
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1990

Rapid Prototyping for Software Evolution

Luqi; Tanik, M.; Yin, W.
Naval Postgraduate School

Luqi, M. Tanik, and W. Yin, "Rapid Prototyping for Software Evolution", Technical
Report NPS 52-90- 009, Computer Science Department, Naval Postgraduate School, 1990.
https://hdl.handle.net/10945/65202

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

<f • .. .

NPS52-90-009

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RAPID PROTOTYPING FOR SOFTWARE EVOLUTION

W.P. YIN,LUQiandM.M. TANIK

August 1989

Approved for public release; distribution is unlimited.

Prepared For:

National Science Foundation
Washington, DC 20550

Rear Admiral R. W. West, Jr.
Superintendent

NAVALPOSTGRADUATESCHOOL
Monterey, California

Harrison Shull
Provost

This report was prepared in conjunction with research funded by the National Science Foundation.

'

Reproductioµ of all or part of this report is authorized.

Reviewed by:

~-rc-Jm·- ROBERB.M.CoHEE
Chairman .
Department iof Computer Science

i

LUQI
Assistant Professor
of Computer Science

Released by:

-l iC. ,/,
/1/- <k/cA~v0·-
KNEALE T. MARsHALL
Dean of Information
and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1a.

4.

' l

UNCLASSIFIED
GS

3. S I O / VAi O .

Approved for public release;·
distribution is unlimited

• • Sa. A O fl
Computer Science Dept.

0
National Science Foundation & ONR

Naval Postgraduate School
Sc. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

Sc. ADDRESS (City, State, and ZIP Code)

Washington, DC 20550

7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20550

9. C

NSF CCR-8710737

11. TITLE (Include Security Classification)
RAPID PROTOTYPING FOR SOFTWARE EVOLUTION (U)

17.

FIELD

TODec 89
14. DATE OF REPORT (Year, Month, Day)
Au st 1989

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

GROUP SU~GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This paper describes the basic concepts of a mixed-level software process and rapid prototyping. Some practi-
cal methods, and software tools for using rapid prototyping to support software evolution are also presented.
The research results show that prototyping can be used to stabilize the requirements for either an initial soft­
ware development project or a proposed enhancement to an existing system.

DD FORM 1473, 84 MAR

s ~-• SAME AS APT. • DTIC USERS UNCLASSIFIED
22b. TELEPHONE (Include Area Code 220

5
.
2

Lq
408 646-2735

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

., . • .

Rapid prototyping for Software Evolution

l.Y. P. Yint, Luqi+ and A1. M. Tanikt
Department of Computer Science and Engineeringt

Southern Methodist University
Dallas, TX 75275-0122

Department of Computer Science+
The Naval Postgraduate School

Monterey, CA 93943

Abstract - This paper describes the basic concepts of a mixed-level software process and rapid pro­

totyping. Some practical methods, and software tools for using rapid prototyping to support software

evolution are also presented. The research results show that prototyping can be used to stabilize the

requirements for either an initial software development project or a proposed enhancement to an

existing system.

AP, society becomes increasingly depending on computers, the public demands for computer

software becomes more complex than perhaps any other human construct [FPB87]. The facts of
I

missed schedules, blown.budgets, and flawed products have shown that engineering of software needs

technology innovations to increase software productivity and quality. More and more computer

scientists [RTY871 FPB87] believe that concentration on the front-end technologies, specification and

design, are the first priority. The positive results in these fields have potential for breakthroughs in

the engineering of software.

To achieve any significant gain in software productivity it has been proposed that an alterna­

tive software development and evolution is necessary [RTY87]. Figure 1 depicts such a paradigm.

Software is a spectrum concept that covers all the information obtained during software develop­

ments and evolutions. The productivity of software engineering much depends on the software pro­

cess model. Among a number of soft\vare process models, the waterfall model (Figure 2) has become

the basis for most software acquisition standards [BWB88]. The experience has proved that the

waterfall model has some fundamental difficulties, such as the inherent discontinuity among the

This research was supported in part by the National Science Fondatia.on under grant number CCR-
8710737 and Texas Instruments,. Inc.

-2-

phases, the lack of good control in the front-end of the process, and costly product maintenance. In

the alternative model, the concentration is shifted to the front-end, namely, requirement specification

and design; and the mixed-level process conducts the prototyping, performance measurement, verifi­

cation, code synthesis as well maintenance.

Requirements Design
Automation

Code

Maintenance

Figure 1. An Alternative Software Development Model

Design

Coding

Testing

Operations

Figure 2. Standard \i\Taterfall Life Cycle Model

In order to apply the alternative software process model, a. number of technology innovations

are required. In this paper, we represent a concrete mixed-level design process and a practical rapid

prototyping system. The mixed-level design process (Figure 3) employs three design activities

representing different levels of software development [T&Y89]. The activities are Construct Design,

Exercise Design and Translate I)esign. These activities support the design evolution. Testing and

•

-3-

maintenance are performed directly on the design. Utilizing prototyping technique in the mixed-level

design process obviously helps software evolution.

Problem Requirement
Description Analysis

I~

Requirement
Adjustmentf

System Design
r---------,
I I

Specification' Constru'Ct ~ Design
f Design I Maintenance
I I
I , I

D~sign Design
Modificaj;iom Descriptions

I I

I r------7
: 1 Exercise 1

'----------+I D . I
: 1 es1gn 1
I L-----.J
I
I
I
I
I
I
I
I
I

and
r------,
1 Translate 1 1 High Level
I D • H-'-:;L;----"-----:p:--------'---,;;,..
1 es1gn I anguage rogram
L-----.J

L--------.J

Figure 3. A Mixed-level Design Process

In our approach, a prototype is a concrete executable model of selected aspects of the proposed

system, and rapid prototyping is the process of buildi~g and evaluating a series of prototypes rapidly.

Figure 4 illustrates the iterative prototyping cycle. The user and the designer work together to

define the requirements and specifications for the critical parts of the envisioned system. The

designer then constructs a model or prototype of the system in a prototype description language at

the specification level. The constructed prototype is a partial representation of the system, including

only those attributes necessary for meeting the requirements, and is used as an aid in analysis and

design rather than as production software. During demonstrations of the prototype, the user vali­

dates the prototype's actual behavior against its expected behavior. If the prototype fails to execute

properly the user identifies problems and works with the designer to redefine the requirements. This

process continues until the user determines that the prototype successfully captures the critical

aspects of the envisioned system. Following this validation, the designer uses the validated require­

ments as a basis for the design of the production software.

A set of computer-aided software tools, the Computer-Aided prototyping System (CAPS)

[L&K.88], has been designed and integrated to support prototyping of complex software systems such

New
Goals

Initial
Goals

-4-

DeteITT1ine
Requirements

Requirements Design
1---------,,.-1 Prototype

System

Problems

NO

Performance

Validated Requirements

Construct
Production
System

l System

Production
use

Figure 4. The prototyping Cycle

Prototype

Demonstrate
Prototype

Modularization + Objects

as control systems with hard real-time constraints. The requirements for such systems are especially

difficult to determine and their feasibility is hard to establish without constructing an executable

model of the envisioned system [LUQI89a].

The CAPS System contributes to software evolution by providing software tools for creating

prototypes and adapting them to new requirements. If the prototyping process is carried out manu­

ally, the associated benefits are limited because it takes too much· time and effort. CAPS can

increase the leverage of the prototyping strategy by reducing the effort that must be spent by the

designer in producing and adapting a prototype to perceived user needs.

The evolution of a prototype starts after one pass through the prototyping cycle shown in Fig­

ure 4: the analysts have determined the initial requirements by talking to the customers, constructed

., .,,

'-.

- 5 -

an initial prototype, and demonstrated it to the customer, who finds some aspects of the prototype's

behavior unacceptable and requests some modifications.

Initially, the facilities provided by CAPS are used to adapt the prototype to the new require­

ments. Modifications to the production software can be implemented by using CAPS to (1) add

changes to prototype systems, (2) retrieve software components from the software base, (3) generate

production code if needed, (4) assemble production systems via the prototyping cycle, and (5) manage

the process via the prototyping database.

The main components of CAPS are a special prototyping language and a set of tools illustrated

in Figure 5. The main subsystems of CAPS are the user interface, the software database system, and

the execution support system. Those components are described in detail in [LUQI89b].

We have applied the rapid prototyping techniques to build a prototype in the philosophy of

CAPS [WPY89]. The prototype is implemented by using knowledge-based techniques, representa­

tions and inference mechanism. It is build on the top of ART (The Automatic Reasoning Tools), and

runs on TI Explorer under system software version 3.1. The structure of the prototype consists of

the following components (Figure 6).

(1) Tbe Uuiforro Desigu Represeuta+iow

The fundamental problem of a design process is finding the right representation of design infor­

mation. A good design representation is the first step forward to a successful mLxed-level

design process. A uniform design representation is the only connection among the user inter­

face, design construction, design exercise and design translation. With the uniform representa­

tion, each subsystem works independently without knowing- the internal representation of all

other subsystems and accessing data at all times in every int_ernal status. Using a uniform

representation is also reducing the number of transformation from one internal representation

to another. In our prototype, the uniform design representation is a hybrid of object-oriented

and constraint-based form.

(2) Static A oalysec·

The analyser performs static dependency analyses of the software design, such as data depen­

dency, control dependency, interface dependency, etc. These dependencies are useful at design

validation and maintenance.

User
Interface

Design
Database

Translator

- 6 -

Software
Database
System

Software
Database
System

Execution
Support
System

Static
Scheduler

Software
Design
Management
System

Figure 5. Main CAPS Tools

(3) Everciser (Siroulator/Juterpreter)·

Execution
Support
System

Browser

Rewrite
Subsystem

Dynamic
Scheduler

The main function of the exerciser is to expose the behavior of the software system being

designed and detect the design errors by dynamic analyses. Exposing the system behavior at

design phase can give both customers and designers early feedback, reducing the cost of

changes to the implementation.

· (4) Automatic Program Generator·

".,

....

1

,.

-7~

After testing the design, the desired high level language program can be automatically gen­

erated from the design. The automation guarantees to reserve the designed functionalities.

Direct modification on code is not necessary. The resulted program may also be executed by

the exerciser to validate the intended design.

(5) Design Ooroponent Base·

The design component base stores and retrieves previous designed software components. Each

design component in the base is described in the uniform design representation. The base

management supports design maintenance and reusability directly.

(6) User Tn+erCace·

The main function of a user interface is to provide commun~cations between the designer and

design environment. The user interface offers the following facilities:

a. Design acquisition·

The design acquisition consists of graphics tools and editors. The editors cooperate with

multiple external design representations and graphics tools, such as dataflow-oriented edi­

tor, state machine-oriented editor, language-oriented syntax-directed editor, etc. All those

editors take different external design representations as inputs and convert them into the

uniform design representation. The designer can choose an editor supporting the design

methodology he is familiar with.

b. Testing Display-

The testing display shows the prototype execution or the interpretation of the design as

well as the target program execution results. The display may be a time chart indicating

the system state changes or the desired system behavior sequence like dialogue,

input/output, reactions, etc.

c. Analysis Display-

d.

The analysis display shows the results of the static analyses as the designer required.

Program Output·

The program generated based on the current status of the design can be retrieved by the

designer and delivered to the customers.

According to the above discussion, the uniform design representation is the center of the design

Desigrie

Software
Design
,m
User

Chosen
Form

- 8 -

Design
Component

Base

Figure 6. A General Structure of Design Environment

Analysis
Results

Execution
Results

Program
Code

environment. All of the user preferred external information format will be converted to the uniform

representation as the internal format, or vice versa, and all of subsystems operate on the internal

representation, eliminating the redundant subsystems. Another advantage of using a uniform internal

representation is to make an open architecture for the design environment in order to meet a variety

of user interface requirements according to designer's preferences.

The results of our research work on a mixed-level software process represent an advancement

in the state-of-art of software process model. The development of CAPS is a step toward many

software technology innovations. The prototyping experience has demonstrated the great potential

in software evolution. Although, much more need to be done, such as distributed information

management, it is our belief that progresses would have to be made stepwise, at great effort, and

persistence will eventually pay.

Acknowledgement- \Ve have benefitted from Dr. Raymond T. Yeh's vision and direction in pursu-

...

... .

)

- 9 -

ing this research.

[Bv\71388]

[FPB87]

[LUQI89a]

[LUQI89b]

[L&K88]

[RTY87]

[T&Y89]

[WPY89]

B. W. Boehm, "A Spiral Model of Software Development and Enhancement," IEEE
Computer, Vol.21, No.5, May, 1988 .
F, P. Books, "No Silver Bullet: Essence and Accidents of Software Engineering,"
IEEE Computer, Vol.20, No.4, April, 1987.
Luqi, "Handling Timing Constraints in Rapid prototyping," Proc. of HICSS-22, Vol.2,
1989.
Luqi, "Software Evolution Via Rapid prototyping," ·submitted to IEEE Computer,
1989.
Luqi and M. Ketabchi, "A Computer Aided prototyping System," IEEE Software,
Vol.5, No.2, March, 1988.
R. T. Yeh, "Some Software Issues of Strategic Defense Systems," Proc. of F JGC, Oct.
1987.
M. M. Tanik and R. T. Yeh, "The Role of Rapid prototyping in Software Develop­
ment,>' Proc. of HIGSS-22, Vol.2, 1989.
W. P. Yin, "A New Software Design Paradigm and Its Prototype,'' Ph:D. Disserta­
tion, Department of Computer Science and Engineering, SMU, 1989.

DISTRIBUTION LIST

~-
(1) Defense Technical Infonnation Center 2

Cameron Station
J- Alexandria, Virginia 22304-6145

(2) Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

(3) Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

(4) Director of Research Administration 1
Attn: Prof. Howard
Code 012
Naval Postgraduate School
Monterey, CA 93943

(5) Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

(6) Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217

(7) National Science Foundation 1
Division of Computer and Computation Research
Attn. Tom Keenan
Washington, D.C. 20550

(8) Naval Postgraduate School 100
Code52Lq
Computer Science Department
Monterey, CA 93943

,,

1

