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PROJECT SUMMARY 

The objectives of the proposed research is to present a set of systematic technologies to accomplish high-confidence 
development and evolution of systems of embedded systems (SoES). These systematic technologies include the 
study of quantitative measures for high confidence of SoES, the modeling of SoES with high-confidence properties, 
SoES evolution method and robust high confidence analysis for SoES prototype systems. 

High confidence is a perception of how a system should behave. It is critical for embedded systems since they are 
widely used in the fields in which the consequences of systems failure are very serious. Systems of embedded 
systems (SoES) have been receiving a great amount of attention because of their capability of combining individual 
embedded systems to accomplish broad and common objectives. Although many approaches have been proposed to 
constmct high-confidence embedded systems, most of them are proposed for the development of monolithic 
embedded systems. Constructing high-confidence SoES is still a great challenge. Further efforts on studying novel 
systematic technology for the development of SoES are needed. 

As the start point, in this proposed research, we plan to construct the quantitative measure for high confidence of 
SoES. For this purpose, we propose to present the quantitative metrics for high confidence of SoES and suppose to 
derive the high confidence measure basing on this metrics. Moreover, we will find the design parameters that have 
the impact on the high confidence metrics for SoES. By these efforts, the relationship between the high confidence 
requirements of SoES and the design parameters will be established so that the high confidence can be ensured 
during the design phase. 

Basing on the study of distinguish properties of SoES and the quantitative measure for high confidence of SoES, we 
propose to develop a computational model for SoES so that it can describe the SoES in the real-world context and 
. the high-confidenci properties can be captured. This computational model has two views, i.e., external view and 
internal view. The· external view model focuses on the requirements view and describes the requirements of SoES by 
representing its emergent properties while the internal view model focuses on the design view and decomposes the 
emergent properties into the constraints imposed on individual component systems and interactions between 
component systems for design phase. The computational model is the key point for the systematic development of 
SoES. It has three purposes: a) generating high-confidence prototyping code for SoES; b) generating code for run
time monitoring during the reliability assessment and testing; c) enabling possible static verification for some 
metrics. 

Moreover, software evolution must be considered during the system design process since the requirements of 
systems of embedded systems typically change in response to changes in the real-world environments of these 
systems. However, software evolution is a complicated process in systems of embedded systems because it is 
difficult to maintain the consistency of constraints during software evolution in such a complex system. To solve the 
above problems, in this proposed research, we propose to study the evolutional model for SoES from the structure 
point of view and the behavior point of view. This model builds the basis for evolution of high-confidence SoES. 
Furthermore, in response to the change of circumstance, how to keep the high-confidence properties during the 
evolution process is also studied. 

After the computational model and evolution model are developed, we propose to provide the description languages 
for them. The description language for the computational model is proposed to be an extension of current PSDL. 
And we also propose to develop a description language, called SEDL (software evolution description language), to 
describe the evolution model for systems of embedded systems. 

To manage the requirements, robust high confidence analysis (RDA) is studied. By this method, the impact of 
changing requirement on high confidence issues is revealed so that it can support changing requirements without 
compromising high confidence. 

In conclusion, these systematic development technologies provide an efficient way to construct the SoES basing on 
a computational model so that the high-confidence properties of SoES can be certified during the development 
process. 
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PROJECT DESCRIPTION 

1 Objectives and Significance 

The main objective of the proposed work is to develop a set of systematic methods to accomplish the development 
of high-confidence systems of embedded systems (SoES). These systematic technologies include the study of 
quantitative measures for high confidence of SoES, the modeling of SoES with high-confidence properties, SoES 
evolution method and robust high confidence analysis for SoES prototype systems. 

High confidence is a perception of how a system should behave. In high-confidence systems, the sponsor, designer, 
implementers and users have a high degree of assurance that the system will not fail or misbehave due to errors in 
the system, faults in the environment or hostile attempts to comprise the system. This is critical for embedded 
systems since they have been widely used in many fielJs such as flight control anJ avionics, processing control, 
weapon system control and nuclear plant control, in which the consequences of failure are very serious. 

Recently, requirements for combining individual embedded systems to accomplish broad, common objectives have 
been receiving greatly increased amounts of attention because of large investments in existing isolated embedded 
systems. Therefore, systems of embedded systems emerge as the promising solution for such urgent requirements. 
The typical examples include National Aviation Systems (planes, airports, airways, air traffic control), Naval Mine 
Countermeasures Force (search, sweep, neutralization systems), Naval Surface Fire Support (reconnaissance, 
targeting, weapon systems), and Theater Ballistic Missile Defense (surveillance, tracking, interceptor systems). 
Although a lot of works have been done to develop the individual embedded systems, constructing high-confidence 
SoES is still a great challenge. This is because the individual component systems are independently developed and 
therefore typically run on different platforms and have different data formats and interaction protocols. Moreover, 
since the requirements of SoES typically change in order to respond to changes in the real-world environments, 
evolution in SoES is unavoidable. However, evolution in SoES is much more complicated than in general embedded 
systems and it is difficult to keep consistency of high-confidence properties during evolution process. Moreover, 
increasing complexity of SoES increases the uncertainty of requirements in SoES. Failure to deal with this 
uncertainty will result in software faults. 

Thus, novel technologies to construct high-confidence SoES are impendent to overcome these challenges in an 
effective and sound way. For this purpose, we propose to present systematic development technologies that provide 
an efficient way to construct the SoES basing on a computational model so that the high-confidence properties of 
SoES can be certified during the development process. 

Five research issues will be attacked in this proposed work: 

( 1) Quantitative measure for high-confidence of SoES 
(2) Computational model for high-confidence SoES 
(3) Evolution process for high-confidence SoES 
(4) Description language for the computational model of high-confidence SoES 
(5) Robust high confidence analysis for SoES prototype systems 

1.1 Significance and Benefits 

The proposed systematic technologies will enable the following to occur: 

(1) High confidence properties become visible during the whole development process so that it can be ensured 
during the whole development process. This will enhance the high confidence of SoES. 

(2) Reliable software developed by construction 
(3) Avoid the waste of effort and expense on infeasible requirements 
(4) The lag time between discovery of new requirements and building SoES software to meet those requirements 

can be reduced 
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PROJECT DESCRIPTION 
(5) Enable high-confidence to be maintained during the evolution ofSoES 

1.2 Technical Barriers 

SoES should be distinguished from large and complex but monolithic embedded systems by the independence of 
their components, their evolutionary nature, emergent behaviors and a geographic distribution. Constructing a high
confidence SoES is a great challenge. This is because the individual component systems are developed 
independently so that these component systems are developed to run on different platforms and have different data 
formats and interaction protocols. However, current approaches to construct high-confidence embedded systems 
mainly focus on the development of monolithic embedded systems rather than systems of embedded systems 
(SoES). Since SoES have the distinguished characteristics compared to the monolithic embedded systems, current 
sh1dies in the development high-confidence embedded systems have following limitations: 

1. They can not provide a model to describe SoES, especially their distinguished characteristics. 
2. Change of circumstance results in the change of requirement for SoES. In order to respond to these 

changes, the evolution should be considered. Furthermore, the evolution of SoES is much more 
complex than for monolithic software systems because of the heterogeneity of component systems in 
SoES. However, current approaches to deal with software evolution apply to monolithic embedded 
systems. This implies that we should develop efficient methods to cope with the evolution in SoES. 

3. Many approaches assume the existence of an accurate and valid formal specification of the properties 
that are to hold with high confidence. However, the last thirty years of computing research have shown 
that this assumption does not hold in practice, and that a majority of software faults can be attributed to 
requirements and specification errors. Although prototyping has emerged as a preferred method for 
requirements validation, current approaches do not support the prototyping of SoES. 

2 Technical Approaches 

The key point of systematic development technologies is to provide a computational model for SoES with high
confidence prbperties. This model has three purposes: a) generating high-confidence prototyping code for SoES; b) 
generating code for run-time monitoring during the reliability assessment and testing; c) enable possible static 
verification for some metrics. Furthermore, robustness analysis is explored for the prototype so that it is ensured that 
the prototype can capture the high-confidence properties under a bounded uncertainty. Also, in response to the 
change of circumstance, how to keep the high-confidence properties during the evolution process is studied in the 
proposed research. 

2.1 High-confidence Measure for SoES 

To construct high-confidence SoES and present the computational model of SoES with high-confidence properties, 
it is necessary to build the relationship between the high confidence requirements of SoES and the design parameters 
so that the high confidence can be ensured during the design phase. Thus, we should study the high-confidence 
measure first. For this purpose, in this research issue, we should solve the following problems: 1) Find the relevant 
quantitative metrics for high confidence of SoES; 2) Find the design parameters that have the impact on the high 
confidence metrics for SoES; 3) Construct quantitative measure for high confidence of SoES. 

High confidence is a perception of how a system should behave. In high-confidence systems, the user designer, 
implementers and users have a high degree of assurance that the system will not fail or misbehave due to errors in 
the system, faults in the environment or hostile attempts to comprise the system. Furthermore, high confidence can 
only be measured by measurable attributes. Some attributes for high-confidence embedded systems are availability 
reliability, safety, security, integrity, robustness and maintainability etc. The definitions of these attributes are 
follows: 

Availability: The property ofreadiness for correct service; 
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PROJECT DESCRIPTION 
Reliability: The property of continuity of correct service; Reliability is denoted by R (t), which is the probability 

that no failure occurs in the time period [O, t] 
Safety: The property of non-occurrence of catastrophic consequences due to a software failure. 
Security: The property of absence of unauthorized access to, or handling of, system state; 
Integrity: The property of non-occurrence of the improper system state alterations 
Robustness: The property of maintaining rationality in an unexpected environment. In fact, robustness is high 
confidence with respect to erroneous inputs 
Maintainability: The ability to undergo repairs and modifications and improve and revise the system in a changing 
environment. 

In this case, we will use the attributes contributing to high confidence to construct quantitative metrics for high 
confidence of SoES. Thus, we firstly introduce the high confidence vector that reflects high confidence attributes 

involved in the specific applications. This high confidence vector is represented as follows: H = (h1, h2 , •• • , hz), 

where hi (i E [1, z]) is the set of attributes for high confidence. There are one or more corresponding metrics for 

each attribute. The typical metrics for high confidence are availability, reliability, maximum time between safety 
violations and security level. Some more quantitative metrics should be further developed. 

Basing on the high confidence vector, we propose to develop a high confidence measure for SoES. This measure can 

be expressed as a function g( ) of the high confidence vector. Thus, the high confidence measure H m for SoES 

can be represented as follows: H m = g(H) = g(h1, h2, ... , hz) . 

The key point to derive the high confidence measure is to decide the threshold values of each attributes and the 

function g( ) . For this purpose, we firstly defme a safe range for any individual attribute of high confidence as the 

.interval [ a, b] of two real numbers a and b within which the value for that attribute is acceptable. Furthermore, we 
;~.intend to find empirically a safe range of values for each of the h; parameters and then to formulate the function 

~g( ) based on this information and the result of the experiments. The SoES remains high confidence if all the 

individual attributes for high confidence are maintained within respective safe ranges. The threshold values of the 
attributes are decided by the empirical values that depend on the properties of the applications. For example, 
availability is the most important contribution for the high confidence in telecommunication systems; reliability 
should be mostly emphasized in space probe systems and safety is the first-class factor to affect high confidence for 
the on-board control in transportation systems, etc. Thus, the threshold value of the attribute increases with the 
importance of the attribution's contribution for the high confidence of SoES. 

To map the high confidence measure for SoES into the design parameters, we should firstly develop a methodology 
to quantitatively express each attribute that contributes towards the high confidence of SoES. Although there has 
already been considerable research effort to effectively measure some of the high confidence attributes, we propose 
to extend the research to cover design aspects of high-confidence computing. Following that, we plan to analyze the 
quantitative expression of the high confidence attributes to recognize the factors that impact the high confidence. 
According to these factors, we can use empirical experiments or theoretic analysis such as theorem proof to establish 
the relationship between the design parameters and the factors that impact the high confidence of the SoES. 

2.2 Computational Model for Embedded Systems of Systems (SoES) 

To construct high-confidence SoES, it is necessary to explore a mathematical model that is close to the designer's 
view of SoES. Thus, this proposed research plans to study a computational model for SoES so that it can be use to 
a) generate high-confidence prototyping code; b) generate code for run-time monitoring during the reliability 
assessment and testing and c) perform possible static verification for some metrics. Moreover, this computational 
model proposes to satisfy the follows: 
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PROJECT DESCRIPTION 
(1) Representing the requirements for whole SoES, especially capturing the required high-confidence 

properties of SoES. 
(2) Reflecting the static structure and dynamic behavior of SoES. 
(3) Revealing the hierarchical design process for SoES. 

2.2.1 Framework of computational model for SoES 

The computational model supported by PSDL contains OPERTATORS that communicate via DATA 
STREAMS[l 1]. Each data stream carries values of a fixed abstract data type. Although this computational model 
can describe monolithic and centralized embedded systems and reflect some real-time features of embedded 
systems, it can not describe distinguished properties of SoES and also can not capture the high confidence properties 
of SoES. Thus, we propose to extend the computational model supported by traditional PSDL to the case of So ES, 
especially introducing some high-confidence constraints to depict the high confidence requirements. 

In order to satisfy three demands above, we propose that the framework of this computational model have two views 
--- external view and internal view. The external view model focuses on the requirements view and describes the 
requirements of SoES by representing its emergent properties. On the other hand, the internal view model focuses on 
the design view. It decomposes the emergent properties into the constraints imposed on individual component 
systems and interactions between component systems for design phase. In this case, emergent properties refer to the 
properties of entire SoES that can not be localized in any individual embedded system. They characterize the 
emergent behaviors [16] that arise out of the interactions of individual embedded systems and represent the value 
added by the interaction, and are typically not satisfied when the component systems are all operated as isolated 
systems. We plan to formally represent the external view model as follows: · 

t:,'=(G,H) 

G is a functional emergent property vector which represents the functional requirements of SoES such as timing 
properties while H denotes a non-functional emergent property vector which reveals the non-functional 
requirements of SoES, especially the high-confidence aspect. The detailed information of H is discussed in 2.1. 
Since G and H describe the requirement for whole SoES, the external view model contributes to establish the 
SoES prototype. Consequently, requirements will be validated by executing the prototype system. 

The internal view model is derived by mapping emergent properties into local constraints on component system set 
S and interaction sets E . Thus, the internal view computational model can be formally described as below: 

(, = ( S, E, C, D , F 1 , F 2 ) 

Sis the component system set, S = { Si I i E [1, n]}; Si denotes the component system constituting SoES ( n is the 

number of component systems in the whole SoES); E denotes the interaction sets between component 

systems, E = { ejk IJ, k E [1, n]}, Where ejk denotes the set of interactions from component system s j to 

component system s k; ejk is a set of r jk elements, r jk ~ 0, ejk = { e}k I r E [1, r jk]} • C denotes constraint sets 

on how the component systems are used in the given environment, C = { ci I i E [1, n]} . Furthermore, Ci is a set of 

constraints withpielements, J:; ~ 0, Ci= {cf Ip E [1,J:;]}; cf denotes the pth constraint for Si. D denotes 

constraint sets on interactions between component systems, D = { d jk I j, k E [l, n]} , where d jk is a set of 

constraints with Q ik elements each of which applies to interactions in e jk , Q jk ~ 0 , d ik = { d J ) q E [1, Q ik]} , 

djk denotes the qth constraint for ejk. 

Constraint sets C and D are determined by emergent properties in external 
view, C = F 1(G,H); D = F z( G, H) , where F 1 and F 2 are two maps that map emergent properties into 
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PROJECT DESCRIPTION 
local constraint sets on component systems and local constraint sets on interactions between component systems 
respectively. However, how to decide F 1 and F 2 will be further studied in this proposed research. 

In the internal view computational model, Si and ejk describe the static structures of SoES while Ci and djk 

describe the dynamic behavior of SoES. Furthermore, the mappings F 1 andF 2 specify what must be assessed to 

ensure that the SoES satisfies its requirement with high confidence, if it has already been certified that the 

individuals i meet their requirements with high confidence. The constraint sets also represent an abstract design for 

the systems integration, which will be concretely realized by wrappers around the s;. 

2.2.2 Component systems 

Component systems are a set of independent complex embedded systems. As a matter of fact, a component system 
is a slot rather than a single fixed subsystem. The slot can be filled by any subsystem that meets the constraints 
specified at the level above. The analysis that leads to the assurance of high confidence should depend only on the 
constraints associated with the slots. In this way, if we have a set of concrete subsystems for each slot that have 
been certified to meet the constraints associated with that slot and vary systematically with respect to other 
properties, then we can reconfigure SoES by plugging in different certified subsystems into corresponding slots 
without need for further re-certification for each reconfiguration. Such a structure is needed to support rapid and low 
cost evolution without compromising high confidence. One of the purposes of the proposed extension to the 
computational model is to support such a structure. 

In this computational model, each component system is either atomic or composite. Composite component systems 
can be described by interaction-link networks of lower level component systems while atomic component systems 
can not be decomposed in terms of the So ES computational model. 

Jn order to represent the hierarchical structure of the. composite component system, we introduce the layer for each 
·i,;omponent system. Each composite component system in a higher layer is composed of several sub-component 
"systems in the ne.,1:t lower layer. Based on layers, we plan to describe the hierarchical structure of the composite 
component system by giving the description of decomposing a high layer component system into several lower layer 
component systems from the external view and internal view. Furthermore, during this decomposition process, the 
:functional and non-functional emergent properties in higher layer component systems should be mapped into the 
constraints on component systems and interactions between component systems in the lower layer. In this context, 
high layer :functional emergent properties can be used for (a) generating code for monitoring failure events during 
the reliability assessment and testing and (b) verification. Non-functional emergent properties related to high 
confidence in high layer can be used for (a) experimental assessment of high-confidence attributes and (b) possible 
static verification for some metrics, such as Maximum Execution Time (MET). 

Moreover, we also need to study how to model component systems themselves. In fact, each component system has 
three parts --- :functional part, interaction part and interface part. We plan to use the operator model in traditional 
PSDL to describe the :functional part so that it can be represented as a :functional abstraction or a state machine 
abstraction with a thread of control. For the interaction part, it will be described by a set of ports. Each port is related 
to an interaction and is responsible to contain the interaction information involved in this interaction. The property 
of the port depends on the property of involved interaction information. Furthermore, interface part is described by 
the wrapper which is a software layer around the component system. 

2.2.3 Interactions between component systems 

Interactions between component systems are complex especially in the case of SoES. There are two types of 
interaction between two specific component systems, i.e., directed interaction and non-directed interaction. In this 
proposed research, we will study how to describe and analyze these two kinds of interaction in SoES. 
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PROJECT DESCRIPTION 
• Directional Interaction: 
In directional interaction, there are explicit source component system and destination component system. Source 
component system is responsible to send or generate the information and destination component system is 
responsible to receive or response to the information. We propose to describe the directional interaction by 
interaction style, interaction information involved in the interaction and related connector for the interaction. 

Since SoES is composed of heterogeneous component systems, there exist several types of interaction styles in 
SoES. In this proposed research, we should describe some typical interaction styles such as pipeline, event 
invocation, explicit invocation and inter-distribution [17,18]. Furthermore, each interaction style has corresponding 
interaction information. Four types of interaction information supposed to be supported by this computational model 
are data stream, event stream, parameter and data gram. This enables not only static interactions but also dynamic 
interactions to be described so that makes the computational model more closer to the real-world So ES. 

Another problem is the decomposition of the directional interaction. Since the component systems is either 
composite or atomic, there are four types of directional interactions, i.e., the interaction between two composite 
component systems, the interaction from composite component systems to atomic component systems, the 
interaction from atomic component systems to composite component systems, and the interaction between two 
atomic component systems. Therefore, in this computational model, we should model hierarchical decomposition of 
the interaction to support the different kinds of directional interaction from the structure point of view. 

• Non-directional Interaction: 
1n non-directed interaction, there is no distinction between source and destination component systems. All the 
component systems involved in the interaction are counterparts. They interacts each other not by the explicit 
interaction information but by accessing to the shared resource. Non-directional interaction is very popular in SoES, 
especially when the system is very complex. Since non-directional interaction will result in difficulties to determine 
the timing constraints for the component systems, it is necessary for us to study how to describe it. The important 
aspects of non-directional interaction are shared resources and strategy that is used to decide which component 
system has authority to access the exclusfve resource. Therefore, we propose to use these two factors to describe a 
non-directional interaction in computational model. 

2.2.4 Constraints on component systems and interaction between component systems 

In the framework, low level constraint sets C imposed on component systems and constraint sets D imposed on 

interactions between component systems are refined from high-level emergent property vector G and high 

confidence constraints vector H by mappings F 1 and F 2 • Accordingly, the constraints imposed on component 

systems and interactions between component systems can be divided into two catalogs, i.e., the constraints for the 
real-time features of SoES and the constraints for high-confidence features of SoES. 

•Constraints for real-time features 
In case of constraints for real-time features, a lot of works have been done for timing constraints and control 
constraints in the computational model supported by PSDL. Thus, in this proposed research, we propose to extend 
these timing constraints and control constraints to the case of SoES. For contral constraints, like in individual 
embedded systems, whether the component system is PERIODIC or SPORADIC, triggering methods, triggering 
conditions, and output guards are the major aspects to be specified. 

Timing constraints are also critical for SoES. In this case, we can make use of the timing constraints specified in the 
computational model supported by PSDL [11]. In this case, Maximum Execution Time is one of the typical timing 
constraints for SoES. It can be imposed on the component system. Furthermore, for the periodic component system, 
the timing constraints include Period and Finish Within. For the sporadic component system, the timing constraints 
include Maximum Response Time and the Minimum Calling Period. Moreover, Latency that is defined in PSDL can 
be taken as the timing constraint imposed on the interactions between component systems. 
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PROJECT DESCRIPTION 
Furthermore, we propose to study more constraints for real-time feature besides the real-time constraints and control 
constraints identified above, as needed to adequately model and design SoES. One typical example is 
synchronization constraints. They are very important for embedded systems, especially for SoES which is 
interaction extensive. In this case, synchronization in SoES refers to the controlled access to the shared resource 
among the sub-component systems. Further studies are needed to present some detailed synchronization constraints. 

• Constraints for high-confidence features 
To this proposed research, we plan to study some constraints for high-confidence SoES. In the framework, the 
emergent properties related to high confidence are included in the external view model. Refined from these 
emergent properties, some constraints for high-confidence features are derived on the high-level of internal model, 
and consequently are localized to the lower level. In fact, these constraints reflect the design parameters for So ES. 

At present, since reliability is a one of the most typical emergent property related to the high-confidence and a lot of 
research works have been done on this aspect [15,29], we take it as the start point and plan to refine reliability into 
some constraints of fault tolerance mechanism so that the high level emergent property --- reliability can be mapped 
into the constraints during the design phase. 

2.3 Evolution model for systems of embedded systems 

The requirements of SoES should be changeable to accommodate changing circumstances. Thus, software evolution 
must be considered during the system design process. However, compared to other aspects of software development, 
the evolution of software systems accounts for bulk of their cost. Since component systems of So ES are developed 
one by one and originally in different architecture, the evolution of SoES is much more complex than for general 
software systems. The complexity of SoES makes it difficult to keep the consistency of the high-confidence property 
during the evolution process. In this research work, we propose to describe the process of evolution of SoES from 
the structure point of view and the behavior point of view. 

\tJne following model is presented to describe the evolution of SoES from the structure point of view: 

s v+I = s V + Ll s v 

Lit.;; V = Lis V + Li E V + ;,.,_ C V + ;,.,_ D V 

LiSv-" Ll v+" v 
-.LJ1e[l,n] S1 LJte(n,m]St 

LiE V " Li V " V " V " V = LJ J,ke[l,n] e Jk + LJ /e[l,n],ke(n,m]e Jk + LJ ke[l,n],/e(n,m]e Jk + LJ J,ke(n,m]e Jk 

i0i..cv = :z::ie[l,n]i0,..c; + Lie(n,mf; 

i0i..D v = L . k [I ]i0i..d~'k + L , [! ] k ( ]d~'k +" d1\ + L , k ( ]d~'k J, e ,n J JE ,n , e n,m J .L..ike[l,n],je(n,m] J, e n,m J 

Where m = n + i0i..n , i0i..n refers to the number of new component systems; v is the software version number of 

So ES; i0i..s r (i E [1, n]) denotes the modification of each exist component system; s r (i E ( n, m]) denotes the new 

component system added into SoES; /::,,, e Jk ( j, k e [1, n]) denotes the modification of each exist interaction; 

e1k(j E [1,n],k E (n,m]), e1ik E [1,n],j E (n,m]) and e1k(j,k E (n,m]) denote the new interaction 

added into SoES; i0i..cf(i E [1,n]) denotes the modification of each exist constraint set on the component system; 

cr(i E (n,m]) denotes the new constraint set on the component system added into SoES; i0i..d1k(j,k E [1,n]) 
denotes the modification of each exist constraint set on the interaction; 

e1k(j E [1,n],k E (n,m]), e1ik E [1,n],j E (n,m]) and e1k(j,k E (n,m]) denote the new constraint set 

on the interaction added to SoES. 
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PROJECT DESCRIPTION 

Furthermore, to ensure the high-confidence during the evolution, it is necessary to keep all the constraints on the 
component systems and the interaction between the component systems during the evolution process. Thus, we need 
to study the evolution model for SoES from the behavior point of view. 

A graph model for software evolution has been presented in [19]. The main objective of this graph model is to 
provide a framework that integrates software evolution activities with configuration control. This model formalized 
the objects and activities involved in software evolution in sufficient detail to enable automatic assistance for 
maintaining the consistency and integrity of an evolving software system. In this research work, we plan to 
introduce the behavior description into the structure model for SoES evolution. For this purpose, we propose to 
make use of the proposed graph model [19] for software evolution of the monolithic embedded system. We plan to 
use hyper-graphs to describe the software evolution behavior. In this case, the nodes in the hyper-graph represent the 
versions of software objects, and the software evolution steps are taken as the edges. Furthermore, each evolution 
step has constraints and these constraints are mapped into the consh·aints on component systems and the interaction 
between the component systems so that these constraints are kept. Proposed research will work out details of the 
needed behavioral annotations for the hyper-graphs and the processed for using those annotations to ensure that high 
confidence is maintained. 

2.4 Description Language for the Computational Model and Evolution Model 

To represent the computational model of the SoES, a set of description languages will be studied. These include the 
description language for the basic computational model and the description language for the evolution model. 

PSDL (prototype system description language) [11] is a language for describing prototypes of real-time software 
systems. However, it was designed for describing the monolithic embedded systems rather than the systems of 
embedded systems. Thus, in this proposed research, we propose to extend PSDL to describe the basic computational 
model for the systems of embedded systems. We call this new description language SoES- PSDL. This description 
language should have facilities for recording and enforcing the non-functional constraints such as timing constraints, 
resource constraints and synchronization constraints, and for modeling the control aspects of systems of embedded 
systems using nonprocedural control constraints, component systems abstraction and interaction abstraction. 

Like PSDL, SoES-PSDL is proposed to have two parts, i.e., specification and implementation. The specification 
contains attributes describing the form of the interface, the timing characteristics, and both formal and informal 
descriptions of the observable behavior of the component systems. The implementation part determines whether the 
component system is atomic or composite and the architecture of composite subsystems. 

To represent software evolution for SoES, we propose to development a description language, called SEDL 
(software evolution description language), to describe the evolution model for systems of embedded systems. This 
description language should have the facilities to represent the node, i.e. the version of the component systems, the 
version of the interaction between component systems, and changes, i.e., the evolution step and the constraints on 
the evolution step. Like the SoES-PSDL, ESDL also has two parts for specification and implementation. In the 
specification part, the version of the component systems and interaction between the component systems are 
revealed. And in the implementation part, the evolution step and the constraints on the evolution steps can be 
represented. This language will be used to support analysis of impact of changes on high confidence requirements. 

2.5 Prototyping Based High-confidence Assurance for SoES 

2.5.1 Analyses of Robust high confidence 

The concept 'robust high confidence' here refers to the ability of software systems maintain high confidence under 
uncertainties. 
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The uncerta:inties mainly come from the following unpredictable performance changes of the hardware on which the 
software executes. Especially for embedded systems, many constraints for the software come from the hardware. 
The performance changes of the hardware will directly influence the performance of the software embedded. These 
uncerta:inties stem from many different causes: 

• Inside changes: the parts' wearing away 
• Outside changes: the changes of circumstance, e.g. temperature, humidity, magnetic field, etc 
• Measurement errors: the measured properties of the hardware generally have errors with the real ones. 
• Modeling errors: It's difficult to get the accurate model of a hardware system. So the differences between 

the model and the corresponding real system are always inevitable. 
• Hardware upgrades: parts are replaced, new parts are different possibly with incompletely known 

properties 

These uncertainties will result in uncertainties of some metrics related to high confidence of the applied software. 
The aim of the robust high confidence analysis is to analyze the robustness of the high confidence, that is, the 
capacity that the software system keeps high confidence under uncertainties. 

'Robust high confidence analysis (RDA)' is different from 'sensitivity analysis of high confidence'. Current 
sensitivity analyses methods are based on classical sensitivity theory that considers the uncertainties of the 
parameter as sufficiently small. Actually, in many cases, the parameter uncerta:inties vary within a bounded :interval. 
Robustness analysis is just to handle this kind of problems. The problem can be formalized as follows. 

Suppose the computational model of a nominal software system is: ( = ( (a) , where a is parameter vector that 

compose the system. The perturbation of the system can be described as 8( = 8( ( 8a), where 8a is the 

perturbation parameter vector, and II 8a II~µ, II• II is a certain norm of the vector, µ is a finite constant. 

Jhen the real system is I; = I; (a) = I;+ 81;, where a= a+ 8a . The high confidence :function H I of the 

isystem ( will be :in the form of H 1 = H 1 ( ( (a)) . We say ( is high-confidence if the high confidence :function 

satisfies the following inequality Hf ~ V , where V is a given :function. Then ( is called robust high-confidence if 

H1 =H1(((a)) ~v. 

The robustness analysis problem is to analyze if a nominal system is robust high-confidence with respect to the 
given perturbation bound. The key is to fmd the sufficient and necessary high confidence condition CON((, v). 
That means, if and only if CON((, v) holds, ( is robust high-confidence. The condition CON((, v) only 

depends on the nominal system ( and the perturbation bound V . 

There are some available approaches and techniques :in control theory that can deal with large-scale perturbations of 
system parameters. We will develop the robust analysis methods to high confidence by using the most effective 
robust analysis methodology from the area of control theory. 

2.5.2 Robust prototyping based development methodology to high-confidence SoES 

The final target of the proposal is to develop the high-confidence software system in the most efficient way. 
Prototyp:ing based method can reduce the cost of development and evolution of the software. Consequently, it 
should be less costly to construct a high-confidence prototype system than to construct a production one. We can 
guarantee the high confidence of the product system by making the prototype system be robust high confidence. The 
robust high confidence analysis of the prototype system plays a key role in the process. 
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A prototype is a concrete executable model of a selected aspect of a proposed system. A prototype system is a partial 
representation of the system, including only those attributes necessary for meeting the requirements. It serves as an 
aid in analysis and design rather than as production software[ll]. Consequently, the end product system will exist 
certain differences which can be taken as uncertainties upon the prototype system. For example, the prototype 

• might not include all aspects of the intended system. 
• might have been implemented using resources that will not be available in the actual operating 

environment. 
• might not be able to handle the full workload of the intended system, or 

• might meet its timing constraints only with respect to linearly scaled simulated time. 

No 

t Initial Goals 

Determine High 
confidence 

Requirements 

Modularization & Objects Design 
Prototype 

System 
--------------, 

Parameter 
optimization 
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No 
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Production System 

Production 

Check Robust 
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Condition 

Robust High 
confidence 
Specification 
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Fig.1 Robust development methodology of high-confidence SoES 
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These differences listed above can be considered as the perturbation for the production system with respect to the 
corresponding prototype system. We use P = P(a) to represent the prototype system model, use 8P = 8P(8a) 
to represent the difference model between the prototype system and the production system, where 8a is the 
parameter difference vector. 

To implement robust high confidence analysis, we have to estimate the upper bound of 8a . The estimation will 
base on the requirements and the constraints of the envisaged system. The estimation will not be necessarily exact. 
But conservative estimation of the errors will lead to the conservative results about the robust high confidence. 

Based on the robust high confidence analysis, the design of the high-confidence product system can be transfo1med 

into the design of a robust high-confidence prototype system. That is to find best parameter a• so that high 

confidence condition CON(((a*), v) holds. Some optimization techniques will be used in searching the 
• parameter vector a . 

We will develop a rapid prototype based robust development methodology. The scheme of the methodology is 
illustrated in Fig. I. 

The users and designer works together to define the high confidence requirements according to initial goals of the 
envisaged system. Use the extended PSDL language to give the specification of the requirements. Then construct a 
prototype that fits the high confidence specification. Estimate the upper bound of the difference between the 
prototype system and the end production system based on the initial requirement and the prototype system. Use 
robust high confidence analysis (RDA) to check if the prototype retains the high confidence properties under a 
bounded uncertainty. If not, the parameter optimization method will be used to find the suitable parameter vector 

a•, and the prototype will be modified. After that, users evaluate the resulting prototype's behavior against its 
expected behavior. If the prototype fails to execute properly, the user identifies problems and works with the 
designer to redefme the requirements. This process continues until the user determines that the prototype 
successfully captures the critical aspects of the envisioned systems. 

C3 General Plan of Work 

C3.l Plan Overview 

We envision the computational model supported by PSDL that we currently have as the starting point for our 
proposed research. This computational model can only describe the monolithic embedded systems and fail to 
describe the distinguish properties of SoES. Thus, basing on the computational model supported by traditional 
PSDL, we will develop a new computational model for SoES. This computational model will describe the 
distinguish properties of SoES. Furthermore, in order to capture the high-confidence properties during whole 
development process, the high-confidence metrics will be introduced into the new computational model. 

Since high-confidence metric is an important factor in the computational model, we should study the quantitative 
measure for the high confidence. How to map the high-confidence metrics into the design parameters will be also 
studied. 

To develop the evolution model for SoES, firstly, we will give the evolution model from the structure's point of 
view basing on the computational model for SoES,. Then, by extending the graph model for evolution, the evolution 
behavior is introduced into the evolution structure model so that the completed evolution model for SoES is built. 
Furthermore, we should study how to keep the consistency of the high-confidence properties during the evolution 
process. The robust high confidence analysis approach will be used. 
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C3.2 Broad Design Activity 

The steps in constructing high-confidence SoES by systemic development technologies are: 

(1) Study the quantitative measures for high confidence of SoES. 
(2) Study the method to map the high confidence metrics to the design parameter during the design phase. 
(3) Extend the computational model supported by PSDL to the case of SoES so that this computational model can 

describe the static structure and dynamic behavior of SoES; Introduce the high-confidence metrics into the 
computational model. 

(4) Develop the evolution model for SoES from the sh1.1cture point of view and by extending the graph model for 
the evolution of monolithic embedded systems to describe the evolution behavior for SoES, the evolution 
behavior is introduced in to the evolution model for So ES from the strncture point of view so that the whole 
evolution model is developed. 

(5) Extend the PSDL and specify the description languages for the computational model and evolution model for 
SoES. 

( 6) Study the method to do robust high confidence analysis of prototype system 

C3.3 Deliverables 

( 1) Quantitative measure for high confidence of So ES. 
(2) A computational model for high-confidence SoES 
(3) An evolution model for high-confidence SoES 
(4) Description languages to specify the computational model and evolution model 
(5) Approach to accomplish robust high confidence analysis of the prototype system 

C3.4 Description of Procedure 

To achieve the work described above, we will take the following steps. 

( 1) Study the distinguish properties of SoES, especially the emergent properties. 
(2) Determine the high-confidence metrics for SoES. 
(3) Take availability and reliability as the start point to map these two high-confidence metrics to the constraints 

during the design phase. 
(4) Extend the computational model supported by PSDL to describe the distinguish properties of SoES and 

introduce the high-confidence metrics in the computational model. 
(5) Study the evolution in SoES; Extend the graph model which describes the behavior of evolution to the case of 

SoES, integrate it with evolution structure model 
( 6) Create extensions to PSDL to specify the computational model for SoES 

C3.5 Evaluation Factors 

C3.5.1 Reduction in Development Cost 

Since a majority of software faults can be attributed to requirements and specification errors, it is necessary to study 
the feasibility of requirements before large amounts of effort and expense are committed to the project. Thus, 
prototyping has emerged as a preferred method for requirements validation. In our proposed research, we explore 
support for prototyping of SoES as a complement to approaches for certification. This proposed research is to ensure 
that the specified properties, to be certified by other methods, are valid with respect to the real-world context of the 
SoES and the real-world needs of its stakeholders .. This will greatly reduce the development cost since it avoids to 
put large amount of effort and expense basing on an infeasible requirements. 
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Furthermore, since the robust high confidence analysis is able to reveal the impact of changing requirements on the 
high confidence of SoES, this can prevent the change of requirements from comprising the high confidence. This 
also reduces the development cost because the invalidation of requirement changes can be recognized in advance, 
and the robustness of architectures for high confidence SoES will be improved. 

C3.5.2 Reduction of Development and Maintenance Time 

In our proposed research, the evolution of SoES is considered and the evolution model for SoES will be developed. 
Basing on this evolution model, the new prototype of SoES can be quickly generated according to the change of the 
requirements. This will reduce lag time between discovery of new requirements and building SoES software to meet 
those requirements. Therefore the development and maintenance time will be decreased. 

C3.6 Schedule 

(1) Study the quantitative measure for high confidence of SoES (6 months) 
(2) Study the method to map the high confidence metrics to the design parameter during the design phase.(10 

months) 
(3) Extend the computational model supported by PSDL to the case of SoES so that this computational model can 

describe the static structure and dynamic behavior of SoES; Introduce the high-confidence metrics into the 
computational model. (10 months) 

(4) Develop the evolution model for SoES from the structure point of view and by extending the graph model for 
the evolution of monolithic embedded systems to describe the evolution behavior for SoES, the evolution 
behavior is introduced in to the evolution model for SoES from the structure point of view so that the whole 
evolution model is developed.(8 months) 

(5) Extend the PSDL and specify the description languages for the computational model and evolution model for 
SoES. (6 months) 

( 6) Study the method to do robust high confidence analysis of prototype system ( 8 months) 

C3.7 Comparison with Other Research 

In recent years, many approaches have been proposed to construct high-confidence embedded systems. Those 
approaches include verification, run-time testing and monitoring and component-based composition and rapid 
prototyping. 

[1], [2], [3] and [4] are some typical research works for the approach based on verification. These works use model 
checking to verify the satisfaction of some properties such as survivability properties. [1] uses a model checker 
based on NuSMV to verify the survivability properties in embedded systems. [2] focuses on the specification and 
analysis of publish-subscribe software architecture. It specifies the properties in linear temporal logic and uses the 
SMV model checker to complete the verification. [3] gives an efficient procedure for verifying that a fmite-state 
concurrent system meets a specification expressed in a (propositional, branching-time) temporal logic. In [4], the 
requirements are formalized in temporal logic and the system model is abstracted from the source codes so that 
some real-time properties are verified. [5] focuses on the verification of real-time systems. It presents a modular 
framework for providing temporal properties of real-time systems basing on clocked transition systems and liner 
temporal logic. In this framework, the properties of real-time systems can be established by use of deductive 
verification rules, verification diagrams and automatic invariant generation. 

For run-time testing, both [6] and [7] attempt to automatically generate the test suite from the formal requirement 
specification. Furthermore, [ 6] uses model checking while [7] uses a test derivation schema to achieve this purpose. 
[8] presents a comprehensive method for run-time monitoring. It uses a monitor script to generate a filter and event 
recognizer and generates a run-time checker basing on a formal specification so that a set of resource-specific, safety 
and real-time properties are monitored and checked at run-time. 
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For research on component-based composition, [9] presents a method for automatic integration of reusable 
embedded systems. This research uses a component model, a component behavior model and a control plan to 
compose reusable components in embedded systems. Timing constraints and resource constraints are considered 
during the component composition. 

However, all approaches mentioned above focus on building high-confidence monolithic embedded systems rather 
than the high-confidence SoES. Since they fail to capture the distinguished characteristics of SoES, it is hard to 
constrnct high-confidence SoES by these approaches. Furthermore, all these approaches assume the existence of an 
accurate and valid formal specification of the properties that are to hold with high confidence. The last thirty years 
of computing research have shown that this assumption does not hold in practice, and that a majority of software 
faults can be attributed to requirements and specification e1Tors. Thus, rapid prototyping has emerged as a preferred 
method for requirements validation. It is a complement to approaches for certification. 

A lot of works have been done for constructing the rapid prototyping of embedded systems. [ 11, 12, 23-27] are some 
typical works on this aspect. They use operators and the data streams between the operators to model the embedded 
systems and capture the timing constraints and control constraints of embedded systems. [30,31] are also based on 
the rapid prototyping. They present a rapid prototyping technique that focuses on transition management in hybrid 
systems. This approach integrates hybrid modeling and simulation with a generic transition management pattern 
built on a Real-Time CORBA-based platform for reconfigurable control systems. [32] proposes an automated 
approach to communication architecture synthesis in rapid prototyping of real-time embedded systems. 

However, these approaches basing on the rapid prototyping also focus on the individual embedded systems. Besides 
failure to abstract the distinguish features of SoES, these approaches fail to capture the high-confidence 
requirements so that the high confidence properties can not be certified during the development process. It is 
difficult to use these approaches directly for the construction of high-confidence SoES. 

Therefore, further efforts on the systematic development technologies for high-confidence SoES should be made. 
Moreover, development of large software systems causes a sequence of modeling tasks. It requires the modeling and 
description of the application domain, software requirements, software architecture, software components, 
programs, their internal structure and their implementation --- be it by one or by several modeling concepts [10]. 
Thus, in this proposed research, we present a computational model for SoES with high-confidence properties. It 
forms the basis for systematic development of high-confidence SoES. 

Moreover, in order to deal with requirements changes, an evolution model is also presented as the basis for the 
software evolution in SoES. Although some works [19,20] have been done for the evolution of individual 
embedded systems, the evolution in SoES is much more complicated than the general embedded systems. It is 
difficult to keep the consistency of the high-confidence property during the evolution process of SoES. Thus, in this 
proposed research, we study the specific method based on an evolution model to deal with the evolution in SoES. 

C4 Broader Impacts 

If the systematic development technologies are provided by this proposed research, then the following can take 
place: 

( 1) High confidence of SoES will be enhanced as it is constructed by using these technologies. 
(2) Decrease the software faults in SoES due to the error ofrequirements. 
(3) Enable feasibility studies for the development of SoES and avoid to put large amounts of effort and expense 

basing on an infeasible requirements. 
(4) Help to estimate the costs of the development ofhigh-confidence SoES. 
(5) The lag time between discovery of new requirements and building SoES software to meet those requirements 

will be reduced. 
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( 6) Reveal the impact of changing requirement on the high confidence of SoES to prevent the change of 

requirements from comprising the high confidence of SoES. 

C4.1 Transition of Technology 

Technology transfer will be addressed by integrating the proposed new capabilities with the traditional PSDL. 
Publishing results in IEEE, ACM, and OMG sponsored conferences and making toolkits readily available can 
facilitate acceptance. 

The software Engineering Group at the Naval Postgraduate School offers M.S. and Ph.D. degrees. The students at 
NFS will contribute to this research and development effort. We also plan to integrate emerging technologies into 
the courses we teach. 

C4.2 Experimentation and Integration Plan 

The work will be performed by the faculty of the Software Engineering Group at the Naval Postgraduate School and 
their Ph.D. and M.S. Students. The principal investigators will be responsible for coordination of the following plan 
previously stated in section C.3.6 for schedule. 
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