
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

2002-12

High-confidence Development and Evolution
for System of Embedded Systems

Luqi; Qiao, Y.; Luqi; Qiao, Y.
Naval Postgraduate School

Luqi and Y. Qiao, "High-confidence Development and Evolution for System of
Embedded Systems", Technical Report, NPS-SW-015, December 2002.
https://hdl.handle.net/10945/65206

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPS-SW-02-015

NAVAL POSTGRADUATE SCHOOL
Monterey, California

High-confidence Development and Evolution
for Systems of Embedded Systems

Technical Report

By

Luqi, Ying Qiao

December 2002

Approved for public release; distribution is unlimited.

Prepared for: NSF

PROJECT SUMMARY

The objectives of the proposed research is to present a set of systematic technologies to accomplish high-confidence
development and evolution of systems of embedded systems (SoES). These systematic technologies include the
study of quantitative measures for high confidence of SoES, the modeling of SoES with high-confidence properties,
SoES evolution method and robust high confidence analysis for SoES prototype systems.

High confidence is a perception of how a system should behave. It is critical for embedded systems since they are
widely used in the fields in which the consequences of systems failure are very serious. Systems of embedded
systems (SoES) have been receiving a great amount of attention because of their capability of combining individual
embedded systems to accomplish broad and common objectives. Although many approaches have been proposed to
constmct high-confidence embedded systems, most of them are proposed for the development of monolithic
embedded systems. Constructing high-confidence SoES is still a great challenge. Further efforts on studying novel
systematic technology for the development of SoES are needed.

As the start point, in this proposed research, we plan to construct the quantitative measure for high confidence of
SoES. For this purpose, we propose to present the quantitative metrics for high confidence of SoES and suppose to
derive the high confidence measure basing on this metrics. Moreover, we will find the design parameters that have
the impact on the high confidence metrics for SoES. By these efforts, the relationship between the high confidence
requirements of SoES and the design parameters will be established so that the high confidence can be ensured
during the design phase.

Basing on the study of distinguish properties of SoES and the quantitative measure for high confidence of SoES, we
propose to develop a computational model for SoES so that it can describe the SoES in the real-world context and
. the high-confidenci properties can be captured. This computational model has two views, i.e., external view and
internal view. The· external view model focuses on the requirements view and describes the requirements of SoES by
representing its emergent properties while the internal view model focuses on the design view and decomposes the
emergent properties into the constraints imposed on individual component systems and interactions between
component systems for design phase. The computational model is the key point for the systematic development of
SoES. It has three purposes: a) generating high-confidence prototyping code for SoES; b) generating code for run
time monitoring during the reliability assessment and testing; c) enabling possible static verification for some
metrics.

Moreover, software evolution must be considered during the system design process since the requirements of
systems of embedded systems typically change in response to changes in the real-world environments of these
systems. However, software evolution is a complicated process in systems of embedded systems because it is
difficult to maintain the consistency of constraints during software evolution in such a complex system. To solve the
above problems, in this proposed research, we propose to study the evolutional model for SoES from the structure
point of view and the behavior point of view. This model builds the basis for evolution of high-confidence SoES.
Furthermore, in response to the change of circumstance, how to keep the high-confidence properties during the
evolution process is also studied.

After the computational model and evolution model are developed, we propose to provide the description languages
for them. The description language for the computational model is proposed to be an extension of current PSDL.
And we also propose to develop a description language, called SEDL (software evolution description language), to
describe the evolution model for systems of embedded systems.

To manage the requirements, robust high confidence analysis (RDA) is studied. By this method, the impact of
changing requirement on high confidence issues is revealed so that it can support changing requirements without
compromising high confidence.

In conclusion, these systematic development technologies provide an efficient way to construct the SoES basing on
a computational model so that the high-confidence properties of SoES can be certified during the development
process.

A-1

PROJECT DESCRIPTION

1 Objectives and Significance

The main objective of the proposed work is to develop a set of systematic methods to accomplish the development
of high-confidence systems of embedded systems (SoES). These systematic technologies include the study of
quantitative measures for high confidence of SoES, the modeling of SoES with high-confidence properties, SoES
evolution method and robust high confidence analysis for SoES prototype systems.

High confidence is a perception of how a system should behave. In high-confidence systems, the sponsor, designer,
implementers and users have a high degree of assurance that the system will not fail or misbehave due to errors in
the system, faults in the environment or hostile attempts to comprise the system. This is critical for embedded
systems since they have been widely used in many fielJs such as flight control anJ avionics, processing control,
weapon system control and nuclear plant control, in which the consequences of failure are very serious.

Recently, requirements for combining individual embedded systems to accomplish broad, common objectives have
been receiving greatly increased amounts of attention because of large investments in existing isolated embedded
systems. Therefore, systems of embedded systems emerge as the promising solution for such urgent requirements.
The typical examples include National Aviation Systems (planes, airports, airways, air traffic control), Naval Mine
Countermeasures Force (search, sweep, neutralization systems), Naval Surface Fire Support (reconnaissance,
targeting, weapon systems), and Theater Ballistic Missile Defense (surveillance, tracking, interceptor systems).
Although a lot of works have been done to develop the individual embedded systems, constructing high-confidence
SoES is still a great challenge. This is because the individual component systems are independently developed and
therefore typically run on different platforms and have different data formats and interaction protocols. Moreover,
since the requirements of SoES typically change in order to respond to changes in the real-world environments,
evolution in SoES is unavoidable. However, evolution in SoES is much more complicated than in general embedded
systems and it is difficult to keep consistency of high-confidence properties during evolution process. Moreover,
increasing complexity of SoES increases the uncertainty of requirements in SoES. Failure to deal with this
uncertainty will result in software faults.

Thus, novel technologies to construct high-confidence SoES are impendent to overcome these challenges in an
effective and sound way. For this purpose, we propose to present systematic development technologies that provide
an efficient way to construct the SoES basing on a computational model so that the high-confidence properties of
SoES can be certified during the development process.

Five research issues will be attacked in this proposed work:

(1) Quantitative measure for high-confidence of SoES
(2) Computational model for high-confidence SoES
(3) Evolution process for high-confidence SoES
(4) Description language for the computational model of high-confidence SoES
(5) Robust high confidence analysis for SoES prototype systems

1.1 Significance and Benefits

The proposed systematic technologies will enable the following to occur:

(1) High confidence properties become visible during the whole development process so that it can be ensured
during the whole development process. This will enhance the high confidence of SoES.

(2) Reliable software developed by construction
(3) Avoid the waste of effort and expense on infeasible requirements
(4) The lag time between discovery of new requirements and building SoES software to meet those requirements

can be reduced

C-1

PROJECT DESCRIPTION
(5) Enable high-confidence to be maintained during the evolution ofSoES

1.2 Technical Barriers

SoES should be distinguished from large and complex but monolithic embedded systems by the independence of
their components, their evolutionary nature, emergent behaviors and a geographic distribution. Constructing a high
confidence SoES is a great challenge. This is because the individual component systems are developed
independently so that these component systems are developed to run on different platforms and have different data
formats and interaction protocols. However, current approaches to construct high-confidence embedded systems
mainly focus on the development of monolithic embedded systems rather than systems of embedded systems
(SoES). Since SoES have the distinguished characteristics compared to the monolithic embedded systems, current
sh1dies in the development high-confidence embedded systems have following limitations:

1. They can not provide a model to describe SoES, especially their distinguished characteristics.
2. Change of circumstance results in the change of requirement for SoES. In order to respond to these

changes, the evolution should be considered. Furthermore, the evolution of SoES is much more
complex than for monolithic software systems because of the heterogeneity of component systems in
SoES. However, current approaches to deal with software evolution apply to monolithic embedded
systems. This implies that we should develop efficient methods to cope with the evolution in SoES.

3. Many approaches assume the existence of an accurate and valid formal specification of the properties
that are to hold with high confidence. However, the last thirty years of computing research have shown
that this assumption does not hold in practice, and that a majority of software faults can be attributed to
requirements and specification errors. Although prototyping has emerged as a preferred method for
requirements validation, current approaches do not support the prototyping of SoES.

2 Technical Approaches

The key point of systematic development technologies is to provide a computational model for SoES with high
confidence prbperties. This model has three purposes: a) generating high-confidence prototyping code for SoES; b)
generating code for run-time monitoring during the reliability assessment and testing; c) enable possible static
verification for some metrics. Furthermore, robustness analysis is explored for the prototype so that it is ensured that
the prototype can capture the high-confidence properties under a bounded uncertainty. Also, in response to the
change of circumstance, how to keep the high-confidence properties during the evolution process is studied in the
proposed research.

2.1 High-confidence Measure for SoES

To construct high-confidence SoES and present the computational model of SoES with high-confidence properties,
it is necessary to build the relationship between the high confidence requirements of SoES and the design parameters
so that the high confidence can be ensured during the design phase. Thus, we should study the high-confidence
measure first. For this purpose, in this research issue, we should solve the following problems: 1) Find the relevant
quantitative metrics for high confidence of SoES; 2) Find the design parameters that have the impact on the high
confidence metrics for SoES; 3) Construct quantitative measure for high confidence of SoES.

High confidence is a perception of how a system should behave. In high-confidence systems, the user designer,
implementers and users have a high degree of assurance that the system will not fail or misbehave due to errors in
the system, faults in the environment or hostile attempts to comprise the system. Furthermore, high confidence can
only be measured by measurable attributes. Some attributes for high-confidence embedded systems are availability
reliability, safety, security, integrity, robustness and maintainability etc. The definitions of these attributes are
follows:

Availability: The property ofreadiness for correct service;

C-2

PROJECT DESCRIPTION
Reliability: The property of continuity of correct service; Reliability is denoted by R (t), which is the probability

that no failure occurs in the time period [O, t]
Safety: The property of non-occurrence of catastrophic consequences due to a software failure.
Security: The property of absence of unauthorized access to, or handling of, system state;
Integrity: The property of non-occurrence of the improper system state alterations
Robustness: The property of maintaining rationality in an unexpected environment. In fact, robustness is high
confidence with respect to erroneous inputs
Maintainability: The ability to undergo repairs and modifications and improve and revise the system in a changing
environment.

In this case, we will use the attributes contributing to high confidence to construct quantitative metrics for high
confidence of SoES. Thus, we firstly introduce the high confidence vector that reflects high confidence attributes

involved in the specific applications. This high confidence vector is represented as follows: H = (h1, h2 , •• • , hz),

where hi (i E [1, z]) is the set of attributes for high confidence. There are one or more corresponding metrics for

each attribute. The typical metrics for high confidence are availability, reliability, maximum time between safety
violations and security level. Some more quantitative metrics should be further developed.

Basing on the high confidence vector, we propose to develop a high confidence measure for SoES. This measure can

be expressed as a function g() of the high confidence vector. Thus, the high confidence measure H m for SoES

can be represented as follows: H m = g(H) = g(h1, h2, ... , hz) .

The key point to derive the high confidence measure is to decide the threshold values of each attributes and the

function g() . For this purpose, we firstly defme a safe range for any individual attribute of high confidence as the

.interval [a, b] of two real numbers a and b within which the value for that attribute is acceptable. Furthermore, we
;~.intend to find empirically a safe range of values for each of the h; parameters and then to formulate the function

~g() based on this information and the result of the experiments. The SoES remains high confidence if all the

individual attributes for high confidence are maintained within respective safe ranges. The threshold values of the
attributes are decided by the empirical values that depend on the properties of the applications. For example,
availability is the most important contribution for the high confidence in telecommunication systems; reliability
should be mostly emphasized in space probe systems and safety is the first-class factor to affect high confidence for
the on-board control in transportation systems, etc. Thus, the threshold value of the attribute increases with the
importance of the attribution's contribution for the high confidence of SoES.

To map the high confidence measure for SoES into the design parameters, we should firstly develop a methodology
to quantitatively express each attribute that contributes towards the high confidence of SoES. Although there has
already been considerable research effort to effectively measure some of the high confidence attributes, we propose
to extend the research to cover design aspects of high-confidence computing. Following that, we plan to analyze the
quantitative expression of the high confidence attributes to recognize the factors that impact the high confidence.
According to these factors, we can use empirical experiments or theoretic analysis such as theorem proof to establish
the relationship between the design parameters and the factors that impact the high confidence of the SoES.

2.2 Computational Model for Embedded Systems of Systems (SoES)

To construct high-confidence SoES, it is necessary to explore a mathematical model that is close to the designer's
view of SoES. Thus, this proposed research plans to study a computational model for SoES so that it can be use to
a) generate high-confidence prototyping code; b) generate code for run-time monitoring during the reliability
assessment and testing and c) perform possible static verification for some metrics. Moreover, this computational
model proposes to satisfy the follows:

C-3

PROJECT DESCRIPTION
(1) Representing the requirements for whole SoES, especially capturing the required high-confidence

properties of SoES.
(2) Reflecting the static structure and dynamic behavior of SoES.
(3) Revealing the hierarchical design process for SoES.

2.2.1 Framework of computational model for SoES

The computational model supported by PSDL contains OPERTATORS that communicate via DATA
STREAMS[l 1]. Each data stream carries values of a fixed abstract data type. Although this computational model
can describe monolithic and centralized embedded systems and reflect some real-time features of embedded
systems, it can not describe distinguished properties of SoES and also can not capture the high confidence properties
of SoES. Thus, we propose to extend the computational model supported by traditional PSDL to the case of So ES,
especially introducing some high-confidence constraints to depict the high confidence requirements.

In order to satisfy three demands above, we propose that the framework of this computational model have two views
--- external view and internal view. The external view model focuses on the requirements view and describes the
requirements of SoES by representing its emergent properties. On the other hand, the internal view model focuses on
the design view. It decomposes the emergent properties into the constraints imposed on individual component
systems and interactions between component systems for design phase. In this case, emergent properties refer to the
properties of entire SoES that can not be localized in any individual embedded system. They characterize the
emergent behaviors [16] that arise out of the interactions of individual embedded systems and represent the value
added by the interaction, and are typically not satisfied when the component systems are all operated as isolated
systems. We plan to formally represent the external view model as follows: ·

t:,'=(G,H)

G is a functional emergent property vector which represents the functional requirements of SoES such as timing
properties while H denotes a non-functional emergent property vector which reveals the non-functional
requirements of SoES, especially the high-confidence aspect. The detailed information of H is discussed in 2.1.
Since G and H describe the requirement for whole SoES, the external view model contributes to establish the
SoES prototype. Consequently, requirements will be validated by executing the prototype system.

The internal view model is derived by mapping emergent properties into local constraints on component system set
S and interaction sets E . Thus, the internal view computational model can be formally described as below:

(, = (S, E, C, D , F 1 , F 2)

Sis the component system set, S = { Si I i E [1, n]}; Si denotes the component system constituting SoES (n is the

number of component systems in the whole SoES); E denotes the interaction sets between component

systems, E = { ejk IJ, k E [1, n]}, Where ejk denotes the set of interactions from component system s j to

component system s k; ejk is a set of r jk elements, r jk ~ 0, ejk = { e}k I r E [1, r jk]} • C denotes constraint sets

on how the component systems are used in the given environment, C = { ci I i E [1, n]} . Furthermore, Ci is a set of

constraints withpielements, J:; ~ 0, Ci= {cf Ip E [1,J:;]}; cf denotes the pth constraint for Si. D denotes

constraint sets on interactions between component systems, D = { d jk I j, k E [l, n]} , where d jk is a set of

constraints with Q ik elements each of which applies to interactions in e jk , Q jk ~ 0 , d ik = { d J) q E [1, Q ik]} ,

djk denotes the qth constraint for ejk.

Constraint sets C and D are determined by emergent properties in external
view, C = F 1(G,H); D = F z(G, H) , where F 1 and F 2 are two maps that map emergent properties into

C-4

PROJECT DESCRIPTION
local constraint sets on component systems and local constraint sets on interactions between component systems
respectively. However, how to decide F 1 and F 2 will be further studied in this proposed research.

In the internal view computational model, Si and ejk describe the static structures of SoES while Ci and djk

describe the dynamic behavior of SoES. Furthermore, the mappings F 1 andF 2 specify what must be assessed to

ensure that the SoES satisfies its requirement with high confidence, if it has already been certified that the

individuals i meet their requirements with high confidence. The constraint sets also represent an abstract design for

the systems integration, which will be concretely realized by wrappers around the s;.

2.2.2 Component systems

Component systems are a set of independent complex embedded systems. As a matter of fact, a component system
is a slot rather than a single fixed subsystem. The slot can be filled by any subsystem that meets the constraints
specified at the level above. The analysis that leads to the assurance of high confidence should depend only on the
constraints associated with the slots. In this way, if we have a set of concrete subsystems for each slot that have
been certified to meet the constraints associated with that slot and vary systematically with respect to other
properties, then we can reconfigure SoES by plugging in different certified subsystems into corresponding slots
without need for further re-certification for each reconfiguration. Such a structure is needed to support rapid and low
cost evolution without compromising high confidence. One of the purposes of the proposed extension to the
computational model is to support such a structure.

In this computational model, each component system is either atomic or composite. Composite component systems
can be described by interaction-link networks of lower level component systems while atomic component systems
can not be decomposed in terms of the So ES computational model.

Jn order to represent the hierarchical structure of the. composite component system, we introduce the layer for each
·i,;omponent system. Each composite component system in a higher layer is composed of several sub-component
"systems in the ne.,1:t lower layer. Based on layers, we plan to describe the hierarchical structure of the composite
component system by giving the description of decomposing a high layer component system into several lower layer
component systems from the external view and internal view. Furthermore, during this decomposition process, the
:functional and non-functional emergent properties in higher layer component systems should be mapped into the
constraints on component systems and interactions between component systems in the lower layer. In this context,
high layer :functional emergent properties can be used for (a) generating code for monitoring failure events during
the reliability assessment and testing and (b) verification. Non-functional emergent properties related to high
confidence in high layer can be used for (a) experimental assessment of high-confidence attributes and (b) possible
static verification for some metrics, such as Maximum Execution Time (MET).

Moreover, we also need to study how to model component systems themselves. In fact, each component system has
three parts --- :functional part, interaction part and interface part. We plan to use the operator model in traditional
PSDL to describe the :functional part so that it can be represented as a :functional abstraction or a state machine
abstraction with a thread of control. For the interaction part, it will be described by a set of ports. Each port is related
to an interaction and is responsible to contain the interaction information involved in this interaction. The property
of the port depends on the property of involved interaction information. Furthermore, interface part is described by
the wrapper which is a software layer around the component system.

2.2.3 Interactions between component systems

Interactions between component systems are complex especially in the case of SoES. There are two types of
interaction between two specific component systems, i.e., directed interaction and non-directed interaction. In this
proposed research, we will study how to describe and analyze these two kinds of interaction in SoES.

C-5

PROJECT DESCRIPTION
• Directional Interaction:
In directional interaction, there are explicit source component system and destination component system. Source
component system is responsible to send or generate the information and destination component system is
responsible to receive or response to the information. We propose to describe the directional interaction by
interaction style, interaction information involved in the interaction and related connector for the interaction.

Since SoES is composed of heterogeneous component systems, there exist several types of interaction styles in
SoES. In this proposed research, we should describe some typical interaction styles such as pipeline, event
invocation, explicit invocation and inter-distribution [17,18]. Furthermore, each interaction style has corresponding
interaction information. Four types of interaction information supposed to be supported by this computational model
are data stream, event stream, parameter and data gram. This enables not only static interactions but also dynamic
interactions to be described so that makes the computational model more closer to the real-world So ES.

Another problem is the decomposition of the directional interaction. Since the component systems is either
composite or atomic, there are four types of directional interactions, i.e., the interaction between two composite
component systems, the interaction from composite component systems to atomic component systems, the
interaction from atomic component systems to composite component systems, and the interaction between two
atomic component systems. Therefore, in this computational model, we should model hierarchical decomposition of
the interaction to support the different kinds of directional interaction from the structure point of view.

• Non-directional Interaction:
1n non-directed interaction, there is no distinction between source and destination component systems. All the
component systems involved in the interaction are counterparts. They interacts each other not by the explicit
interaction information but by accessing to the shared resource. Non-directional interaction is very popular in SoES,
especially when the system is very complex. Since non-directional interaction will result in difficulties to determine
the timing constraints for the component systems, it is necessary for us to study how to describe it. The important
aspects of non-directional interaction are shared resources and strategy that is used to decide which component
system has authority to access the exclusfve resource. Therefore, we propose to use these two factors to describe a
non-directional interaction in computational model.

2.2.4 Constraints on component systems and interaction between component systems

In the framework, low level constraint sets C imposed on component systems and constraint sets D imposed on

interactions between component systems are refined from high-level emergent property vector G and high

confidence constraints vector H by mappings F 1 and F 2 • Accordingly, the constraints imposed on component

systems and interactions between component systems can be divided into two catalogs, i.e., the constraints for the
real-time features of SoES and the constraints for high-confidence features of SoES.

•Constraints for real-time features
In case of constraints for real-time features, a lot of works have been done for timing constraints and control
constraints in the computational model supported by PSDL. Thus, in this proposed research, we propose to extend
these timing constraints and control constraints to the case of SoES. For contral constraints, like in individual
embedded systems, whether the component system is PERIODIC or SPORADIC, triggering methods, triggering
conditions, and output guards are the major aspects to be specified.

Timing constraints are also critical for SoES. In this case, we can make use of the timing constraints specified in the
computational model supported by PSDL [11]. In this case, Maximum Execution Time is one of the typical timing
constraints for SoES. It can be imposed on the component system. Furthermore, for the periodic component system,
the timing constraints include Period and Finish Within. For the sporadic component system, the timing constraints
include Maximum Response Time and the Minimum Calling Period. Moreover, Latency that is defined in PSDL can
be taken as the timing constraint imposed on the interactions between component systems.

C-6

PROJECT DESCRIPTION
Furthermore, we propose to study more constraints for real-time feature besides the real-time constraints and control
constraints identified above, as needed to adequately model and design SoES. One typical example is
synchronization constraints. They are very important for embedded systems, especially for SoES which is
interaction extensive. In this case, synchronization in SoES refers to the controlled access to the shared resource
among the sub-component systems. Further studies are needed to present some detailed synchronization constraints.

• Constraints for high-confidence features
To this proposed research, we plan to study some constraints for high-confidence SoES. In the framework, the
emergent properties related to high confidence are included in the external view model. Refined from these
emergent properties, some constraints for high-confidence features are derived on the high-level of internal model,
and consequently are localized to the lower level. In fact, these constraints reflect the design parameters for So ES.

At present, since reliability is a one of the most typical emergent property related to the high-confidence and a lot of
research works have been done on this aspect [15,29], we take it as the start point and plan to refine reliability into
some constraints of fault tolerance mechanism so that the high level emergent property --- reliability can be mapped
into the constraints during the design phase.

2.3 Evolution model for systems of embedded systems

The requirements of SoES should be changeable to accommodate changing circumstances. Thus, software evolution
must be considered during the system design process. However, compared to other aspects of software development,
the evolution of software systems accounts for bulk of their cost. Since component systems of So ES are developed
one by one and originally in different architecture, the evolution of SoES is much more complex than for general
software systems. The complexity of SoES makes it difficult to keep the consistency of the high-confidence property
during the evolution process. In this research work, we propose to describe the process of evolution of SoES from
the structure point of view and the behavior point of view.

\tJne following model is presented to describe the evolution of SoES from the structure point of view:

s v+I = s V + Ll s v

Lit.;; V = Lis V + Li E V + ;,.,_ C V + ;,.,_ D V

LiSv-" Ll v+" v
-.LJ1e[l,n] S1 LJte(n,m]St

LiE V " Li V " V " V " V = LJ J,ke[l,n] e Jk + LJ /e[l,n],ke(n,m]e Jk + LJ ke[l,n],/e(n,m]e Jk + LJ J,ke(n,m]e Jk

i0i..cv = :z::ie[l,n]i0,..c; + Lie(n,mf;

i0i..D v = L . k [I]i0i..d~'k + L , [!] k (]d~'k +" d1\ + L , k (]d~'k J, e ,n J JE ,n , e n,m J .L..ike[l,n],je(n,m] J, e n,m J

Where m = n + i0i..n , i0i..n refers to the number of new component systems; v is the software version number of

So ES; i0i..s r (i E [1, n]) denotes the modification of each exist component system; s r (i E (n, m]) denotes the new

component system added into SoES; /::,,, e Jk (j, k e [1, n]) denotes the modification of each exist interaction;

e1k(j E [1,n],k E (n,m]), e1ik E [1,n],j E (n,m]) and e1k(j,k E (n,m]) denote the new interaction

added into SoES; i0i..cf(i E [1,n]) denotes the modification of each exist constraint set on the component system;

cr(i E (n,m]) denotes the new constraint set on the component system added into SoES; i0i..d1k(j,k E [1,n])
denotes the modification of each exist constraint set on the interaction;

e1k(j E [1,n],k E (n,m]), e1ik E [1,n],j E (n,m]) and e1k(j,k E (n,m]) denote the new constraint set

on the interaction added to SoES.

C-7

PROJECT DESCRIPTION

Furthermore, to ensure the high-confidence during the evolution, it is necessary to keep all the constraints on the
component systems and the interaction between the component systems during the evolution process. Thus, we need
to study the evolution model for SoES from the behavior point of view.

A graph model for software evolution has been presented in [19]. The main objective of this graph model is to
provide a framework that integrates software evolution activities with configuration control. This model formalized
the objects and activities involved in software evolution in sufficient detail to enable automatic assistance for
maintaining the consistency and integrity of an evolving software system. In this research work, we plan to
introduce the behavior description into the structure model for SoES evolution. For this purpose, we propose to
make use of the proposed graph model [19] for software evolution of the monolithic embedded system. We plan to
use hyper-graphs to describe the software evolution behavior. In this case, the nodes in the hyper-graph represent the
versions of software objects, and the software evolution steps are taken as the edges. Furthermore, each evolution
step has constraints and these constraints are mapped into the consh·aints on component systems and the interaction
between the component systems so that these constraints are kept. Proposed research will work out details of the
needed behavioral annotations for the hyper-graphs and the processed for using those annotations to ensure that high
confidence is maintained.

2.4 Description Language for the Computational Model and Evolution Model

To represent the computational model of the SoES, a set of description languages will be studied. These include the
description language for the basic computational model and the description language for the evolution model.

PSDL (prototype system description language) [11] is a language for describing prototypes of real-time software
systems. However, it was designed for describing the monolithic embedded systems rather than the systems of
embedded systems. Thus, in this proposed research, we propose to extend PSDL to describe the basic computational
model for the systems of embedded systems. We call this new description language SoES- PSDL. This description
language should have facilities for recording and enforcing the non-functional constraints such as timing constraints,
resource constraints and synchronization constraints, and for modeling the control aspects of systems of embedded
systems using nonprocedural control constraints, component systems abstraction and interaction abstraction.

Like PSDL, SoES-PSDL is proposed to have two parts, i.e., specification and implementation. The specification
contains attributes describing the form of the interface, the timing characteristics, and both formal and informal
descriptions of the observable behavior of the component systems. The implementation part determines whether the
component system is atomic or composite and the architecture of composite subsystems.

To represent software evolution for SoES, we propose to development a description language, called SEDL
(software evolution description language), to describe the evolution model for systems of embedded systems. This
description language should have the facilities to represent the node, i.e. the version of the component systems, the
version of the interaction between component systems, and changes, i.e., the evolution step and the constraints on
the evolution step. Like the SoES-PSDL, ESDL also has two parts for specification and implementation. In the
specification part, the version of the component systems and interaction between the component systems are
revealed. And in the implementation part, the evolution step and the constraints on the evolution steps can be
represented. This language will be used to support analysis of impact of changes on high confidence requirements.

2.5 Prototyping Based High-confidence Assurance for SoES

2.5.1 Analyses of Robust high confidence

The concept 'robust high confidence' here refers to the ability of software systems maintain high confidence under
uncertainties.

C-8

PROJECT DESCRIPTION
The uncerta:inties mainly come from the following unpredictable performance changes of the hardware on which the
software executes. Especially for embedded systems, many constraints for the software come from the hardware.
The performance changes of the hardware will directly influence the performance of the software embedded. These
uncerta:inties stem from many different causes:

• Inside changes: the parts' wearing away
• Outside changes: the changes of circumstance, e.g. temperature, humidity, magnetic field, etc
• Measurement errors: the measured properties of the hardware generally have errors with the real ones.
• Modeling errors: It's difficult to get the accurate model of a hardware system. So the differences between

the model and the corresponding real system are always inevitable.
• Hardware upgrades: parts are replaced, new parts are different possibly with incompletely known

properties

These uncertainties will result in uncertainties of some metrics related to high confidence of the applied software.
The aim of the robust high confidence analysis is to analyze the robustness of the high confidence, that is, the
capacity that the software system keeps high confidence under uncertainties.

'Robust high confidence analysis (RDA)' is different from 'sensitivity analysis of high confidence'. Current
sensitivity analyses methods are based on classical sensitivity theory that considers the uncertainties of the
parameter as sufficiently small. Actually, in many cases, the parameter uncerta:inties vary within a bounded :interval.
Robustness analysis is just to handle this kind of problems. The problem can be formalized as follows.

Suppose the computational model of a nominal software system is: (= ((a) , where a is parameter vector that

compose the system. The perturbation of the system can be described as 8(= 8((8a), where 8a is the

perturbation parameter vector, and II 8a II~µ, II• II is a certain norm of the vector, µ is a finite constant.

Jhen the real system is I; = I; (a) = I;+ 81;, where a= a+ 8a . The high confidence :function H I of the

isystem (will be :in the form of H 1 = H 1 (((a)) . We say (is high-confidence if the high confidence :function

satisfies the following inequality Hf ~ V , where V is a given :function. Then (is called robust high-confidence if

H1 =H1(((a)) ~v.

The robustness analysis problem is to analyze if a nominal system is robust high-confidence with respect to the
given perturbation bound. The key is to fmd the sufficient and necessary high confidence condition CON((, v).
That means, if and only if CON((, v) holds, (is robust high-confidence. The condition CON((, v) only

depends on the nominal system (and the perturbation bound V .

There are some available approaches and techniques :in control theory that can deal with large-scale perturbations of
system parameters. We will develop the robust analysis methods to high confidence by using the most effective
robust analysis methodology from the area of control theory.

2.5.2 Robust prototyping based development methodology to high-confidence SoES

The final target of the proposal is to develop the high-confidence software system in the most efficient way.
Prototyp:ing based method can reduce the cost of development and evolution of the software. Consequently, it
should be less costly to construct a high-confidence prototype system than to construct a production one. We can
guarantee the high confidence of the product system by making the prototype system be robust high confidence. The
robust high confidence analysis of the prototype system plays a key role in the process.

C-9

PROJECT DESCRIPTION
A prototype is a concrete executable model of a selected aspect of a proposed system. A prototype system is a partial
representation of the system, including only those attributes necessary for meeting the requirements. It serves as an
aid in analysis and design rather than as production software[ll]. Consequently, the end product system will exist
certain differences which can be taken as uncertainties upon the prototype system. For example, the prototype

• might not include all aspects of the intended system.
• might have been implemented using resources that will not be available in the actual operating

environment.
• might not be able to handle the full workload of the intended system, or

• might meet its timing constraints only with respect to linearly scaled simulated time.

No

t Initial Goals

Determine High
confidence

Requirements

Modularization & Objects Design
Prototype

System
--------------,

Parameter
optimization

Yes

No

Construct
Production System

Production

Check Robust
High confidence

Condition

Robust High
confidence
Specification

Yes

Fig.1 Robust development methodology of high-confidence SoES

C-10

PROJECT DESCRIPTION
These differences listed above can be considered as the perturbation for the production system with respect to the
corresponding prototype system. We use P = P(a) to represent the prototype system model, use 8P = 8P(8a)
to represent the difference model between the prototype system and the production system, where 8a is the
parameter difference vector.

To implement robust high confidence analysis, we have to estimate the upper bound of 8a . The estimation will
base on the requirements and the constraints of the envisaged system. The estimation will not be necessarily exact.
But conservative estimation of the errors will lead to the conservative results about the robust high confidence.

Based on the robust high confidence analysis, the design of the high-confidence product system can be transfo1med

into the design of a robust high-confidence prototype system. That is to find best parameter a• so that high

confidence condition CON(((a*), v) holds. Some optimization techniques will be used in searching the
• parameter vector a .

We will develop a rapid prototype based robust development methodology. The scheme of the methodology is
illustrated in Fig. I.

The users and designer works together to define the high confidence requirements according to initial goals of the
envisaged system. Use the extended PSDL language to give the specification of the requirements. Then construct a
prototype that fits the high confidence specification. Estimate the upper bound of the difference between the
prototype system and the end production system based on the initial requirement and the prototype system. Use
robust high confidence analysis (RDA) to check if the prototype retains the high confidence properties under a
bounded uncertainty. If not, the parameter optimization method will be used to find the suitable parameter vector

a•, and the prototype will be modified. After that, users evaluate the resulting prototype's behavior against its
expected behavior. If the prototype fails to execute properly, the user identifies problems and works with the
designer to redefme the requirements. This process continues until the user determines that the prototype
successfully captures the critical aspects of the envisioned systems.

C3 General Plan of Work

C3.l Plan Overview

We envision the computational model supported by PSDL that we currently have as the starting point for our
proposed research. This computational model can only describe the monolithic embedded systems and fail to
describe the distinguish properties of SoES. Thus, basing on the computational model supported by traditional
PSDL, we will develop a new computational model for SoES. This computational model will describe the
distinguish properties of SoES. Furthermore, in order to capture the high-confidence properties during whole
development process, the high-confidence metrics will be introduced into the new computational model.

Since high-confidence metric is an important factor in the computational model, we should study the quantitative
measure for the high confidence. How to map the high-confidence metrics into the design parameters will be also
studied.

To develop the evolution model for SoES, firstly, we will give the evolution model from the structure's point of
view basing on the computational model for SoES,. Then, by extending the graph model for evolution, the evolution
behavior is introduced into the evolution structure model so that the completed evolution model for SoES is built.
Furthermore, we should study how to keep the consistency of the high-confidence properties during the evolution
process. The robust high confidence analysis approach will be used.

C-11

PROJECT DESCRIPTION
C3.2 Broad Design Activity

The steps in constructing high-confidence SoES by systemic development technologies are:

(1) Study the quantitative measures for high confidence of SoES.
(2) Study the method to map the high confidence metrics to the design parameter during the design phase.
(3) Extend the computational model supported by PSDL to the case of SoES so that this computational model can

describe the static structure and dynamic behavior of SoES; Introduce the high-confidence metrics into the
computational model.

(4) Develop the evolution model for SoES from the sh1.1cture point of view and by extending the graph model for
the evolution of monolithic embedded systems to describe the evolution behavior for SoES, the evolution
behavior is introduced in to the evolution model for So ES from the strncture point of view so that the whole
evolution model is developed.

(5) Extend the PSDL and specify the description languages for the computational model and evolution model for
SoES.

(6) Study the method to do robust high confidence analysis of prototype system

C3.3 Deliverables

(1) Quantitative measure for high confidence of So ES.
(2) A computational model for high-confidence SoES
(3) An evolution model for high-confidence SoES
(4) Description languages to specify the computational model and evolution model
(5) Approach to accomplish robust high confidence analysis of the prototype system

C3.4 Description of Procedure

To achieve the work described above, we will take the following steps.

(1) Study the distinguish properties of SoES, especially the emergent properties.
(2) Determine the high-confidence metrics for SoES.
(3) Take availability and reliability as the start point to map these two high-confidence metrics to the constraints

during the design phase.
(4) Extend the computational model supported by PSDL to describe the distinguish properties of SoES and

introduce the high-confidence metrics in the computational model.
(5) Study the evolution in SoES; Extend the graph model which describes the behavior of evolution to the case of

SoES, integrate it with evolution structure model
(6) Create extensions to PSDL to specify the computational model for SoES

C3.5 Evaluation Factors

C3.5.1 Reduction in Development Cost

Since a majority of software faults can be attributed to requirements and specification errors, it is necessary to study
the feasibility of requirements before large amounts of effort and expense are committed to the project. Thus,
prototyping has emerged as a preferred method for requirements validation. In our proposed research, we explore
support for prototyping of SoES as a complement to approaches for certification. This proposed research is to ensure
that the specified properties, to be certified by other methods, are valid with respect to the real-world context of the
SoES and the real-world needs of its stakeholders .. This will greatly reduce the development cost since it avoids to
put large amount of effort and expense basing on an infeasible requirements.

C-12

PROJECT DESCRIPTION
Furthermore, since the robust high confidence analysis is able to reveal the impact of changing requirements on the
high confidence of SoES, this can prevent the change of requirements from comprising the high confidence. This
also reduces the development cost because the invalidation of requirement changes can be recognized in advance,
and the robustness of architectures for high confidence SoES will be improved.

C3.5.2 Reduction of Development and Maintenance Time

In our proposed research, the evolution of SoES is considered and the evolution model for SoES will be developed.
Basing on this evolution model, the new prototype of SoES can be quickly generated according to the change of the
requirements. This will reduce lag time between discovery of new requirements and building SoES software to meet
those requirements. Therefore the development and maintenance time will be decreased.

C3.6 Schedule

(1) Study the quantitative measure for high confidence of SoES (6 months)
(2) Study the method to map the high confidence metrics to the design parameter during the design phase.(10

months)
(3) Extend the computational model supported by PSDL to the case of SoES so that this computational model can

describe the static structure and dynamic behavior of SoES; Introduce the high-confidence metrics into the
computational model. (10 months)

(4) Develop the evolution model for SoES from the structure point of view and by extending the graph model for
the evolution of monolithic embedded systems to describe the evolution behavior for SoES, the evolution
behavior is introduced in to the evolution model for SoES from the structure point of view so that the whole
evolution model is developed.(8 months)

(5) Extend the PSDL and specify the description languages for the computational model and evolution model for
SoES. (6 months)

(6) Study the method to do robust high confidence analysis of prototype system (8 months)

C3.7 Comparison with Other Research

In recent years, many approaches have been proposed to construct high-confidence embedded systems. Those
approaches include verification, run-time testing and monitoring and component-based composition and rapid
prototyping.

[1], [2], [3] and [4] are some typical research works for the approach based on verification. These works use model
checking to verify the satisfaction of some properties such as survivability properties. [1] uses a model checker
based on NuSMV to verify the survivability properties in embedded systems. [2] focuses on the specification and
analysis of publish-subscribe software architecture. It specifies the properties in linear temporal logic and uses the
SMV model checker to complete the verification. [3] gives an efficient procedure for verifying that a fmite-state
concurrent system meets a specification expressed in a (propositional, branching-time) temporal logic. In [4], the
requirements are formalized in temporal logic and the system model is abstracted from the source codes so that
some real-time properties are verified. [5] focuses on the verification of real-time systems. It presents a modular
framework for providing temporal properties of real-time systems basing on clocked transition systems and liner
temporal logic. In this framework, the properties of real-time systems can be established by use of deductive
verification rules, verification diagrams and automatic invariant generation.

For run-time testing, both [6] and [7] attempt to automatically generate the test suite from the formal requirement
specification. Furthermore, [6] uses model checking while [7] uses a test derivation schema to achieve this purpose.
[8] presents a comprehensive method for run-time monitoring. It uses a monitor script to generate a filter and event
recognizer and generates a run-time checker basing on a formal specification so that a set of resource-specific, safety
and real-time properties are monitored and checked at run-time.

C -13

PROJECT DESCRIPTION
For research on component-based composition, [9] presents a method for automatic integration of reusable
embedded systems. This research uses a component model, a component behavior model and a control plan to
compose reusable components in embedded systems. Timing constraints and resource constraints are considered
during the component composition.

However, all approaches mentioned above focus on building high-confidence monolithic embedded systems rather
than the high-confidence SoES. Since they fail to capture the distinguished characteristics of SoES, it is hard to
constrnct high-confidence SoES by these approaches. Furthermore, all these approaches assume the existence of an
accurate and valid formal specification of the properties that are to hold with high confidence. The last thirty years
of computing research have shown that this assumption does not hold in practice, and that a majority of software
faults can be attributed to requirements and specification e1Tors. Thus, rapid prototyping has emerged as a preferred
method for requirements validation. It is a complement to approaches for certification.

A lot of works have been done for constructing the rapid prototyping of embedded systems. [11, 12, 23-27] are some
typical works on this aspect. They use operators and the data streams between the operators to model the embedded
systems and capture the timing constraints and control constraints of embedded systems. [30,31] are also based on
the rapid prototyping. They present a rapid prototyping technique that focuses on transition management in hybrid
systems. This approach integrates hybrid modeling and simulation with a generic transition management pattern
built on a Real-Time CORBA-based platform for reconfigurable control systems. [32] proposes an automated
approach to communication architecture synthesis in rapid prototyping of real-time embedded systems.

However, these approaches basing on the rapid prototyping also focus on the individual embedded systems. Besides
failure to abstract the distinguish features of SoES, these approaches fail to capture the high-confidence
requirements so that the high confidence properties can not be certified during the development process. It is
difficult to use these approaches directly for the construction of high-confidence SoES.

Therefore, further efforts on the systematic development technologies for high-confidence SoES should be made.
Moreover, development of large software systems causes a sequence of modeling tasks. It requires the modeling and
description of the application domain, software requirements, software architecture, software components,
programs, their internal structure and their implementation --- be it by one or by several modeling concepts [10].
Thus, in this proposed research, we present a computational model for SoES with high-confidence properties. It
forms the basis for systematic development of high-confidence SoES.

Moreover, in order to deal with requirements changes, an evolution model is also presented as the basis for the
software evolution in SoES. Although some works [19,20] have been done for the evolution of individual
embedded systems, the evolution in SoES is much more complicated than the general embedded systems. It is
difficult to keep the consistency of the high-confidence property during the evolution process of SoES. Thus, in this
proposed research, we study the specific method based on an evolution model to deal with the evolution in SoES.

C4 Broader Impacts

If the systematic development technologies are provided by this proposed research, then the following can take
place:

(1) High confidence of SoES will be enhanced as it is constructed by using these technologies.
(2) Decrease the software faults in SoES due to the error ofrequirements.
(3) Enable feasibility studies for the development of SoES and avoid to put large amounts of effort and expense

basing on an infeasible requirements.
(4) Help to estimate the costs of the development ofhigh-confidence SoES.
(5) The lag time between discovery of new requirements and building SoES software to meet those requirements

will be reduced.

C-14

PROJECT DESCRIPTION
(6) Reveal the impact of changing requirement on the high confidence of SoES to prevent the change of

requirements from comprising the high confidence of SoES.

C4.1 Transition of Technology

Technology transfer will be addressed by integrating the proposed new capabilities with the traditional PSDL.
Publishing results in IEEE, ACM, and OMG sponsored conferences and making toolkits readily available can
facilitate acceptance.

The software Engineering Group at the Naval Postgraduate School offers M.S. and Ph.D. degrees. The students at
NFS will contribute to this research and development effort. We also plan to integrate emerging technologies into
the courses we teach.

C4.2 Experimentation and Integration Plan

The work will be performed by the faculty of the Software Engineering Group at the Naval Postgraduate School and
their Ph.D. and M.S. Students. The principal investigators will be responsible for coordination of the following plan
previously stated in section C.3.6 for schedule.

C-15

REFFERENCES CITED

I. Jeannette Wing, Scenario Graph Generation and MDP-Based Analysis, Presentation at ARO Kickoff Meeting,
University of Pennsylvania, Philadelphia, PA, May 24 - 25, 2001.

2. David Garlan, Model Checking Publish-Subscribe Software Architectures, Presentation at ARO Kickoff
Meeting, University of Pennsylvania, Philadelphia, PA, May 24 - 25, 2001.

3. E.M. Clark, E.A. Emerson, A.P. Sistla, Automatic Verification of finite state concurrent systems using
temporal logic specification, http://citeseer.nj.nec.com/clarke93verification.html

4. Matthew Dwyer, John Ratcliff, and George A vnmin, Software Model Checking for Embedded Systems,
www.cis.ksu.edu/~dwyerlprojects/HCES-May-Ol-l.ppt.

5. Nikolaj S. Bjorner, Zohar Manna, Benny B. Sipma, Deductive Verification of Real-time Systems Using SteP,
Technical Report STAN-CS-TR-98-1616, Computer Science Department, Stanford University, December
1998.

6. H.S. Hong, I. Lee, 0. Sokolsky and S.D. Cha, Automatic Test Generation from Statecharts Using Model
Checking, Proceedings of FATES'0I, Workshop on Formal Approaches to Testing of Software, August 2001.

7. D. Clarke and I. Lee, Automatic Test Generation for the Analysis of a Real-Time System: Case Study,
Proceedings of 3rd IEEE Real-Time Technology and Applications Symposium (RTAS '97), Jun 1997.

8. Lee, S. Kannan, M. Kim, 0. Sokolsky, M. Viswanathan, Runtime Assurance Based On Formal
Specifications, Proceedings of International Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, June 28-Julyl, 1999.

9. Shige Wang and Kang G. Shin, An Architecture for Embedded Software Integration Using Reusable
Components, Proceedings of International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, San Jose, CA. 2000.

10. Manfred Broy, Specification and Modeling: An Academic Perspective, Proceedings of the 23rd International
Conference on Software Engineering (ICSE'0I), Toronto, Canada, May 12-19, 2001.

11. Luqi, Valdis Berzins, Raymond T. Yeh, A Prototyping Language for Real-time Software, IEEE Transactions
on Software Engineering, Vol.14, No. 10, October 1988.

12. Luqi, Real-time Constraints in A Rapid Prototyping Language, Computer Language, vol.18, N o.2, 1993.

13. All Dasdan, Timing Analysis of Embedded Real-time Systems, Thesis, University of Illinois at Urbana
Champaign, 1999.

14. Edward A. Lee, Embedded Software, To appear in Advances in Computers, Vol.56, Academic Press,
London, 2002.

15. Miroslaw Malek, High confidence Concepts, Measures and Models, Technical Report,
http://www.informatik.hu-berlin.de/roklzs/zs2 _ I -4.pdf.

16. - Mark W. Maier, Architecting Principles for Systems-of-Systems, Technical Report,
http://www. info ed. com/Open/PAP ERS/systems.htm.

17. Luqi, Xianzhong Liang. "Dependability-Assured Software Transformation", Technical Report, #NPS-SW-02-
008, NPS Monterey, CA: July 2002.

D-1

REFFERENCES CITED

18. Luqi, Xianzhong Liang, "Perspective-based Approach for Highly Dependable Software-Intensive Systems",
Technical Report, #NPS-SW-02-0012, NPS Monterey, CA: Nov. 2002.

19. Luqi, A graph Model for Software Evolution, IEEE Transactions on Software Engineering, Vol. 16, No. 8,
August 1990.

20. Luqi, "Software evolution via rapid prototyping," Computer, Col. 22, no.5, pp.13-25, May 1989.

21. Luqi, V. Berzins, M.Shing, N. Nada and C. Eagle, Software Evolution Approach for the Development of
Command and Control Systems, Command and Control Research and Technology Symposium, Monterey,
U.S.A,2000.

22. Luqi, Ying Qiao, Lin Zhang, Computational Model for High-confidence Embedded Systems development,
Monterey workshop 2002, Venice, Italy, Oct. 7-11, 2002.

23. Luqi, M.Shing, Real-time Scheduling for Software Prototyping, Journal of Systems Integration, 6, 41-72,
Kluwer Academic Publishers, Boston, 1996.

24. Bernd Kramer, Luqi, Compositional Semantics of a Real-time Prototyping Language, IEEE Transactions on
Software Engineering, Vol.19, No. 5, May 1993.

25. Luqi, Joseph A. Goguen, Formal Methods: Promises and Problems, IEEE Software, January 1997.

26. Luqi, Valdis Berzins, Rapidly Prototyping Real-time Systems, IEEE Software, September 1998.

27. Luqi, Mohammad ketabchi, A Computer-Aided Prototyping System, IEEE Software, March 1988.

28. G.A. Agha, Abstracting Interaction Patterns: A programming Paradigm for Open Distributed Systems, in
Formal Methods for Open Object-based Distributed Systems, IFIP Transactions, E. Najm and J.-B. Stefani,
Eds., Chapman & Hall, 1997.

29. Titos Saridakis, Robust Development of Dependable Software Systems, Technical Report, Institut National De Recherche
en Informatique et en Automatique (INRIA), June 1999.

30. M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Rech, G. Vachtsevanos, Rapid Prototyping of Transition
Management Code for Reconfigurable Control Systems, Prof. of the 13th IEEE International Workshop on
Rapid Systems Prototyping (RSP), PP. 76-83, Darmstadt, Germany, July 2002.

31. M. Guler, A. Clements, L. Wills, B. Rech, G. Bachtsevanos, Generic Transition Management for
Reconfigurable Hybrid Control Systems, To appear IEEE Control Systems Magazine.

32. Frank-Michael Renner, Jurgen Becher and Manfred Glesner, Automated Communication Synthesis for
Architecture-precise Rapid Prototyping of Real-Time Embedded Systems, Prof. of the 11 th IEEE International
Workshop on Rapid Systems Prototyping (RSP), Paris, France, June 21-23, 2000.

33. Mark W. Maier. The Art of Systems Architecting. Eberhardt Rechtin, CRC Press, London 2000.

34. John Dobson, Dependable Systems of Systems. http://www.csr.ncl.ac.uk/projects.

35. Ronald R. Luman, Quantitative Decision Support for Upgrading Complex Systems of Systems, Ph.D
Dissertation, George Washington University. Nov. 1997.

D-2

., .. •' ...

REFFERENCES CITED

36. Scott Selberg, Systems of systems, Technical Report, Agilent Technologies, Nov. 2000

37. J.C. Laprie, Dependable Computing and Fault Tolerance: Concepts and terminology, Fault Tolerant
Computing Symposium 15, pp.2-11, Ann Arbor, MI, June 1985. IEEE Computer Society.

38. J. Arlat, K Kanoun, H. Maderia, et al., Dependability Benchmarking: State of the art, Technical Report,
European Community under the "Information Society Technology" Programme. Aug. 30, 2001.

39. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Fundamental Concepts of Dependability, Technical
Report, Computer Science Dept. Univ. of California, Los Angeles, April 2001.

40. J.E. Anderson, Dependability as a Measure of On-time Performance of Personal Rapid Transit Systems,
Journal of Advanced Transportation, Vol.26, No.3, 1992, pp.201-212.

41. E. Jonsson, An Integrated Framework for Security and Dependability, Technical Report, Department of
Computer Engineering, Chalmers University ofTechnology, SE-412 96 Goteborg, Sweden.

42. Y. Masuda, S. Yamakawa, A Compound Dependability Measure Arising from Semi-Markov Reliability
Model, Journal of Operations Research Society of Japan.

43. Andrea Bondavalli, Ivan Mura, Kishor S. Trivedi, Dependability Modeling and Sensitivity Analysis of
Schedule Maintenance System. Proc. DCCA-7-7th IFIP Int. Conference on Dependable Computing for
Critical Applications. San Jose, USA, 1999, pp.319-337.

44. Walter J. Gutjahr, Software Dependability Evaluation based on Markov Usage Models, Performance
Evaluation. 40, 2000. pp.199-222.

,.., . 45. H. M. Hinton, Under-Specification, Composition and Emergent Properties, New Security Paradigms
Workshop Langdale, Cumbria UK, 1997.

46. D. Matthews, Assessing the Value of a C4ISREW System-of-systems Capability,
www.dodccrp.org/2000ICCRTS/cd/papers/Track4/004.pdf

47. V. Kotov, Systems of Systems as Communicating Structures, HP Labs Technical Reports,
http://www.hpl.hp.com/techreports/97/HPL-97-124.html.

48. A. G. Arnold and W. F. Kujawa, Test and Evaluation of Complex Systems of Systems,
www.terec.gatech.edu/graphics/ EconT &E/Kujawa yaper.pdf

D-3

