
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1990

A Graph Model of Software Maintenance

Mostov, I.; Luqi; Hefner, K.
Naval Postgraduate School

K. Hefner, Luqi, and I. Mostov, "A Graph Model of Software Maintenance", Technical
Report NPS 52- 90-014, Computer Science Department, Naval Postgraduate School, 1990.
https://hdl.handle.net/10945/65203

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

•-; " ~:-"'j~._ ;,.~
. ~·~·

NPS52-90-014

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A GRAPH MODEL OF SOFIW ARE MAINTENANCE

I. Mostov

Luqi

K. Hefner

August 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Department of Computer Science, Code CS
Monterey, California 93943-5100

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral! R. W. West, Jr.
Superintendeljlt

'

Harrison Shull
Provost

This report w~s prepared in conjunction with research funded by the National Science Foundation.

Reproduction\ of all or part of this report is authorized.

Reviewed by: .
'

W!ev.~~
ROBERT B. ~CGHEE
Chairman

1

Department o~ Computer Science
I

t I .--,

~~\~4~
HAROLD M. FREDRICKSON
Chairman I
Department of ,Mathematics

LUQI4·
Associate Professor
of Computer Science

Released by:

,n ;1

/ -YU J.-4-~
GORDON E. SCHACHER
Dean of Faculty
and Graduate Studies

•

.
•

. .

•
J

UNCLASSIFIED
SECURllY CLASSIFICATION OF THIS PAGE

6c. ADDRESS (City, Stalfl, and ZIP Code)

Monterey, CA 93943-5100

Sc. ADDRESS (City, State, and ZIP Code)

1800 G Street, NW
Washington, DC 20550

11. TITLE (Include Security Classification)

REPORT DOCUMENTATION PAGE

7b. ADDRESS (City, State, and ZIP Code)
1800 G Street, NW
Washington, DC 20550

A GRAPH MODEL OF SOFrW ~ MAINTENANCE (U)

17. COSATI CODES

14. DATE OF REPORT (Year, Month, Day)
August 1989

18. SUBJECT TERMS (Continue on retlflrse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Effective management of the maintenance process is the most important factor in efficient software maintenance. It
requires possession of the updated information about the current state of the maintenance and process control tolls
that utilize this information. A Model of Software Maintenance based a set of immutable software components and
a bipartite graph is described in this paper. This model uses state diagrams to model the temporal behavior of the
maintenance tasks, and it incorporates task priorities and precedence, sub-system and baseline definitions, etc .

DD FORM 1473, 84 MAR

• DTIC USERS UNCLASSIFIED

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

.
•

l

.._

.
•

. ..

•
J

A Graph Model of Software Maintenance

Isaak Mostov
Luqi

Kim Hefner

Computer Science Department
Naval Postgraduate' School

Monterey, CA 93943

ABSTRACT

Effective management of the maintenance process is the most important factor in efficient
software maintenance. It requires possession of the updated information about the current state'
of the maintenance ·and process control tools that utilize this information. A Model of Software
Maintenance based a set of immutable software coi:ppon~nts and a bipartite graph is described
in this paper. This model uses state diagrams to model the temporal behavior of the
maintenance tasks, and it incorporates task priorities and precedence, sub-system and baseline
definitions, etc.

Keywords : Software maintenance, s9ftware engineering, graph theqry, software model.

I. Relation between Software Maintenance and Configuration

A direct effect of the software maintenance activity is a change in one or more

components of the system: These changes affect the configuration of the system, its semantics,

and its functionality. Considering the amount and scope of the changes the system is

undergoing duririg its lifetime, complete and effective control over the configuration of the
..

system is imperative .

The relationship between the software configuration of the system and maintenance

activities applied to it can be formulated as follows: each maintenance activity is a function

on the power set of the system's software configurations; when applied to a subset of a

1

system's configuration it results in an updated subset of the system's configuration. In a

mathematical ·sense, the system software configuration is generated by the maintenance

activities; for any change in the sy~tem software configuration there exists some maintenance

activity that created it.

Therefore, we can model the evolution of the system during the maintenance phase of

its lifecycle as a graph that consists of software objects that comprise the system configuration,

and the maintenance tasks and activities that are applied to these objects. Such a graph

captures the semantics of the above principles and allows creation of an abstract mathematical

model that incorporates the specifics and necessary information of both software maintenance

management and system configuration management and control into one coherent framework.

In the following work we will use the ideas and notations of E. Borison' s Model of

Software Manufacture [Ref: 1] and of the Graph Transformation Model for Configuration

Management Environments [Ref: 2] as the underlying basis for the proposed model. We will

refine the original Model of Software Manufacture in order to reflect the specifics of software

maintenance and the consistency requirements of the system.

2. Brief summary of the Model of Software Manufacture

The Model of Softvvare Manufacture views software components as immutable objects,

i.e., they can be created and destroyed, but once created their values cannot be modified. Any

attempt to change such an immutable object creates a new version of this object that differs

from the original one. Once created, the software components are not destroyed, they remain

alive throughout the lifetime of the whole system and may be used later to spring off new

genealogies.

Manufacturing activity (called a step in the model) is a derivation relationship between

two sets of components: an input set and an output set (see Figure 1). In the original Model

of Software Manufacturing the manufacturing step "works" on one or more inputs and

"produces" one or more new components. Each invocation of a manufacturing step is

considered distinct, whether ~r not it operates on different inputs.

2

·.

. .

. .,,

• r

source Ii le

C co111piler

shell CONllland

library

. .
INPUT :MANUFACTURING:

COMPONENTS : STEP :

ohJect file

listing f He

OUTPUT
COMPONENTS

Figure 1: An example of a Manufacture Step .

•..
Both the manufacturing steps and the software components are given unique labels for

the lifetime of the system in order to distinguish between them.

~~

The model of Software Manufacture views the system as a finite, labeled, directed

acyclic graph (G) of components (C nodes) and manufacturing steps (M nodes). The graph

G is bipartite, i.e., manufacturing nodes alternate with component nodes.

The graph G is represented by a tuple <C,M,1,0> where C 'and M are sets of nodes

and I and O are sets of edges:

• The set C represents all software components of the system .

3

.,

., '

,
I

• The set M represents the manufacturing steps applied to the components of the system.

• The set I represents the input relations between components and the manufacturing steps.

• The set O represents the output relations between the manufacturing steps and the
components.

Since no component can be a product of more than one manufacturing step, the set

0 is restricted so that:

(1) 'ti Mi,MJeM, If 3 CeC such that (Mi,C)eO and ~.C)eO, then Mi=~-

Also, a set of primitive components (i.e, the primitive configuration, the one that is

used to set up the system) can be defined as follows:

(2) P = (Ce C I -,3 Me M such that (M,C)e O}

Let n•=(luO)" be the reflexive tr~sitive closure of the union of the input and output

relations I and 0, then following properties can be stated:

• The inter-component and inter-manufacturing step dependencies are defined as follows:

(3) Component CJ depends on component C1 <=> (C1,CJ)eD•

(4) Step MJ depends on another step M1 <=>(Mi,Mi)e n•

• For any component C the set of manufacturing steps that are affected by a change in
C is defined as follows:

(5) Mc= (MeM I (C,M)eD• }

A configuration in the Model of Software Manufacturing is defined as a tuple <G ,E,L>

where G is the graph described earlier, E~C is a set of components designated as exports of

the configuration (i.e., con;iponents that are designated for a use outside of the configuration),

and L is a labeling function that distinguishes different components of the system. The graph

G contains only those ,manufacturing steps that are necessary to produce an export

configuration of the system, i.e., the following holds true:

4

• ..,.

·.

• .

.
•

.
• r

(6) 'v MeM 3 CeE such that (M,C)e»•

The original Model of Software Manufacture presented briefly above is too general,

oriented towards use of tools and application of derivation transfonnations to some components

in order to create others, and is concerned only with manufacturing steps that result in export

components. For example, the components in the Model of Software Manufacture are not

limited to conventional software modules (e.g., source code files). Actual parameters for tool

invocations are conside~d to be "legal" components of the model. The manufacturing steps

have no concrete existence, they are taken to be the derivation relations between inputs and

outputs. The Model of Software Manufacture is not suited for the specifics of maintenance

tasks, and it must be refined in order to serve as a model of the software maintenance process.

3. Relations between Components

The Graph Transform Model [Ref: 2], classifies softw,are objects into two categories:

re-derivable and non-re-derivable. Re,9erivable objects can be automatically reconstructed by

applying some tool to some set of software objects. All other objects are considered non-re­

derivable _(e.g., "source"· objects). The software objects may have attributes, which can specify

computational procedures that should be applied to the components in order to pcrfonn specific

transfonnations.

There ·exist two important relations between non-re-derivable and re-derivable object~:

is-compfment•of and derives. These relations have a direction and are easily modelled using

digraphs.

The relation "derives" (see Figure 2) is defined between non-re-derivable and re­

derivable objects and it represents a transformation of one or more software objects into

another (e.g., compilation of source modules into linlcable object modules). The "derives"

transfoimations are typed transformations that are applied to objects of a specific type. These

transformations are very specific, they are known a-priori, and can be applied automatically

using the infonnation about the type of the software object and the attributes of the object

itself. The "derive" transfonnations are associated with the use of software tools in the process

., '

5

souro•
f' I le

•:OMPI L.ATI ON

obJeot
F' I f e

L.JNHlNC

•x•outabl•
f' II •

"deri:ves" relations

••ts_.peo
vJ.

•• t • _bodw
VJ.

mra1phs....,.peo
vJ.

gra,=,t-ts_bod\,,I

yJ.

F'ron t_.,nd

V

"is-compouen l-of" rela lions

Figure 2: Example of relations between software objects.

of programming, but they usually are invisible to the management or users of the system.

The "is-component-of' relation (see Figure 2) is defined between non-re-derivable

objects only and it represents the use of one component by another component of the system

(e.g., use of packages in the ADA programming language). To denote the "is-component-of'

relation we will use a convention in which the "is-component-of' relation between components

C1 and CJ means that C1 is a component of CJ.

The "is-component-of' relations between components are defined by the system's

overall design and module' decomposition. These relations may be specified in the component

itself (e.g, compiler directives in programming languages - "#include" in C, "with" in ADA,

"COPY" in some COBOL dialects) or explicitly stated as attributes representing additional

information required for deriving transformations (e.g., library specifications in linking

commands). In both cases the relation information is defined a-priori and is stable, relative

to .the dynamics of the system's changes due to the maintenance process. TI1ese stable

relationships may change as a result of maintenance, but these changes are few and far in

between compared to the changes in the components themselves. Once the "is-component­

of' relations are defined for the whole system, such relations can be determined automatically

for components using their attributes and the information in the components themselves, and
I

applying knowledge-based techniques.

6

. '

II .

..

.
•

..

• r

4. The Model of Software Maintenance

The main objective of the Model of Software Maintenance is to provide a framework

that integrates information about software maintenance activities with configuration control.

The model is not concerned with the mechanics and the details of the maintenance

programmer task and it assumes organizational paradigms that comply with ANSI/IEEE

standard on Software Configuration Management [Ref: 3] as follows:

• TJte manageip~nt of the software ,maintenance organization exercises a formal type of
change control, i.e., the system configuration changes only as a result of a maintenance
action authorized by the management.

• The software configuration management system is used as a tool to coordinate
m~tenance activities that occur within the context of the system, and the
implementation of the control is done utilizing software libraries. ·

• All of the verified software objects are contained in a controlled software Jibrary (i.e
master library) that is under direct control of the maintenance management, i.e., all
changes to comp~m~rits of the master libfary must be authorized.

• The actual programming1work is done using the dynamic (prograrilmer's) library which
is outsi~e .th~ masttrr library, i.e., when each programmer is assigned to perform a
maintenance activity appropriate software objects are copied ftom the m-.ster library
to the dynamic one, and the programmer has free access to them; final results of his
work are transferred from the dynamic library to the master library when his work has
been tested, verified and accepted.

• The products of the 1tonfiguration (e.g., executable software objects) are derived from
the system's configuration repository and installed at the "production" site (i.~., "outside"
the configµration repository). These software products are considered to be dte "exports"
Qf the configuration. .

' • Since product derivation may be required at any point of time, the system.'s
configuration must be consistent at all times, i.e., at no time may derivation of
executable objects be compromised because of consistency problems of existing
completed softw~e pbjects.

Such or$anizational paradigms are common to most software development and

maintenance organizations that deal with software systems of large and mediwn size .

7
.
•.·

i'

,;

a. Definition of the Model

The Model of Software Maintenance is comprised of two basic elements: system

components and maintenance steps.

The system components are immutable and non-re-derivable software objects. The

system components of the Model of Software Maintenance correspond to the components in

the Model of Software Manufacture, with the exception that the components must have

concrete existence as software objects of the system. Programming tools and their invocation

parameters are not considered to be system components in the model. System components are

hence forth called components.

The maintenance steps correspond to manufacturing steps of the Model of Software

Manufacture with the following differences:

• A maintenance step is a "representation" of the organizational activity concerned with
initiation, ana,lysis and implementation of one request for a change in the system.

• A maintenance step inay be atomic (i.e., be responsible for production of at most one
output componenn, or be composed from a number of atomic steps.

• An atomic maintenance step is applied to at most one system component and produces
at most one output component.

• A Model of Software Maintenance allows for the existence of empty steps that do not
produce output components.

• The model also allows for existence of "dead moves" (i.e., steps that do not lead to
production of "useful" components). The existence of such steps is motivated by the
need to keep correct records of all maintenance activities, including those that have
taken a "wrong turn".

• Deriving transformations are not considered to be maintenance steps and are not
represented in the Model.

Additionally in the Model of Software Maintenance, for each maintenance step a scope

of a change is defined as all sub-systems (or systems') to which the step is applied.

1. The exact definition of a system will be provided later.

8

:•

..

• r

The system configuration is an acyclic bipartite graph G of components (C nodes) and

maintenance steps (M nodes), in which the components and steps are connected by two

relations: inputs (I arcs) and outputs of the maintenance steps (0 arcs). The output relations

of maintenance steps are defined between a maintenance step and the non-rederivable
-

component it produces. The input relations are defined between a maintenance steps and the

system components which are necessary to produce an output component that is consistent

with the rest of the system. Naturally, no component that has an output relation with a

mainte~ance step can have an input relation with the same step, i.e., no input and output

"feedback" relations are allowed. This extends to any path of relations, thus avoiding cycles

and complying with the requirement that G is acyclic.

We will represent the input and output relations by sets of the components for which

the relations hold. We will use notation in which for a maintenance step M.i (where q stands

for the step's label, e.g., an index in an enumeration) its input and output sets are denoted I11q

and 011q (respectively). I11q and 011q are sets of system components which have input and

output relations with the ~tep M.i, respectively.

We can formalize some of the above 1;>rinciple and definitions as follows:

(7) V maintenance steps M, IIMI ~ 0 and IOMI ~ 1.

(8) M is an empty step iff OM = IM = 0.

(9) For all maintenance steps M, if IM :I: 0 then IOMI = 1.

(10) If component Ce OMq then CtdMci .
. r

(11) V M.,~eM, H 3 CeC such that (M.,C)eO and ~.C)eO, then M. = ~­

(12) P = { Ce C I -a Me M such that (M,C)e O}

(13) Let »•=(luO)• be the reflexive transitive closure of the union of the input and
output relations I• and O, then
a) Component C1 depends on component C1 <=> (C1,C1)eD•
b) Step ~ depends on another step M. <=>(Mi,M1)e »•
c) Mc, the set' of manufacturing steps that are affected by a change in component

C, is defined as { MeM I ·cc,M)eD• }

9

It should be noted, that the properties (11) - (13) of the Model of Software

Maintenance are similar to properties (1) - (5) of the original. Borison's Model of Software

Manufacture, upon which the Model of Software Maintenance is based.

b. Maintenance Step States

During the execution of the maintenance process the maintenance activity, which

corresponds to a step in our model, can be in several possible states. These states represent

some of the dynamic aspects of the maintenance process that is executed as a result of a

user's or maintainer's request.

We will define the following five states of a maintenance step:

• Invoked

• Pending ,.,
• Implementing

• Completed

• Abandoned
\ '

Each of the above states corresponds to several phases of the maintenance process as
. .

they are defined in [Ref: 4], and corresponding sub-:states can be defined for each of the above

states in the implementation of the model.

Transition of a maintenance step from one state to another is performed as a result of

an explicit decision made by maintenance organization management. By controlling the states

of the maintenance steps, the maintenance management exercises direct control over both the

software maintenance process and the system configuration.

For brevity we call a maintenance step by the name of the state it is in, e.g., "pending

step ti, ti implementing step ti, etc.

10

..

ii

p

·'

abandoned

Figqri 3: Maintenance St~p states and state transitions ..

In the "invoked" state the maintenance step is created according to a requirement for

a chang~ in, the syst~~-, In this state the originated change undergoes analysis which estimates

the resources required for the step's implementation, designates inputs and defines the scope
I

of the step. Ac this stage the maintenance activity is not yet approved for implementation. If

the requested change does not b,ecome approved, ~en the maintenance step state beco~es

"abandoned". In the "invoked" state, the maintenance step is not yet linked to any component

of the system.

In the "pending" state the maintenance step is approved but it has not yet started its

implement~tion phase. In order to be implemented, the pending maintenance step must be
• • I (~ I i"

scheduled and assigned to a pr9grammer. Scheduling of a maintenance step should resolve all
I

possible inconsistencies that may arise as a result of concurrent implementation of the pending

steps. A maintenance step 'in the "pending" state can be "abandoned" (i.e., transferred to

"abandoned" state) and forgotten there.

In the "implementing" state the actual implementation and testing of the requested

change is performed. At the transition to this state from the "pending" state, the binding of

input components occurs, and the output component is created. At this stage, the output

component is a placeholder for the future component contents of the maintenance step results,

i.e., the output component is "empty" at the beginning, and its contents are produced during

11

the implementing phase of the maintenance step. The implementing state can be "rolled back"

into the "pending" or "abandoned" state, and in such a case the output of the step is

invalidated and is no longer a component of the system.

The "implementing" state changes into the "completed" state after the requested change

implementation is done and tested. At the transition to this state the output component's

contents are frozen and entered into the system component repository and it becomes an

approved member of the system. Then the step itself terminates and becomes part of the

permanent record of the system.

The "abandoned" state is the final state for all maintenance steps that were not

approved by the SCCB or "killed" by the management in the "pending" and "implementing"

states.

It should be noted (see Figure 3) that only the maintenance steps in the "implementing"

state can be "rolled back" into "pending" state. By doing so all the work that had been

performed to implement this maintenance task may be lost due to later changes in the system

that may affect the "rolled back" step. Therefore such decisions should be made with insight

and great care.

c. Inputs of the Maintenance Steps

The nature of an atomic maintenance step is to incorporate a single change in a single

component of the system. We will call such a component a primary input of the atomic

maintenance step, and we will limit the number of primary inputs for an atomic maintenance

step so, that:

(14) "'if maintenance step M 3 at most one primary input CeIM'

In order to capture the semantics of dependencies of some system components on other

components (as defined in (13)), we will introduce the notion of non-primary inputs of a

12
"

..

maintenance step. The non-primary inputs of the maintenance step M belong to IM, the input

set of this step, and they are defined by its result:

:,
(15) For a maintenance step ~ the set IMq consists of the primary input and all other

components that are used in creation of the component Ce O""' and in the deriving
, transformations that produce other software objects from it.

It immediately follows from (15) that:

(16) If 3 an "is-component-of' relation·between C, and CJeOMrt then C,ei....

The non-primary inputs may be determined manually or automatically using knowledge
• I>

based techniques. If the primary input C, of a maintenance step ~ is a primitive component

(i.e., C,eP as defined in (12)), then the non-primary inputs of M11 can be computed from the

"is-component-of' relations of system components with the component C,. Otherwise the inputs

of the previQus step M, with C,e OMp may be used to compute the set le~- Facilities for

updating the· input set of a maintenance step in the pending and implemeriting states must be

provided in the implementation of the Model.
'

It should be noted that the existence of the inputs for the maintenance step is not a

necessary condition '(see (7)). There may exist a maintenance step without inputs that produces

an output component. Also, there may exist a maintenance step with non-primary inputs only

that produces an output component. An example for a such case is the creation of a new

component by merging the contents of a number of existing components2
• ...

d, D~cendence relation, genealogy trees, systems and baselines

We will define a desceQ.dence relation by saying that primary input C, of a maintenance

step M is an ancestor of the resulting component C1e OM, and that the component C1e OM is

a descer,dent of C,.

2. It should be noted that there exists another way to represent such merging: one
component can be the primary input of the maintenance step that performs the merging,
while other components that are used in the. merging process, become the non-primary
inputs of the merging step.

13

The descendence is a transitive relation, i.e.,:

(17) Component Cke OMp is a descendent of C1 iff C1 is the primary input of a step M,
or the primary input of ~ is a descendent of C1•

In order to distinguish between types of descendence relations for later use, we will

call the non-recursive descendence a direct descendence.

The descendence relation defines evolution genealogy (called genealogy for shorthand)

subgraphs of the configuration graph G. These subgraphs are created using only the primary

input and output relations of the maintenance steps. Because the graph O is acyclic, and due

to the restriction of at most one primary input for a maintenance step, each element of the

genealogy subgraph is a tree. Thus, the following hold true:

(18) All descendants of a component C belong to the genealogy tree T that has C as its
root or one of its nodes.

(19) There exists a unique path between component C and any of its descendants.

We call a genealogy tree with a component C as its root a C genealogy tree and we

will denote it as Tc, A genealogy tree can be a subtree of other genealogy tree(s), or be a

spanning tree, which is defined as follows:

(20) T1 is a spanning tree <=> -,3 T1,i*j such that T1 c T1•

Using the notion of genealogy trees we can define software systems (or products), and

we will say that a software system S is uniquely identified by a set of genealogy trees that

comprise it, i.e., S = (T,). It should be noted that the whole system is defined by a set of

all spanning genealogy trees, and in the case of a sub-system, the genealogy trees T1 are not

necessary spanning. Since sub-systems themselves can be viewed as systems, we will not

distinguish between them unless it is required. The following rules apply to both systems and

sub-systems alike, since software products can be viewed as either systems or sub-systems.

14

.-

"

We will say that software system S is complete if the following holds true:

We can express the relations between components, systems and scope of a maintenance

step as follows:

(22) ' Component .C, e S <=> 3 T1, I C1 e T1, and T1, e S.

(23) Let K be a scope of step M.i with primary input Ci, then Ks;;; us., I C, e S.,.

The inequality of K and us., in the above rule means that there may be a situation in

which by a virtue of a maintenance management decision an influence of a maintenance step

will be limited to p~icular (sub)systems.

So far we have defined a software system invariably by evolution paths. In order to

define the temporal aspects of the system evolution, we will define its baseline. A baseline

B of a syste~ S (denoted as B5
) is a se~ of unique representatives of the genealogy trees that

comprise the system S, i.e.,:

A baseline of a system must be complete and consistent, i.e., the following must hold

true:

(25) 'v C, e B5
, if C,e P, then 'v CJ such that CJ is a component of C,, CJ e B5

• Otherwise
3M.i such that C1e O.Mq, and 'v CJ non-primary inputs of M.i, CJ e B5

•

A baseline is unique in a context of a system, i.e.,:

(26) 'v B5..,B5n of a system S, if 'v C,eBS., 3 CJeBsn such that C, = CJ and IBs1,I = IBsnl,
then B\ = B5

n.

Evolution of the system can be viewed as an ordered set of its baselines, where the

ordering is based upon time of a managerial decision to introduce (or roll-back to) a baseline.

It should be noted that basing the ordering on the time of creation of a baseline is not enough,

15

since it does not take into account the possibility of a roll-backs to a previously defined

baseline.

e. Designating primary input for a Maintenance Step

Designating a component C as an input to a maintenance step means that this step

will take the component C or one of its descendants as a primary input. Such a designation

is possible only for pending maintenance steps, and it does not prevent the use of this

component by other maintenance steps, i.e., it does not "lock" the input component.

The actual binding of primary input with the designated component can be performed

only if the input component is available and it is done at the transition time of the

maintenance step from the "pending" state to the "implementing" state, after the step is

scheduled and assigned to a programmer. After the primary input is binded to the

implementing maintenance step, its non-primary inputs are detennined.

The primary · input component is available for a maintenance step if it is a primitive

component or it was created by some completed maintenance step, i.e., it exists and is not

being work upon now:

(27) A component C is available iff Ce P or 3 completed M such that Ce OM'

Components that are currently under work by some uncompleted maintenance step may

be used as non-primary inputs of a step, and they are considered available the moment they

are created by an implementing maintenance step.

The designation of a primary input component to a maintenance step can be specific

or generic. When specific designation is <lone, the maintenance step will be applied to some

specific component that already exists in the system, e.g., to a specific version of the primitive

component. There is no possibility of specifically assigning a component that is not produced

yet.

16

_,,.

•

In the case of a generic designation of component C, the maintenance step will be

applied to the available descendent of C. As mentioned earlier, the actual binding of the

primary input to a component that belongs to the genealogy tree of C will take place when

the maintenance step begins its implementation phase. For example, in the case of a generic

designation, if there are several maintenance steps with the same designated input component
·'

C, then the first maintenance step is applied to the component C, the second is applied to the

descendent of C, and so on.

It should be noted that, because of the possibility of creating "parallel" genealogies

that originate from the component C, the generic designation may not be unique.

f. Decomposition of Maintenance Tasks

Sometimes, after analysis of a requested change that initiates a maintenance step, it

becomes apparent that the implementation of the original change leads to changes in several

system components. The original request for a change is represented as a maintenance step.

However, because a maintenance step can be applied to at most one primary input and

produces at most one 6utput component, the maintenance step invoked by the original request

for change becomes a composite maintenance step; it "spawns" a number of new atomic

maintenance steps. In such cases, it is important to record a relation between the composite

step and the steps that are "spawned" by it. We will call this process "step decomposition",

the relation "spawned'', the composite step a "spawning step" and the newly invoked steps

"spawned''. 1 The step decomposition process is recursive, i.e., spawned steps may themselves

be composite mainfenance steps.

In order to eliminate the possibility of unnecessary relations between composite steps

and their spawned steps, the composite maintenance step may not produce any new component

by itself, i.e., it is an empty step.

The composite step decomposition takes place when the step's implementation is

authorized and it creates a set of spawned steps. These spawned maintenance steps are created

directly in the "pending" state, i.e., they are considered to be authorized by the virtue of

17

authorizing the composite step. The spawned steps behave normally, meaning that they do not

differ from non-spawned maintenance steps and they may have relations with one another or

some other maintenance steps. Because the spawning step is an empty step, there are no

dependency relations between the spawned steps and their spawning steps.

In order to provide consistency in treating composite and atomic steps, the following

constraints are imposed on some state transitions of the spawning and the spawned steps:

(28) The spawning step is transformed automatically from pending to implementing states
when one of its spawned steps performs this transition.

(29) The spawning step performs an automatic transition from implementing to completed
state when all of its non-abandoned spawned steps have done so.

(30) Abandoning a spawning step will automatically abandon all of its spawned steps.

(31) The transition of a spawning step to abandoned state is done automatically when
all of its spawned steps are abandoned.

It should be noted that, since all spawned steps are intended to. implement a specific

maintenance task, a single maintenance step (atomic or composed alike) can be spawned

directly by only one composite maintenance step, i.e., the graph formed by a spawning

relationship is a tree.

g. Induced Maintenance Steps

An engineering change in a key component of a software system may compromise the

consistency of a systems that belong to the scope of the step by affecting other components

of these systems in such way, that some action is required in order to keep them consistent.

For example: a change in the specification of some ADA package requires some action to be

performed on all other components that use this specific package before any new software

product can be successfully derived.

We will define an induced maintenance step as a step that must be performed in order

to keep the system's consistency due to a result of another maintenance step. The importance

18

.,

' ll

of induced maintenance steps is in alerting the maintainers and the management to changes

in key modules of the software product and enforcing constraints on performing any

uncoordinated maintenance step on the affected components.

It should be noted that a change in one component may trigger a change in another,

which may itself trigger a change in third component, and so op, i.e., the changes may be

triggered recursively. We will call a component that originated the change propagation a

triggering component, and the step that uses it as its primary input an inducing step.

Additionally, the propagation of the changes triggered by an inducing step must be

restricted to the scope of the inducing step.

In order to define specifically the relevant maintenance steps that are affected by a

change in · component C, we will introduce the concepts of latest descendent and latest

maintenance step. The latest descendent of a primitive component is a component that is not

used as primary input by any maintenance step, i.e.,:

(32) C1 'is a latest descendent of CJ iff C1 is a descendent of CJ and -,3 M11 such that C1

is tb,e primacy input of M..·

The latest maintenance step is defined as follows:

(33) Step M is the latest step with respect to CJ iff the component C1e0M is latest
descendent of CJ.

We will refine now the original definition of the set Mc (see (13)) using the notion of

the latest maintenance step as follows:

(34) Mc, the set of maintenance steps affected by a change in triggering component C,
consists of latest steps M which have C as their non-primary input and OM belongs
to the scope of an inducing step that implements the change in C.

Since a change in one system component may lead to the inconsistencies with the

primitive components (i.e the components that were not produced by any maintenance step),

the above definition is not sufficient and we will introduce the notion of an qf/ected

19

component. A system component, whose consistency with the rest of the system is affected

by a change in some other component, is called an affected component and the following

holds true:

(35) A component C1 is affected by a change in CJ iff C1 belongs to a scope of an
inducing step that implements the change in CJ and either C1e OM where step Me McJ
or both C1e P and CJe P and CJ is a component of C1•

Analogous to the definition of the set Mc (see (34) above), we can define a set of all

components that are affected by a change in a component CJ (noted as CCJ), using the recursive

nature of the propagation of a change, as follows:

(36) A component C belongs to the set CCJ if C is affected by a change in CJ or C is
affected by a change in C1e CCJ.

We will say that if CJeIMp is a primary input and the set CCJ is not empty, then the

inducing step~ induces maintenance steps MP<•/, where n=l,2, .. ,ICCJI. An induced maintenance

step ~<•> takes an affected component Ce CCJ (as defined in (36) above) as its primary input,

and produces as its . output a new component which is consistent with the direct descendent

of the component CJ.

Uncoordinated propagation of the induced steps may cause the transient state of the

systems configuration to be inconsistent. For example, a change of the package specifications

without coordinated change of the package body may cause some incompatibilities and

compromises the consistency of the whole system.

In order to keep the system configuration consistent, the inducing maintenance step

together with its induced steps are performed as an atomic step, i.e., an inducing step and

all of its induced steps (including those that were created recursively) should appear to perform

their transitions from "pending" to "implementing" states and from "implementing" to

"completed" states simultaneously. The following rules impose a semi-atomic behavior of

inducing/induced steps by introducing the necessary constraints:

3. The notation MP<•> is used as a labeling suggestion for induced steps.

.• 20

Q

I

•

0

(37) An inducing step ~ with primary input CJ can start its implementation phase iff
all steps M,e McJ are completed .

(38) An induced step Mq(n> with primary input C1e CcJ can start its implementation phase
iff the inducing step ~ with primary input CJ has already done so.

(39) An inducing step ~ with primary input CJ can become completed iff all induced
steps M.i<ni with primary input Cie Cq are completed.

(40) Any "roll back" transition of the inducing step causes the same transition to be
performed on all its induced steps.

(41) An induced step can be "rolled back" only by "rolling back" all of its inducing
steps.

(42) Abandoning an inducing maintenance step causes all of its induced steps to be
abandoned.

(43) An induced step can be abandoned only by abandoning its inducing step.

The meaning of rule (37) is that the inducing step cannot begin its implementation

before it I assures that all sfeps that are affected by it are completed. This means that the

induced steps may begin their implementation phase since their primary inputs will be

available (see (27)). The rules (38) and (39) mean that the induced maintenance steps cannot

begin their implementation before their inducing maintenance step, and the inducing step
' '

cannot complete the impl~mentation phase before its induced steps. Other rules mean that the

induced step has no reason to exist by itself, without its . inducing step.

Because of the dynamic nature of the system's configuration, the influence of an

inducing maintenance step ~ with primary input CJ (i.e., the contents of the set CcJ) may

vary. The contents of the set Cq become static as a result of scheduling of the step ~- Since

the induced steps M.rtni depend directly upon the contents of Cq, they are invoked immediately

after the inducing step ~ is scheduled for execution .

.
Figure 4 presents an example of maintenance steps applied to a system built from five

components: sets_spec, sets_body, graph_spec, graph_body, and front_end. The system

represents graphs using sets,' performs operations on them and presents the results to the user

21
"
- ,
I

sets_spec sets_spec

vi v2
se ls_body

v2
sets_body

vi

graph_spec

vi

graph_body graph_body

graph_body v2a v3a

vi
graph_body gr~h...bodw

v2 v3
front_end

vi
front_end fron !_end

v2 v3

Figure .4: Example of induced and non-induced Maintenance Steps.

through procedures in the fi:ont _ end module.

The example shows an influence of a simple maintenance step on the system

configuration, a creation of distinct evolution genealogies, and the creation and propagation of

the induced maintenance steps.

The set of primitive components of the system consists of the following five modules:

P = (sets_spec.Vl, sets_body.Vl, graph_spec.Vl, graph_body.Vl, front_end.Vl}

The "is-component-of' dependencies of the primitive components are defined and shown

on the left side of the primitive components in the figure.

22

'-"

0

•

.,
;

In the example, a request for a change in one of the front_end procedures initiates a

maintenance step M1 with the designated primary input front_end.Vl. After the step is

scheduled and implemented, it creates the new component front_end.V2, which is a direct

descendent of the front_end.Vl component. The non-primary inputs of the step M1 are

determined using "is-component-of' relation and they consist of components graph_spec.Vl

and sets_ spec. VI.

A request for a change in the component graph_body.Vl initiates maintenance step M2,

which results in the production of a new component graph_body.V2. Another request for a

change that corresponds to the maintenance step M3 has a component graph_body.Vl as its

specific designated input and it results in a component graph_ body. V2a. Thus giving rise to

an evolution genealogy which is "parallel" to the one created by the maintenance step M2•

The co~ponent ~ets_spec.Vl is used as a non-primary input in a number of

maintenapce steps, and a ~hange in it will affect the following set of component$:

c _...,..v, = {sets_body.Vl, graph_spec.Vl, graph_body.V2, graph_body.V2a, front_end.V2)

This set is ~omputed recursively, starting with the set of components that are directly ,,
affected by sets_spec.Vl (i.e., the set {sets_body.Vl, graph_spec.Vl, front_end.V2)), and

then for each component in the set adding the components which it affects.
r

A maintenance step M.. that implements a change in the sets_spec.Vl component

induces the following maintenance steps:

• Step M"<n that produces component sets_body.V2

• Step ~ 2> that produces component graph_ spec. V2
I

• Step ~ 3, that produces component graph_body.'\~'3a

• Step M"<"> that produces component graph_body.V3

• Step~, that produces component front_end.V3

23

The step M,. is completed only after all the maintenance steps it had induced (i.e.,

M4<0 .. M4<_,>) arc completed. Thus, the implementation of the inducing and induced maintenance

steps is performed atomically, keeping the whole system consistent, i.e., any software object

derived from the system components will l?e consistent with the latest changes incorporated

in the system.

h. Priority and Precedence of Maintenance Steps

During the lifecycle of the software system, constraints that reflect the urgency and the

partial ordering of the maintenance tasks arise from "real life" situations. These constraints

influence the process of software maintenance, and they must be represented in the Model of

Software Maintenance in order for the latter to be a realistic model.

We will represent the urgency of the maintenance tasks by assigning a small positive

integer value as a priority value to each maintenance step that is needed to implement the

task. The priority values of the maintenance step represent the relative urgency of the

maintenance tasks, and they suggest an implementation ordering of the maintenance steps.

The priorities are assigned manually to the maintenance steps by the Software

Configuration Control Board4, and they may be changed during the maintenance process (by

the SCCB or other appropriate forum) according to the state of the system maintenance an<l

external constraints. The process of assigning priority values to maintenance tasks ~ay use

different methods and algorithms and is external to the Model of Software Maintenance itself.

Since the priorities are assigned to the maintenance steps according to the maintenance

task, the following property should be preserved:

4.

(44) If maintenance steps M.. and M, are intended to implement parts of the same
maintenance task, then steps M.. and M, are assigned the same ptiority value.

Or other forum that includes the user (or his representatives) and the maintenance team
management.

24

..
.J

••
l

In the case of assigning priorities to composite or inducing maintenance steps, the

following defines the priorities of the spawned and the induced steps:

'
(45) If composed/inducing step M.. is assigned a priority value N, then all maintenance

steps M.., that are spawned/induced by the step M.. are assigned the same priority
value N.

It should be noted that the priority mechanism should not be misused, e.g., all

maintenance steps should not be assigned the same priority. Also, it is advisable to keep the

range of the priority values as small as possible without altering their meaning.

In addition to the partial ordering that arises from assigning the priority values to

maintenance steps, there may exist additional constraints that impose execution ordering

between two or more steps. Such constraints may represent specifics of a maintenance task

or inter-step dependencies that cannot be expressed by the input and output relations of the

maintenance steps as defined in (13) and (4). 11te intent of s1,1ch execution ordering is to
' .

impose a sequential rather than a concurrent execution of the maintenance steps due to the

above mentio~ed constraints .
. , p

In order to account' for the execution ordering ranking, we will introduce the "precedes"

relation which is defined between the pending maintenance steps as follows:

(46) If atomic step Mq precedes atomic step M,, then the step Mq must be implemented
before the step M..,.

Because of the semi-atomic nature of induced maintenance steps (see (37) - (43)), the

following holds true:

(47) ' If inducing step ~ precedes (or is preceded by) step M,, then all induced steps
-~n, precede (Of are preceded by) the step M,.

(48) If induced step M..<n> precedes (or is preceded by) step M,, then it's inducing step
~ precedes (or is preceded by) the step M, .

(49) An inducing step M.. cannot precede its induced steps M.i<a,, and vice versa.

25

Naturally, similar constraints apply to the composite steps and steps that are spawned

by them, i.e.,:

(50) If atomic step ~ precedes composite step M,, then the step ~ precedes all the
maintenance steps spawned (directly or recursively) by the step M,,

(51) If composite step ~ precedes step M,, then all step spawned (directly or
recursively) by the step Mq precede the step MP.

The "precedes" relation is transitive, asymmetric and irreflexive, i.e., the following holds

true:

(52) If step Mq precedes M,. and step M,. precedes ~' then step Mq precedes step M,.

(53) If step Mq precedes M,, then step M, cannot precede ~-

(54) 't/ steps M,e M, MP cannot precede itself.

Both the transitive _and the asymmetric properties of the "precedes" relation .imply that

the graph of the "precedes" is acyclic, i.e., the situation in which step ~ precedes M,., step

M,. precedes MP, and step M, precedes step Mq is impossible. Also, the situation in which a

spawned maintenance step precedes its spaw~g step is illegal.

Unlike the priority values that suggest the implementation ordering, the "precedes"

relation imposes strict ordering between two or more maintenance steps, e.g., in the rule (46)

the step ~ will be implemented before the step M, even if the priority of the step M, is

higher than that of the step Mq. Therefore the ordering imposed by the precedes relation is

"stronger" then the one1 we, would obtain using only the priority values of the maintenance

steps.

" ' The "precedes" relation must be consistent with the dependency relation between

maintenance steps (as it is defined in (13)), since the dependencies that propagate through the

primary inputs impose the "precedes" relation between the steps:

(55) If 3 C,e C such that C,e OMq and C, is the primary input of step M,, then the step
~ precedes step M,,

26

•• •

'
/J ..

Also, there exist implicit precedence relations that concern inducing maintenance steps

(see (37)) which can be stated explicitly as follows:

(56) ff 3 inducing step ~ with primary input Cj, then 'v steps M,e McJ M, precedes ~­

Recall that the "precedes" relation is not concerned solely with step dependencies that

propagate through inputs of a maintenance steps. It deals also with the constraints that are

external to the system configuration.

The ''precedes" relations between maintenance steps should be defined by the

maintenance management, and it is their responsibility not to misuse this mechanism. An

incorrect use of the "pr~c¢es" relation will lead to introduction of many unnecessary

constraints in the scheduling of the maintenances steps. On the· other hand, the correct use of

the "precedes" relatjon may improve the effectiveness of the maintenance process. For

example, a policy that de~es precedence of induced steps over the non-induced steps with

the same primary inputs and equal or lower priority, will cause the execution of induced

maintenance steps first. This can reduce the effort that would be required later to implement

the pending maintenance steps.

5. Future Work and Acknowledgments

The initial goal of this work was to develop a software maintenance model for a

Computer Aided Prototyping System (CAPS) [Ref: 5]. We further discovered that no general

software maintenance model has been mathematically formalized. This motivated us to work

on a more general model for a family of applications since such model will apply to many
I ,

problems in military software maintenance [Ref: 6]. We are currently working on deriving

algorithms for scheduling maintenance tasks using the model described in tltis paper as well

as specific applications to the CAPS system.

We would like to thank Prof. Valdis Berzins, Prof. N. F. Schneidwind, Dr. Bernd
~

Kraemer, Prof. Tarek Abdel-Hamid, and Lt. Laura White (USN) for their time and effort

which has substantially improved this paper.

27

',,

This research was supported in part by the National Science Foundation under grant

nwnber CCR-8710737.

List of References

1. Borison E., A Model of Software Manufacture. Advanced Programming Environments,
Proceedings of an International Workshop, Trondheim, Norway,June 1986. SPRINGER­
VERLAG pp. 197-220.

2. 1-{eimbigner D. and Krane.S, A Graph Transform Model for Configuration Management
Environments, Proceedings of ACM SIOSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments. 1988. pp. 216-225.

3. IEEE Guide to Software Configuration Management, ANSI/IEEE Std 1042-1987,
Technical Committee on Software Engineering of the Computer Society of IEEE, 1988.

4. Martin R.J., Osborne W.M. Guidance on Software Maintenance. National Bureau of
Standards, U.S. Departments of Commerce, December 1983. pp. 10-11.

5. Luqi, "Software Evolution through Rapid Prototyping", IBEE Computer, May 1989,
pp. 13-25.

I I

6. Mostov I. and Luqi, "Maintenance Problems in Military Software Systems", Technical
Report, Computer Science Department, Naval Postgraduate School, NPS52-90-004.

28
• ..

DISTRIBUTION LIST

(1) Defense Technical Information Center 2 ..
Cameron Station

~ Alexandria, Virginia 22304-6145
~

~ (2) Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

(3) Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

(4) Director of Research Administration 1
Attn: Prof. Howard
Code012
Naval Postgraduate School
Monterey, CA 93943

(5) Chairman, Code 52 1
Computer Science Pepartment
Naval Postgraduate School
Monterey, CA 93943-5100

(6) Chairman, Code MA, 1
Mathematics Department
Naval Postgraduate. School
Monterey, CA 93943-5100

(7) Naval Postgraduate S_chool 29
Prof. Luqi, Code CSLq
Computer Science .Department
Monterey, CA 93943

(8) Naval Postgraduate School 20
Prof. K. Hefner, Code MAHk
Mathematics Department
Monterey, CA 93943

(9) Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217

(10) Research Administration I
Code012 ... Naval Postgraduate School

,, Monterey, CA 939,40

,.. (11) Carnegie Mellon University 1
Software Engineering Institute
Department of Computer Science
Attn. Dr. E. Borison

29

Pittsburgh, Pennsylvania 15260

(12) Commanding Officer 1
Naval Research Laboratory
Code 5150 ..
Attn. Dr. Elizabeth Wald ~

Washington, D'.C. 20375-5000
' ll

(13) Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strate_gic Technology Office (ISTO)
Attn. Dr. B. Boehm
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

(14) Attn: Mr. William McCoy 1
Code K54, NSWC
Dahlgren, VA 22448

(15) Defense Advanced Research Projects Agency (DARPA) 1
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

(16) Defense Advanced Research Projects Agency (DARPA) 1
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

(17) Defense Advanced Research Projects Agency (DARPA) 1
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

(18) Chief of Naval Operations 1
Attn: Dr. R. M. Carroll (OP-01B2)
Washington, DC 203?0

(19) Dr. Aimram Yehudai, 1
Tel Aviv University .•
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

(20) Dr. Robert M. Balzer 1
USC-Information Sciences Institute
4676 Admiralty Way I

Suite 1001 ./

Marina del Ray, California 90292-6695

(21) Editor-in-Chief, IEEE Software 1 ••
Attn. Dr. Ted Lewis / Q

Oregon State University ~

Computer Science Oepartment
Corvallis, Oregon 97331

,...l • 30

'I

(22) IBM T. J. Watson Research Center 1
Attn. Dr. A. Stoyenko .. P.O.Box704

b
Yorktown Heights, New York 10598 ..

(23) International Software Systems Inc. 1
" • 12710 Research Boulevard, Suite 301

Attn. Dr. R. T. Yeh
Austin, Texas 78759

(24) Kestrel Institute 1
Attn. Dr. C. Green
1801 Page Mill Road,
Palo Alto, California 94304

(25) Prof. D. Berry 1
Department of Computer Science
University of California
Los Angelas, CA 90024

(26) MCC AI Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

(27) National Science Foundation 1
Division of Computer and Computation R~search
Attn. Tom Keenan
Washington, D.C. 20550

(28) Naval Ocean Systems Center 1
Attn: Linwood Sutton, Code 423
San Diego, California 92152-5000

(29) Naval Ocean Systems Center 1
Attn. Les Anderson, Code 413
San Diego, California 92152-5000

(30) Naval Sea Systems·-Command 1
Attn: CAPT A. Thompson
National Center #2, .-Suite 7N06
Washington, D.C. 22202

(31) NA VSEA, PMS-4123H 1
Attn. William Wilder
Arlington, VA 22202-5101

(32) New Jersey Institute of Technology l

' Computer Science Department ..
~ Attn. Dr. Peter Ng

~
Newark, New Jersey 07102 . .

(33) Office of Naval Research . 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg

31

800 N. Quincy Street
Arlington, Virginia 22217-5000

(34) Office of Naval Research 1 ,.
Computer Science Division, Code 1133 w

Attn. Dr. R. Wachter
0

800 N. Quincy Street r

Arlington, Virginia 22217-5000 !

(35) Office of Naval Jlesearch 1
Applied Mathematics and Computer Science
Attn. J. Smith, Code 1211
800 N. Quincy Street
Arlington, Virginia 22217-5000

(36) Software Group, MCC l
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

(37) University of California at Berkeley 1
Department of Electrical Engineering and Compute Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 90024

(38) Attn: Dr. Mike Reiley 1
Fleet Combat Dire.~tional Systems Support Activity
San Diego, CA 92i47-5081

(39) Chief of Naval Operations 1
Attn. Dr. Earl Chavis (OP-162)
Washington, DC 20350

(40) Steve Huseth 1
Honeywell Systems & Research Center
Mpls, MN 55418

(41) Attn: George Sumiall 1
US Army Headqum:ers
CECOM
AMSEL-RD-SE-AST-SE
Fort Monmouth, NJ 07703-5000

(42) Attn: Joel Trimble 1
1211 South Fern Street, Cl07
Arlington, VA 22202

(43) Attn: Dr. David Hislop 1
United States Laboratory Command "' .
Army Research Office ~

P. 0. Box 12211 ;t

Research Triangle ~ark, NC 27709-2211 ~

32

(44) Attn: Dr. Phil Hwang . 1
NSWC, U-33

' Silver Spring, MD 20903-5000 n
(45) Attn: Dr. Abraham Waksman 1

l
Computer Science and Artificial Intelligence
Department of the Air Force
Bolling Air Force Base, DC 20332-6448

(46) Israeli Air Attache 2
Israeli Embassy
3514 International Drive
Washington, DC 20008

I I

fl .·

33

