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This paper presents a classification schema for the concepts and ap­
plications of software transformatior in software evolution. Correctness 
preserving program transformations have been widely used for program 
development from an initial specification. We consider a more realistic 
case, where the specification evolves, rather than being fixed in advance. 
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develop an associated model to describe the process. An example illus­
trates the ideas. Software tool support and directions for future research 
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1 Introduction 

Program transformations have been used extensively as a basis for automated 
software construction. Typically, one starts with a specification of the desired 
program, and by applying transformations that do not change the semantics, 
create an executable program realizing the specification. This process is at 
least partially automated. This approach is predicated on the assumption 
that a precise specification is written before the software engineer starts the 
implementation. 

Such a separation is not always possible. Specification is the hardest phase 
of software development. In order to get user confirmation that the suggested 
specification is suitable, it is useful to have an executable version of the spec­
ification, or a prototype. 

The purpose of this paper is to show how software transformations can 
be used for software prototyping. Transformations that keep the semantics 
unchanged are no longer sufficient if the specification is to evolve during the 
prototyping process. Hence we need to consider new kinds of transformations. 

The rest of the paper is organized as follows. Section 1.1 describes some of 
the previous work in the area of program transformations. Then, in Section 
2, we present our classification of transformations that are useful when the 
specification cannot be assumed fixed. Section 3 presents the prot9typing 
methodology we propose and a concrete model in which we characterize the 
transformations, and illustrates our ideas with an example. Finally, in Section 
4, we discuss tool support for the methodology, and outline future the research 
problems that must be tackled in order to make our approach feasible. 

Ll Previous work 

Program transformations have been studied extensively since the 1970s. A 
more comprehensive overview can be found in [25, 16). 

A program transformation is a relation between two programs or program 
schemes P and P'. Normally one is interested only in valid transformations, 
which must satisfy some semantic relation between P and P'. Most of the 
work to date concentrates on transformations under which the programs are 
equivalent. Other semantic relations considered were (10] weak equivalence (in 
which the programs P and P' may act differently for erroneous data), and 
descendent relation ( which is relevant for nondeterministic programs; here the 
possible results of P' are a subset of the possible results for P). These relations 
are used in [10] in a study of formal semantics. 

Program transformations have been used in various applications to con­
struct or modify programs. These applications have concentrated on transfor­
mations satisfying a semantic equivalence. Such transformations are referred 
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to as semantic preserving transformations or correctness preserving transfor­
mations. Two principal kinds of correctness preserving transformations have 
been distinguished: vertical (going from a higher abstraction level to a lower 
one) and lateral ( specifying the equivalence between two expressions at a sim­
ilar level of abstraction) [27, p. xv]. 

Transformations are used in the context of transformational programming, 
which is a methodology of program construction via successive application of 
transformation rules. Usually such a methodology is supported by an appro­
priate programming environment, or a collections of tools. The level of support 
may vary from full automation, to merely assisting the user in selecting and 
applying a transformation rule. 

Transformation systems have been used to achieve a variety of goals. The 
first use of transformations was based on a natural trade-off between efficiency 
and clarity in most programs. It is often possible to write a self-evidently 
correct program, but the resulting program is usually very inefficient. Lateral 
transformations can then be used to convert a clear but inefficient program 
into an efficient one [11, 13]. 

The most common goal of transformations is the construction of a pro­
gram from a formal specification. As an example, the CIP project in Munich 
[6, 4, 5], treats program development as an evolutionary process, that starts 
with the problem specification, and ends with an executable program for the 
target machine. The transitions between the various versions of the program 
are effected by applying semantic preserving transformations. The program­
mer has to choose an appropriate transformation rule at each step, and an 
interactive tool applies the rule, while checking its applicability. Both the 
language used (CIP-1) and the transformation system (CIP-S) are based on 
algebraic specifications. 

Existing transformations implementation systems can be divided into two 
classes: those that are relatively limited in power but require no user guidance 
and those that are capable of very complex implementations but only under 
user guidance. TAMPR [9] and PDS [12] use simple control strategies and 
restrictions on the kinds of transformations that can be defined in order to 
eliminate the need for user guidance. 

The PSI system [19] was one of the first systems to use a transformational 
implementation. PSI's transformational module [3] operated without guid­
ance, generating all possible low-level programs. It was assumed that another 
component [21] would provide guidance as to which transformation to use. 
More recent work on complex transformational implementation systems has 
been done at ISI [2], and at the Kestrel Institute [29]. A key focus of these 
efforts has been an attempt to automate the choice of transformations as much 
as possible [15, 17, 31]. 

The sequence of transformation chosen to implement a program is a valu-
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able record of the development process [31]. It is should be possible to replay 
at least part of these transformations when the original high level ( specifica­
tion) is modified. This idea motivates work on software maintenance with the 
aid of transformations. A method called transformation-based maintenance 
model (TMM), was proposed in [l]. The model is based on the assumption 
that a program has been derived from a specification using a transformational 
system, and that the sequence of transformations applied has been recorded. 
This sequence may be viewed as a path from the root of a tree ( represent­
ing the specification), to a leaf (representing the current program). In each 
internal node of the tree, a design decision has been made, resulting in the 
application of a particular transformation. In the maintenance process we can 
then traverse the path backwards, and change some of the decisions to choose 
a different transformation. It should be noted that since it is possible to reach 
a node by more than one path, the structure is a directed acyclic graph, rather 
than a tree. TMM takes advantage of some specific properties of the particular 
transformational programming paradigm used in Draco [24]. 

An important issue is the representation of transformations. Transfor­
mations are represented as transformation rules, which may be procedural or 
schematic. 

As can be seen from the above discussion, much of the work on program 
transformations is done in the context of using artificial intelligence techniques 
for software construction. Here transformations are used to represent knowl­
edge about programming, as well as application domain specific knowledge. 

We have recently learned about the work on evolution transformation li­
brary in ISI [20]. This work shares some of the premises that were the basis of 
our work. In particular, transformations that do not preserve correctness are 
used to capture evolution of software specification. Our approach differs from 
that of [20] in the way we view transformation. Our goal is to utilize transfor­
mations that correspond to design decision. Transformations are viewed at a 
semantic, rather than syntactic level. 
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2 Classification of Transformations 

It is sufficient to use correctness preserving transformation if we are starting 
with a fixed specification and wish to generate a program that implements it. 
If we wish to take a transformational approach to the specification phase of 
software construction, we must allow for changes in the semantics. Moreover, 
it has become clear [30] that one cannot truly separate specification from 
implementation. Indeed, to quote [30], 

The standard software development model holds that each step of 
the development should be a "valid" realization of the specification. 
By "valid" we mean that the behaviors specified by the implemen­
tation are a subset of those defined by the specification. However, 
in actual practice, we find that many development steps violate 
this validity relationship between specification and implementa­
tion. Rather than providing an implementation of the specifica­
tion, they knowingly redefine the specification itself. Our central 
argument is that these steps are a crucial mechanism for elabo­
rating the specification and are necessarily intertwined with the 
implementation. 

The goal of our work is to lay the foundation for using a transformational 
approach in a process of software construction that does not assume a fixed 
initial specification. In this section we characterize different kinds of transfor­
mations that we believe are useful in such a context. 

A transformation is simply a function taking some document in a given lan­
guage, and mapping it onto another document, possibly in another language. 
Normally, the input and output document are close to each other in terms of 
their meaning or content. This is a rather informal and imprecise characteriza­
tion, as will be some of the definitions in this section. More precise definitions 
are provided in Section 3.1, where we refer to a concrete model. For the sake of 
simplicity, we assume that we are dealing with one language. This may require 
a union of the languages under consideration. Also, we will often think of a 
transformation as "modifying" a given document. Here we refer to the change 
or the difference between the input document and the output document. 

A transformation may be either global or incremental. An incremental 
transformation is one that changes only a small portion of the input doc­
ument. In particular, since we are concerned with documents that have a 
certain underlying structure, and can be viewed as composed of modules, an 
incremental transformation will leave most of the modules unchanged. Since 
we view documents as structured entities, an incremental transformation may 
also change some of the connections between modules, while preserving most 
of the content of the modules themselves. Simply making textual comparison 
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between the input and the output can therefore not be used as the criterion 
for the amount of change done. Global transformations are those that change 
most or all of the document and possibly its structure. As an example of a 
global transformation one can consider a compiler that transforms an input 
program in some high level language into another program in assembly or 
machine language. Note that our assumption that a transformation does not 
alter the meaning of a document much holds for this example. In fact, the 
input and output programs in the case of a compiler should be semantically 
identical. 

In what follows, we consider mostly incremental transformations. We be­
lieve that they have an important role throughout the software life cycle. How­
ever, our characterization of the different kinds of transformations applies to 
global transformations as well. 

We consider two essentially orthogonal attributes of a transformation. One 
relates to the level of abstraction of the documents in question, and the other 
considers the meaning of the documents. 

A transformation may leave the abstraction level of a document basically 
unchanged. It may lower the abstraction level by introducing more detail. 
Finally, a transformation may raise the level of abstraction by removing some 
details. 

Independently of what changes are made to the abstraction level, transfor­
mations may have different effects on the meaning of the doct'.ment in ques­
tion. We will restrict our attention to a particular kind of meaning - that of 
the input-output behavior of the program being specified or coded. In gen­
eral, one can associate with each document a collection of possible behaviors. 
During the early stages of the development, documents only approximate the 
behavior. For example, a requirement specification document is supposed to 
prescribe what we want the software to do, possibly leaving some freedom as 
to the exact input and output sequences involved. We can think of such a 
document as matching a (possibly infinite) collection of possible behaviors. A 
sequential program usually has one behavior. (We can think of an uncompi­
lable program as having an empty collection of behaviors.) Some languages 
allow nondeterministic sequential programs ( which imply a collection of be­
haviors larger than one), even though the object code that is produced by 
the compiler is deterministic at the bit level. For example, Dijkstra's guarded 
command construct [14] allows non-disjoint conditions in a choice. The effect 
of a conventional sequential program can appear to be nondeterministic when 
viewed as a function on abstract data types if those types can have multiple 
bit-level representation for the same abstract value. A choose operation on 
a set data type is an example. For concurrent software, and particularly for 
distributed systems, even the actual code may still have a larger collection of 
behaviors associated with it. 
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We can categorize transformations according to how they affect the collec­
tion of meanings of the document being transformed. In particular, we can 
assign categories according to the set-theoretic relation between the collection 
of behaviors of the input document, which we will denote B1, and the corre­
sponding collection for the output document, denoted by Bo. We can thus 
have the following cases : 

• (i) B1 is equal to Bo, 

• (ii) B1 (properly) contains B0 , 

• (iii) B1 is (properly) contained in Bo, 

• (iv) B1 is disjoint from Bo, 

• (v) B1 and Bo have nonempty intersection, but none contains the other~ 

We believe that it is useful to restrict our attention to the first 3 kinds only. 
Transformations that fall under case (iv) or ( v) have less useful structure, but 
they may be relevant e.g. in debugging: When we correct an error in a pro­
gram, we may transform it in a way that takes us from a (single) meaning, to 
another one, different from it. Here we have disjoint (singleton) sets involved. 
We believe it will usually be desirable to view such a correction as an applica­
tion of a type (iii) transformation, followed by a type (ii) transformation. This 
is the desired situation particularly when making corrections at an early phase 
of the life cycle. Note that in the terminology of [10], the semantic relation in 
case (i) is strong equivalence, whereas in case (ii), the output document is a 
strong descendent of the input document. 

The two orthogonal attributes describing the effect of a transformation 
on abstraction level and on behavior will now be combined to present our 
classification. We describe each kind in detail (see Figure 1 ). 

Figure 1: Types of Transformations 

• Refining transformations, also called refinements, are those that add de­
tail to a document without changing its behavior. In the terminology of 
[27, p. xv], these are called a vertical transformations. They occur often 
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in the literature about transformations systems for program construc­
tion, such as CIP, where they have been called correctness preserving. 
Typically, such a transformation may choose a particular algorithm or 
data structure for the implementation. 

• Retracting transformations, also called retractions, are essentially the in­
verse of refining transformations. Retractions may be used to abstract 
away some detail in a document. They may occur in reverse engineer­
ing processes, useful for maintenance, as for instance in TMM [l]. In a 
development that is guided by a systematic, transformation based pro­
cess, we would expect retractions to follow backward a path previously 
generated as a refinement. 

• Reformulating transformations, also called reformulations, are those that 
make a local change to a document without changing its behavior, and 
leaving it in essentially the same abstraction level. (These are the lateral 
transformations in the terminology of [27, p. xv].) A typical example 
is a source level optimization, such as loop unrolling or tail recursion 
removal, applied to a program in some programming language. Other 
examples are any changes done to a document to improve its readability, 
clarity etc. 

So far we have discussed the transformations that left the behavior of 
a document unchanged. We now turn our attention to transformations 
changing the behavior of a document. These are useful when we explore 
the possible behavior of the software system being constructed in order to 
decide on the desired functionality. As noted above, we restrict ourselves 
to changes such that the input behavior and the output behavior are 
contained in each other. 

• Constraining transformations restrict the behavior of a document, by 
making a particular decision. For example, replacing a bounded buff er 
with unspecified bound by one of a certain size ( as in a generic package 
with the bound being a parameter), is a constraining transformation. A 
transformation specifying the way two modules will communicate with 
each other, where a previous version left this unspecified, is another 
example. 

• Relaxing transformations, are the inverse of constraining transforma­
tions. They relax some restrictions on the behavior of the software that 
exist in the previous version. For example, relaxing the requirement to 
keep an airplane exactly on course to the requirement for corrective steer­
ing when the airplane strays off its course, thus keeping it within some 
tolerance of the expected position. A different kind of an example is 

7 



when a module (such as an Ada subprogram or package) is changed to a 
generic one, replacing a constant or a specific data type by a parameter. 
Another example is when real numbers are replaced by floating point 
numbers of a particular precision. This is a relaxation since it replaces 
a single acceptable output by the interval of values that are acceptable 
with respect to the given precision. 

In reality, not all changes to a specification are captured by relaxing trans­
formations and constraining transformations. However, we can view a modifi­
cation as a relaxing transformation, removing some restrictions that currently 
exist (implicitly or explicitly), followed by a constraining transformation, that 
introduces the new, modified restrictions. This approach provides a better 
way to record the evolution of the document, and yields a process that is more 
likely to be reused elsewhere. 

As can be seen in Figure 1, we have disallowed 4 possible combinations 
of the two attributes of a transformation. In particular, we do not admit 
transformations that change both the behavior and the abstraction level of 
a document. We believe such a restriction is useful in better capturing the 
development process. Consider, for example, the process of generating a design 
document from a specification document. During this process, we make specific 
design decisions that restrict the behavior of the software, and also introduce 
more detail. We claim that it is better to describe this process as a sequence 
of transformations following our conventions. First, a series of constraining 
transformations introduce the design decisions, then we apply refinements to 
introduce the implementation details. In fact, it may be more desirable to 
alternate between these two kinds of transformation, as the more details are 
added following each step ( or several steps) of design decisions reflected in 
constraining transformations. In practice we may actually see some relaxing 
transformations appear also along the way as better understanding of the 
problem introduces a need to undo some previous decisions, or to remove 
some other restrictions before continuing with new restrictions. 

Our classification of transformations is somewhat similar to the conceptual 
view of specification evolution presented in [18]. The author's main thesis 
is that it is better to present a specification as evolving from simpler one. 
The evolution is characterized by three dimensions. Coverage deals with the 
range of behaviors permitted by a specification, where behavior is a sequence 
of states. This dimension is similar to our notion of changes in the behav­
ior, but [18) does not characterize the desired or allowed changes. (Behavior 
modeling is also different.) Structural granularity and temporal granularity 
deals with the amount of detail of each individual state of the process, and 
the amount of change between successive states, respectively revealed by the 
specification. Both these dimensions have to do with abstraction level, but 
temporal granularity is useful only when behavior is modeled by state change. 
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3 Using Transformations for Prototyping 

Prototyping has been suggested as an approach to software development that 
enhances communication with the user community by providing an executable 
model of the system early in the development process. In this section we 
discuss the prototyping methodology we are advocating, and show how trans­
formation may be applied to aid in this process. We then give more precise 
definitions of the kinds of transformations we are dealing with, in the context 
of a particular model and language. Finally, an example is used to illustrate 
our ideas. 

There are two phases in the prototyping process, prototype evolution and 
production code generation (22]. The purpose of prototype evolution is to firm 
up the software requirements. When the requirements are stable, production 
code generation can generate an efficient implementation. If at a later time 
there is a need to modify the requirements, we can return to prototype evolu­
tion, and again follow it up with production code generation. 

In the prototype evolution phase the designer constructs and modifies a 
prototype based on feedback from the customer until the prototype matches 
the needs of the users. This part of the process is dominated by a series of 
incompatible changes to the behavior of the prototype. These changes are 
realized via relaxing and constraining transformations. Reformulating trans­
formations are applied a,t this stage mainl) for adjusting the structure of the 
prototype to make it easier to understand or modify. Efficiency is consid­
ered only if the requirements include hard real-time constraints or prototype 
demonstrations take impractically long to run. 

In the production code generation phase of the process, the desired be­
havior of the system is relatively stable, and the major concern is improving 
efficiency, capacity, or robustness. This part of the process is dominated by 
behavior preserving transformations for optimizing the design and implemen­
tation. Behavior preserving transformations have been studied extensively 
[6, 4, 5, 17, 21, 19, 31]. However, relaxing and constraining transformations 
are sometimes also needed to improve efficiency. Such transformations are 
applied in practice to optimize a design, because efficient algorithms are of­
ten applicable only in special cases, and may constrain the set of problems 
that can be solved. In general such implementation strategies introduce addi­
tional preconditions, which are relaxing transformations because they remove 
constraints on system behavior in the cases where the new preconditions are 
not satisfied. Such a design is then constrained by defining responses for the 
remaining cases, such as exception conditions or error messages. A common 
example of an optimization that speeds up an algorithm by introducing con­
straints is static memory allocation, which puts a fixed bound on the size of a 
data structure. 
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3.1 A Formal Model 

In order to make our definitions more precise, we need a concrete model. 
We will use a model in which programs and subprograms are specified using 
preconditions and postconditions. We use the common notation P{S}Q to 
denote a program (segment) S, with precondition P and postcondition Q. 

We restrict our attention to the transformations that leave the abstraction 
level of a document unchanged. We view changes in a program as reflected 
in changes in its precondition and postcondition. In particular, suppose a 
transformation T takes us from program P{S}Q to another program P'{S'}Q'. 
Consider the case that the postcondition Q' is stronger than Q, while the 
postcondition remain unchanged 1 : 

Q' • Q&Q =/} Q'&P' ~ P. 

In particular, this may be the case when Q' == Q&C, where C is some addi­
tional condition that the program must now satisfy upon termination. In this 
case we have constrained the possible behavior of the program, thus T is a 
constraining transformation. 

Conversely, suppose the precondition P' is stronger than P, while the post­
condition is unchanged: 

P' • P&P =/} P'&Q' ~ Q. 

In particular, this may be the case when P' == P&C, where C is some addi­
tional condition that the input must satisfy. Here, by restricting the possible 
inputs, we have applied a relaxing transformation. 

We can also obtain a relaxing transformation by weakening the postcondi­
tion, rather than strengthening the precondition. It also follows that a trans­
formation that both weakens the postcondition and strengthens the precondi­
tion is also relaxing. Similarly, we can fill the other entries in Figure 2. Note 
that for two entries we cannot determine the effect of the transformation in 
general, because of the opposing effects that the changes on the precondition 
and the postcondition create. 

We will use Spec [7] as our specification language. Spec is a formal language 
for writing specifications for components of software systems. It is used in 
functional specification for recording black-box specifications of the external 
interfaces of the proposed system, and in the architectural design stage for 
recording black-box specifications of the internal interfaces of the proposed 
system. 

1• and ¢:: denote logical implication (in the indicated direction). {:} denotes logical 
equivalence 
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constraining 
reformulating 

relaxing 

Figure 2: Classifying Transformations by the relation between pre- and post­
condition 

Spec is based on the event model of computation, and uses predicate logic 
for the precise definition of the desired behavior of modules. The most impor­
tant ideas of this language are modules, messages, events, parameterization, 
and defined concepts. 

A module is a black box that interacts with other modules only by sending 
and receiving messages. A message is a data packet that is sent from one 
module to another. An event occurs when a message is received by a module 
at a particular instant of time. 

The response of a module to a message can be defined with several cases 
characterized by preconditions that are written as WHEN clauses. To describe 
a postcondition that must be satisfied by an outgoing message, a WHERE 
clause is used. The WHERE keyword is followed by a set of statements in 
predkate logic describing the relation between the contents of the mes ,age 
that was received and the contents of the reply message. 

Spec is a specification language, and is not fully executable. However, there 
is a subset of Spec that may be translated into executable form, which may 
be viewed as a prototype. 

We augment Spec with augmented data flow diagrams to describe the in­
terconnection between Spec modules. This notation is borrowed from PSDL 
[23]. 

3.2 The Prototyping Process 

The prototyping process starts from requirements analysis as shown in Figure 
3. A computer aided prototyping system is helpful for constructing a software 
prototype based on the requirements. The validation activity demonstrates 
some typical cases of prototype execution and generates a series of require­
ments adjustments based on the customer's quick feedback. Such adjustments 
can be used to correct or change the set of requirements in the requirement 
analysis activity before the new set of requirements is used to construct the 
next version of the prototype in the iterative process of prototyping. This 
process is used to refine, adjust, and firm up the requirements. The feedback 
related to problems in the Spec modules or the structure of the prototype goes 
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back to the "construct prototype" activity through different paths as one of 
the iterative activities in the evolutionary prototyping process. The adjust­
ments to the structure of the prototype or corrections to the Spec modules are 
sent back to the "construct prototype" activity to be used in the next iteration 
of the prototype construction activity. The adjustments to the requirements 
are sent to the "analyze requirements" activity to trigger the next stage of the 
evolutionary process. 

Requirement 
Adjustment 

Analyze 
Requirements 

Construct 
Prototype 

Software 
Prototype 

Verify Execute 
Prototype Successfu Structure Proved 

Implement 
(Optimize) 

------ Prototype------ Prototype------
Execution Structure 

Figure 3: Prototyping Life Cycle Process Model 

An acceptable execution of the prototype triggers the production of the 
envisioned system based on the structure and other attributes determined in 
the prototyping from the user and the designer. Verification or proof of the 
structure of the prototype can ensure the correctness of the implementation or 
optimization phase with a sound foundation, provided the implementations of 
the individual Spec module are correct. This can be useful in cases where dif­
ferent subsystems of the final product will be implemented by different groups, 
because it prevents integration problems at the end if the subcontractors stick 
to the specifications for their subsystems. In critical subsystems where software 
failures can have very serious consequences, the implementations of the indi­
vidual subsystems can be proven correct at lower levels of the design and code 
as needed. Different kinds of transformations can be applied to the activities 
in the evolutionary prototyping process. For example, the meaning preserv­
ing transformation can be used in terms of executable specification context as 
well as in the automatic code generation and optimization of the production 
code. The refining and retracting transformations are useful in the activity of 
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converting requirements to prototype specifications in Spec. Transformation 
techniques are very important in the "construct prototype" activity. It can 
be seen more directly if we examine the activity with more details. Figure 4 
illustrates the process to use Spec in the prototype construction. 

Requirements 

Top 
____ ...,. __ __, Level 

Write Spec ~ Choose 
Requirements Conversion 

Spec Module 

in Spec Method 

Spec/ Spec~ Spec 
Module , Module ~ Module -------

Write Ada 
Code 

Convert to 
Executable 

Spec 

Decompose 
Spec 

Ad~ /2xecutable 
Module ~ / Spec Module --------- --------

Software 
Prototype 

Assemble 
Prototype 

Structure 
Adjustment 

Modify Spec 
Module 

Spec 
Adjustment 

Modify 
Prototype Prototype 

Adjustment 

Figure 4: Constructing a Prototype 

Our procedure for realizing a prototype works as follows. For each sub­
system in the prototype, the results of the requirements analysis are used to 
propose a system interface, and the behavior of the interface is expressed in 
the Spec language. The specification is then converted to executable form. 
There are three ways to do this: 

• Transform the specification into the executable subset of the Spec lan­
guage. This step proceeds using meaning-preserving· transformations, 
and may be trivial if the original spec is already in an executable form. 
This step is necessary because the full Spec language includes unbounded 
quantifiers and is strong enough to specify functions that are not com­
putable. However, if the requirements are feasible, then the transforma­
tion into executable form must also be feasible, and we conjecture that in 
most practical cases it will be straightforward and partially automatable. 
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• Produce code in a programming language such as Ada. This can be 
done by retrieving and adapting reusable components, or by creating 
new code. 

• Decompose the module into lower level components. This requires spec­
ifying the components ( using Spec) and their interconnections ( via an 
augmented data flow diagram, as in PSDL[23]). This step is the place 
where the prototype designer supplies intelligent insights and proposes 
useful lower-level abstractions. This process can simplify implementa­
tion via the previous mechanisms, and can significantly improve perfor­
mance, especially if frequent substeps are realized by efficient reusable 
Ada modules. 

The result of realizing a subsystem by this mechanism is a hierarchical 
decomposition into modules that are either directly executable( Ada) or can 
be simulated via symbolic execution(Spec). These modules are assembled 
to provide demonstrations of prototype behavior to the users. This process 
often results in user requests for adjustments to the behavior of the prototype. 
These adjustments are realized via retracting and refining transformations. 
The adjustments can be classified as Spec adjustments, which modify the 
specified behavior of a module in the previous version of the prototype, and as 
structural adjustments, which rearrange the modules in the previous version 
and add or remove subcomponents. Prototype adjustments usually correspond 
to Spec adjustments at the highest levels of the hierarchical structure, and a 
mixture of Spec adjustments and structural adjustments in the lowest levels. 
One of the goals of computer aid for prototype evolution is to help propagate 
the intended changes from the highest level of the structure to the lowest levels, 
and to ensure that this propagation is complete. There is also a cleanup phase 
in which reformulating transformations are used to simplify the structure and 
to remove features that are no longer needed to support the new specifications. 
This cleanup phase is not shown in the Figure 4 because it is done after a 
demonstration session is over. 

3.3 Example: Spelling Checker 

We now illustrate the use of transformations in prototyping by means of an 
example. We outline a process of specification and design of a spelling correc­
tion system. A specification for the initial version of a prototype is shown in 
Figure 5. 

The spelling checking function is specified by giving a postcondition de­
scribing its required output. Since the function is supposed to produce the 
required output for all possible inputs, there is no precondition given. The 
concept is an auxiliary definition describing the intended interpretation of the 
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FUNCTION spell 
IMPORT sorted FROM sequence{ word} 
IMPORT Subtype FROM type 

MESSAGE( report: sequence{ word}, 
dictionary: set{ word}) 

REPLY (errors: sequence{ word}) 
WHERE ALL(w: word:: w IN errors<=> 

w IN report & -(w IN dictionary)), 
sorted {less_or _equal@word }(errors) 

CONCEPT word: type 

END 

WHERE Subtype(word, string), 
ALL( c: character, w: word :: c IN w => 

cIN ({a .. z} U {A .. Z})) 

Figure 5: Specification of Initial Spelling Checker 

type word. The initial prototype is written in terms of abstract inputs and out­
puts, and the default methods are used for reading input data and displaying 
output data. The types set, sequence and type are pre-defined in the standard 
Spec library, which can be found in [8]. Definitions of selected reusable con­
cepts such as the predicate sorted from these standard specification modules 
are incorporated into the example via IMPORT declarations. 

This specification can be realized by a design that decomposes it into two 
more primitive functions as shown in Figure 6. 

dictionar 

re ort check errors sorLword 
sorted_errors 

Figure 6: Initial Decomposition 

The specifications for the subfunctions check and sorLwords are given in 
Figure 7. Sort is defined as a generic module, and sorLwords is declared as an 
instance of that generic module. 

After building the prototype according to this design, by utilizing reusable 
software components in a software base, the prototype is demonstrated to a 
potential user. A user remarks that many terms commonly used in his business 
are reported as spelling errors, such as names of products and suppliers. The 
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FUNCTION check 
IMPORT word FROM spell 

MESSAGE(report: sequence{word}, dictionary: set{word}) 
REPLY( errors: sequence{ word}) 
WHERE ALL(w: word :: w IN errors <=> 

w IN report & -( w IN dictionary)) 
END 

FUNCTION sort{ t: type, 
le: function{from:: [t, t], to:: boolean}} 

WHERE totaLordering(le) 

IMPORT totaLordering FROM totaLorder{t} 
IMPORT sorted permutation FROM sequence{ t} 

MESSAGE(in: sequence{ t}) 
REPLY( out: sequence{ t}) 
WHERE sorted{le}(out), permutation(in, out) 

END 

INSTANCE sort_words = sort{words, less_or_equal@word} END 

Figure 7: Specifications for Subfunctions 

customer does not like this and wants it fixed. The designer notices that 
such terms are likely to be different for different installations and suggests 
augmenting the design with a private dictionary that can be augmented by 
each user to fit local needs. The specification for the modified design is shown 
in Figure 8. The added text is placed inside boxes. 

The modified design is produced by a constraining transformation which 
adds an additional conjunct to the postcondition, further constraining the 
output and requiring an additional input for the function. An initial modified 
design is obtained by noting that to implement the new version of spell, one 
can simply call the old one and pass to it as a second parameter the union of 
the dictionary and the private_dictionary. This is illustrated in Figure 9. 

A more concrete design, in terms of the subfunctions is obtained by adding 
an intermediate subfunction for checking the additional constraint is shown in 
Figure 10. 

One can characterize the various stages of the process as follows. We 
consider the document in each version as a collection of Spec modules and 
design graphs. 

1. A specification of spell (Figure 5). 
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FUNCTION spell 
IMPORT sorted FROM sequence{word} 
IMPORT Subtype FROM type 

MESSAGE( report: sequence{ word}, 

dictionary I private_dictionary I : set{ word}) 
REPLY(errors: sequence{word}) 
WHERE ALL(w: word:: w IN errors<=> 

w IN report & ~cw IN dictionary) 

I & ~cw IN private_dictionary) I ), 
sorted {less_or _equal@word} (errors) 

CONCEPT word: type 

END 

WHERE Subtype(word, string), 
ALL( c: character, w: word :: c IN w => 

c IN ( { a .. z} U { A .. Z})) 

Figure 8: Transformed Specification for the Spelling Checker 

2. A specification of spell, and initial decomposition of it (Figure 5,6). 

3. A specificdion of spell, initial decomposition of it, and specification of 
the components (Figure 5,6,7). 

4. A specification of the new version of spell (Figure 8). 

5. A specification of the new version of spell, and its decomposition in terms 
of the old one (Figure 8,9). 

6. A specification of the new version of spell, and a redesign, using the 

ri va te_di ctionar 

dictionar 

seLunion 

re ort spell sorted...errors 

Figure 9: New Spell 
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rivate_dictionar 

dictionar 

.----potential ____ _ 
_errors check errors check sort_word 

sorted_errors 

Figure 10: Transformed Decomposition 

components of the old spell (Figure 8,10). 

7. A specification of the new version of spell, the redesign, using the compo­
nents of the old spell, and the specification of these subfunctions (Figure 
8,10,7). 

The particular steps taken can be described as follows: 

1 ~ 2 This step introduces more details a design, so the transformation 
applied is a refinement. The resulting document has a lower abstraction 
level. 

2 ~ 3 This step also introduces more details - a specification for the sub­
functions that appear in the design of the input document, so it is also 
a refinement. Note that this will probably be realized as a sequence of 
two refining transformations, each one introducing the specification of 
one of the subfunctions. The order of application is arbitrary, as the two 
transformations are independent of each other. 

1 ~ 4 This step changes the behavior of the system. The modified specifi­
cation is produced by a constraining transformation which adds an ad­
ditional conjunct to the postcondition, further constraining the output 
and requiring an additional input for the function. The transformation 
applies to stage 1, and not stage 3, because we are not dealing with the 
lower level information. The resulting output therefore does not include 
the information of Figure 5,6,7. These modules are conceptually still in 
our "library", representing the old version of spell, which has not been 
removed. 

4 ~ 5 This is a refinement, since a design is added. 

Since this new version includes a reference to the old version of spell, we 
could at this stage apply the transformations that were applied in step 
1 ~ 2 and step 2 ~ 3. However, we have decided to proceed with the 
following step. 
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5 ~ 6 This is a reformulating transformation which does not affect the be­
havior but simplifies the implementation. The transformation reduces 
the number of distinct types of components in the design without intro­
ducing any new types, and therefore reduces the implementation cost. 

6 ~ 7 This is an application of the same transformation that was applied in 
the step 2 ~ 3. 
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4 Tool Support and Future ork 

The previous sections give the foundation for a transformational software pro­
totyping methodology. This approach needs automated support to achieve 
a practical impact. In this section we explore some tools and conceptual ad­
vances needed to make this approach work smoothly. The main components of 
a system to provide this support are the transformations themselves, a seman­
tic framework for representing and analyzing the transformations, and tools 
for: 

• finding relevant transformations, 

• applying transformations to software components, 

• deducing transformations from software components, 

• recording derivation histories, 

• and managing design changes. 

Any transformation system must supply a collection of transformation rules 
from which the user and/ or system can choose [25]. These can be in the form of 
a finite catalog, or a countable generative set from which transformation rules 
are generated on demand. The choice of which transformations to include in 
the system determines both the capabilities of the system and the amount 
of effort the designer must spend to use the system. The collection of trans­
formations encapsulates knowledge about the software development process, 
as well as domain specific knowledge. Much work is needed to establish the 
specific transformations and transformation structures that are needed. Initial 
investigations should focus on transformations applicable to a particular ap­
plication domain, to build better models of the design process and determine 
the most effective structure for the space of transformations without getting 
bogged down in the analysis of large application domains. 

Transformations can be classified as those applied automatically by the sys­
tem and those chosen interactively by the system designer. It is desirable for a 
transformation system to apply some transformations without user interaction, 
to reduce the burden on the designer. Transformations chosen automatically 
by the system must have practically computable criteria for applicability, and 
these criteria must correspond to the intentions of the designer. Only univer­
sally desirable criteria such as simplicity and efficiency can be implicit in a set 
of transformations. In practice, many design decisions involve tradeoffs be­
tween conflicting design goals. Consequently, a transformation system should 
provide facilities for describing design goals and criteria for judging their rela­
tive importance, so that the designer can guide the system without having to 
specify each individual transformation. 
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The transformations chosen by the designer should correspond directly to 
design decisions at a level of detail natural for a human designer, so that the 
designer can efficiently construct a design and the system can keep a useful 
record of the design history. The primitives of common design notations such 
as specification languages and diagrams are at a much lower level of detail than 
the decisions commonly made by system designers. Two possible approaches 
to this problem are either to work with larger units than the primitives of the 
notation, or to work in a more abstract space that corresponds more closely 
to the designer's conceptual universe, and to generate the detailed design rep­
resentations via automated translation steps. 

The relation between these two approaches can be understood by analogy 
with syntax-directed editors (26]. In such systems there are two ways to add 
syntactic detail to a partial design: via a template transformation, or by enter­
ing free text. The template transformations are determined by the grammar 
of the source language - there is one alternative for each production whose left 
hand side matches the currently selected syntactic category. The grammar 
thus defines a finite number of choices, which can be chosen from an automat­
ically constructed menu. Although all sentences in the source language can be 
generated by template expansion, this can be tedious in cases where templates 
have few terminal symbols, such as infix operators in arithmetic expressions. 
The other input mechanism, free text entry, is used to handle such situations 
more efficiently. The templates implicit in the free text are identified by a 
parsing operation which builds a syntax tree according to the grammar of the 
source language. 

Refining transformations are the semantic analog to the text entry opera­
tions of a syntax-directed editor. In cases where the semantic choices available 
to the designer is finite and can be predicted by the system, a choice can be 
picked from a menu. This requires developing a characterization of the design 
space analogous to a grammar for the source language of a syntax-directed 
editor. However, the semantic design space is less well understood than the 
syntax of a context free language, and is likely to be more complex. In par­
ticular, it may not be possible to construct a closed description of the set of 
choices available to the designer in some situations, and in some situations the 
number of choices may not be finite. The process of free text entry is therefore 
likely to be necessary for semantic decisions, in addition to being a practical 
aid to efficiency of design entry in some situations. A transformation system 
supporting such a mode should have an analog to the parsing process, which 
attempts to reconstruct the set of primitive refining transformations that lead 
to the result of the free text entry step. Such a matching process is likely to 
be computationally expensive, and may be practical only for relatively small 
refinements. The advantage of providing such a process is that the internal 
representation of the derivation tree for the design provides a record of the 
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designer's thoughts, which may be useful for mechanical aid in later changes 
to the design. More work on models of software design decisions is needed to 
enable the implementation of such a facility. 

A tool with such a facility for reconstructing primitive design decisions 
would have full knowledge of the sequence of transformations by which we 
reached the current version of the prototype for each stage of the process. 
This will help us to go back to a previous stage, and change some of our 
decisions. This is reminiscent of the scenario outlined in [31, l]. It is therefore 
desirable to make each transformation correspond to a single design decision. 
It is believed that incremental transformations can be almost self documenting 
in this respect. 

Incremental transformations are also likely to have another advantage. If 
two transformations applied to different parts of the system are independent, 
which is often the case, they can be reordered. Consider the case in which a 
transformation T1 was performed, followed by T2 , which deals with a different 
part or aspect of the system. Suppose that at a later time, we wish to change 
the design decision that triggered the application of T1 . We back up to that 
point, and apply T{ instead. It is very likely that we can now perform T2 again, 
since the local changes due to T{ probably do not affect the applicability of 
T2 • We would like our tool to identify the cases where the transformation may 
be dependent, and alert the user to check if this is the case. In situations 
where the tool is able to ascertain independence, automatic re-application of 
the transformation should follow. 

Clearly, not all desired transformations can be automated. Whenever the 
user adds a module, for instance, he is applying a refinement. This may 
be automated in some existing transformation systems designed to construct 
a program from specification. However, we do not wish to assume such a 
transformation can always be deduced by the tool. We want to allow the user 
to freely write such a module. The tool will then be required to keep track of 
this application, so that a full path is recorded. In addition, it may be possible 
to deduce from it a general transformation rule and some conditions on when 
it may be applied, and add this rule to the transformation library. Sometimes 
a single design step the user performs can be represented as a sequence of 
simpler transformations. Since incremental transformations are desirable, we 
would like the tool to help decompose this step into its constituent steps, and 
record them as such. Transformations that are the result of the user adding 
a conjunct to a precondition ( or a postcondition) may automated, though 
probably not always. The tool should be able to suggest canonical ways to 
constrain a condition, depending on the module being handled. Needless to 
say, transformations that remove a conjunct from a condition are much easier 
to automate. 

22 



Some examples of design level transformations for creating refinements 
which have systematic characterizations follow: 

• Implement a concept as a lower level component (indicated for concepts 
appearing in preconditions). The specification for the lower level compo­
nent can be automatically constructed in such a case. Generalize ( make 
a constant or an expression into a generic parameter). Even though this 
represents a single design decision, it will be reflected in many places in 
most design representations (i.e. in the definition of the module with the 
extra parameter, and in each use of that module). 

• Extend a function from individuals to a collection (sequence, set, vector). 

• Extend a function by generalizing the type of an input parameter (re­
placing it by a supertype). 

• Strengthen a function by specializing the type of an output parameter 
(replacing it by a subtype or adding a new postcondition). 

• Transform a predicate into a generator of values satisfying the predicate. 

• Implement a data type using a direct storage representation (no point­
ers). This kind of a design decision, as well as the ones that follow, 
can be recorded as a Spec pragma [8], and some of the features of the 
programming language level interface implied by such a decision can be 
constructed automatically. 

• Implement an input value and an output value as a single in-out param­
eter (limited lifetime of input data). 

• Implement an output sequence via a time series (incremental generator). 

One of the challenges facing future research on meaning-adding transforma­
tions is to span all or most of the software design space with a manageable set 
of transformations such as the ones listed, to provide automatic procedures 
for applying them, and providing automatic or computer-aided procedures 
for decomposing manually entered design changes into sequences of primitive 
transformations. 

Our approach is different from that of [20]. The transformations presented 
in [20] are characterized by their effect on the specification when viewed as 
a semantic network. This view seems to be at a syntactic, rather than se­
mantic level. For example, several splicing transformations are given. All of 
them introduce a new node in a graph, between two adjacent nodes. These 
transformations include, among others one that adds a statement between 
two adjacent statements in sequential composition, and another that adds an 
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intermediate type in a type hierarchy (between two existing types). When 
viewed semantically, these are completely different kinds of transformations. 
Moreover, the nature of the change in the particular graph gives very little 
insight to the nature of the change of the meaning in the specification. 

In contrast, our goal is to provide transformations that clearly reflect design 
decision. We would like to have the designer work in the semantic level that 
is appropriate for the job at hand. 

It is clear that the transformation in [20] are intimately connected with the 
specifics of Gist, the specification language used. 
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