K] sample ˜ λk,t from a Gamma (α + 

∑ t−1 
s =1 Y k,s , β + ∑ t−1 

s =1 γk (a s )) distribution 

• Select an allocation a ∗
˜ λt 

such that r ˜ λt , γ
(a ∗

˜ λt 
) = max a ∈A r ˜ λt , γ

(a ) . 
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satisfies 

Reg FP-CUCB 
λ, γ (n ) 

≤
∑ 

ku :�ku 
min 

> 0 

12(KU) 2 

φku,min 

[
b ′ (�ku 

min 
) 

�ku 
min 

+ 

∫ �ku 
max 

�ku 
min 

b ′ (x ) 

x 2 
dx 

]
log (n ) 

+ 

(
π2 

3 

+ 1 

)
KU�max , 

where 

˜ b (x ) = τmax + 

x max (1 , 
√ 

τmax ) 

KU 

+ 

√ 

τ 2 
max + 

2 xτmax max (1 , 
√ 

τmax ) 

KU 

, 

and φku,min = min a : a k = u φu (a ) . 

Corollary 2. For any τ ∈ R 

KU + such that ˜ B ( τ) � = ∅ , and for any uni-

formly good policy π for the sequential surveillance problem with

known φ, we have 

lim inf 
n →∞ 

Reg π
λ, γ

(n ) 

log (n ) 
≥ ˜ c ( τ) 

where ˜ c ( τ) is the solution of an optimisation problem analogous to

(13) . 

Precise specification of ˜ c ( τ) requires redefining notation from

Section 4.1.2 in the context of case (II) and produces an entirely

unsurprising analogue. In the interests of brevity we omit this. The

techniques used in proving Theorems 1 and 2 can be easily ex-

tended to prove Corollaries 1 and 2 . 

5. Numerical experiments 

We now numerically evaluate the performance of the FP-CUCB

algorithm in comparison to a greedy approach and Thompson

Sampling (TS). The greedy approach is one which always selects

the action currently believed to be best (following an initialisation

period, where each cell is searched at least once). As such it is

a fully exploitative policy which fails to recognise the benefit of

the information gain inherent in exploration. TS is a randomised,

Bayesian approach where an action is selected with the current

posterior probability that it is the best one. This is achieved by

sampling indices from a posterior distribution on each arm and

passing these samples to the optimisation algorithm. We define

these algorithms in the setting of known detection probabilities

(case (I)) in Algorithms 3 and 4 respectively. 

Algorithm 3 Greedy. 

Initialisation Phase: For t ∈ [ K] 

• Select an arbitrary allocation a ∈ A such that a t � = 0 

Iterative Phase: For t = K + 1 , K + 2 , . . . 

• For each k ∈ [ K] calculate ˆ λk,t = 

∑ t−1 
s =1 

Y k,s ∑ t−1 
s =1 

γk,s 

• Select an allocation a ∗
ˆ λt 

such that r ˆ λt , γ
(a ∗

ˆ λt 

) = max a ∈A r ˆ λt , γ
(a ) . 

We compare the FP-CUCB, Greedy and TS algorithms by ran-

domly sampling λ and ω values which define problem instances.

We then test our algorithms’ performance on data generated from

the models of these problem instances. We assume that detection

probabilities have the form given in (17) but we know both the φ
functions and ω values. 
Specifically, we conduct four tests encompassing a range of dif-

erent problem sizes and parameter values to display the efficacy

f our proposed approach uniformly across problem instances. In

ach test 50 ( λ, ω) pairs are sampled and functions φ are se-

ected. For each ( λ, ω) pair 5 datasets are sampled giving under-

ying counts of intrusion events in each cell in each round up to a

orizon of n = 20 0 0 . Parameters are simulated as below: 

(i) K = 15 cells and U = 5 searchers. Cell means λk are sam-

pled from a Uniform(10, 20) distribution for k ∈ [ K ]. Baseline

detection probabilities ω ku are sampled from Beta( u , 2) dis-

tributions for u ∈ [ U ], k ∈ [ K ]. Scaling functions are φu (a ) =
( 
∑ K 

k =1 I { a k = u } ) −1 for u ∈ [ U ], a ∈ A . 

(ii) K = 50 cells and U = 3 searchers. Cell means λk are sampled

from Uniform distributions on the intervals [ k, k + 10] for

k = 1 , . . . , 10 , [20 − k, 30 − k ] for k = 11 , . . . , 20 , [ k − 20 , k −
10] for k = 21 , . . . , 30 , [40 − k, 50 − k ] for k = 31 , . . . , 40 ,

and [ k − 40 , k − 30] for k = 41 , . . . , 50 . Baseline detection

probabilities ω ku are sampled from Beta (u + 2 , 2) distribu-

tions for u ∈ [ U ], k ∈ [ K ]. Scaling functions are φu (a ) = (0 . 5 +
0 . 5 

∑ K 
k =1 I { a k = u } ) −1 for u ∈ [ U ], a ∈ A . 

(iii) K = 25 cells and U = 10 searchers. Cell means λk are sam-

pled from a Uniform(90, 100) distribution for k ∈ [ K ]. Base-

line detection probabilities ω ku are sampled from a Beta(30,

5) distribution for u ∈ [ U ], k ∈ [ K ]. Scaling functions are

φu (a ) = ( 
∑ K 

k =1 I { a k = u } ) −1 for u ∈ [ U ], a ∈ A . 

(iv) K = 25 cells and U = 5 searchers. Cell means λk are sam-

pled from a Uniform(0.4, 1) distribution for k ∈ [ K ]. Baseline

detection probabilities ω ku are sampled from a Beta(1, 1)

distribution for u ∈ [ U ], k ∈ [ K ]. Scaling functions are φu (a ) =
(0 . 5 + 0 . 5 

∑ K 
k =1 I { a k = u } ) −1 for u ∈ [ U ], a ∈ A . 

We test a variety of parametrisations of FP-CUCB (in terms of

max ) and TS (in terms of the prior mean and variance - from

hich particular α and β values can be uniquely found) in each

est. In each case we use λmax values which are both larger and

maller than the true maximal rate. Similarly we investigate TS

ith prior mean larger and smaller than the true maximal rate and

ith several different levels of variance. It is not always fully real-

stic to assume knowledge of λmax will be perfect and therefore it

s of interest to investigate the effects of varying it. Also, the choice

f prior parameters in TS is a potentially subjective one and it is

mportant to understand its impact. 

We measure the performance of our algorithms by calculating

he expected regret incurred by their actions, rescaled by the ex-

ected reward of a single optimal action. For an algorithm A and

articular history H n we write 

caleReg A λ, γ (H n ) = 

∑ n 
t=1 �a t 

opt λ, γ
. 

e calculate this value for all algorithms, all 250 datasets and

ounds 1 ≤ n ≤ 20 0 0. We choose to rescale our regret to make a

airer comparison across the 50 different problem instances in each

est (i)–(iv) which will all have different optimal expected rewards.

In Fig. 1 we illustrate how regret evolves over time by plotting

he median scaled regret across the 250 runs of each algorithm in
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l l  ro u n d s of test ( i ) .  T h e  ra te of growth s h o w n  i n  t h e s e  p l o t s  i s  t y p i c a l  of the results i n  the ot h er three test s. An i m m e d i a t e  o b -  servation i s  t h a t  the g r e e d y  a l g o r i t h m  d o e s  ve r y poorly on ave r a ge a n d  i t s  f u l l  m e d i a n  re g ret ove r the 2 0  0 0 ro u n d s c a n n o t  b e  i n c l u d e d  i n  the g r a p h s  without o b s c u r i n g  d i f f e r e n c e s  between the ot h er a l -  gorithms. We s e e  a l s o  t h a t  the performance of both FP-CUCB a n d  TS i s  strong ly l i n k e d  to the ch o sen p a r a m e t e r s .  For the FP-CUCB a l -  go r i t h m i t  s e e m s  i n  Fig. 1 t h a t  the l a r g e r  the p a r a m e t e r  λm a x  i s  the l a r g e r  the cumulative regret becomes. For TS, l a r g e r  p r i o r  va r ia nc e s s e e m  to i n d u c e  l o w e r  regret, the r e l a t i o n s h i p  with the p r i o r  m e a n  i s  more complex. Accurate s p e c i fi c a t i o n  of the p r i o r  m e a n  s e e m s  to e n s u r e  good performance, but u n d e r e s t i m a t i o n  a n d  o v e r e s t i m a t i o n  of the m e a n  c a n  l e a d  to poor performance ( p a r t i c u l a r l y  w h e n  the va r ia nc e i s  s m a l l ) .  We a n a l y s e  t h e s e  b e h a v i o u r s  f u r t h e r  i n  Figs. 2 a n d  3 . H e r e  we calculate a scaled regret at time n = 20 0 0 for all 250 runs of e a c h  a l g o r i t h m  a n d  p l o t  the empirical distribution of t h e s e  val- ues for e a c h  p a r a m e t e r i s a t i o n  of e a c h  a l g o r i t h m .  T h e  results for tests ( i )  a n d  ( i i )  a r e  given i n  Fig. 2 a n d  for tests ( i i i )  a n d  ( i v )  i n  r e e d y  a l g o r i t h m ’ s  performance from t h e s e  figures as the values are so large. In Appendix E we provide me- dian values and lower and upper quantiles of the scale d re g ret for e a c h  a l g o r i t h m .  We s e e  from t h e s e  v a l u e s  t h a t  the g r e e d y  a l g o r i t h m  performs s u b s t a n t i a l l y  wo r s e t h a n  the FP-CUCB a n d  TS a l g o r i t h m s  w h i c h  b e t t e r  a d d r e s s  the exploration-exploitation d i l e m m a .  Examining Figs. 2 a n d  3 we s e e  t h a t  the FP-CUCB a l g o r i t h m  e n -  joys g r e a t e r  ro bu st n e s s to p a r a m e t e r  choice t h a n  the TS a p p r o a c h .  In particular in the results of test (iii) we see that many parametri- sations of TS give rise to a long taile d distribution of ro u nd 20 0 0 re g ret - meaning the performance of TS is highly variable and of ten poor. This variability of performance does seem to coincide with u n d e r e s t i m a t i o n  of the m e a n ,  h o w e v e r  FP-CUCB m a n a g e s  to m a i n -  tain strong performance even w h e n  the λmax p a r a m e t e r  i s  far from the true maximal rate. When the prior variance is sufficiently l a r g e  and the prior mean is close to the true λmax TS seems to do the b e s t  job of b a l a n c i n g  exp l o ra ti o n a n d  exploitation a n d  incurs the smallest regret. 
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Fig. 2. Scaled regret distributions in tests (i) and (ii). In both tests we have a true largest rate of 20. 

Fig. 3. Scaled regret distributions in tests (iii) and (iv). In test (iii) the true largest rate is 100, and in test (iv) the true largest rate is 1. 
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. Discussion 

In this paper we have considered the problem of adaptively as-

igning multiple searchers to cells along a line (in space or time)

n order to detect the maximum number of events occurring along

he line. The problem is real, and has important applications in

cology, security, defence and other areas. We have modelled the

roblem, and proposed and analysed solution methods. The chal-

enge at the heart of this problem is to correctly balance explo-

ation and exploitation, in the face of initial ignorance as to the

rrival process of events. 

We formulated our sequential decision problem as a combina-

orial multi-armed bandit with Poisson rewards and a novel fil-

ered feedback mechanism. To design quality policies for this prob-

em we first derived an efficient solution method to the full infor-

ation problem. This IP forms the backbone of all policies for the

equential problem, as it allows us to quickly identify an optimal

olution given some estimate of the arrival process’ rate parame-

ers. 

We considered the sequential problem in two informational

cenarios - firstly where the probability of detecting events is

nown, and secondly where these probabilities are unknown but

ne knows how they scale as the number of cells searched in-

reases. For both of these cases we proposed an upper confidence

ound approach. We derived lower bounds on the regret of all uni-

ormly good algorithms under this our new feedback mechanism

nd upper bounds on the regret of our proposed approach. 

In addition to the advantage of theoretical guarantees, the FP-

UCB algorithm is somewhat more reliable than TS. It is clear from

he results of Section 5 that TS outperforms FP-CUCB for certain

arametrisations (commonly larger choices of variance and mean

lose to the true arrival rates). However, we see that TS is particu-

arly vulnerable to poor performance when the mean of the prior

nderestimates the true rate parameters. Even though our theoret-

cal results for FP-CUCB depend on λmax ≥λk , k ∈ [ K ] we see that it

s robust to underestimating this parameter. The reason FP-CUCB

till performs well even when a key assumption does not hold is

ikely due to the fact that de la Peña’s inequality does not give

he tightest possible bound on Poisson tail probabilities (and there-

ore the rate of concentration of the mean). However, in order to

onstruct the algorithm we required a symmetric tail bound for

hich an inflation term giving the type of concentration in Lemma

 could be identified. Other bounds may be tighter but lack these

roperties. 

The variability of TS most likely arises due to the potential for

he Gamma conjugate prior to be dominated by a small number of

bservations and create a scenario where TS behaves similarly to a

reedy policy - sometimes fixing on good actions, but sometimes

n poor ones. This phenomenon of variability of regret is under-

tudied in multi-armed bandits, not least because it is much more

hallenging to analyse theoretically. However, in practical scenar-

os (where of course the learning and regret minimisation process

ill only occur once) this is a risk of TS. We note that both algo-

ithms comfortably outperform the greedy algorithm in almost all

xamples, which speaks to the benefit of making some attempt to

alance exploration and exploitation. 

An alternative treatment of bandit decision making is the

on-stochastic or adversarial bandit ( Auer, Cesa-Bianchi, Freund, &

chapire, 1995 ). Under such a model, the assumptions that rewards

re drawn i.i.d. from a fixed distribution are dropped, and may

nstead be any arbitrary sequence. Adversarial bandits necessitate

 randomised strategy to guarantee good performance across any

hosen reward sequence. Such methods have been developed in

he MAB and CMAB settings ( Auer et al., 1995; Cesa-Bianchi & Lu-

osi, 2012 ). As further work the problem could be studied under a

on-stochastic, or even a fully game-theoretic framework, relaxing
ome of our assumptions. This would however require a markedly

ifferent set of algorithmic and analytical tools. Within application

omains, variants of the problem exist all along the spectrum from

urely stochastic to fully game-theoretic. Our work has considered

he stochastic setting in detail and in doing so provided a solution

o many real-world problems. 
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