“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2002-12

Dynamic Assembly for System Adaptability,
Dependability, and Assurance

Luqi

Naval Postgraduate School

Luqi, "Dynamic Assembly for System Adaptability, Dependability, and Assurance,
(DASASA) Project", Technical Report, NPS-SW-013, December 2002.
https://hdl.handle.net/10945/65208

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NPS-SW-02-013

NAVAL POSTGRADUATE SCHO()L
Monterey, California

Dynamic Assembly for System Adaptability,
Dependability, and Assurance (DASADA) Project

. Progress Report (10/01/2001-9/30/2002)
By
Luqi

September 2002

Approved for public release; distribution is unlimited.

Prepared for: Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA. 22203-1714

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
9/30/2002 Progress Report
_ 10/01/2001 — 9/30/2002
4. TITLE AND SUBTITLE : 5. FUNDING NUMBERS
Dynamic Assembly for System Adaptability, Dependability, and Assurance 01-K962

(DASADA) Project — Progress Report (10/01/2001 — 9/30/2002)

6. AUTHOR(S)
Professor Lugi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION
Software Engineering Automation Center, REPORT NUMBER
Naval Postgraduate School, Monterey, CA 93943 NPS-SW-02-013

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Defense Advanced Research Projects Agency AGENCY REPORT NUMBER
3701 North Fairfax Drive ’

Arlington, VA. 22203-1714

11. SUPPLEMENTARY NOTES .
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of our effort is to analyze the research results of DASADA program, to
provide recommendations to the Program Manager on the merits of new software engineering
technologies and their possible integration with respect to future Department of Defense
(DoD) systems, and to facilitate the transfer of DASADA technologies to DoD users. Our
work focuses on applying DASADA technologies to the areas including rapid reconfigurable
weapon software architecture, software module interoperability, COTS interaction and
collecting reliable measures for predicting software development time by probes. For this
purpose, we conducted research on MetaH avionics architecture description language and
developed models and methods for solving the integration and interoperability problems in
component-based distributed heterogeneous systems. Moreover, we developed a modified model
to predicate software development time and assess the risk on the basis of reliable
_measures collected in early phases of software development. We also educated DoD engineers
and military officers on DASADA technologies via distance learning and integrated concepts
and technologies of DASADA into some courses such as SW4599 and SW4582.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Architecture Description Language, Interoperability, COTS integration, Risk Assessment 77

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

I. PROGRESS REPORT.........ooosssroorerrr S — 1
1. Statement of the Problem Studie_d st s st st s b s 1
2. Summary of Tasks Aceomplished In FY02 .cocdisssmsmsmmmumssssssssssmssessssmansaminatse 1
3. Highlights of Important REeSUIES.......cocovuiriiiiiiiiiiiieiciiccccc e 2
4, DDIEIIVELS uvssersnssssssnsssssnsassssunsassonsessmsssssassssnsssasissssanassassaninessssssssesasssssassssensssssessssssssssnsninassn 6
I APPENDICES.......ovocoireeuimieseissiessessmessessseessss e sesssessssesssesssessessssseeessssesee s eessrrene 8
Dissertations 1A THESES. ivemsiss cnsonnsonanmmnssomers snagms smmnmmee sambmes s § oo msse s vy pass 9
1. “Heterogeneous Software System Interoperability Through Computer-Aided
Resolution of Modeling Differences”, by P.Young........ SRR S 8 b B S 10
2. “Enhancements and Extensions of Formal Models for Risk Assessment in Software
Projects”, by Michael R. Murrah.c.coviiiiiiiiiiiiii e, 10
3. “Class Translator for the Federation Interoperability of Object Model (FIOM)”, by
e B .o s it ST ARG 3SR AU i SRS 6 Wty KT S 11
4., “XML As a Data Exchange Medium for DoD Legacy Databases”, by K.
PRl . s ov scimmmsitsmss s o s » 5o o) S AN 0 K A VST R RBETSAAS: 12
5. “Application Programmer’s Interface (API) for Heterogeneous Language
Environment and Upgrading the Legacy Embedded Software”, by T. C.Moua.....12
FY2002 Technical PubliCations. ... « cousvs sutsonunss pronns smoves wvenns sy spmpny s snssns vs sassssns 13
1. “Formal Specification of Generative Component Assembly Using Two-Level
Grammar”, by B. Bryant, M. Auguston, R. Raje, A. Olson and C. Burt............ 14
2. “Quality of Service Behavioral Model from Event Trace Analysis”, by J.
Drummond, Luqi, W. Kemple, M. Auguston and N. Chaki.................oo.oo..e. 22
3. “A Better XML Parser through Functional Programming”, by O. Kiselyov........38
“Holistic Framework for Establishing Interoperability of Heterogeneous Software
Development Tools and Models”, by J. Puett.............c i 54
3. “Optimizing Systems by Work Schedules (a Stochastic Approach)”, by W. Ray,
Tagl, And V. Bt ...vuioommsmsnssssmsnsnn sss mmoms mamsm s apmmsmss s S5555 5558 580565 455 59
6. “A Unified Approach to Component Assembly Based on Generative
Programming”, by W. Zhao, B. Bryant, R. Raje, M. Auguston, A. Olson and C.
I s 5ot v i wnamonems « pesmmd v SuieBos VAT sl s wamEe s KT Faees ¢ SE . BAAGED 67
7. “Using an Object Oriented Model for Resolving Representational Differences
between Heterogeneous Systems”, by P. Young, V. Berzins, J. Ge, and Lugi.......69
T, DISTRIBUTION LIST. s n somssucms svsmssman s ucmme scbbeionsh o Sk bbb s 8 sssons s s i s siszanin 77

Table of Contents

11

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison - Richard S. Elster
Superintendent Provost

This report was prepared for and funded in part by the Defense Advanced Research Projects
Agency.

This report was prepared by:
Lugi
Professor, Computer Science
Reviewed by: Released by:
Luqi D. W. Netzer
Director, Software Engineering Associate Provost and

Automation Center Dean of Research

Progress Report

Dynamic Assembly for System Adaptability, Dependability, and Assurance
(DASADA) Project

10/01/2001-9/30/2002

1. Statement of the Problem Studied

The DoD is aware that as software becomes more complex,
it will become extremely critical to have the ability for
components to change themselves by swapping or modifying
components, changing interaction protocols, or changing its
topology. The Defense Advanced Research Programs Agency
formed .the Dynamic "Assembly for Systems Adaptability,
Dependability, and Assurance (DASADA) program in order to
task academia and industry to develop dynamic gauges that
can determine run-time composition, allow for the continual
monitoring of software for adaptation, and ensure that all
user defined properties remain stable before and after
composition and deployment. The objectives of this project
are to analyze the research results of DASADA program, to
provide recommendations to the Program Manager on the
merits of new software engineering technologies and their
possible integration with respect to future Department of
Defense (DoD) systems, and to facilitate the transfer of
DASADA technologies to DoD users.

In FY01l, we have accomplished following tasks:

e (Conducted critical study and review of the 19 DASADA
projects,

e Educated DoD engineers and military officers on DASADA
technologies via distance learning,

e (Conducted in-depth case study of one the EDP programs,

e Developed checklist and template for DASADA technology
evaluation,

e Developed a guide to help DoD managers to select
software metrics in acquiring new technologies for
weapon systems software. ’

2. Summary of tasks accomplished in FYO02

e Educated DoD engineers and military officexrs on DASADA
technologies via distance learning.

e Integrated concepts and technologies of DASADA into
some SW courses
> SW4599 - Automated Hardware/Software Integration in
DOD
> SW4582 — Weapon Systems Software Safety

¢ Conducted zresearch on MetaH avionics architecture
description language.

e Developed models and methods for solving the
integration and interoperability problems in
component-based distributed heterogeneous systems.

o De%eloped a modified mwmodel to predicate software
development time and assess the risk on the basis of
reliable measures collected in early phases of SW
development. '

3. Highlights of important results

In FY02, we have made lots of efforts on educational
programs to propagate the DASADA technologies to the
military students and direct doctoral and master students
to apply DASADA technologies to DoD projects. We offer two
courses (SW4599 and SW4582) to integrate the concepts and
technologies of DASADA. "

SW 4599--- Automated Software/Hardware Integration in DoD

Automated software/hardware integration is a key problem
for current software development in DoD. This course covers
some important aspects of this field, including software
prototyping, interface integration, data integration, and
control integration. Automatable decision support methods
for software/hardware integration are also discussed.

SW 4582--- Weapon Systems Software Safety

This course treats software safety from a systems
perspective. It contributes to introduce the system safety
technologies to the DoD officers. This course addresses the
topic of safety along three dimensions: systematic
assessment and management of risk, designing safety into a
system starting with system conceptualization, and applying
system safety theory, principles, techniques, and tools to
build safety cases for the purposes of certifying and
accrediting software for use im safety-critical
applications and infrastructures.

We conducted in-depth study of DASADA technologies include
follows: . ,

e MetaH (modeling, timing analyéis),

e TUNCLE (constraint consistenc??gauges),

e (QRAM (resource allocation gauges),

e IMPACT (system load tracking-and visualization),

e SIM-TABASSCO (Semantic Intercoperability Measures:
Template-Based Assurance of Semantic Interoperability
in Software Composition), '

e Veridian Pacific-Sierra Resea¥rch (terrain-reasoning
software being reconfigured wvia the Venice tool),

e Proteus (run time and design time gauges for alternate
architecture deployment) . '

On the basis of the study of these technologies, we
directed our doctoral and master students to conduct a
series of research efforts on -the. areas including rapid
reconfigurable weapon software = architecture, software
module interoperability, COoTS integration and SW
development time predicting.

Research on MetaH avionics architecture description

langgage

We conducted the study to identify ways in which the
emerging standard SAE Avionics Architecture Description
Language (AADL) and associated tools and methods can
beneficially support avionics safety and airworthiness
certification.

We gave preliminary recommendations and guidelines for
extension and use of the AADL and supporting tools and
methods for avionics system safety assurance and avionics
system design assurance.

We also conducted a comparative survey of FAA and Army
avionics airworthiness certification processes, .guidelines,

standards and methods. Acquisition reform and the MilSpec
Reform initiative encourage the = use of commercial
standards, processes and products wherever suitable. An
improved ability to <zreuse civil . avionics can reduce
military acquisition costs. An AADL toolset suitable for
both civil and military applications can - have its cost
shared across a larger market. Consequently, this study

evaluated both civil and Army airworthiness certification
regulations, guidelines, standards and methods.

Research on software module interoperability and COTS
integration :

Meeting future system reguirements by integrating existing
stand-alone systems is attracting renewed interest.
Computer communications advances, functional similarities
in related systems, and enhanced information description
mechanisms suggest that improved capabilities may be
possible; but full realization of this potential can only
be achieved if stand-alone systems are fully interoperable.
Interoperability among independently developed
heterogeneous systems 1s difficult to achieve: systems
often have different architectures, different hardware
platforms, different operating systems, different host
languages and different data models. '

We have developed the Object-Oriented Model for
Interoperability (OOMI) to capture the information required
for resolving modeling differences in a federation of
independently developed heterogeneous systems. In this
study, a model of the information and operations shared
among systems, termed a Federation Interoperability Object
Model (FIOM) , is defined SO that defining the
interoperation between systems in terms of an object model
provides a foundation for easy extension as new systems are
added to the existing federation of systems. Construction
of the FIOM is done prior to run-time with the assistance
of a specialized toolset, the OOMI Integrated Development
Environment (OOMI IDE). Then at runtime, OOMI translators
utilize the FIOM to automatically resolve differences in
exchanged information and in inter-system operation
signatures. This study provides an efficient way to
integrate existing stand-alone systems and enable the
software module interoperability for many DoD large-scale
applications. -

Legacy software systems in the Department of Defense (DoD)
have been evolving and are becoming increasingly complex
while ©providing more functionality. The shortage of
original software designs, lack of corporate knowledge and
software design documentation, unsupported programming
languages, and obsolete real-time operating system and
development tools have become critical issues for the
acquisition community. Consequently, these systems are now
very costly to maintain and upgrade in order to meet

current and future functional and nonfunctional
requirements.

We addressed the issue of interoperability in DoD legacy
system databases and evaluated XML as a tool for
transferring message data between varied systems.

With the demands for increased communication, the dire
requirement for a common mode of information transfer is
greatly realized. Many legacy systems have developed their
own unique interfaces. XML is one solution which can help
ease the transition to a common interface. A software
program was developed to generate select messages in their
native and XML formats.

~We proposed a new interoperability model for re-engineering
of old procedural software of the Multifunctional
Information Distributed System Low Volume Terminal (MIDS-
LVT) to a modern object-oriented architecture. In the MIDS-
LVT modernization acquisition strategy, only one Computer
Software Configuration Item (CSCI) at a time will be
redesigned into an object-oriented program while
interoperability with other unmodified CSCIs in the MIDS-
LVT distributed environment must be maintained. Using this
model, each legacy CSCI component can be redesigned
independently without affecting the others. '

Research on methods for predicting SW development time and
assessing the risk

Risk management 1s most effective 1in impacting the
project’s success 1f project. risks are identified and
mitigated early in the software lifecycle. We developed a
set of metrics for risk assessment and development efforts
predicting. These metrics can be automatically collected
from early phases of the life cycle of software
development. Based on the metrics, the Modified Risk Model
was developed. Additionally, the Modified Risk Model is
versatile enough to be adapted to any software development
activity.

The Modified Risk Model is a macro model developed to aid
program managers in effectively planning the required
effort to deliver software products. The model projects the
probability of completing a software project, subject to
the available resources supplied by management. Inverse,
when given the probability of completing a software

project, this model can predicate the required efforts of
SW development. This approach to software project risk
management is unique because the model’s input parameters
are derived. Different program managers would derive the
same projections on the same software project.

4. Deliverables

Dissertations and Theses

1)

3)

4)

5)

Michael R. Murrah, Enhancements and Extensions of
Formal Models for Risk Assessment 1in Software
Projects, ©Ph.D. dissertation, Naval Postgraduate
School, Monterey, .CA, - September 2002. °

Paul B. Young, Heterogeneous Software System
Interoperability Through Computer-Aided Resolution
of Modeling Differences, Ph.D. dissertation, Naval
Postgraduate School, Monterey, CA, July 2002.

Shong Cheng Lee, Class Translator for the Federation
Interoperability Object Model (FIOM) , Master’s
thesis, Naval Postgraduate School, Monterey, CA,
March 2002. -

Kris Pradeep, XML As A Data Exchange Medium For DoD
Legacy Databases, Master’s thesis, Naval
Postgraduate School, Monterey, CA, March 2002.

Theng C. Moua, Application Programmer’s Interface
(API) for Heterogeneous Language Environment and
upgrading the Legacy Embedded Software, Master’s
thesis, Naval Postgraduate School, Monterey, CA,
March 2002.

Papers

1)

2)

3)

Luqgi, Ying Qiao, Lin Zhang, “Computational Model for
High-confidence Embedded System Development”,
Monterey Workshop 2002--- Radical Innovations of

.Software and Systems Engineering in the Future,

Venice, Italy, October, 7-11, 2002.

J. Drummond, Lugi, W. Kemple, M. Auguston, and N.
Chaki. “Quality of Service Behavioral Model from
Event Trace Analysis.” Proceedings of the 78
international Command and Control Research and
Technology Symposium (CCRTS 2002), Quebec City,
Quebec, 16-20 September 2002. .

W. Ray, Lugi, and V. Berzins. “Optimizing Systems
by Work Schedules (a Stochastic Approach) .”
Proceedings of the Workshop on Software Performance
(WOSP 2002), Rome, Italy, 23-26 July 2002.

S

#

4)

5)

R y[f‘)l s,

P. Young, V. Berzins, J. Ge, and Lugi. “Using an
Object Oriented Model for Resolving Representational
Differences between Heterogeneous Systems.”

Proceedings of 17% ACM Symposium on Applied
Computing, Madrid, Spain, 10-14 March 2002.

W. Ray, Realizing Adaptive Systems, 17" Annual ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Washington State
Convention & Trade Center, Seattle, Washington, USA,
November 4-8, 2002.

Hetero geneous Software System Interoperability Through Computer-Aided
-Resolution of Modeling Differences

Paul B. Young (Ph. D)

Meeting future system requirements by integrating existing stand-alone systems is
attracting renewed interest. Computer communications advances, functional similarities
in related systems, and enhanced information description mechanisms suggest that
improved capabilities may be possible; but full realization of this potential can only be
achieved if stand-alone systems are fully interoperable. Interoperability among
independently developed heterogeneous systems is difficult to achieve: systems often
have different architectures, different hardware platforms, dlfferent operating systems,

- different host languages and different data models. .

The Object-Oriented Method for Interoperability (OOMI) introduced in this
dissertation resolves modeling differences in a federation of independently developed
heterogeneous systems, thus enabling system interoperation. First a model of the
information and operations shared among systems, termed a Federation Interoperability
Object Model (FIOM), is defined. Construction of the FIOM is done prior to run-time
with the assistance of a specialized toolset, the OOMI Integrated Development
Environment (OOMI IDE). Then at runtime OOMI translators utilize the FIOM to
automatically resolve differences in exchanged information and in inter-system operation
signatures.

Enhancements and Extensions of Formal Models for Risk Assessment in
Software Projects

Michael R. Murrah (Ph. D)

The Modified Risk Model is a macro model developed to aid program managers in
effectively planning the required effort to deliver software products. The model projects
the probability of completing a software project, subject to the available resources
supplied by management. This approach to software project risk management is unique
because the model’s input parameters are derived. Subjective variables are not part of the
model. Different program managers would derive the same projections on the same
software project. '

Risk management is most effective in impacting the project’s success if project risks
are identified and mitigated early in the software lifecycle. The Modified Risk Model was
developed specifically for this purpose. Additionally, the Modified Risk Model is
versatile enough to be adapted to any software development activity.

Validation of the model occurs in approximately 2,000 software projects. During these
preliminary experiments, the Modified Risk Model out performed the macro models of
Basic COCOMO and the Simplified Software Equation. However, to date, operational
tests have not been conducted on the model.

10

The Modified Risk Model requires four parametric inputs, all of which are
automatically collectable and derived extremely early in the software lifecycle:

. Organization. The MRM implements a measure to capture the efficiency of a

software development organization.

e - Complexity. The MRM architecture accommodates 1nterface with the
Computer Aided Prototyping System developed at the Naval Postgraduate
School. (Dupo02) and this research are capable of deriving key complexity
measures from the machine generated specification code. The MRM is capable
of using different complexity measures as a “plug- ins”; thus, allowing the
model to interface with organizations not equipped with CAPS.

o Requirements. A software project can be viewed as a finite set of issues that
require resolution prior to project completion. These issues are not fully
revealed in the beginning of the process. The MRM captures the stability of the
known issues and adjusts projections based on the introduction or deletion of
additional issues. As with the other model parameters, requirements volatility is
completely adaptable to unique software development situations. A risk analyst
can choose to momtor the change in the project’s risk or implement static
projections.

o Management Trade-Offs. To successfully develop software, a balance rmust

" exist between the organization (efficiency), product attributes (complexity), and
project stability (requirements volatility). In reality, this is not always the case.
It becomes the responsibility of management to balance the equation.
Management applies resources (time and people) to achieve a successful
balance.

The Modified Risk Model lets management know how well balanced is the software
development. The risk analyst also has the ability to derive the Management Trade-Offs
within a confidence interval. With this information, management can implement any
suitable staffing profile to achieve the model’s projection. -

Class Translator for the Federation Interoperability Object Model (FIOM)
Lee, Shong Cheng (Master)

There is a growing need for systems to inter-operate in order to facilitate information
sharing and to achieve objectives through joint task executions. The differences in data
" representation. between the systems greatly complicate the task of achieving
interoperability between them. Young’s Object Oriented Method for Interoperability
(OOMI) defines an architecture and suite of tools to resolve representational differences
between systems. The OOMI architecture and tool suite will reduce the labor-intensity
and complexity of the integration of disparate systems into a cooperative system of
systems (federation of systems) and their subsequent deployment. At the heart of this
architecture is the definition of translations between any two different classes of objects
and a run-time component (the Transiator) that will execute such translations.

11

This thesis describes a prototype framework that implements the OOMI, a prototype
class translation code generator that assists an Interoperability Engineer in the definition
of the translations and a prototype Translator that executes these translations.

XML As A Data Exchange Medium For DoD Legacy Databases
. Kris Pradeep (Master) |

This thesis addresses the issue of interoperability in DoD legacy system databases and
evaluates XML as a tool for transferring message data between varied systems.

With the demands for increased communication, the dire requirement for a common
mode of information transfer is greatly realized. Many legacy systems have developed
their own unique interfaces. XML is one solution which can help ease the transition to a
common interface.

This thesis is a part of a larger team effort. In contributing to this larger effort, a
software program was developed to generate select messages in their native and XML
formats.

Application Programmer’s Interface (API) for Heterogeneous Language
Environment and upgrading the Legacy Embedded Software

Theng C. Moua (Master)

Legacy software systems in the Department of Defense (DoD) have been evolving
and are becoming increasingly complex while providing more functionality. The shortage
of original software designs, lack of corporate knowledge and software design
documentation, unsupported programming languages, and obsolete real-time operating
system and development tools have become critical issues for the acquisition community.
Consequently, these systems are now very costly to maintain and upgrade in order to
meet current and future functional and nonfunctional requirements.

This thesis proposes a new interoperability model for re-engineering of old
procedural software of the Multifunctional Information Distributed System Low Volume
Terminal (MIDS-LVT) to a modem object-oriented architecture. In the MIDS-LVT
modernization acquisition strategy, only one Computer Software Configuration Item
(CSCI) at a time will be redesigned into an object-oriented program while interoperability
with other unmodified CSCIs in the MIDS-LVT distributed environment must be
maintained. Using this model, each legacy CSCI component can be redesigned -
independently without affecting the others.

12

Formal Spemﬁcatlon of Generatwe Component Assembly Using
Two-Level Grammar * |

Barrett R. Bryant

Computer and Information Sciences
University of Alabama at Birmingham
Birmingham, AT 35294-1170, U. S. A.

bryant@cis.uab.edu -

Rajeev R. Raje Andrew M. Olson
Computer and Information Science

Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, U. S. A.
{rraje, aolson}@cs.iupui.edu

- | Abstract

Two-Level Grammar (TLG) is proposed as a for-
mal_specification language for generative assembly of
components. Both generotive domain models end gen-
erative rules may be ezpressed in TLG and these spec-
ifications may be automatically translated into an im-
plementation which realizes an integration of compo-
nents according to the principles of the Unified Meta-
component Model (UMM) and Unified Approach (UA)
_ to component integration. Furthermore, this imple-
mentation realizes Quality of Service (QoS) guarantees
by means of static QoS verification at the time of sys-
tem assembly, and dynamic QoS validation on a set of
tesz cases. »

1, Introduction

The recent shift in the focus of OMG (Object
Management Group) to “Model Driven Architecture”
- (MDA) [17] is a recognition that to create mechanized
software and bridging of component architectures re-
quires standardization not only of infrastructure but
also Business and Component Meta-Models. This em-
phasizes the fact that a comprehensive meta-model,

=This material is based upon work supported by, or i part

by, the U. S. Army Research Laboratory and the U. S. Army’

Research Office under contract/grant numbers DAA4D19-00-1-
0350 and 40473-M4, and by the T. S. Office of Naval Research
under award number N00014-01-1-074

Mikhail Auguston
Computer Science
New Mexico State University
Las Cruces, NM 88003, U. S. A.
mikau@cs.nmsu.edu

Carol C. Burt
Computer and Information Sciences
University of Alabama at Birmingham
Birmingham, AL 35294-1170, U. S. A
cburt@ms uab.edu

that seamlessly encompasses heterogeneous compo-
nents by capturing their necessary aspects including
Quality of Service (QoS) and associated guarantees,
is needed for creating future genera.ﬁon of chstnbuted '
systems .
" The UniFrame project proposes a u:mﬁed meta-
_component model (UMM) [18] for .distributed
component-based systems, and a Unified Approach
(UA) [19] for integrating these components. The core
parts of the UMM are: components, service and service
guarantees, and infrastructure. UMM provides an
opportunity to bridge gaps that currently exist in the
standards arena. The creation of a software solution
for a distributed computing system (DCS), using UA,
has two levels: a) component level — developers create
components, test and validate the appropriate QoS
- and deploy the components on the network, and b)
system level — a collection of components, each with a.
specific functionality and QoS, and a semi-antomatic
generation of a software solution for a particular DCS -
is achieved. 4 .
" The basis for the automatic generation of sofiware
is a Generative Domain Model (GDM) as employed.
in Generative Programming [9]. This model consists
.of two parts: a.problem space and a solution space.
The former is the collection of concepts and features
that occur in an application domain, such as a par-
ticular kind of business, and that determine the na-
- ture of problems in the domain. These may be ex-
pressed in various ways, but common ones are UML,
ER and feature diagrams. A corresponding solution

14

space is a collection of specifications of software sys-
tems that present solutions to the problems in the prob-
lem space. For & software system: constructed out of

components, as cnvisioned here, such a specification

will be expressed in terms of a collection of specifica-

tions for standardized components, which are supplied

by vendors. These specifications must also include con-

figuration knowledge, which describes how components

may be combined or depend upon one another and how

a system is constructed from its constituent compo-
“nents.

Component development and deployment .starts
with a UMM requirements specification of a compo-
nent from a particular domain. This specification is
natural language-like and indicates the functional (i.e.,
computational) and non-functional (i.e., QoS param-
eters) features of the component. This specification
is then refined into a formal specification, based upon
the theory of Two-Level Grammar (TLG) [7]. Both
generative domain models and generative rules may be
expressed in TLG and these specifications may be au-
tomatically translated into an implementation w]:uch
realizes an integration of components.

This paper is organized as follows. Section 2 de-
scribes the T'wo-Level Grammar specification language
and section 3 describes the principles of the Unified
Approach to system assembly from components. In

* section 4, a:case sf:udy is presented illustrating how -

these principles are realized. Fma.lly we conclude in

sectxon 5. R
- 2. Two-Lével QIammar

Two-Level Grammar (TLG) was originally devel-
oped as a specification language for programming lan-
guage syntax and semantics [8], and later used as
an executable specification language and as the basis
for conversion from requirements expressed in natu-
ral- langnage into a formal-specification [6]. TLG is
a formal notation based upon natural language and
the functional, logic, and object-oriented programming
paradigms. TLG allows queries over the knowledge
base, such as a problem or solution domain, to be ex-
pressed in a natural language-like manner which is con-
sistent with the way in which UMM is expressed. TLG
is then a framework under which a natural language
may be used to both describe and inquire about the
nature of components and systems, while maintaining

the formalism of formal specification languages. The v

combination of natural language and formalization is
unique to TLG and also fits UMM well.

The name “two-level” in Two-Level Grammar comes
from the fact that TLG consists of two context-free

grammars dennmfr the set of type domains and the
set of function definitions operating on those domains,
respectively. These grammars may be defined in the
context of a class in which case type domains define
instance variables of the class and function definitions
define methods of the class. The syntax of TLQ class

declarations is:

class Identifier-1 [extends Identifier-2, Identzﬂer—n]
instance variable and method declalatlons

end class [Identifier-1].

Identifier-1is declared to be a class which inherits from
classes Jdentifier-2, ..., Identifier-n. In the above syn-
tax, square brackets are used to indicate the extends
clause is optional so a class need not inherit from any .

. other class. The instance variables comprising the class

definition are decla.red using doma.m declarations of the
following form:

- Identifier-1, ..., Identiﬁer—m =L

data-object-1; ...; data-cbject-n.

where each data—object-1iis a combination of domain
identifiers, singleton data objects, and lists of data ob-
jects, which taken together as a union form the type
of Identifier-1, ..., Identifier-m. Syntactically, domain
identifiers are capita.lized, and singleton data objects

* are finite lists of natural language words written en-

tirely in lower case letters. For improved readability,
domain.identifiers are italicized and data objects are -
represented in typewriter font. Predefined types in-

. clude Integer, Boolean, Character, String, lists, sets,

bags, and mappings. Postfix operators * and + may -
also be used to define lists of zero or more and one or
more elements, respectively. :

Function deﬁmtxons comprise the operatmnal part
of a TLG specification. Their syntax allows for the se-
mantics of the function to be expressed using a struc-
tured form of natural language. Function definitions

take the forms:

function signature..
.function signature :
function-call-1, ..., function-call-n.

where n>1. Function signatures are a combination of
natural language words and domain identifiers. For
- improved readability, we will use boldface type to rep-
resent the function keywords. Domain identifiers in the .
context of a function typically correspond to variables
in a conventional logic program. Some of these vari-
ables will typically be input variables and some will
be output variables, whose values are instantiated at
the conclusion of the function call. Therefore, func-

15

Natwral |anguage fpe:lﬂaﬁn

Cencrzihee Demtsia Comeatus] Natarat Langusge Procsssing

Twa-lsvel Grmmsr

l Class, Dbjest, =] Fusctios Trensiating

!
X
VDM~

l JFAD VDM Toalkit ’

AT e

VML Mol JvaCads

Figure 1. Two-Level Grammarlmplementaﬁon

tions usually return values through the output vari- -

ables rather than directly, in which case the direct re-
turn value is considered as a Boolean true or false.
“true means that control may pass to the next function
call, while false means the rule has failed and an alter-
native rule should be tried if possible. Besides Boolean
values, functions may return regular values, usually the
result of arithmetic calculations. In this case, only the
last function call in a series should return such a value.

" Methods of class objects are called by writing a sen-
. tence or phrase containing the object. The result of
the method call is to instantiate the logical variables
occurring in the method definition. In any class for ev-
ery instance variable of simple type there are get and
set methods to access or modify that variable.

: TLG is implemented as part of a specification de-
velopment environment which facilitates the construc-

tion of TLG specifications from natural language using

a domain knowledge base sttuctured as a Generative
Domain Model (GDM) expressed in XML (eXtensible

" Markup Language) [5], and then translates TLG spec- °

ifications. into executable code. The natural language
requirements are translated into a contextual knowl-
edge representation [15] which may then be expressed
using TLG. The . TLG is then translated into VDM++

(10], the object-oriented extension of the Vienna De-

velopment Method (VDM) specification language [13].
The IFAD VDM Toolbax™ (11] may then be used to
‘'generate code in an object-oriented programming lan-
guage such as Java or C++, as well as a UML (Unified
Modeling Language) model. The overall description of
this process is described in Figure 1. Further details of
the implementation are given in [14].

3.. Unified Meta-Component Model
(UMM) and Unified Approach (UA)

In general, different developers will provide on the
- Internet a variety of possibly heterogeneous compo-
nents oriented towards a specific problem domain.
Once all the components necessary for implementing
a specified distributed system are available and a spe-
cific problem is formulated, then the task is to assemble
them into a solution. The UA assumes that the gener-
ation environment is built around a generative domain-
specific model supporting component-based system as-
sembly. The dlstmctlve features of the approach are as -

follows:

o The developer of the desired distributed system
presents to this process a system query, in a struc-
tured form of natural language, that describes the
required characteristics of the distributed system.
The query is processed using the domain knowl-
edge (such as key concepts from a domain) and a
knowledge-base containing the UMM description
(in the form of a TLG@) of the components for
that domain. From this query a set of search pa-
rameters is generated which guides “head-hunter”

) a.gents for a component search in the distributed
environment. Head-hunters serve to locate the
components which are needed to complete the Te-

- quested system [22]. ¥ _,,

o The framework, with the help of the mfrastruc—'
ture, collects a set of potential components for that
domain, each of which meets the Quality of Service
(QoS) requirements specified by the’ developer.

' QoS requirements are expressed in terms of a cat- -
alog of parameters established for this purpose [4].

* After the components are fetched, the system is as-
sembled according to the generation rules embed-
ded in the generative domain model. Essentially,
the generated code constitutes the glue/wrapper
interface between the compomnents. Since TLG
may be used to provide for attribute evaluation
and transformation, syntax and semantics process- '
ing of languages, parsing, and code generation,
the TLG formalism is used to specify the genera-
tive rules and the output of the TLG will provide
the desired target code (e.g., glue and wrappers
for components and necessary infrastructure for
distributed run-time architecture). All of this is
implemented according to the process for trans-
lating TLG specifications into e*cecurable code as

. described earlier. v

o Along with the gena‘a.ted systém will be a formal
- UMM specification of the generated system so that

16

may be used in subsequent assemblies.
formal UMM specification will also be-a basis for
generating a set of test cases to determine whether
or not an assembly satisfles the desired QoS.

o Static QoS parameters (e.g. dependability of the
component) are processed during generation time
and hence will be processed by the TLG directly.
Dynamic QoS parameters (e.g. response time
ofthe component) result in instrumentation of gen-
erated target code based on event grammars [1 2],
which at run time will produce the corresponding
QoS dynamic metrics which may be measured and

validated.

To summarize, the inputs for the system assembly
and generation step are: the query for the system build,
UMM descriptions of the components found by head-
aunters, and the QoS parameters for the system build.
The outputs are the generated code instrumented for
she dynamic QoS metric evaluation and auxiliary code
aeeded to compile, assemble and run the system, and
UMM description of the generated system which makes
t possible to add the new component to the compo-
1ent database. TLG is the formalism for representing
UMM’s, GDM’s, QoS parameters, supporting queries,
and generation rules. Only the queries that have coun-

:erparts in the GDM are processed. The GDM contains |
zeneration rules for system assembly from the compo- -
nents. The query language is an essential part of the -

approach since the query provides the input for compo-
nen} search via the headhunter mechanism and follow-
mgaglue and wrapper generation. The query supplies
the initial parameters for the headhunters to search in

the distributed environment and gives the input for the

zeneration step itself.

QoS parameters given in the query provide yet an-
other aspect for the generated code - the instrumenta-
tion hecessary for the run-time QoS metrics evaluation.
Based on the query or informal requirements, the user.
has to come up with a representative set of test cases.
Next the implementation is tested using the set of test
cases to verify that it meets the desired QoS criteria.
If it does not, it is discarded. After that, another.im-
plementation is chosen from the component collection.
This process is repeated until an optimal (with respect:
to the QoS) implementation is found, or until the col-
lection is exhausted. In the latter case, the process

may request additional components or it may attempt

to refine the query by adding more information about
the desired solution from the problem domain. If a
satisfactory implementation is found, it is ready for de-
ployment. The complete view of this system is shown

n F:gure 2.

NPt
This)

{Foncion 2ml -\‘m—bruim Reprireents)

Appliessan GOM fia TLC) OueryT: 7
1
Companat Scareh Pr=memy
SR I !- .
onpenanzs
(with UM Demipdnes) 1 Ny ’

AScalScleszd Compoacat far Appbesiz
!

Loclty Supplicd Compenzzzs Systm Anersily GDM (or Imsrmperziog af
Al pectzd) 1 =
1 fin LGy
A Tosible Sysem innumesad with.
Evext Gy
© Usor-mavidat Test Czsy _—,l Synem Ezestion 2nd Valiikefon
Final Sysiem

Figure 2. System Assembly in UniFrame

A few attempts have been made to incorporate QoS
(quality of service) into componenti-based software sys-
tems. The Aster project [12] uses architectural de-
scriptions of components and their interactions, in-
cluding non-functional properties, to customize mid-
dleware. Quality Objects (QuO) [3] is a framework for
providing QoS to software applications composed of ob-
jects distributed over wide area networks. QuO bridges
the gap between socket-level QoS and distributed ob-
ject level QoS, emphasizing specxﬁcatmn measuring,
controlling, and adapting to cha.nges in QoS."RAPID-
ware [16] is an approach to component-based devel-
opment of adaptable and dependable middleware. It

‘uses rigorous software development methods to sup-

port interactive ‘applications executed across hetero- .
geneous networked environments. . Process™™ © [21] is.
a language for describing non-functional properties of

- software, which may include QoS.properties. The Uni-

fied Approach is concerned not only with specifying
QoS properties of components, but also to assure sat-
isfaction.of these properties in an implementation re-
sulting from assembling the components. It should be
noted that the assurance of QoS (as described above)
indic?‘tes that a component can guarantee appropriate
values for its QoS parameters in an ‘ideal’ situation.
This does not guarantee that a component will be able

 to either provide this QoS under failure circumstances

or will automatically adjust its QoS to hide the fail-
ures. For the failure situations, the ideas provided by
Aster,-Qu0O, or RAPIDware can be mcomorated into

UMM and UA.

4. A Case Study

This section describes a simple example of 2 bank
account management system in order to illusirate some

17

of representation features of the UA. The specification
of bank accounts should include its atiributes and the
operations it should perform, such as check balance,
deposit, or withdraw. This information may be ex-
prassed by the fOHOWTIl"' feature model in Tmo—LeveI
Grammar: ‘

class Bankdccount.
AccountNumber, PIN :: SEr*mg
Balance ;: £1loat.
check balance.
deposit Float.
withdraw Floai.

end class.

Assume that the GDM in this example contains a rule
for system assembly, as menfioned in Section 3, that
specifies that a Bank Account Management System
consists of one of each of the two component types,
AccountServer and AccountClient, each of which has
an attribute of type BankAccount. For this exam-
ple, let there be two instances of AccountServer and
one instance of AccountClient. Server components are
heterogeneous — JavaAccountServer adheres to the
Java-RMI model; while CorbaAccountServer uses the
CORBA model. The client, JavalccountClient is de-
veloped by using the Java-RMI model and is imple-
mented as an applet. The goal is to assemble a bank,
account management system from these available com-
ponents. The UMM descriptions of these components
would indicate their relevant properties, including: 1)
the interface of the J avalccountServer: .

void javaDeposit (:Eloa.t ip);

void javaWithdraw (float ip)
throws overDrawException;

float javaBalance ();

and QoS parameters Awailability > 85% and -
Response Delay < 30ms, 2) the interface of the .

CorbalAccountServer:

void corbaDeposit (float i}s);
void corbaWithdraw (fleat ip)

throws overDrawException;
float corbaBalance (J;
and QoS parameters Augilability > 90% and
Response Delay < 10ms, and 3) the interface of the
JavadccountClient: ‘ ,
void depositMoney (float ip);
void withdrawMoney (float ip);
float checkBalanca ();
and QoS parameters Awvailability >. 90% and

Response Delay < 50ms. The comnlete UMM spedi-
fications for these components are described in [20].

' ClientUMM, ServerUMM UMW

Queries are siated in a structured form of paturel
language and then processed into TLG. The general
form of a query is to request creation of a system that
has certain QoS parameiers. The name of the sys-
tem is important in identifying the application domain
and the QoS parameters should also follow the cata-
log standards. A sample query for the above exam-
ple cen be informally stated as: Crecie a bank account
manegement system thet has aveilability > 50% end
responsé deley < 100 ms. This query requires the sat-
isfaction of one static and one dynamic QoS parame-
ter. From the query and the available kmowledge in the
GDM associated with the bank account management
systems, a query will be formulated for a headhunter
in the UMM. In response, the headhunter will discover .
the three components and their QoS properties. Note
that the availability QoS parameter is used to screen
potential components at the time they are retrieved.
The catalog specification for this parameter suggests
that the availability criteria should be multiplied, so
the availahility of the Java-Java system is 76.5% and
for the Java-CORBA system 81%, both meeting the
stated criteria. The process of locating compomnents
through the head-hunter. mecha.msm is descnbed fur-
ther in [22].

Two-Level Grammar is used as the formahsm for
both the UMM and generative rules. The Ul\/ﬂ\/I for-
malization establishes the context for which. the .genera-
tive rules may be applied. The TLG functlons mclude

- generative rules for construction of the Wrapper/glue_ ‘
" code and the event grammar instrumentation to assure .

the QoS of the bank account record management sys-
tem. The GDM for bank account management systems
will be described accerding to this template, including
both generation rules and QoS parameter processing.

* A sampling of TLG rules which may be used to gen-

erate the appropriate glue/wrapper code to connectthe
components of the bank account management system
is presented below. These rules are based on select-
ing from the GDM of the bank account management
systems the appropriate system model for this two-
component DCS. We ﬁz‘s‘ give type domain deﬁmtmns

ClientOperations, ServerOperations :: {Interface}™.

The ClientUMM would be the UMM specification
of JavaAccountClient presented previously and the
ServerUMM would be the UMM specification . of
JavadccountServer or CorbaiccountServer. Clieni-
Operations and ServerOperamons are defined as a list of
Interfoce's. We assume that types UM! M and Imen’ace

have already been defined.

18

R ke b L

The generation rule to produce-Java code for two
UMM models representing a client and server, respec-

" tively; is shown below. This rule is expressed using
a TLG function which has a signature followed by a
set of rules (or subfunctions) to be executed when the

function is called. Function keywords are indicated in
bold font. .

generate system from ClientUMM and ServerUMM :

ClientOperations := ClientUMM get operations,
ServerOperations := ServerUMM get operations,
OperationMapping :=
map ClientOperations into ServerOperations,
ComponentModel :=
ServerUMM get component model,
: generate java code for OperatzonMappmg »
using ComponentModel.

The main taslks are to map client operations onto server
operations, e.g., depositMoney in JavaAccountGlient
maps to corbaDeposit in CorbaAccountServer or to
javaDeposit in JavaAccountServer, and then gener-
ate the code to implement this mapping. The gener-

ated code will be in Java since the client code is in Java

and must seamlessly interface with it. If the client is
in G+ or other language, similar rulés will be deﬁned
and many rules will be language independent.)
The actual mapping to be defined will be based upon
a natural language analysis of the names of operations. -
The closer the names match the vocabulary in the fea-
ture model, the more easily the system can establish

e correct mapping. This depends upon both the care . .,

~-and style with which the user has written the interface
method names and so may vary widely. For this ex-
ample, it can be seen that the correspondence between
names, while not exact, is relatively close.

The next set of rules describes the specifics of gen--
erating CORBA code in Java to implement the map-
ping that arises by integrating the JavaAccountClient
with the CorbaAccountServer. The generated code is
distinguished from types (variables) and function key-

words by using a typewriter font.

CorbaPackageName :: String
CorbaObjectClass, CorbaObjectName ::
ClassName, JavaClassName :: String.
generate java code OperationMapping
using corba :
CorbaPackageName :=
OperationMapping get corba package name
CorbaQObjectClass := L
OperationMapping get corba object type,
ClassName := OperationMapping get class name,
JavaClassName := Java || ClassName,
CorbaObjectName = object || ClassName, .

String.

SetUpCode := .
COmponentWodal generate Java code,
Operations =
generate java code for Opemmanﬂfaﬂpma
return
’ import CorbaPackegeName . +*;
public class JaveClassName {
private CorbaObjectClass CorbaObjectName ;
// initialize CORBA client module
© public void init () {
SetUpCode A
}
Operations

This rule generates the class structure required by the
Java implementation, which consists of a function init
to set up the CORBA ORB and the operations needed
in the server. This includes the code to initialize the
CORBA object so that future operations can refer to
it.” It is necessary to first extract the names of the

 CORBA package, class of the CORBA object to be

referenced within the package, and the name of the
class itself. These are all stored in the Operationiap-
ping. The name of the Java class generated is simply
the string “Java” concatenated ! with the name of the
server class, i.e., JavaCorbaAccountServer. The name
of the CORBA object is generated in a similar way.

" The rule below describes the mechanism for generat- .
ing individual methods in JavaCorbaAccountServer. -
For simplicity, only the case where the class is to con-
tain a single method is shown. Multiple methods are

handled similarly

generate java code for ' .

OperationNamel ArgumentList] RetumType
maps to
OperationName2 ArgumentbzstQ ReturnType :
JavaReturnType := java type of ReturnType,
JavaArgumentList :=
list all Argument from ArgumentListl
mapped to JavaArgument
by function java argument of
Argument is JavaArgument,
JavaArgumenthstDeﬁmtzon
separate JauaArgumentLtst by, .
OperationCall := generate java code for
OperationName2 ArgumentListl ReturnType,
return)
public JavaReturnType OperationNamel
(Jaua.ArgumenthstDaﬁmtzon) {

1The TLG concatenation operation (|{) differs from Ju:ctauo—
sition in that it does not produce a space between the operands.

19

EventTrace . setBeginTime ();
OperationCall ’
EventTrace . setEndTime ();
EventTrace .

c;.culau-Rnsponael ime ()

This generation assumes that the methods have the ’

same return type and so the main task is to express
the arguments of the first operation in terms of Java
.syntax, generate the appropriate method call, and in-
© strument the code with the event grammar mecha-
nism to measure the response time. The former is
accomplished by using a TLG list comprehension to
map the arguments in ArgumentList] into correspond-
ing Java arguments represented by JavaArgumentList.
Bach Argument from ArgumenthtI is mapped into a
" JavaArgument using the!function java argument of
Argument is JavaArgument. There is a subtlety here
in that JavaArgumentList is an abstract syntax repre-

sentation of the desired argument, list and so this must -

be made into concrete syntax using the separate oper-
ation which adds the appropriate commas in between
the argument declarations. The appropnate method
call is handled by the rule below.

generate java code for
OperationName Argumenthst ReturnType :

IdentifierList :=
list all Argument from ArgumentList
mapped to Identifier by 2
function argument id of Argument
is Identifier,
IdentifierListInCall :==
separate IdentifierList by , ,
return .
CorbaObjectName . OperationName
(IdentifierListInCall) ;.

Again a list comprehension is used to extract the ar-

guments from the argument list, this time only the
identifier part. (achieved by function’ argument id
of Argument is Identifier), Likewise, the abstract syn-
tax representation must be made concréte by comma
separators. -

Finally, the event grammar instrumentation is
added to measure the time at the beginning of the
server method-call and again at the end so that the
actual response time can be evaluated against the re-
quired QoS (< 100ms). The QoS metrics for “response
.. delay” mean execution time for each method call within
the server or client, and require the instrumentation of
each generated wrapper for the client/server method

call with auxiliary functions able to checlk the clock at
the beginning and at the end of method call, caleu-
late the duration, and submit it to the execution mon-
itor (also generated as a part of instrumentation). We
assume that these are taken care of by a class called
EventTrace. Each of the two example systems will be
implemented with the code for carrying out event trace
computations according to test cases which must be
supplied by the user. These test cases will be executed
to verify that.the bank account management system
satisfies the QoS specified in the query. If the system
is not verified, it is discarded. This verification process
is carried out for esach of the generated bank account
management system (two in the above example). Then
the one with the best QoS is chosen, in the above exam-
ple the CorbalccountServer and JavalccountClient

combination.

. For the example UMM spec1ﬁcat10n the following
code for the depositMoney functmn Would be pro-

duced

public void depositMoney (float ip) {
EventTrace . setBeginTime (J; .
objectCorbaAccountSer‘ffer . deposit (ip);
EventTrace . setEndTime (); ’
EventTrace . calculateResponseTime: ();

¥

5. Summary and Conclusions

The UMM provzdes a fra.mework for constructmg
systems that involve interoperation of heterogeneous
and distributed software components.” Tt is based on:
a) a meta-component model, b) interpretation by a-
Two-Level Grammar of queries requesting distributed
systems, c) formal specification, based on Two-Level
Grammar of components and systems, d) generatlve_
rules, along with their formal specifications, for as-
sembling an ensemble of components from available
choices, and) validation and assurances of QoS us-
ing event grammars.

In the future, the efficient generation and update
of a distributed computing system will require at least

.2 semi-automatic integration of software components,

based on their advertised QoS, in such a way that if
meets the QoS constraints specified by the user. The
result of using UMM, with the tools and techniques
it embodies, is semi-automatic construction of such a
system. A simplé case study is provided in this pa-

“per for illustration, but the principles of the proposed

approach can be applied to larger applications.

20

Acknowledgements. The: authors would like to
thank IFAD for providing an academic license to the
IFAD VDM Toolbox in order to conduct this research.

" References

(1] Anguston, M. Program Behavior Model Based
-on Event Grammar and its Application for De-
bugging Automation. In Proc.' 2nd Int. Workshop
on Automated and Algorithmic Debugging, pages
277-201, 1995. :

{2] Auguston, M., Gates, A., Lujan, M. Defining a
Program Behavior Model for Dynamic Analyzers.
In Proc. SEKE 97, 9th Int. Conf. Software Eng.
and Knowledge Eng., pages 257-262, 1997.

(3] BBN Corporation. - Quality Objects (Quo),
http://wew.dist-systems.bbn. com/tech/Qu0,

2001. | |
[4] Brahnmath, G. J., Raje, R. R., Olson, A. M., Au-
guston, M., Bryant, B. R., Burt, C. C. A Qual-
ity of Service Catalog for Software Components.
In Proc. (SE)* 2002, Southeastern Software En-

gineering Conf. (to appear), 2002. -
(5] Bray, T., Paoli, J., SperbergMcQueen, C. M.,

Maler, E. Extensible Markup Language (XML) .
1.0. Technical report, W3C, October 2000. -

http://vww.w3c.org/xml.

TG] Brya.nt- B. R. Object-Oriented Natural Language
Requirements Specification. In Proc. ACSC 2000,
29rd Australasian Computer Science Conf., pages
24-30, 2000. ‘

(7] Bryant, B. R., Lee, B.-S. Two-Level Grammar

as an Object-Oriented Requirements Specification
Language. In Proc. 35th Hawazz Int Conf. System

Seiences, 2002.

8] Cleaveland, J. C., Uzgalis, R. C. Grammars for
Programming Languages Elsevier North-Holland =~

Inc., 1977.

[9] Czarnecki, K. Eiéenecker, U. W. ' Generative
Programming: Methods, Tools, and Applications.
- Addison-Wesley, 2000.

[10] Diirr, E., van Katwijk, J. VDM++, A Formal
Specification Language for Object Oriented De-
signs. In COMP EURO 92, pages 214-219, 1992.

[11] IFAD. The VDM++ Toolbox User Manual. Tech-

nical report, IFAD, 2000.

[17] Object Management éréup (OMG).

. % -
' \r ?;‘l,,:si:ﬁﬁg&yf‘;

[12] INRIA-Rocquencourt. ASTER: Sofi-
ware Architectures for Disiributed Systems,

ttp://vww-rocq.inria.fr/solidor/work/aster. hi;

2001.

(18] Larsen, P. G., et al. Vienna Development Method
- Specmcatlon Language - Part I: Base Language.
Report, ISO/IEC 13817-1, December 1996.

(14] Lee, B.-S., Bryant, B. R. Automated Conversion
from Requirements Documentation to an Object-
Oriented Formal Specification Language. In Proc,
ACM Symp. Applied Compuiing (%o appear), 2002.

[15] Lee, B.-S., Bryant, B. R. Contextual Knowledge
Representation for Requirements Documents in
Natural Language. In Proc. FLAIRS 2002, 15th

Int. Florida AT Research Symp. (to appear), 2002.

[16] Mldugan 'State University. RAPID-
ware: Component-Based Development of
Adaptable and Dependable Middleware,

http://www.cse.msu. edu/rapidware, 2001.

' Model
Driven Architecture: A Technical Perspective.
Technical report, OMG Document No. ab/2001-
02-01/04, February 2001.

[18] Raje, R. R. UMM: Unified Meta-object Model

. for Open Distributed Systems. In Proc. ICASPP
2000, 4th IEEE Int. Conf. Algorithms and Archi-
- tecture for Parallel Processing, 2000.

- [19] Raje, R. R., Auguston, M., Bryant, B. R., Olson,

A. M., Burt, C. C. A Unified Approach for the In-
tegration of Distributed Heterogeneous Software:
Components. In Proc, Monterey Workshop En-
gineering Automation for Software Intenswe Sys-
.tems pages 109-119, 2001.

[20] Raje, R. R., Auguston, M., Bryant, B. R., Ol-
son, A. M., Burt, C. C. A Quality of Service-
‘based Framework for Creating Distributed Het-
erogeneous Software Components. Submitied for

publication,” 2002.

- [21] Rosa, N. S., Cunha, P. R. F., Justo, G. R. R.

Process™*L: A Language for Describing Non-
Functional Properties. In Proc. 85th Ha'wa.u Int. -
Conf. Systemn Sciences, 2002.

[22] Siram, N. N., Raje, R. R., Bryant, B. R., Olson,
A. M., Auguston, M., Burt, C. C. An Archifec-
ture for the UniFrame Resource Discovery Service.
Submitied for publication, 2002. -

21

\
L

Quality of Service Behavioral odel From Event Trace Analysis -

1
l

{
I

John Drummond”
- SPAWARSYSCEN
- San Diego Ca 92152-5001
(619)553-4131, drummond@spawar.navy.mil

‘Valdis Berzms, Lugi, William Kemple, Mikhail Auguston, N abendu Chaki
Naval Postgraduate School
555 Dyer Road, Monterey, CA 93943-5118 USA B
(831)656-2610, berzins@cs.nps.navy.mil
(831)656-2735 Ingi@cs.nps.navy.mil,
. (831)656-2249, kemple@cs.nps.navy.mil
(831)656-2509, augustén@cs.nps.navy.mil
(831)656-2509, nchaki@nps.navy.mil

R - A S 5
o .
By T

Abstract

The distributed command & control environment includes limited computer resources and
numerous mission critical apphcaﬁons competing for these scarce resources. Additionally the .

stririgent constraints and considerable complexity of distributed command & control systems can
‘create a condition that places extreme demands upon the allocated resources and invites a
potential for Program Irors. Consistent quality of service distribution can be a critical element in
ensuring effective overall program completion' while avoiding potential errors and process -
fatlures. The potentlal for errors and process failures can be understood.and addressed by
performing a practical analysis of the resource deployment procedures utilized within this
environment. However, analyzing resource-based quality of service within a distributed ..
command & control environment is a demanding endeavor. This difficult task can be simplified

. " This work sponsored by the Defense Advanced Research Pro;ects Agency, Information Technolocy Ofﬁce
(DARPA-ITO) - .

22

DAL R U

by directly examining-specific quality of service actions that take place during program
_execution. Therefore, to pragmatically isolate these actions and develop a practical quality of
service behavioral model, the research discussed in this paper has implemented an event trace

approach to examine the exact quality of service execution path during program operation. '

Intro duétion

The command & control environment is especially complex and may- certainly exhibit
dynamically changing attributes during its operation. The processing of command & control
elements can exhibit perplexing difficulties such as abrupt mission changes, and dynamic tactical
surprises[Harn 99]. Many critical applications within this environment could benefit from
distributing the processing load. Distribution of the processing load does however also increase
the overall complexity of the environment. Despite the expanded complexity, the augmentation
to command & control environments of distributed processing is desired. The distributed
processing environment can provide added benefits over the non-distributed approach due to the
capacity for improvement in program accessibility, overall performance, additional sharing of
limited resources, and the increased fault tolerance capabilities. However, this distributed
command & control environment does present an expanded assemblage of requirements and
+ . constraints for effective computer resource control. The efficient allocation of computer
resources can be considered a major element of these requisites. The direct xmplementatlon of
“resource control features into the distributed command & control infrastructure can be ‘extremely
“advantageous for software programs that contain mission critical requirements. Implemenhng :
quality of service features into the distributed command & control infrastructure is not a trivial
task. Additionally, subsequent to implementing the quality of service features, an examination
must be performed upon the effectiveness of the mplementaﬂon

To propeﬂy ascertain that the essential quality of service based system resources are being
" reasonably utilized and efficiently shared among these programs some evaluation of the resource
deployment method should be conducted. However, current analysis techniques for evaluation of
resource deployment and control are somewhat lacking in that there is no exacting method to
focus exoluswely upon specific quality of service actions that take place during actual program
_execution. Therefore, the analysis of proper employment and dispérsion of available resources is
the focus of this research in the area of distributed command & control processing. This direct
analysis can be carried out though the use.of quality of service based behavioral models. The
development characteristics of the behavior mo del are described in the next section. -

Approach -

The foundation for the approach to developing the quality of service behavioral model considers
‘a centralized resource provisioning mechanism for control of all computer resources that can be

found within the end-to-end pathway. Typically communication based quality of service analysis -
approaches have foctised upon the network resource provisioning implementations that utilize a

23

decentralized resource management technique to disp erse the required communication bandwidth
resources at mumerous locations (e.g. ATM switches, etc). The scope of the research being
pursued in this paper expands this quality of service analysis of resource deployment to include
. computer resources that can consist of CPU, Network, Disk, I/O, and Memory. These resources
can be considered critical elements within a true end-to-end distributed environment and have a

direct bearing uponf any quality of service capabilities.

This focus of efﬁ01ent quahty of service within the total end-to- end pathway is a much needed
element for current DoD systems as stated by the Defense Advanced Research Projects Agency
Quorum program manager [Koob 99] “While emerging network-level QoS mechanisms (such as
RSVP) are an essential enabling technology for Quorum, they are insufficient in that they are
limited to commumcatlons QoS. Quorum defines "end-to-end" as being the quality-of-service -
. seen’ by the apphcatton which calls for coordmated QoS management across mlddleware

operating systems and networks e

For the pmpose of this research invesﬁgaﬁoﬁ the mechanism: for controlling and coordinating
these critical quality of service resources will be centralized within a singular system as can be
found within the Linux/RK resource kernel[Rajkumar 98]. This research does not examine the
multiple controller communication/network mechanism mentioned earlier. This investigation is
accomplished by an in-depth look at various quality of service and resource deployment
characterizations as well as the application of high level modeling and quality of servicg analysis.
The detailed analysm is attained through the utilization of the-SPAWAR System Cenfer DARPA
Quorum Integration Test & BExploitation project (Quite) testbed environment located at the
- SPAWAR System Center. Other specific logical conditions and constraints for this work include
distributed systems, heterogeneous environment, multiple diverse. quality . of service levels.)

essential for program execution (ie. application requirements vary high/low needs), and

available resources can include network bandwidth, CPU, memory, etc.

To achieve a precisei analysis of quality of service procedures an approach has been implemented
" to examine the exact quality of service execution path during program operation. The evaluation
approach utilized in| this research is based upon an event trace concept employed by [Aucuston
00] originally as an ana1y31s tool for focusing upon correctness in C language programs. This
event trace concept dlscusses the idea that testing and debug, going are mostly concerned with the
program run-time behavior, and states that developing a precise model of program. behavior

becomes the first step towards any dynamic analy31s

The method of performing the qua]ity of service event trace analysis begins with an event trace
of a targeted application. This event trace is utilized as the basis for developing the quality of
service behavior that characterizes the targeted program. The quality of service based event trace
approach allows for a detailed quality of service parameter éxamination. This event trace is
utilized as the tool for collecting the predefined quality of service metrics and allows for in-depth
analysis based upon these previously developed metrics. The spemﬁo events ’co be isolated within

24

*

¥

< ERO e b 2 PR

these parameters for this research are based upon actions that may have temporal properties (e o
Event Start, Event Stop) or simply be atomic in nature (e.g. Initialization). This follows the event
trace work of [Auguston 98]: “Every event defines a time interval which has a beginning and
end. For atomic events, the beginning and end points of the time interval will be the same.”

The procedures for performing the quality of service event trace include:

Develop operative models of execution pathways (quality of service & resource control
specific statement execution) within the target application based upon identifiable details

such as resources requested, resources utilized, resources available, etc.

Initiate the development of a working model of program behavior based upon quality of
service factors. This is accomplished by producing abstractions of events that are
fundamental to specific quality of service actions performed durmg program execution,

which include:

]

Quality of service request statement executlon that requests Tresource

reservation.
Procedure execufion that focuses upon the evaluatron and negotiation of

available resources to be applied to the originating resource request.
Software statement execution of procedures for proper utlhzatlon of the

asmgned resources

.Execution of statements . respons1b1e for the detection of any resource :

needs change within the application software.

- Execution of procedures foousmo upon the re-negohatlon based on

increase or decrease of availablé and previously assigned resources.
Execution of reallocation statements for spec1ﬁc resources by the resource -

controller.
Sending and receiving of quality of service related messages by both the

application and Tesource controller software

Identify quality of service specnic apphcahon program pomts that directly relate to
appropriate resource deployment as illustrated in Figure 1. Such elements have direct

consequences ypon quayty of service behavior and include:

QoS specific message passing
Application QoS wolatlons
QoS negotiations -

- QoS resources and control of TEsources

QoS re-negotiations

QoS level

25

priosArn et 10009880 esrsaWasereracsesencnaacnstensdi avesssnnea

Target

program . program Initialize : Process/Threads
: Start ¥ Start

-
.
()
.
-
2]
'3
.
-
-
L]
-
.
-
.
L]
.
')
.
-
.
.
L]
-
.
s

.Ql..'l...l.l‘l.d'.‘.'l..l‘Clllll..l..l".'lll....llll.Il.l

S ReNegotiate Request : Negotiate

. Resource : Resource “ Resource

.| Set

2

|

oL | S -

. | Allocate Resource

. ; Resource Utilized S

2 J Quality

..‘...Il'.."l.l....ll.lIl.l."lll.ll'..ll'l..ll.....> Of .
, ' ‘ ' Service
| Level

Figure 1. Quality of Service Program Points.

l
l

-

. lnstrument the tarceted program based upon these previously identified specific
quality of service program points. This direct code instrumentation will allow for
effective event trace recordmcr at the precise location of the quality of service actions

of mterest

At this point it is necessary to further expand upon the events of interest for quality of service
analysis and the development of the behavior model. An event is a detectable action that
influences the overall achievement of the desired quality of service level. The event is the
smallest element of the quality of service behavior model. The discovery of this action is noted
by the embedded mstrumentatlon within the taraeted program sources at the pre-defined program:

26

Rl Ly T

" 5

points.as previously shown in Figure 1. The event attributes describe the event and include the
process or thread within which this event has occurred, arnd a boolean atiribute denoﬁﬁg the
associated quality of service action of success/failure.

The event model is constructed from a specific quality of service based action and al] the
attributes relevant to this action. The event model is applied to the event trace for the purpose of
constructing the quality of service behavior. There are eight events of interest and their respective
attributes that form the composition of the behavioral model.
The resource request event is critical to the development of the behavioral model because it
represents the applications mechanism for acquiring the proper resources for successful program
execution. Within the quality of service behavioral model every resource request event and
subsequent failure/success attribute is indicative of the applications behavior. The resource
request event model is composed of the -action of requesting resources and the set of event
attributes that include: depth level ‘DP, process type “TP, location ‘L.C, path ‘PA, resource type
‘RT. The request resource event RQ = {DP, TP, LC, PA, RT}, this event mode] is illustrated in

the next figure.

Event
Attributes

“ Figure 2. Resource Request Event Model. |

-

The quality of service violation event is an important elemeént of the behavioral model as it is
representative of a quality of service fault. This failure event has a. causal relation to the
preceding quality of service associated attempt actions that include resource negotiation, resource
‘request, resource re-negotiation, and resource assign. Within the composition of the quality of
service behavioral model failure is indicative of the applications behavior. The quality of service
violation event model consists of the.resource request failure, or resource negotiation failure, or
resource re-negotiation failure, or resource assigned failure actions and the set of event attributes:
depth level “DP, process type “TP, location ‘LC; path ‘PA, resource type ‘RT. The quality of

service violation event QV = {RT, DP, TP, LC, PA} and this event model is illustrated in the

next figure. -

27

Event
Attributes

Figure 3. Quality Of Service Violation Event Model.

The quality of service level event supports the behavior model as it represents the action of the
resource controller appropriating the requested resource. Within the quality of service behavioral
~model the appropnatlon of resources is a significant action in the attainment of proper quality of
service and consequenﬂy characterizing the applications behavior. The quality of service level
. event model is composed of the action of resource reserve creation success action through the
resource controller and the set of event attributes that include: depth level “DP, process type “TP,
location ‘LC, path J‘PA resource type ‘RT, resource size “SZ, resource period ‘RP, resource
deadline ‘RD, and resource used ‘RU. The quality of service event QL= {DP TP, LC PA, RT,
SZ, RP, RD, RU}, thls event model is ﬂlustrated in the next ﬁgure..

Event .
Attributes

QoS Event '

Figure 4. Quality Of Service Level Event Model.

The resource necrotlatlon event is an important part of the behavior model because it represents
the transaction of establishing a resource set with the resource controller. This event is significant
in the acqmsmon of resources and therefore an important in the development of the applications
quality of service behavior. The resource negotiation event model is comprised of the action-of
setting up thls resource set and the event attributes that include: depth-level ‘DP, Process type

28

§ d

‘TP, location ‘LC, path “PA, resource type ‘RT. The resource negotiation event RN= {DP TP,
LC, PA, RT}, this event model is illustrated in the next figure.

Event
Attributes

qure 5. Resource N ego’uatxon Event Model.

The system re,servatior; event is a component in the behavior model because it represents the
action by the system, and other applications not currently being targeted by the event trace, of
requesting resources from the resource controller. When the focus is directed only at the target
program for evaluation the system resource event simply represents a competing load
application. This event is critical to the quality of service behavior model because it enables an
evaluatjon of the target program under resource competition load. The system reservation event
model consist of this resource reservation action by these competing users through the resource
controller and the set of event attributes that include: process type ‘TP, location ‘LC; path ‘PA,
. resource type ‘RT, resource size ‘SZ, resoice period ‘RP, resource deadline ‘RD, and resource
~used ‘RU. The system reservation event SR = {TP, LC, PA, RT, SZ, RP, RD RU}, this event

model is illustrated below.

Event
Attributes '

QoS Event

Figure 6. System Reservation Event Model.

The resource assignment event is a critical element in the quality of service behavior model
because it describes the action of assigning resources by the resource controller to the requesting-

29

|

|
thread/process. The resource assignment event model is composed of the action of attaching the
resource set to the specific process/thread through the resource controller and the set of event
- attributes that include: depth level “DP, process type “TP, location ‘LC, path ‘PA, resource type
‘RT. The resource assignment event SR= {DP, TP, LC, PA, RT}, this event model is illustrated

in the figure below.

Figure 7. Resource Assign Event Model.

The path length event.is part of the quality of service behavior model because it represents the
action of traversing the quality of service path to a succeeding program point level within the
event trace.-The pa“[h length event model consists of the action of proceeding through program
points and the set of event attributes that include: depth level “DP, process type “TP; location
‘LC, path “PA. The|path length event PL = {DP TR, LC PA} and this event model is’ lllustrated

below.

. Event
Aftribu_tes

Figure 8. Path Length Event\Model..

“The resource re-negptiation event is critical to the quality of service behavior model because it is
representative of the process/thread actions to correct a preceding quality of service violation.
The resource re-negotiation event model is comprised of the action of re-negotiating the amoumt
of resource requested through the resource controller and the set of event attributes that include:
depth Ievel “DP, process type “TP, location ‘L.C, path “PA, resource type “RT, resource size ‘SZ,
resource period ‘RP, and resource deadline ‘RD. The resource re-negotiation event RR = {DP,
TP, LC, PA, RT, SZ, RP, RD}, this event model is illustrated in the next figure.

30

e RR IR O

QoS Event

Event
Attributes 2

Figure 9. Resource Re-Negotiation Event IModel.

These specific.event trace quality of service actions which comprise the event models are
' mformally strictured with no imposed overall ordering structure as they occur asynchronously.
However, theteis a partial ordering within a specific thread/process execution as denoted by the
thread/process ‘depth level attribute, and a causal ordering between request events(resource
~ negotiation, Teéquest resource, resource re-negotiation, resource assign) and fault event(quality of
service violation). After the event occurs.the. event trace motes the specific attributes of the -
quality of service action such as. type(quality .of service resource), level(path depth),
path(aggregate ‘progression of the event trace), ptype(process or thread), and loc(within the
process/thread). This data is noted and a boolean evaluation process determines its

success/faﬂure attribute.

- - .

The ’béhai}ioral model is composed of resource request events ‘RQ, resource negotiation events
‘RN, resource.assign events ‘RA, quality of service events ‘QV, resource re-negotiation events
" ‘RR, quality-of service level events ‘QL, system reservation events ‘SR, and path length events
- ‘PL. Potentlal failure behaviors are comprised of the following sets of events: {RN, QV}, {RQ,
QV}, {RQ, QV,.RR, RR, RR, QV}, {RR, QV}, and {RA, QV}. Typlcal success behaviors are
composed of sets of events that include: {RN}, {RQ, QL, RA}, {RR, QL, RA}, and {RA}. An
'example of & "quality of service behawor model that oharactenzes quality of service failure is

ﬂlustrated in the next figure.

v

QoS
- _ Events
.. Behavior

Figure 10. Quality Of Service Behavior Model. -

The behavioral model can be utilized to isolate Sp801ﬁC quality of service behaviors. For example
in the failure occunence illustrated in above with the events {RQ, QV, RR, RR, RR, QV} the
program point of faulure can be isolated through examination of the event trace results. This
search can be achleved through a retrace of the execution path to the specified depth level of the
distinct(named) th:zead/process and by examination of the event attributes associated with the
failure event qualltﬁr of service violation QV = {DP, TP, LC, PA, RT}. i
The quality of servlce event trace on the targeted apphc:atlon collects these events and based
upon this mformatlon the quality of service behavior can be constructed. The behavior model is
partially ordered set of event types (e.g. resource request) and event attributes (success/fail
boolean). The quality of service metrics of the event frace are calculated based on quality of
service actions. These calculations include elements such as the- number of resource re-
negotiation events: that have occurred, and the number of application quality of service
violations. The results of these event trace metrics include the lists of specific processes/threads
1dentities and themresource spe01ﬁc events. This information provides the necessary data to

construct the quahty of service behavior.

Applying The Event Trace

I 2
This discussion has thusfar focused upon the composmon of the quality of service event trace.

The model of this| generallzed (general case) approach can be applied to the specific case
- implementation of a pre-selected application. The employment of the quality of service event
trace analysis is based upon the event models applied to a target application program that has -
been instrumented for accurate feedback. This analysis is then utilized to develop an overall
quality of service behavmr for characterization of the command & control systems application
that can be applied | to ‘mitigation of discovered quality of service related efficiency problems.
Through direct examination of the event trace results, spec1ﬂc potential failure regions (QV
events) can be 1solated to specific path locations and thréad/process depth levels that denote the
distinct program pomt within the targeted application. The potential error region can then be:
adjusted to improve the quality of service level achievement probability.
. : , X .

The selection of the ’:ta;rget program/environment for this work has been subjectively inspired .
through the research of the DARPA Quorum program. The specific emphasis of the DARPA-
IT O sponsored Quorum program is the development of computing environments with quahty of
service attributes, controls, and guarantees om local to global scales[Koob 99]. This Quorum
program is a multi-million dollar collaboration of fifty top research groups reépresenting
universities, industries, and SPAWAR System Center. The quality of service event trace research -

32

e A TR

® 3

reported in this paper leverages from thls DARPA project focus and this association has provided
a high degree of valuable input. -- g , ,

A faulure detection program was isolated as a candidate tarcret application based upon the logical
conditions and constraints discussed earlier. This fast failure detection program has as its primary
objective the efficient and prompt detection of node failures within group communication
software as utilized within distributed mission critical systems of the AEGIS environment. The
fast failure detection program was designed and developed under the DARPA-ITO Quorum

Integration, Testbed and Exploitation (Quite) project efforts.

As noted in [Drummond 02] this program can be set up .to take advanmtage of .a resource
management system based upon quality of service procedures or operate as a simple non-quality
of service application “The Fast Failure Detector can be built and executed om its own or it can
be executed while taking advantage of facilities like Linux/RK [Oikawa 98] and
Ensemble[Birman 00] group communication.” For the purpose of this event trace analysis
research the Fast Failure Dector program has been implemented using both the Linux/RK kemel

‘and the Ensemble group commumcatlon software,

The specific area of concentration within this targeted environment is based upon the following
problem domain characteristics: distributed computing environment, multiple heterogeneous
systems, network medium connections, software applications with specific requirements (quality
of service resource needs), centralized .resource control software. (with quality of service
‘awareness), metrics data gathering instrumentation software. This - specifically” isolated
comiputing environment can be readily encountered within the AEGIS system, as well as in many
other DOD and commercial systems. AEGIS is a combat system architecture that contains a
computer-based command & decision component. The core element of the AEGIS architecture
provides simultaneous operations capability. These operations include measures against multi-
mission threats including anti-air, anti-surface, and anti-submarine. The problem space of this

domain requires specnic levels of p erformanee to operate correctly.

Explicit qualit}{ of service progf'am points that directly relate to resource utilization have been -
isolated within the target program. Based upon these program points the target application has
been instrumented. This has been accomplished by direct-source code instrumentation that allows
for effective event trace recording at the actual location where the quality of service specific
actions take place. The analysis results can be utilized to develop an overall characterization of
the fast failure detection program for any mitigation of discovered quality of service related
efficiency problems. The specific event trace analysis has examined the quality of service events
and related quality of service charactenstlcs of this fast failure detection program within a

distributed enwronment

For this application of the quality of service event trace analysis approach to the specific case of
the selected targeted application the following distinct events ard attributes have been recorded .

33

|
|

within each quality of service event trace execution. These events, their actions and attributes

follow the event models described ea.rher

|

EVENT ACTION ATTRIBUTE

RES_NEG Resource Set Negotiation RES_TYP, PATH, LOC, LEVEL, PTYPE

REQ_RES Resource Request RES_TYP, PATH, LOC, LEVEL, PTYPE

RES_ASG Resource Assignment RES_TYP, PATH, LOC, LE\/EL, PTYPE

PATH_IN Quality of Service Program Paint Traversal PATH, LOG, LEVEL, PTYPE

QOs_vVio - Quality of Service Violation RES_TYP, PATH, LOC, LEVEL, PTYPE

RES_RNG Resottrce Re-Negofiation - RES_TYP, PATH, LOC, LEVEL, PTYPE,

: L SIZE, PERIOD, DEADLINE., -

QOS_LEV | . | Resource Appropriation RES_TYP, PATH, LOC, LEVEL, PTYPE,
SIZE, PERIOD, DEADLINE, USED

SYS_RES .| System/Application Resource Reservation RES_TYP, PATH, LOC, PTYPE, SIZE,
PERICD, DEADLINE, USED

Table 1. Quality of Service Events.

These specific event types (shown in table 1) that have been included within the quality of -
service event trace of the target failure detection program were chosen because they represent °
distinct actions during program execution that have a direct influence resource utilization.-These
- event types include attributes that are closely associated with and help describe these actions.
The quality of service events occur asynchronously within the quality of service event trace and

are informally structured with no overall stncﬂy imposed ordering, however there is a partial -

ordering mthm each executing thread.

The RES TYP notatlon represents the event trace attribute that denotes the type of resource(RT)
‘reservation that is requested This event attribute is not utilized during the analysis of this target -
failure detection pro gram, as the sole resource that has been reserved by this program is the CPU
resource. When it 1s used, the other possﬂjle resources that this attribute can represent include
DlSk, Network, and Memory. The PATH attribute references the total event trace quahty of
service path(PA) le;doth that has been recorded during the application execution. This path.
element represents 2 simple integer value that is dynamically updated and recorded as the event
trace proceeds. This integer value indicates the aggregate progression of the event trace. The
quality of service event. trace attribute labeled LEVEL is similar to the Path element. However,
this element reflects the speerﬁe process or thread execution path depth(DP) as it proceeds
though the operations necessary to attain a specific level of quality of service. This element 1s
also a simple integer that is dynamically updated and recorded as the process or thread executes.
The LOC atiribute references the specific processing 1ocat10n(LC) that the quality of service

34

ST Rai et T

.- .event trace is recording from within the specific process or thread. This attribute is a simple char
type and includes FFDMAIN, FFDINIT, KSYSTEM, THREADI, THREAD2, and THREAD3.
The next attribute in the quality of service event trace output data is titled PTYPE. This attribute
indicates the specific task type(TP) that has been recorded. Two of the possible task types
include ‘process, and thread which are directly related to the failure detection application. The
SIZE attribute reflects the resource size(SZ) being requested. The SIZE attribute is measured i
resource umits. The PERIOD atiribute indicates the period(RP) that the resource is utilized
within. The DEADLINE attribute relates to specific information(RD) utilized by Deadline
Momnotonic and Earliest deadline First scheduling policies. The USED attribute reflects the event
of resources being allocated(RU). The TOTAL element indicates the additive figure of all
resources that have been allocated. The AVAL element is representative of the total resource
available as indicated by the resource kernel. This element is also measured in resource units.

For this case study additional fabricated competing application tasks RS1, RS2, and system

processes such as DISK were executed during the event trace. The competing application is a

simple CPU resource load program that requests large amounts(400.0 & 200.0 units) of this

resource. Its sole purpose is to present the target program with a resource competitor for

evaluation under load. The system process is produced by the resource kemel for contimos disk

access and requests a nominal amount of CPU resource(0.299 units). The resource kernel also -
" indicates a setback of minimum 90 resource units that-cannot be allocated. -

‘Conclusion

#The concluding results of this examination have produced high-level quality of service behavior -
representations of the fast failure detection program. This quality of service event trace analysis
has shown the capacity to specifically ‘reveal various failure points, potential resou;cé Te-
negotiation inefficiencies, and lengthily quality of service path calls. All of these elements have a
direct bearing upon the quality of service based resource .deployment efficiency for the
distributed command & control fast failure detection application program and environment.

The events of interest from the resulting case study examination demonstrate a typical success
behavior composed of {RN}. Also discovered were potential failure behaviors illustrated as a
progressive pattern of potential for failure that concludes with a quality of service violation and
. firial failure. This progression can ‘be see in patterns composed of {RQ, QV, RR, QL, RA}, {RQ,
QV, RR, RR, QL, RA}, {RQ, QV, RR, RR, RR, QV}. For this final failure the program point of
failure can be isolated through examination of the event trace results and the event attributes as
shown in Table 2 below. This examination includes a- retrace of ‘the execution path to the
~ specified depth level of the distinct(named) thread/process, and by isolation of the event
attributes associated with the failure event quality of service violation = {DP, TP, LC, PA, RT}.
Where DP=7-11, TP=THREAD, LC=THREAD2, PA=34-38, RT=CPU. '
DEADLINE | TOTAL | AVALL

ETTYPE PATH LEVEL Loc PTYPE SIZE PERIOD
Qo0s_Vvio 34 7 THREADZ | THREAD ; 610.299 80 .

35

RES_RNG 35 8 THREAD? | THREAD 6.000 50,000 ~_50.000 610.299 90
RES_RNG 36 i 8 THREAD2 | THREAD 4,000 25,000 25.000 610.298 90
RES_RNG 37 1o THREAD2 | THREAD 2:000 12.000 12.000 610.299 90
QOS_VIO 38 11 THREAD2 | THREAD 610299 g0

Table 2. Event Trace Results.

Tt is interesting to note in performance analysis that this complete denial of resources could have
a catastrophic consequence for the requesting thread or process. This result could also translate
into an uncertain dutcome for the total program execution resulting in total program failure. This
instance of a potentlal for total program failure was evident in the case study of the fast failure
detection prooram During the quality of service event trace analysis execution that included
competition for resources that produced the data found in Table 2, the fast failure detection
program exhibited a total collapse of the THREAD?2 task. This failure of the specific thread to
Teserve necessary resources from the resource kernel in turn resulted in an abort of the program.

Thus far this Work has specﬁcaﬂy been directed towards the area of developing quality of
_ service behavior models for targsted distributed command & control programs. This utilization
-of the quality of service event trace approach to behavioral modeling can be further expanded for

inclusion into a development/analysis framework.

References

[Auguston 00] Auguston, M., Assertion Checker For The C Programming Language Based On
Computations Over Event Traces, Fourth Intematlonal Workshop on Automated Debugging,

AADEBUG2000, Mumch, Germany, August 2000.

[Auguston 98] Auguston, M., Buzla’zng Program Behavior Models Proceedings of the European
Conference on Artificial Intelligence ECAI-98, Workshop on Spatial and Temporal Reasonmc,

Brighton, EnOIand, Aucust 23-28,1998.

[Buman OO] Bnman 'K, et al., “The Homs' and Ensemble PrOJecz‘s Accomplzshmem‘s azzd
Limitations”, Proceedings of the DARPA Information Survivability Conference & Exposmon

(DISCEX ‘OO) Hilton Head, South Carolina, January 2000.

[Drummond 02] Drummond, J., Wells, D., Rahman M., Detecting Failure sz‘}zm Distributed
Environments, SPAWAR Technical Paper TR1884, Space and Naval Warfare Systems Center,

San Diego, Ca. 7009

[Ham 99] Harm, M. Berzms V. Lugi, Kemple, W., Evolution: of C41 Sysz‘ems Commend &
Control Research and Technolooy Symposium, 1999. ' " :

.~ [Koob, 1999], Koob, G, Bacfcviozmd for DARPA-ITO Ouorum Mission Statement, Defenae
- Advanced Research Pr_OJ ects Agency Information Technology Office, 1999.

A B;eftér XML Parser.
through Functional Programming

Oleg Kiselyov

SOF‘Ware Engineering, Naval Postgraduate School
Monterey, CA 93943
oleg@pobox.com
oleg@acm.org

Abstract. This paper demonstrates how a higher-level, declarative view
of XML parsing as folding over XML documents has helped to design and
1mplement a better XML parser. By better we mean a full-featured, al-
gonthmmally optimal, pure-functional parser, which can act as a stream
processor. By better we mean an efficient SAX parser that is easy to use,
a parser. that does not burden an application with the maintenance of a
gldbal state across several callbacks, a parser that eliminates classes of
p0531ble application errors.

Thls paper describes such better XML parser, SSAX. We demonstrate
tha.t SSAX is a better parser by comparing it with several XML parsers

written in various (functional) languages, as well as with the reference

XML parser Expat. In the experience of the author the decla.ratiye ap- ..
' proach has greatly helped in the development of SSAX. We argue that

the more expressive, reliable and easier to use application interface is
the outcome of implementing the parsing engine as an enhanced tree
fold combinator, which fally captures the control pattern of the depth—

. first tree traversal.

Keywords: XML parsing, traversal, tree fold, Scheme, Haskell
\))

1 Inti'qduction

AAAAAA

On the .sﬁrface of it, parsing of XML presents no problems. We merely need to
apply yacc/lex or a similar tool to the Extended BNF grammar in the XML

Recommendation. XML parsing ought to be even easier in functional languages,
thanks to the development of intuitive parsing combinator libraries. =

It comes as a surprise then that all but two functional-style XML parsers

S. Knshnamurthx, C. R. Ramakrishnan (Eds) ‘PADL 2002, LNGCS 2257, pD. "09—”’-1 2002.
'© Springer-Verlag Berlin Heidelberg 2002 : o ‘

38 .

barely co‘mply even with a half of the XML Recommendation [13]. None of the
pure or mostly functional-style XML parsers support XML Namespaces. With
the exception of FXP [10], the existing functional-style parsers cannot process
XML documents in a stream-wise fashion. These parsers thus exhibit significant
processing latency and are limited to documents that can fit within the avail-
‘able memory. The application interface of the only one functional, full-featured,

© - face.’

ST T T T T T . A:r\ﬂwzg:@wqmw§

£

stream-oriented parser FXP mirrors the API of the reference XML parser Ex-
" pat [4]. The latper Is notorious for its difficult and error-prone application inter-

XML is markedly more difficult to parse than it is commonly thought. It is’
by no means sufficient for a parser merely to follow the Extended BNF grammar
of XIV[L. Besides the grammar, the XML Recommendation [13] specifies a great
number of rules (e.g., whitespace handling, attribute value normalization, entity
references expansion) as well as well-formedness and validity constraint checks,
which a parser must implement. Whitespace handling rules in particular require
an unusually tight coupling between tokenizing and parsing.

The second peculiar aspect of XML parsing is its strong emphasis on effi-
ciency and the convenience of the application interface. The traditional view of
parsing as a transformation of a source document into an abstract syntax tree is .
deficient for several classes of XML applications. We should note first that the
traditional approach does apply to XML, where it is called a Document Object
Model (DOM) parsing. The DOM approach is a necessity for applications that
repeatedly traverse and search the abstract syntax tree of a document. Other
applications however scan through the document tree entirely, and only once.
Such applications can potentially process an XML document as it is being read.
Loading the whole document into memory as an abstract syntax tree is then in-
efficient both in terms of time and memory. Such applications can benefit from
a lower-level, event-based model of XML parsing called a Simple Application
Programming Interface for XML (SAX). A SAX parser applies user-defined ac-
tions to elements, attributes and other XML entities as they are identified. The
actions can transform received elements and character. data on the fly, or.can in-
corporate them into custom data structures, including the DOM tree. Therefore,
a SAX parser can always act as a DOM parser. The converse is not true.

Although the SAX XMTL parsing model is more general, more memory effi-
cient and faster, SAX parsers aré regarded as difficult to use: "It feels like you
are trapped inside an eternal loop when writing code. You find yourself using
many global variables and conditional statements” [3]. '

Is it possible to implement an efficient, compliant, stream-oriented XML
parser with a convenient user interface that minimizes the amount of user- "
application state? Furthermore, can functional progra.mnnng help to design and’
to implement such a parser?

This paper proves by constructlon that the answer to both questions is yes.
The contribution of this paper is a SSAX parsér (7], a compliant SAX XML
parser that is being used in several industrial applications. SSAX is not a toy
parser: it fully supports XML Namespaces, character, internal and external
parsed entities, xml:space, attribute value normalization, processing instriic-
tions and CDATA sections. At the same time, SSAX minimizes the amount
of apphca.tlon—specmc state that has to be shared among user-supplied event
handlers. SSAX makes the maintenance of an application-specific element stack
unnecessary, which eliminates several classes of common bugs. SSAX is written
in a pure-functional subset of Scheme. Therefore, the event handlers are refer-

39

A Better XML Parser through Functional Programming

entially transparent, which makes them easier for a programmer to write and to
reason about. The superior user application interface for the event-driven XML
parsing is in itself a conmiribution of the paper. The paper demonstrates that
this interface is not an accident but the outcome of a correctly chosen conirol
abstraction, which captures the pattern on depth-first trav ersal of trees.

The key design principle of SSAX was a view of an XML docurnent as an
n-ary tree laid ouf in a depth-first order. XML parsing is then a tree traver—
sal. We review the topic of functional-style tree traversals in Section 2. We will
concentrate on efficiency and on capturing the patbtern of such traversals in a
higher-order combinator, foldts. In Section 3 we describe the SSAX parser,
which is an implementation of foldts with the tree in question being an XML
_ document. Section 4 demonstrates on several concrete examples that the SSAX
- parser is indeed efficient, easier to use and less error-prone, compared to other
- SAX parsers, in particular the reference XML parser Expat and its pure func-
" tional analogue FXP. We conclude in Section 5 that functional programming is
intuitive and helpful not only for processing XML but for parsing it as well.

2 . Depth-First Traversals of Trees

We sta.rt' with a very simple example of a functional-style depth-first tree traver-
sal and gradually extend it ‘to improve efficiency and to abstract the pattern
of the traversal. Although the SSAX parser has been lmplemented in Scheme,
this section will use Haskell notation. The latter is more succinct; furthermore,
it is more convenient for direct.comparison with important papers on tree jp_ld—.
ing [5][6], which use Haskell notation. - ')

Our trees are represented by the datatype

da‘baé Tree = Leaf String |- Nd [Tree]

|
\

Given such a tree, we turn to our first. problem of concatena.tmcr s’cnngs at-
tached to all leaves, in their depth-first traversal order. If we view our trees as
realizations of an XML information set [1 4], our first problem becomes that of
computing-a string-value for the root node of the information set .

The obvious solution to the problem :

'str_valueizz Tree —> String
str_valuel (Leaf str) = str’ _
strvaluel (Nd kids) = foldr (++) "" (map strvaluel kids)

I
where

foldr:: (a=>b->b) => b -> [a] -=> b

o foldr £z [0 =2z .
foldr f z (x:xs) = £ x (foldr £ =z xs)

40

JIBE LhioTliyuwy ~ rmroEm Tﬁr_.ﬂ;ﬁﬂ.ﬁj@ﬁ,w o
although elegant, is deficient. Indeed, let us apply str.valuel to a full binary
- tree of depth k whose leaves-are one-character strings (9"“ leaves to ual) Executing

' str_valuel then requires: E2k cbaramer~movmg operaulona ‘and produces (k —
1)2% garbage characters. The algorithm can be improvéd by noting that we do
not have to concatenate the sirings eagerly. Insl,ea.d we can accumulate strings

in a list and join them after the traversal.

strvalue2:: Tree -> String
str_value2 = concat . str.value2’

strvalue2’ (Leaf str) = [str]
strovalue2’ (Nd kids) = concat (map str_value2’ kids)

This halves the amount of garbage and the number of character movements.
However, appending two lists of size 2¢ takes 2° operations. The algorithm still
has the time complexity of O(k2%); it still produces k251 + 25+ list cells of
garbage. The best solution is to build a list of strings in the reverse order — with
the reversal and concatenation at the very end: '

str_value3:: Tree —> String
str.value3d = concat . reverse . (strwvalue3’ [])

str_value3’ seed (Leaf str) = str : seed
strvalue3’ seed (Nd kids) = foldl str.valueS" seed kids’

where 2
foldl:: (a->b- >a) ->a > [b]l N
foldl f z [1 =

foldl £ z (x.xs) foldl £ (£ z_x) Xs

Some language systems offer a string-concatenate-reverse function, which halves
the amount of the produced garbage. The running time of str_value3 is linear
in the size of the tree. The amount of garbage — while unavoidable — grows
only linearly with the size of the tree. The function str_value3 differs from
str_valuel and str_value2 in another aspect. The actions at children nodes of
the same node are no longer independent. The actions are threaded through the
seed argument and must be performed in order. The independence of actions in
str_valuel and str_value2 manifested ifself in the presence of map, which is
absent in str_value3.

. We now turn to the next example — computing a digest of a tree. W’e want
to traverse a tree depth-first and to compute an MD5 hash of all encountered
nodes and leaf values. A hash function is generally non-associative. Therefore,
‘we have no choice but to use a stateful traversal similar to that of str_value3..

md5Init:: MDSComtext

md5Update:: String -> MD5Context —> MDSContext
mdb5Final:: MDSConte&u ~> String

41

A Better XML Parser through Functional Programming

ct

tree_digest = mdBFinal . (tres_digest’ md5Init)

treedigest’ ctx (Lea_v" str) =

md5Update "/leaf" $ mdS5Update str $ mdS5Update "leaf" ctx

reedigest’ ctx (Nd kids) =

md5Update ”/node" $ foldl tres_ digest’ (md5Update "node" ctx)
kids

ct

Can we separate the task of tree traversal and recursion from the task of trans-
formation of a node and a state? The benefits of encapsulating common patterns
of computation as higher-order operators instead of using recursion directly are
well-known [11][5]. For lists, the common pattern of traversal is captured by the
familiar foldl and foldr operators, which can bé generalized to trees [11][8]:

foldt:: (String > a) -> ([a] —> a) -> Tree -> a
foldt £ g (Leaf str) = f str
foldt fg (Nd kids) = g (map (foldt f g) kids)

Unhke the functlons str.valuel and str_value2, the efficient str_value3’ can-
not be expressed via foldt in a simple way because the actions at branches are
dependent on the history of the traversal and cannot be simply mapped:to
children nodes. Such functions are often distinguished [11] by an extra param-
eter, which acts as a an accumulator or a continuation: (cf. str_value2’ with
str_value3’ above). Such functions can be written as second—order folds [11],
~which return procedures as results In our example:

strvalue3l tree = c'oncagt $ reverse § (str_value3i’ tree [1)
where o ' - -
| strvalue31l’ = foldt (\str seed -> str : seed)
(\newkids seed -> foldl (£flip ($)) seed new kids)

This representation requires highér-order features of the language and often not
as efficient because (str.value31’ tree) creates as many closures as there are
- nodes in the tree. The closures are then applied to [1, which generates the final

" result. In strict languages such as ML or Scheme (used in the following sections), -

closure creation is relatively expensive.
To make "mapping” of an accumulating function to-a tree efficient, we intro-

duce a more general control operator:

: (a=>a) —> (é.—>a—>a) -> (a->[Char]->a) —> a—> Trese—> a

foldts::
foldts fdown fup fhere ssed (Leaf str) = fhere seed str

foldts fdown fup fhere seed (Nd kids) =

_ fup seed $ foldl (foldts fdown fup fhere) (fdown seed) kids
A user instantiates foldts with three actions; for comparison, foldr requires
only one action and foldt needs two. The three foldts actions are threaded via

B

Wity LaoClyOv B e
a seed parameter, which maintains the local state. An action accepts a seed as
one of its arguments and returns a new seed as the result. The action fhere is
applied to a leaf of the tree. The action fdown is invoked when a non-leaf node
is entered and before any of the node’s children are visited. The fdown action

-has to generate a seed to be passed to the first visited child of the node. The

action fup is invoked after all children of a node have been seen. The action
is a function of two seeds: the first seed is the local state at the moment the
traversal process enters the branch rooted at the current node. The second seed
is the result of visiting all child branches. The action fup is to produce a seed
that is taken to be the state of the traversal after the process leaves the current

branch.
- The two previously comnsidered examples — computation of a string value and

of a digest for a tree — can easily be written with foldts:

str_value32 = concat . reverse . (str_value32’ [])

where
strvalue3d2’ = foldts id (\-—>id) (£flip (:))

In this example, the seed is the list of leaf values accumulated in the reverse
order. The fhere action prepends the value of the visited leaf to the list. The
actions fdown a.nd fup are trivial: they merely propagate the seed.

tree.digest2 = md5Final . (foldts fd.fu fh md5Init)
where fh ctx str = mdSUpdate "/leaf" $ md5Update str §
E - mdSUpda‘te "leaf" ctx
-fd ctx = deUpdate node! ctx.
fu - ctx = md5Update "/node" ctx

The computation of the tree digest is no more complex. The seed is the MD5
context. The fdown and fup actions mark the fact of entering and exiting a
non-leaf node: This example clearly demonstrates that consuming node values
and updating the local state are separated from the task of traversing the treé
and recurring into its branches. This separation makes operations on tree nodes

‘simpler to write-and to comprehend.

3 XML Parsing as Tree Traversal

The enhanced tree fold, foldts, has more than theoretical interest. The foldts
combinator is literally at the core of the pure functional XML parser SSAX. To
see how foldts applies to XML parsing, we note that an XML document with
familiar angular brackets is a concrete representation of a tree laid out in a depth-
first order. Elements, processing instructions, CDATA sections and character
data are the nodes of such a tree. The latter three are always the leaf nodes.
Attributes are collections of named values attached to element nodes. Since
element nodes can be non-terminal nodes, the moments the traversal enters and
leaves an element node must be specifically marked, respectively as the start and

43

A Better XML Parser through Functional Programming

the end tags. XML parsing then is a depth-first traversal of an XML document -
regarded as a tree. XML parsing is a pre-post-order, down-and-up traversal as
it invokes user actions when the traversal process enters a node and again when
the process has visited all child branches and is about to leave the node.

Just like the foldts, the SSAX framework captures the patiern of the XML
document traversal (i.e., parsing). To be more precise, the framework carries out
such parsing chores as tokenizing, XV, namespace resolution and the names-
pace context propagation, the whitespace mode propagation, the expansion of
character and parsed entify references, attribute value normalization, maintain-
ing the traversal order. The user can therefore concentrate on the mean_ncml
work — what to do at encountered nodes.

At the heart of SSAX is a function SSAX:make—parser, which takes user-
supphed node action procedures (also called content handlers) and instantiates
the corresponding XML parser. Similarly to foldts, SSAX:make-parserrequires
three mandatory handlers: new-level-seed, finish—element, and char-data-
handler. These handlers closely correspond to the procedural parameters fdown,
fup and fhere passed to foldts. The output of SSAX:make-parser is a proce-
dure Port —> Seed —> Seed. The first argument is a port from which to read
the input XML document. The port is treated throughout the SSAX framework
as if it were a ”"unique” parameter, using the terminology from the programming
language Clean. The second argument to the parser is the initial value of the
application state, the seed. The parser returns the final value of the seed the
result of a tree-induced composition of the user-supplied handlers. .

SSAX:make-parser also accepts a number of optional handlers, which W111
be called when the parser encounters a processing instruction, a document type
declaration, or the root element. If the optional handlers are omitted, the in-
stantiated parser will be non—vallda.tmrr SSAX:make—parser is actually a macro,
which zntegmtes the handlers into the generated parser code. We can regard
SSAX: make—parser as a staged parser.

The semantics of SSAX:make-parser is the same as that of - foldts. Both
traverse & tree in a depth-first order and invoke handlers at ”interesting poin
Besides the traversal state SSAX:make-parser also maintains the list of active-
entities and the namespace context. The user handlers of SSAX :make-parser are -
also more complex, receiving as addlmonal arguments the name of the current
element and its attributes. s ® _ ' , *

In the following section we consider several typical instantiations of
SSAX :make-parser, with the goal of estimating SSAX comiplexity and compaz-
ing it with other XML parsers. The comparison will demonstrate the benefits of

- modeling the SSAX parser after.foldts '

4 SSAX Examples and Comparisons

41° The Gomple:tmv of SSAX Parsing

The first example of using SSAX is untagging. This is a common -x.\/IL to text”
translation that removes all ma.rmp from a rell—for*ned XML documenu We

vieg Nselyov T P Ao .
should point out that this is the same example as the one discussed in Section 2.
Indeed, untagging is precisely determining the string-value of an XML document
tree. The example in Section 2 operated on trees represented as linked dats
structures in memory. In this section a tree is an XML document itself. In both
cases, we traverse the tree and accumulate all character data as we encounter
them. As Section 2 explained, it is beneficial to accumulate the character dats
in a list in reverse order and join them at the very end.

The procedure to remove markup from an XML document is shown below.

This is an instantiation of the SSAX parser with three handlers: new-level-sead

(define (remove-markup xml-port)
; Accumulate the text values of leaves in a seed, in reverse order
(et ((zresult :
"((SSAX:make-parser
NEW-LEVEL-SEED
(lambda (elem-gi attributes namespaces expected-content seed)
seed)

‘FINISH-ELEMENT
(1ambda
(elem—g:r. a:ttr:;.butes namespaces ‘parent-seed seed) seed)

CHAR-DATA-HANDLER
(lambda (stringl string2 seed)
(let* ((seed (cons stringl seed))).
(if (s‘t:rmg—null’? string2) seed (cons string2 seed))))
) .
mml-port *())))
(strmg—concatenate—reverse result) -

)

and finish-element merely propagate the seed, while char-data~handler adds
the character data to the list. Since the optional document-type and root element
handlers are ‘omitted, the remove-markup parser is non-validating. The pieces
of character data are passed to char-data-handler in two string arguments
for efficiency. The similarity of the remove-markup code with str_value32 of
Section 2 is striking. We must note however that str_value32 relied on foldts,
which traversed a linked structure of type Tree in memory. The remove-markup
procedure on the other hand parses an XML document, which it reads from a
given input port. When this port contains a document such as the one on Fig. 1,
the procedure yields a string ”01234567”. To verify that remove-markup, just
as str:value32, runs in time and space that grows only linearly with the size
of XML documents, we applied the procedure to documents such as the one
on Fig. 1 of increasing depth. We ran all benchmarks on a Pentium IIT Xeon
500 MHz computer with 128 MB of main memory and FreeBSD 4.0-RELEASE
operating system. The benchmark Scheme code was compiled by a Gambit-C 3.0

45

A Better XL Parser through Functional Programming

<ﬂoc1e><noa==><node><7ca_:.>0</leaJ_> >1</ eaf></node>
' <node><leL>2</lea;.><le >3</1=22></noda></node>
<node><mnode><leai>4</leaf><leat>5<¢/1eaFf></node>

<node><1lezi>6</leaf><leai>7</1leat></node></noda></nods>

Fig.1. A full binary tres as an XML document

4000 — . - 25000 p—r——p——
_ easursd * : measurad #®
3500 rpestfit =~ ~—----- - T— best fit st .
_. 3000 - = T 5
E 2500 g
-~ ~ R - o -
« - 2 1{s000 -
E 2000 | X 4 2 o
2 1500 | e _ 3 10000 ’/5“
xa o . e
Cdoor x R
500 | x° : < s
if U T (S (NN N S U .1 . 0 I S ST S SN T SR T
2 4 € 8 10 12 14 16 18 0 2° 4 6 8 10 12 14 16 18

The number of leaf elements (thousands) The number of leaf elements (thousands)

Fig. 2. Performance of the SSAX parser for documents of the form given on
Fig. 1. The CPU time and the cumulative amount of allocated memory are
plotted as functions of the number of leaf elements in the input XML do cument

Most of the allocated memory was garbage—collected

compiler. Figure 2 shows the result. The SSAX parser indeed has the linear'sl'géce
and time complexities. This is the empemmental result, obtamed by measuring

the performance of the full-scale XML parser.

4.2 SSAX and Expat

No discussion of XML parsing ean avoid Expat, which is the reference XML -

parser, written in C by James Clark [4]. Expat is a SAX, ie., a stream-oriented
parser. As the user passes it chunks of the input XML document Expat identifies
elements, character data or other entltles and invokes the appropriate handler
(if the user has registered one). The size of the chunks is controlled by the user;

chunks can range from one byte to the whole XML document.

A tutorial article about Expat [2] explains well how Expat is supposed to be

used. A user application most certainly has to have "a good stack mechanism
in order to keep track of current context... The things you're hLely t6 want to
keep on a stack are the currently opened element and it’s attributes. You push
this information onto the stack in the start handler and you pop it off in the end
handler.” As an illustration, the Expat tutorial discusses a sa.lee application
outline.c, which prints an element outline for an XML document, indenting
child elements to distinguish them from the parent element that contains them.
In this case, the stack is represented by a global vanable Depth, 'w]:u controls

46 -

LGS LxioCiywy Ny mey e oamy g,

the amount of indenting white space to print before the element name. The vari-
able is incremented in a user-supplied start-element handler, and is decremented
in the end-element handler. A simplified code for the two user handlers is given

on Fig. 3

int Depth;
void start(void *data, comsi char %el, const char #*attr) {

int 1;

for (i = 0; i < Depth; 1—)
Prm.tfcu ll)

printf ("%s\n", el);

Depth++; }

void end(void *data, comst char #el) { Depth--; }°

int main(void) { -
XML Parser p = XML ParserCreate(NULL); ,
XML SetElementHandler(p, start, end); /# register the callbacks */
/# invoke XML Parse() passing the buffer with the IML document

“or a part of it */ }

Fig. 3. A simplified code for the outline.c application, using Expat

It is instructive to compare the Expat application outline.c with the cor-
responding SSAX application, whose complete code is given on Fig. 4.

In the Expat application, the maintenance of the application state, the Depth,
is split across two separate handlers. This fact increases the possibility of an
error. The ssax-outline application on the other hand has no global.variables .
or other application-specific stack to maintain. Unlike the Expat handlers, SSAX
handlers can be largely decoupled and thus easily written and understood. :

The function ssax-outline also illustrates the benefit of the SAX XML
parsing mode. The function prints element names as they are identified and
accumulates no data. It can therefore process documents of arbitrary size — far
bigger than the amount of available memory. The function ssax-outlineis a
true stream processor, with low memory requirements and low latency.

To compare the performance of SSAX and Expat, we ran several benchmarks. |

“We need to discuss first the difference in input modes of the two parsers. An -

application that uses Expat is responsible for reading an XML stream by blocks
and passing the blocks to Expat, specifically noting the last block. Expat requires
the calling application be able to-determine the end of the XML document
stream before parsing the stream. If an application can do that, it can read the
stream by large blocks. An application can potentially load the whole document
into memory and pass this single block to Expat. Expat uses shared substrings
extensively, and therefore is specifically optimized for such a scenario. If we take
a doecument from a (tcp) pipe, it may be impossible to tell offhand-when to stop

47

A Better XML Parser through Func"lonal Programm

L

(define (ssax-outline zml-port)
((SSiX:make-parser
‘ NEW-LEVEL-SEED

i (lambda (elem-gi attributes nemespaces expected-conmtent seed)
(display seed) ; mdeﬂt the elsment name
(display elem—gi) (nswline) ; prinmt the name of the element
(string-append " " seed)) ; advance the indamt level

FINISE-ELEMENT] ; restore the indent levsl

(lambda '

(elem-gi attributes namespaces parent-sesd seed) parent-seed)

CHAR—DATA—HANDLER

(lambda (stringl s‘trmgQ seed) seed)
) ,
xml-port ")

Fig. 4. ‘The complete code for the outline application, using SSAX. The seed
describes the depth of an element relative to the root of the tree. To be more
precise, the seed is the string of space characters to output to indent the current

element

reading. Furthermore, if we unwittingly try to read a character past the logical
end of stream we may become deadlocked. SSAX reads ahead by no more than
one character, and only when the parser is positive the character to read ahead
must be available. SSAX does not need to be told when the document is ended. -
On the contrary, SSAX will tell us when it has finished parsing a root (or other)
element. SSAX can therefore safely read from pipes, can process sequences of
XML documents without extra delimiters, and can handle selected parts of a
document.

The performance benchmarks are based on the code to remove markup from
an input XML document. This task, which was described in the previous section,
simulates a typical Web service reply processing. Two input documents are XML
encodings of full binary trees of depth 15 and 16. The documents are similar to
" the one on Fig. 1. The documents contain more markup than character data

and, in addition, exhibit déeply nested elements. Overall the benchmark task
is a good exercise of XML parsing engines. The first benchmark application,
string-value.c, implements the most favorable to Expat scenario: it reads the
whole document into memory, passes it to Expat and asks the parser to remove
the ma.rkup The seconid benchmark application, str_ncr—va_.ue-by —one. ¢, also
uses Expat and also 1oads the whole document into memory first. The a.pph_—
cation however passes the content of that buffer to Expat one character at =
_ time. This simulates the work of the SSAX parser. Finally, a SSAX benchmark
string-value-ssax.scnlikewise loads an XML document first, opens the mem-
ory buffer as a string port and passes the port to SSAX. The complete benchmark
code is a pa.rt of the SSAX pIOJeCE [7]. The results are presented in Ta.b1e 1.

- 48

o st= VIV
Uieg DhiseLlyoyv n TR ey

»

Table 1. Us:r/syscem times, in seconds, for running three benchmarks on two
sample XML documents. The timing resulus were obtained from a precise vir-
tual clock and reproduce within 3%. Platform: FreeBSD 4.0-RELEASE system,
Pentium IIT Xeon 500 MHz, Bigloo 2.4a Scheme compiler. The numbers sbove
reflect activities that occur entirely in memory. There was no i/o of any kmd

there were no page faults

[benchmark])&L\/H;—tree—depth—lS[XML—tree—depth—l7

string-value.c 0.105/0.016 0.213/0.022
string-value-by-one.c 0.747/0.014 - 1.494/0.012
string-value-ssax.scm 1.092/0.024 2.170/0.095
[File size, bytes | 884,723 | 1,769,459 |

The most notable result of the benchmarks is that a Scheme application is
only 1.4 times slower than a comparable well-written C application, string-
value-by-one.c. SSAX seems quite competitive in performance, especially
keeping in mind that the parser and all of its handlers are referentially transpar-
ent. The ability to read from pipes and streams whose end is not known ahead
of parsing costs performance. We do think however that the-feature is worth
the price. Shared substrings, present in some Scheme systems (alas not in the
compiler used for be’nchmarking} will mitigate the trade-of_f.

4. 3 FXP, the .’E‘metlonal Eqmvalent to Expat and SSAX

The closest to SSAX XML parser is FXP [1(], whichis a a purely functional, vali-
dating XML parser ”shell” with a functional variant of the event-based interface..
FXP is written in SML. Both SSAX and FXP invoke user—supphed handlers.
(called "hooks” in FXP) at "interesting” ‘moments during XML parsing. The
hooks receive an application state parameter and must return a possibly new
state. The ways SSAX and FXP frameworks are instantiated to yield a specific .
- XML processing application are also surprisingly similar, modulo'static/dynamic
typing. FXP "vitally relies” on SML’s pa.ra.metenzed modules for customization
while SSAX depends on Scheme’s macros.

" The most notable difference between SSAX and FXP is the 1nterface between
the parsing engine and the event handlers {hooks). SSAX is based on foldts, -
whereas the interface of FXP seems to be a pure funttional analogue of Expat’s
application interface. The difference between the SSAX and FXP interfaces is
important and instructive. A sample FXP application discussed at the end of the
FXP API documentation [1{] is a good example to illustraté that difference. The

- application converts an XML document to an abstract syntax tree form, which
is not unlike the Tree datatype from Section 2. A SSAX distribution includes a
similar function SSAX:XML~>SXML. It is instructive tq compare event ‘handlers of
the two applications. In both cases the event handlers are pure functional; they

49

A Better XML Parser through Functional Programming

receive from the parsing engine recognized pieces of markup or character data
and accumulate them in a parse tree.

In the FXP application, the application data — the seed, in SSAX termi-
nology — represent the partial document tree constructed so far. As the FXP
docu:nehtauion describes it, the seed has two components — a stack and the
content. At any point the stack holds all currently open start-tags along with
a list of their lefi siblings. The content component accurmulates the children of
the current element that are known so far. In the initial state, both components
are empby. Character data event handlers add the identified character data to
the content of the current element. The hook for a start-tag pushes that tag
together with the comtent of the current element onto the stack. The elemenu
started by that tag becomes the current element. The end-tag hook reverses the
~ content of the current element, pops the tag of the current element off the stack

and combmes it with its content. The constructed tree is then prepended to the
content of the parent element which now becomes the current element.

The ¢ode for the comparable SSAX application is given on Figure 5. The
code doés correspond to the description of the FXP application to a cerfain
extent. However, simple-XML->SXML is notably simpler. Whereas FXP applica~
tion’s state is comprised of a stack and the content, simple—XML~>SXML’s state is
a regular list. The list contains the preceding siblings of the current element or a
piece of character data, in reverse document order. Maintenance of FXP’s stack

‘was split across two separate hooks: the handlers for the start and the end tags.
The FXP handlers have to detect possible stack underflow errors. In contzast,
the handlers of simple-XML->SXML are relieved of any stack maintenancesand .
error handling responsibility: The function simple-XML->SXML does not have
any stack. As Figure 5 shows, simple-XML->SXML handlers hardly do any’tbmc'
at all. The handler new-level-seed is particularly trivial; £inish-element is
not more complex either. The simpler the handlers are, the easier it is to write .
them and to reason about them.

We should point out that not only s:.mple-XML->SXML lacks a stack, the
SSAX parsing engine itself does not have an explicit stack of currently open
XML elements. The traversal stack is implicit in activation frames of a recursive
procedure handle-start-tag of the SSAX framework. If there is no explicit
stack, there can be no stack underflow errors. Thus the comparison between

_ FXP and SSAX indicates that the SSAX framework provides a]:ugher level of
a,bsl.ra.ctlon for SAX XML parsing. This is the direct consequence of bu:ddmcr

SSAX a.mund the foldts tree traversal combma.tor

4. 4 Other X_'\/IL Parsers Written in Fu.nctiozial’ Languages

There are se*veral other XML parsers implemented in functional Ianmages CL-
XML (written in Common Lisp), XISO (written in Scheme) Tony (in OCaml),
and HaXml (in Haskell). They are all DOM parsers. Neither of these parsers can
process an XMI: document *on the fly,” in a stream-like fashion. '

Parser CL-XMTL: [1] 1s the most thorough of the group. It checks all well-
formedness and most of the validation constraints given in the XML Re;om—

50

LS 1 1

Oleg Kiselyov o AUTIIIBRETIRTOE AW
mendation, It is the only parser among those considered in this paper (besides
SSAX and Expat) that supports XML-namespaces, XML whitespace handling,
general entity expansion, attribute value normalization, and the proper handling
of CDATA sections. CL-XML is the least functional-style parser: it is written in
imperative style, with extensive reliance on global and dynamic-scope variables.

XISO [#] is a mostly-functional parser implemented in Scheme. It is a pure
DOM, non-validating parser. It is does not check many of XML well-formedness
constraints either. Another parser of the similar quality is Tony [8], which is
written in OCaml. It is not a pure functional parser: the parsing state and a
character data accumulator are mutable. Like XISO, Tony does not detect or
expand entity references, does not handle CDATA sections, does not support
namespaces — it does not even handle newlines in attribute values.

One component of HaXml [12], a collection of utilities for using Haskell and
XML together, is an XML parser. The parsing component includes a hand-
written XML lexer, which. produces a token stream for the parser proper. The
latter is based on a slightly extended version of the Hutton/Meijer parser combi- -
nators. The HaXml parser does not do the normalization of attribute values and
does not support XML namespaces. It does not detect many well-formedness let
alone validation errors. The separation between the lexing and the proper pars-
ing stages in HaXml is a principal weakness as tokenizing an XML document
heavily depends on the parsing context. The weakness manifests itself, for exam-
ple, in parser’s failure to handle newlines and special characters within quoted
strings.

The HaXml parser is‘a DOM parser.- An XML document is first tokenized,
then it is converted into~a parse tree-representation, which is handed over to

(define (simple—XML->SXML port)
(reverse
((sSs4Ax: make—parse:r:
NEW-LEVEL-SEED -
(lambda (elem-gi a‘c‘trlbu'tes namespaces expected—content seed)

’O) ;
'FINISH-ELEMENT - o

(lambda (elem—-gl attributes namespaces pa:rent—seed seed)
(cons (cons elem-gi (reverse seed)) pa:ent—seed))

CHA.R—DATA~HANDLER
(lambda (stringl string2 seed)
(if (string-null? string?) (cons siringl sead)

(cons* string2 stringl sesed)))
) . . %
port *(0)))

Fig.5. A simplified SSAX . XML->SYML function from the SSAX distribution

51

A Better XML Parser through Functional Programming

a user application. Because Haskell is a non-strict language however, the lexer
does not generate new tokens until they are required by the parser. The parser’
does not make a new node of the parse tree until this node is accessed in the
user apphcaulon code. Thus the HaXml! framework could act similar to a SAX
parser despite its multi-phase processing. This potential is not realized as HaXml
eagerly loads the whole document into a string, to let the lexer backirack or look-
ahead by arbitrary amount. In contrast, SSAX never backiracks a character
and never looks more than one character ahead. Therefore SSAX can handle

(sequences of) documents from a.TCP pipe or other stream.

5 " Conclusions

In this paper we have shown an example of a principled construction of a SAX
XML parser. The parser is based on a view of XML parsing as a depth-first
traversing of an input document considered as a spread-out tree. We have con-
“sidered the problem of efficient functional traversals of abstract trees and of
capturing the pattern of recursion in a generic and expressive control structure.
‘We have found such efficient and generic higher order operator: foldts. Unlike
the regular tree fold, foldts permlts space— and trme—optlma.l accumillating tree
. traversals.
The foldts operator became the core of SSAX a SAX parser ‘that walks an

- XML document and invokes user-supplied handlers when it identified elements ‘
processing mstructlons, character data and other entities. The SSAX- paTsing
engine effectively abstracts the details of the XML document tree the engine
makes it unnecessary for user handlers to maintain their own stack of open
elements; the engine reduces the amount of application state shared among the
user ha.ndlers to the bare minimum. The comparison with other SAX parsers (the
reference XML parser Expat and its functional analogue FXP) shows that SSAX
provides a higher-level abstraction for SAX XML parsing. The user-handlers of
SSAX are referentially tramspa.rent are less error-prone to write and to reason
aboust.
The SSAX parser is a full-featured, pure-functlonal stream—orlented algo-
rithmically optimal SAX parser, which also makes user handlers easier to write
and thus removes whole classes of possible bugs. The combination of these fea-
tures distinguishes SSAX among other XML parsers. The features are the effect
of the pnnmpled SSAX construction, in pa.rtlcularly, of the foldts traversal

operator.

Acknowledgments

I would like to thank Shriram Krishnamurthi for valuable discusioné detailed

_comments and suggestions. This work has been supported in part by the National .

'Research Council Research Associateship Program, Naval Postgraduate School,

and the Army Research Office under contracts 38690—\/.{A and 40473-MA-SP.

52

&

Oleg Kiselyov o JAENTRL AT WAL,

References -

i,

10.

11,

13.

14.

Anderson, J.: Common Lisp support for ﬁhe ‘Extensible Markup Language’

(CL—X\/IL) Version 0.906, June 2, 2001.
ttp://homepage.mac.con/james. &derson/ﬂf../docu_

221

Cooper, C.: Using Expat. zml.com, September l 1999
ttp://www.xml. com/pub/a/1999/09/expau/lﬂdea

Dun-ord M.: DOM XMTL: An Alternative to Expat. -

http://www.phpbuilder.com/columns /matt20001228,php3 210

Expat XML Parser. Version 1.95.1, October 21, 2000.

http://sourceforge.net/projects/expat 210, 217

Hutton, G.: A tutorial on the universality and expressiveness of fold. Joumal of

Functional Programming, 9(4):355-372, July 1999. 211, 213

Gibbons, J., Jones, G.: The Under-appremated Unfold. Proc: Intl. Conf. Functlonal

Programming, pp. 273-279, Baltimore, Maryland, Septem'ber 27-29, 1998. 211, 213

Kiselyov, O.: Functional XML parsing framework: SAX/DOM and SXML parsers

with support for XML Namespaces and validation. Version 4.9, September 5, 2001.

http://pobox.com/~ocleg/ftp/Scheme/xml . html#XML-parser 210, 219

Lindig, C.: Tony - a XML Parser and Pretty Printer. Version 0.8.

http://vwww.gaertner.de/ "lmdlg/ software/tony. html 222

van Mourik, H.:. XML parser in Scheme. Version: 0.9. 93 June 2, 1998

http://student.twi.tudelft.nl/~tw585306/ 222

Neumarn, A.: The Functional XML Parser. Version 1.4. 4, October 30, 2000.

http://WWW.Informatik.Uni~Trier.DE/ aberlea/Fxp/ 209, 220 -

Sheard T., Fegaras, L.:yA fold for all seasons. Proc. Conf. on Functional Program-

ming and Computer Architecture (FPCA’93) pp .233-242, Copenhagen, Denmark,
June 1993. 213

Wallace M., Runciman, C.: HaXml Versmn 1.02 release, May 3, 2001.
http://www.cs.york.ac.uk/fp/HaXml/ 222 :

World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second
Edition). W3C Recommendation October 6, 2000. _ '
http://www.w3.org/TR/REC-xml 209, 210

World Wide Web Consortium. XML Informa.tlon Set. W3C Candidate Recommen— #

dation. May 14, 2001.
http://www.w3.org/TR/xml-infoset 211

ztion/cl-zml.html

ml 217

33

Holistic Framework for Establishing Interoperability of

Heterogeneous Sofiware Development Tools and Models

Joseph Puett
Naval Postigraduate School
833 Dyer Sirest
Monterey, CA 93943 USA
(831)-656-2361

jfpueti@nps.navy.mil

ABSTRACT

This research is an initial investigation into the development of a
Holistic Framework for Software Engineering (HFSE) that estab-
lishes mechanisms by which existing software development tools
and models will interoperate. The HFSE captures and uses de-
pendency relationships among heterogeneous software develop-
ment artifacts, the results of which can be used by software engi-
neers to improve software pracesses and product integrity.

Keywords

Software Development Tool Interoperability, Software Evolution,
Software Quality Function Deployment (SQFD), Relational Hy-
pergraph Modeling, Requirement and Specification Dependency
Traceability, Software Environment : .

1. INTRODUCTION

A great deal of software engineering research has been conducted
with the aim of developing or improving individual aspects of
software development. Examples include research into software
evolution models, requirements engineering, risk and cost estima-
tion, software reuse, prototyping, testing, software integration,
software maintenance, re-engineering, performance analysis, do-
main analysis, and architecture design. Typically, these individual
aspects of software development require the software engineer to
recognize that dependency relationships exist and to provide any
bridging between different development models and tools (see

Figure 1).

-

| Re-Engincering

" Quality Coatrol
- Periormance Analysis I
SW Evolution : 1f
e T T
Cmsmtms] <7, K= [e
T [t
B | ppE————y
’ Dormin Analysis i

Figure 1. Typical SW Development Process Interaction

A _ Risk Mzmt

/__

¥

" 2. HOLISTIC FRAMEWORK |

-

- However, with limited exception [6][9], there has been little re-

search into holistic models .of how these various threads and proc-
esses could most efficiently and effectively interact. Currently,
there is inadequate communication of risk and requirements
across disjoint tools and models [8]. A holistic framework prom- _
ises to provide seamless interoperability between these tools and
models improving both process and product. The existence of
such a framework enhances the discovery of dependencies among
different aspects of the software engineering process and allows
software engineers to implement process improvements that pro-
vide product integrity with respect to those dependencies. While
the long-term goal of this research is to support all aspects of
software engineering, the immediate goal is to demonstrate the
theoretical feasibility of integrating a selected subset of models
and toals using a Holistic Framework. '

Al

2.1 Overview , ,
_ Central to a holistic view of software development is sofiware
evolution.” A software-evolution system must provide strong ver-
sion control of all artifacts produced during system development
and track dependencies among artifacts. In today's distributed
development environments, the evolution-control system must
provide for collaboration between multiple users at multiple sites,
provide mechanisms for notification when changes made by one
‘developer affect the work of another, and when appropriate, pro-
vide blocking when on-going work of one developer would be
counter-productive to atternpted work by another. The artifacts to
be controlled vary in both purpose and format. Examples include:
organizational policy and vision documents, business case docu-
ments, development plans, evaluation criteria, release descrip~
tions, deployment plans, status assessments, user's mamuals, re-
quirements and specifications, customer interviews, meeting min-
utes, code, sofiware documentation, software architecture docu-
ment, unit tests, test cases, and test results. The formats vary as
well: data base entries, text documents, spreadsheets, images,
drawings, audio files, and video clips. The long-term goal of the
HFSE is to establish dynamic traceability, dependency tracking,
and i'ntegation over this diverse set of information and formats.

By relating inputs and outputs of various software process modals
through an evolution interface that attaches and records Fhe de-
pendencies among evolution artifacts [4], im'ormaﬁog requ}red by
various processes can be automatically generated and obtained as
nesded. Such a model requires interaction between 2 GUIL, an
evolution control component, and an object model compoaent. -

54

LB gy

» »

The Evolution Model and Object Model interact with subordinate
software development tools and processes (see Figure 2).

=
/’ b
/79 GUI g
>
AY = -
e m N
7 i"alz.rthram:uark ﬂ -
‘_4___5;7-/
————

SIi Development Tools

Figure 2, Holistic Model of SW Process Interaction

Considerations in establishing this higher level holistic framework
include identifying the medium for representation of information
(e.g., tree structure), establishing a communications medium (e.g.,
net, databases, publish and subscribe w/ CORBA, object mecha-
nisms using XML), accounting for process order (e.g., sequential,
parallel, hybrid), providing missing data, accounting for ambigu-
ity of inputs and outputs, accounting for conflict resolution be-
tween models, and providing for extensibility.

2.2 The Ideal HFSE.
The ideal Holistic Framework for establishing interoperability of
software development tools and models should include the fol-

lowincr characteristics:
2.1 Non- -proprietary
The HFSE should be generic and non-proprietary. The frame-

work should allow any model or tool to be incorporated. The
framework should not be established solely for use with a specific.

group of tools.
2.2.2° Support Real Tools

The HFSE should support real software development toals. - The -
ﬁ'amcwork should not be established simply to support re-

search/laboratory software development tools but must account
for tools used to build real software.

2.2.3 Process Independent
Thé HFSE should be independent of the software develapment

process. The framework should be of benefit regardless of
whether a software development team uses the spiral development
model, the evolutionary prototyping model, the waterfall model,
the rapid application development model, the Win-Win model,

etrc.

2.4 Domain Independent
The HFSE should be able to_ integrate tools for any software do-
main. The framéwork can be used equally well to link together
tools that are used to design and build command and control sys-
tems, or embedded real-time systems, or information system ap-
plications. This is not to suggest, though, that tools integrated for
use with a particular domain could be successfully applied to
. develop software in a different domain.

2.2.5 Extensible _
The HFSE should be extensible. Not only should it be possible to
include new process models or tools by using the framework, but

it should also be possible to modify or update the attributes of the

" Use of the HFSE should decrzase the cost of

framework based on new technologies or new atributes requirad
by new process models.

2.6 Reduce Time to Markst
Usa of the HFSE should improve the speed in which softwars is
produced.

2.2.7 Reduce Development Cost
developed sofrware.

2.2.8 Improve Product Quality
Use of the HFSE should increase the quality of developed soft-

ware,

2.2.9 Easyito Use
The HFSE should be intnitive and easy to use.

2.3 Research Scope.
Of these ideal characteristics, only some will be directly ad-
dressed and validated by this research. In particular, the charac-
teristics described in paragraphs "2.2.1-2.2.5" above will be used
to establish the framework. Mathematical relationships (princi-
pally from Graph Theory, Object Oriented Analysis & Design
(OOAD), and Category Theory) will be used to demonstrate the
validity of established constructs. The characteristics described in
paragraphs "2.2.6-2.2.9" will be only lightly addressed in the
dissertation, but there are plans for formal validation of these
efficiencies to be undertaken as firture research.

3. HYPOTHESIS.

The following is a statement of the research hypothesis:

It is theoretically feasible t6 integrate a selected setof software
development tools and/or models through application of a Holistic ..
Framework for Software Engineering (HFSE). Where:

& The HFSE consists of an extended Software Evolutiori model

integrated with a Federation Interoperability Object Model of
the subordinate software development tools/models. '

* The integrated tool/model set provides additional interopera-
bility (i.e. additional data exchange and joint task execution)
beyond the interoperability ava.dable prior to the application

- of the HFSE to the set.

4, RESEARCH PLAN & METHODOLOGY.
Conducting this research consists of executing the following ma-
jor tasks: 1) Identify and holistically define thé essential charac-
teristics of individual software development process models and .
tools, 2) Embed Quality Function Deployment in the Relational
Hypergraph Software Evolution Model, 3) = Apply the Object-
Oriented Model for Interoperability for heterogeneous systems to
establish an interoperability federation between software devel-
opment process models, 4) Integrate the extended Evolution
model and the object federation, 5) Prototype the HFSE, and 6)
Apply the HFSE to 2 selected set of tools to establish evidence
that the interoperability of the integrated tool set is improved.

4.1 Characterizing Tools & Models.

The first major step in this research is to identify and define the
essential characteristics of software development process models
and tools so that these characteristics can be used to appropriately
extend the Relational Hypergraph Software Evolution Model and

35

be used to construct 2n Object Federation. The approach to this
portion of the investigation is to analyze the structure, inputs, and
outputs of a small collection of individual tools. To provide a

breadth of coverage of software development (yet, menage the

scope of the investigation) five tools will be analyzed. These will |

be drawn from the areas of requirements engineering [9], project
risk (8], prototyping and implementation [7], reuse, and testing.
A methodology that may prove useful here is to perform a domain
analysis (of this subset of tools) and produce a featurs modsl of
that domain [2]. Next, these essential features will be compared
and refined in the context of the objects defined in the Evolution
Model; their common characteristics, structures, and relationships
as described by Category Theory [5]; and the objects needad for
establishing an Object Federation [10]. Such comparisons will
provide a holistic descriptive model of the essential characteristics

of software development tools.

4.2 Embedding QFD in the Evolution Model .

The next major step in the research requires establishing depend-
‘ency relationships between software development constructs
within an evolution context. One way of developing this evolu-
tion interface is by extending an existing Software Evolution
model [4] with Quality Function Deployment (QFD) [3] to intro-
duce a continuum of dependencies between software artifacts.
Existing models rely on predefined artifacts and limited depend-
ency tracking. A QFD continnum separates relevant dependen-
cies/priorities from noisy data and is an improvement over current
models [4] that only provide primary and secondary dependencies
with no articulation as to importance (and type) of the depend-
ency to the rest of the design. The HFSE will provide semi-

automated mechanisms for establishing the continuum of depend-
encies among software development artifacts. 'Such an extension .

also improves the vertical, horizontal, and temporal dependency
graph between these artifacts. .

43 Establishing the Object Model

Finally, it is necessary to develop an interaction framework be- .

tween the subordinate process models and the extended evolution
model. One promising approach is to use an Object-Oriented
Model for Interoperability (OOMI) for resolving representational
differences between heterogeneous systems {10]. This approach
establishes a high-level Federation Interoperability Object Model
(FIOM) that allows interaction between the objects of existing
heterogeneous systems. By establishing such an object federation
between existing process models (or their tools) and then integrat-
ing that federation with the extended evolution model, inputs and
outputs between the subordinate models (or tools) will. be avail-
able to each other while at the same time reporting that interaction

to the extended evolution model. Our approach is similar to that |

of the High Level Architecture (HLA), but applied in a different
conte*'t. The success of this tesearch will help clarify the tradeoff
between' interoperability via conformance to 2 single global data
standard versus the use of multiple representations, ontologies,
and translations.

5. EVALUATION

Evaluation of the research will be initially undertaken by con-~

structing a prototype HFSE integration .tool, used for integrating .

subordinate software development tools. The HFSE prototype
will be applied to a small representative subset of tocl/models
forming an integrated sofiware development environment. The

integrated tools will then be used in 2 sofiware development sce-
nerio. Evaluation will be undertaken against a conirol group to
provide evidence that the interoperability of the intzgrated tool
suite is improved. Finally, the research will attempt by theoretical
argnments to characterize the class of tools and models that could
also be unified with additional efforr.

5.1 Experimental Design
After the HFSE integration tooi proiotype is construcied, a static
group comparison test [1] performed as a laboratory experiment
will be used to provide confirming evidence of the research hy-
pothesis. In this case, the HFSE prototype (the experimental vari-
able) is applied to 2 selected subset of tools/models (the observa-
tion group). The performance of the integrated subset of
tools/models (after the application of the HFSE) is then compared
to the performance of the same tools/models operating without the
benefit of integration by the HFSE when applied in a software
development scenario. The comparison in this case will be to
determine if there are any improvements in interoperabiliiy be-
tween the tools. Specifically, the research will be accumulating
evidence of additional data exchange and additional joint task
execution enabled by the application of the HFSE to the subset of
tools/models. The evaluation will also be seeking counter-
-evidence that the HFSE reduces (or inhibits) data exchange and/or

joint task execution.

5.2 Internal and External Validity.

[1] identifies the conditions for which scientifically sound ex-
perimentation should occur. In- order for an experiment to be
“scientifically sound, the experiment must bound sources of inter-
nal and external invalidity. Internal validity deaI&thh the ques-. .
tion of whether or not the application of the process.(the HFSE)
was, in fact, the sole direct contributing cause of" the measured
result (improvements to tool mteroperablhty) Exterdal validity .
deals with the question of ' whether the result can be generalized to

. external populaﬁons and sets outside the experiment. The static

group comparison proposed controls some (but not all) of these
sources of invalidity.

3.2.1 Sources of Internal Invalz'dij'

5.2.1.1 History
This source of internal invalidity arises because of SpeClﬁc events
occurring between measurements of the outcome that are in addi-

" tion to the experimental variable. This source is not adequately

controlled during the proposed experiment because once the tool
set is integrated by the HFSE, its state may change betwesn time
periods that we search for evidence of improvements in interop-
erability of the observation group. The state may change because
we will be seeking interoperability improvements during an active
evolutionary sofiware development effort. While unlikely to be

" the cause, these state changes cannot be ruled out as the effect of

additional improvements in interoperability. The only way 0
control this source of invalidity would be to measure all changes
in mteropemblhty at each atomic time step (perhaps every sec-
ond) of the software development effort. Given that the main
intersst is in establishing evidence in a complex evolutionary
development -effort (perhans measured in davs, weeks, or
months), such an approach is impractical. Instead, we will at-
tempt 10 mitigate this source of invalidity by attempdng to deter-
mine and document the direct cause of each improvement o in-

teroperability. .

56

- -

5.2.1.2 Maturation .

This source of internal .invalidity arises because of processes
within the observation’ group change as a function of time, inde-
pendent of any application of the HFSE. Again, this source of

invalidity is not controlled and cannot be ruled out because soft- -

ware development process tools may have internal processes
which are activated- solely by time (e.g. automatic updat-
ing/rectifying of databases). Such processes will change the state
of the observation group, meaning that it may not be possible to
eswablish that the direct cause of differences in the observation
group were a result of the HFSE. As in the case of "Histery," we
will attempt to mitigate this source of invalidity by attempting to
determine and document the direct cause of each improvement to

interoperability. :

5.2.1,3 Testing
- This source of internal invalidity arises when the act of taking an

observation changes the state of the observed itemn and thus influ-

" ences future observations. This source of invalidity is adequately

controlled since observing the evidence of improved interopera-
bility within the tool set is unlikely to generate any changes to the

state of the set.)

35.2.1.4 Instrumentation
This source .of internal invalidity arises because of changes in the
observing instrument or changes in the observers create a bias
between measurements. This source of invalidity could be a
problem in the proposed experiment since we will be looking for
"improvements in interoperability" — perhaps influenced by sub-
" - jective opinion. The key for controlling this source of invalidity
is to carefully define what an "improvement" means, to define

" what “interoperability" means, and to uniformly apply these.defi-. -
nitions to the comparison set. We will begin:with the following. .-

deﬁn}x'tions: (A

cution between two separate tools/models

» Improvement: evidence of the existence of interopera-
bility found in the integrated tool/model set, not found
in the disjoint tool/model set. ‘

If these definitions prove insufficient to explain or account for
witnessed phenomena during the experiment, the definitions will

be refined appropriately.

5.2.1.5 Statistical Regression

This source of internal -invalidity arises when the observation
sample group has been selected from the extremes of the potential
observation population. Since the tools/models selected are more
appropriately termed a "convenience” sample, this source of inva-
lidity is not applicable to this experiment and therefore is con-

trolled.

3.2.1.6 Selection Biases

This source of internal invalidity arises because of biases in the
selection of the observation group. As mentioned in paragraph
5.2.1.5, our observation group of tools is a2 convenience sample,
chosen primarily on the basis of the availability of the tool/model.
Several of the tools/models were specifically developed with a
view thar they could be eventually integrated (the prototyping ool
[7] and risk management model [8]). Because we have selected
these tools/models for observation based on this bias, this source

« Interoperability: data exchange and/or joint task exe-

of invalidity is present in the experiment and therefora is not con-
trolled. To mitigate this somewhat, an outside model was chosen
as the requirements engineering model. This bias may be further
mitigated by selecting representative, yet external, tools/models
for the reuse and testing portions of the experiment.

3.2.1.7 Experimental Mortality
This source of internal invalidity arises when there is a loss of

- part of the observation group during the experiment. It is not

expected that application of the HFSE will result in the loss of
any tool/model; therefore, this source of invalidity should not
occur and therefore is controlled. ; .

3.2.1.8 Selection-Maturation Interaction

This source of internal invalidity arises in multi-observation
group experiments when interaction between the observation
groups is mistaken for the effect of the experimental variable.
Since this experiment does not involve the interaction of the two
observation groups, it cannot occur and therefore is controlled.

3.2.2 Sources of External Invalidity

5.2.2.1 Inferaction of Testing and the Experimental
Variable -

This source of external invalidity arises when a pretest might
change the observation groups' responsiveness to the experimental
variable. In this case, no pretest is applied to the observation
group, therefore there is. no ‘opportunity for bias. Thus, this
source of invalidity is controlled.

5.2.2.2 Interaction.of Selection and the Experimental
Variable ’

~This source of external invalidity arises because of interaction
. effects between the selected observation group and the experi-
- mental varigble. In this case, the experimental variable is the

application of the HFSE prototype, which has as its core the Hy- -
pergraph Evolution Model [4]. ' This model, the prototyping
model [7], and the risk model [8] were originally designed to
work together. Therefore, their interaction may unfairly bias the
generality of the result. Thus, this source of external validity is
not controlled and brings into question the application of the

- HFSE on other, randonily selected tools/models.

5.2.2.3 Reactive Arrangements

This source of external invalidity arises because of the reactive
results of experimental arrangements. For instance, if we choose
tools for the experiment with APIs (for experimental convenience
and because we believe they will be easier to integrate with the
HFSE prototype), we cannot then conclude that the result of the
experiment is generally applicable to all tools (for instance, those
without APIs). Such = situation does exist in this experiment
because at least two of the tools/models (the prototyping tool {7]
and the risk model [8]) have been chosen for their experimental
convenience. Thus, this source of invalidity is not controlled. We
are attempting to mitigate the degree of this extemnal invalidity by
selecting some commercial tools in addition to those tools.

3.2.2.4 Multiple Treatment of the Experimental Vari-

able Interference : :

This source of external invalidity arises when there are multiple
treatments of the experimental variable on the same observation
group. -Since the HFSE will only be applied once to a particular

57

/

set of tools, thers is no opoorh.tm‘v that this source of invalidity
will occur. Thus, it s controlled.
3.2.3 Summary of Experimental Validity
Table 1 (below) summarizes the sources of invalidity associated
with the proposed experiment.

Table 1: Summary of Sources of Invalidity

o History Not Controlled
§ Maturation Not Controlled
z Testing Contralled
E Instrumentation Partially Controlled
g Regression Controlled
= Selection Not Controlled
g Mortality Controlled
;,5— Interaction of Selection Controlled
& Maturation
B Interaction of Testing Controlled
el
:5 —5 and Exp Variable NOt. Canimlled
8 ’;: Reactive Arrangements Not Controlled

It is evidént, that even with mitigation measures that there are a

number of sources of invalidity. Because of limitations in the

scope of this research, these sources of invalidity will not be for-

mally addressed (only discussed). However, there are plans for
 furture research to address these shortcomings.

6. CONTRIBUTION
The most important original contribution to the field of Sofcware

Engineering that this Dissertation proposes is to establish the
feasibility of a Holistic Framework that captures dependency
relationships between software artifacts- so that the relationships
can be visualized and leveraged. Establishing an HFSE and ap-
plying it to a set of sofcware‘devempmegt tools or models will
improve the efficiency and effectiveness of software development
in a number of ways. First, the entire process of software devel-
opment will become more automatic. As long as model/tool in-
puts and outputs can be supplied through the holistic model, dif-

ferent tools will be able to ‘interact automatically, with less in-

volvement by the software enginesr. Second, because all artifacts
within the holistic model are tracked together as a large depend-
ency graph, it is possible to extract select "slices” of the depend-

ency graph for particular purposes, allowing mors "focused” de-
velopment. For example, since the holistic modsl interacts with
existing process models such as software risk, reuse, and testing;
it will then be possible to exiract a "slice” of the entire depend-
ency graph (a slice that represenis the greatest risk) so that proto-
typing and analysis effort is not wasted on developing artifzess
that are ealready well deiined, understood, and/or successilly
implemented in previous versions. Finally, such a framework
will allow software engineers to identify and reason about previ-
ously unknown relationships between sofiware developmsnt arii-
facts leading to both process and product improvements.

7. ACKNOWLEDGMENTS

This dissertation research is sponsored in part by the Spacs and
Naval Warfare Systems Center, San Diego.

8. REFERENCES
{11 Campbell, D. T. and Stanley, I. C., Experimental and Quasi-
Experimental Designs for Research, Houghton Mifflin Com-

pany, Boston, 1963.

[2] Czarmecki, X. aud Eisenecker, U.; Generative Programming:
Methods, Tools, and Apphcatlons Addison Wesley, 2000.

" [3] Haag, S., Raja, M. K., and Schkade, L. L., "Quality Function

Deployment Usage in Software Development,” Commun
ACM, 39,1, (1996), 41-49.)
[4] Ham, M.; Berzius, V., and Lugi, "Software Evolution Proc-
" ess via 2 Relational Hypergraph Model,” Proc. IEEETEEY/
ISAT Int. Conf. on Intelligent Transportation. Systems (To-
kyo, Japan, Oct. 5-8, 1999), 599-604.

[5] Krishnan, V. S., An Introduction to Catewory ’I'heory, North)

- Holland, New York, 1981.
[6] ‘Kruchten, P., "A Rational Development Process, ” CrossTalk,
- 9(7), Tuly 1996, STSC, Hill AFB, UT, pp. 11-16.
[7] Lugiand Ketabchi M., "A Computer-Aided Prototyping
" System" IEEE Software, March 19838, pp. 66-72.

[8] Nogueira de Leon, I.C., "A Formal Model for Risk Assess-
ment in Software Projects,” PAD Dissertation, Naval Post-

graduate School, Sept 2000.

[5] Ratiorial Corporation, Rational Unified Process: Bﬁt Practices for -

Software Development Teams, Report TP-026A, rev. Nov 1998.

[10] Young, P., Ge Jun, Berzins, V., Lugi, "Using an Object Ori-
ented Model for Resolving Representational Differences be-
tween Heterogeneous Systems,” Proc. Monterey Workshop

(onterey, Calif,, June 2001), 170-177.

58

g <

A R i 2 ed

..:Op timizing Systems by Work Schedules
o (A Stochastic Approach)

William J. Ray
Naval Posigraduate School
833 Dyer Road
Monterey, CA 83943
(831) 656-2509

wjray@nps.navy.mil

ABSTRACT | |

Many systems have very predictable points in time where the
usage of a network changes. These systems are usually
characterized by shift changes where the manning and functions
performed change from shift to shift. 'We propose a pro-active
optimization approach that uses predictable indicators like
manning schedules, season, mission, and other foreseeable
periadic events to configure distributed object servers. Object-
Oriented computing is fast becoming the de-facto standard for -
software development and distributed object servers are becoming
more common as transaction rates increase.

Optimal dep loyme'ﬁt .stz‘ategies for object servers change dueto

variatioris in object servers, client applications, operational
missions, ha:dware modiﬁcations, and various other changes to

the ermronmcnt_

As distributed object servers become more prevalent, there is
more need to optumzc the deployment of object servers to best

serve the end user’s changm needs. A system that automatically

oenerat%s object server deployment strategies would allow users
to take full advantage of their network of computers.

The proposed miethod profiles object servers, client applications,

user inputs and network resources. These profiles determine an’

optimization model that is solved to produce an optimal -

deployment strategy for the predicted upcoming usage by the
“users of the system of computers and servers.

The validity of the model was tested by experimental
measurement. A test bed was créated and different manning
schedules were simulated. The results of the experfmentation
showed that the average response time for a user could be
improved by altering the deployment of the servers according to
the scheduled manning of the system. The model was robust in
the sense that the deployments that produced optimal response
times in the model also produced optimal or near-optimal
response times in the actual fmplementation of the test-bed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics arc
not made or dismibtted for profit or commercial advantage and that
copics bear this notice and the full citation on the first page. To capy
otherwise, or republishs to post on servers or to redisaibute 1o lists,
requires prior spesific permission and/or a fee. .
WOSP '02, Juiy 24-26, 2002, Rome, Italy.

Copyright 2000 ACM 1—381 13-000-0/00/0000.. S: 00.-

Lugi
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93843

(831) 856-2735 -

lugi@nps.navy.mil

59

i ; ’ Veldis Berzins
Naval Posigraduate School
833 Dyer Road
Monterey, CA 93943
(831) 658-261 O

berzins@nps.navy.mil

Categories and Subject Descriptors
Primary Classification: D.1 [Programming Techniques]

Additional Classifications: D.1.3 [Programming Techmques]
Concurrent Programming. - distributed programming, D2.12
[Software Engineering] Interoperability — distributed objects,
D3.4 [Programming Languages]: Processors — optimization,
D33 [Procrammma Languages]: Language Constructs and
Features — concurrent programming structures. .

General Terms
General terms are as follows: Measu.rement, Performance Desxon,

and Expenmentatwn

Keywords. !
Keywords are as follows: . Object-Oriented Programming,
Stochastic Optimization, Distributed Computing, Load Balancing,

and Performance Tuning.

1.]NTRODUCTION

The future of cs:>mpu‘::u1rr is heading for a universe of distributed
object servers. - The evolution of object servers to distributed
object servers _WiH parallel the. evolution of the relational
databases. , Over time, object servers will provide functicnality to
more client applications than their original applications, just as
relational ‘databases were used by more applications than the
original application. In both cases, systems optimized for the
original _application may mot perform well for the new
applications. Tools that allow a programmer to model an object
and easily create object servers with all the necessary
infrastructure code needed to work as a distributed object server
are available [15]. This will lead to an explosion in the number of
object servers available to client applications.

A user’s network of computers will change frequently Object

.servers, applications, hardware and user preferences will be in a

constant state of flux. No static deployment strategy can
efficiently use the assets accessible on the network in such an
environment. '

No system can accurately predict user interaction with a system.
Two separate users performing the same job will interact with a
system differently. The same user may interact differently while
performing the same job at different times. System usage partems
are often fusty and unstable so that the measured usage pattem for

i
|
|
i

|
a given time intervals is ofien 2 poor pradictor of the pattern in the
next time interval. For this reasom, we propose an adaptive
approach using a relatively simple approximate model.
Mast deploymﬂm su'atagies today are statically dictated by the
system enginesr’s view of how the systems will be utilized. Of
course, the sysiem engineer doesn’t revisit these strategies every

time hardware, software or user interactions change. Our goal is

to allow the user to update usage, hardware and sofiware profiles
whenever necessary., Amny time a profile is updated, the model
would be mm and an automated reconfiguration of the object
server deployment could occur. In most cases, the fraquency of
change will be greatest in the hardware and usage pattern profiles.
Since many of these changes can take place without the
knowledge of a system engineer or the budget to employ one, a
method that allows the users to update these profiles and initiate
the reconfiguration is desired.

2. PREVIOUS WORK

There has been little work on deployment strategies for distributed
object servers. The closest relevant research is in the fields of
load balancing, client/server performance and @ distributed
computing. Most state of the art load balancing techniques.
address scheduling of given set of tasks om a set of given
machines. Some techniques only deal with tasks that are
independent. Others deal with dependent tasks that are usually
linked together by temporal logic and mmtual exclusion
constraints (6, 7, 11]. 3

Other approaches to decrt:asmcr the average client response time
include the use of replicas or clusters. These techniques usually
involve making replicas of servers and distributing these replicas
across machines. The optimizations then look at balancing
requests across the replicas [6]. - These techniques require
additional hardware resources and add complexity to the
architecture, Synchronization of replicas requires two-phase
commits in order to guarantee consistency of data. The strategy
works best when read-only queries predominated. As the update
rate increases, the level of performance can deteriorate quickdy.

Many vendors claim to- address optimization within their
products. Most of these involve the employment of replicas and
clusters embedded in the logic of their EETB, CORBA or DCOM
enterprise tools, like Allaire’s Jrun or Borland’s Visibroker.
These products work best if your system has just a few stateless
object classes with numerous instances and plenty of available
hardware. IBM’s Distributed Application Partitioning (DAP)
automatically determines how to place objects in a distributed
program. DAP monitors the execution and records how often
particular objects communicate with each other. Then it computes
an ideal placement by determining the minimmum cut set of a
graph. While these products have value, they are limited to
optimizing servers implemented within their tool. The ability to
Teason about performance over a mixed bag of abject servers
regardless of middleware CEEIB CORBA, DCOM)
implementation was not Iov.nd in any product or previous
Tesearch. :

Research in.opdmization of dxrlbx_ted, real-time systems_ is also
widely available. This research is aimed at real-time systems
where the optimization is directed at the scheduling of tasks,
similar to many load balancing techmiques. In nop-real tme
systems where user interactions dictate the majority of the tasks,

deterministic scheduling of tasks is impractical, Conversely,
moving object server locations around in a diswibuted, real-time
system is often impractical. For thess reasons, this work is
directed at the non raal-time arena.

Other epproaches to improving the performance of servars include
hardware improvements. These approsches wusually imvolve
shared-memory multiprocessor systemns. While research focused
on hardware, such as the Cache Coherent Non-Uniform Memory
Access (CC-NUMA), does improve the performance of object
servers, these solutioms are mot an option for most system
engineers [3]. Much of the research involved in shared-memory
multiprocessor systems relies on the existence of the fast, reliable
shared-memory, which doesn’t exist in a heterogeneous network
of low cost computers. Multi-processor systems are orders of
magnitude more expensive than single -CPU systems. While these
systems may be the only option for large monolithic servers,
tnulti-server architectures can distribute their servers across much
cheaper single CPU systems to gain needed performance.

‘Research in Grid Computing also has emerged as an important

new field in distributed computing. Large-scale resource sharing
across multiple organizations increases both the set of available
network resources and the complexity of the underlying
architecture. The need for authentication, autharization, resource
access, tesource discovery, and other challenges require
applications to conform to “intergrid protocols” [3,4]. While
these added complexities would be needed for environments like
the Internet, they are mot as useful in nmch smaIIer smvle
organization environments.

Most of the previous work relies on estlmatmtr ﬁlture Ioads by
measuring past Joads. Our approach augmcnts this'with profiles of ..
predicted usage patterns that can be chosen based:: on maher—level ,
context mforma’aon such as current mission. :. ;

3. CURRENT PRACTICES '

Because of the difficulty in producing the infrastructure code
necessary to ‘support distributed object computing, many
developers produce huge monolithic object servers [14]. A
powerful machine is usually needed to adequately handle this
server and successful applications that experience large increases
in the number of users may outgrow the capabilities of the fastest

a available single machine. -

With automated code-generation tools, servers wxll be much
easier to produce and reconfigure [15]. This allows servers to be
partitioned by allocating unrelated or Ioosely related objects types
to different physical servers that can be deployed across the
network to take advantage of the available assets. By taking
advantave of all the assets on the network, faster response tlmes

can be achieved [14].

Loosely related object types are object iypes that contain
associations to other object types. When these object types reside
in different physical object servers, the result is an object server
that calls on other object servers. A server that mHs other servers

is a complex server [1}

. Many networks of computers are installed with a single purpose in

mind. Over time, these networks support an evolving set of ftasks.
Even though the original role the network played can change
dramatically, rarely does a single system engineer revisit the
deployment smategy for the entire system. What a user ends up

60

PO TR YRRy

- »

with is usually the product of multiple application engineers’
choices made based on the latest incremental changes without
regard for the system as a whole and interactions among its roles.
It is infeasible, because of cost, to hire a system engineer to re-
assess the whole system every time a change occurs. In the end,

the user is left with 2 system whose deployment sirategy borders
on randommness. ,

Any proposed solution to increasing performance can run inio
resistance if the cost i5 too great. System engineers regularly
dismiss solutions that require re-implementation of the sofiware.

Re-implementation can occur either by changing the architecture

or by conforming to a single implementation. The costs incurred
by changing sofiware can make even the most expensive hardware '
more atiractive. Collection of the necessary information is also a

concern. The more intensive and tme consuming the collection

becomes, the less likely the solution will be used. In the end, it

becomes a delicate balance to increase model fidelity without

increasing this burden on the system engineer.

4. OPTIN.[IZATION OF DISTRIBUTED
OBJECT-ORIENTED SYSTEMS

The goal of this paper is to describe a methed that can generate:
distributed object oriented server deployment architectures to take
advantage of network resources for the purpose of reducing
average client response time. A system that carries out this

method must be able to reason about deployment strategies of -

.. loosely related objects. The proposed system mimps all of these
profiles into equations to minimize average client response time.

Average client response time was chosen as the optimization
criteria over others. In this paper, the goal was to be user centric.

Criteria that focused on maximizing machine utilization were not -

germane. Average client response time ‘was" chosen: over

minimizing the maxinmum response time of one call ‘becanse the -

method takes into account the entire usage profile.

Our approach is to collect base system data by measurement to
calibrate our model. The model is used to predict optimal
deployment patterns for given usage patterns, hardware, etc. To
validate the model presented in this . paper, all possible
deployment patterns were implemented and measured in a real test
bed. The goal is to show that by minimizing the sum of the
projected CPU load on the servers and their interactions, that we
can lower average client response time.

4.1 Optimization Model

The optimization model will minimize the sum of all of the
response times for a given call pattern over a given time interval.
Since we want to allow the user the freedom to nm client
applications from.anywhere on the network,” we will ignore all
processing on the client machines and all network delay between
client machines and setver machines. Queuing delay is addressed
in a simplistic manner by limiting CPU utilization. Limiting this
model 1o a local area metwork minimizes the importance of
latency. The only factors we will consider for optimizing our
server deployment are the processing on the object server and the
network delay berween complex object servers. Therefore, the
objective function that we wish to minimize is:

:\f H Qnm *Ra* S}ra.-m
2, 2

n=0m=0

Minimize {:

R,

subject to the following four consirzines:
1.
a mm

a nm

Each Server can run on only one machine (no muliiple
instances of the same server).
l]

w[_}j e

m=0
RAM usage by the ob_)ect SeIVers Canmot pass a set
threshold on each machine.

Vm[Za_*V.ST.*U}

Object Servers cannot be split across machines.
= 1, iff server 1 is running on machine m
=0, otherwise

2.

[*3]

CPU time on a given machine cannot su.rpass the
corresponding real time interval.
< c]

o

=Number of object servers
= Number of physical machines

Z a-*R.*S—-

2=0 -

where:

=Normalized machine load of server n (seconds, s)
=Speed of the normalizing machineA(M'_E_Iz)
= Speed of machine m (MHz)

* =Data sent between server i to serverj (bits, b)

=Network Speed between server i to server j(bps) .-

=Physical RAM on machine m (bits, b)
=Memory allocated by server n (bits, b)

=Multiple to limit RAM utilization {0.1,3.0]

= Time Interval [seconds, s] ,
NOTE: The optimization process varies all (nm and finds the
minimum for the above objective function and constraints. Qy

is dependent on {nm . It is a function of the relative location of
the two servers. Depending on this function, the system of
equations may be linear or non-linear. For the examples in this

paper, ;= (1 + i ;i; . aj.)* L » Where L is ‘the LAN

=0
speed. All other terms are fixed either by measurement or input.

" 4.2 Evolution

61

Over time, a collection of hardware, software and " user
requirements will change in a given environmeni. Common
hardware changes consist of adding new computers, removing old
compurers, upgrading CPUs, modifying RAM and modifying
network bandwidth capacity. Each of these hardware changes

will produce an event that would trigger the sysiem to re-evaluate
its deployment strategy.

Software can also be quite dynamic in nature. New object servers
and applications can appear. Old ones can be removed. Existing
‘object schemara and methods can be changed. Each of these
changes would trigger an event o re-gvaluate the deploynenr

strategy.

4.3 Loosely Related Objects

. Not all objects types that are related st necessarily be contained
in a single object server. There is a point where the performance
ofthe system would improve by moving the object type into a
different server. This is usually the case when none of the
application code exercises an inter-server method call or exercises
it only very rarely. Large message sizes and slow network spesds
will push for related object types to be co-located. Large queuing
delays and increased swapping costs work to spread object types
apart. The approach will be able to reason about.not only
deplaying object servers, but also recommmend the schema

supported by these object servers.

4.4- Roles and Usage Patterns
User requirements can also be in a state of flux. Most computer
systems are used to support multiple jobs.

Jrequirements. A developer's network of computers can support
multiple projects, but may need to be optimized for a single
project for demonstrations. In the military, the operational
mission being supported can change significantly. For example, a
set of distributed object servers could be used to support many
applications aboard a ship. These applications could handle such
tasks as Anti-Submarine 'Warfare (ASW), Anti-Surface Warfare
(ASUW), Anti-Air Warfare (AAW), Electronic Warfare (EW),
humanitarian missions and rescué missions. The relative
computational activity of these applications could differ
significantly on different missions of the Shlp

Optimizing a system of object servers for all possible Toles would
not be optimal when the system is only performing a couple of
missions at a time. By profiling each role, the user could choose
to re-optimize his deployment to decrease the response time when
‘user chosen roles change. In this way, the user could tune his
system to give peak performance for the task he is currently trying

to periorm.

45 Proﬁles '

The tricky part is to figure out what eIements are nesded in the
different profiles, how to map these profiles into equations and
then model how these profiles interact with each other. The more
complex the modeling of the hardware becomes the more
computationally intensive the approach will become. Initially we
demonstrate an approach with rather simplistic profiles to
demonstrate its capabilites. '

I Hardware Profiles :
The aspects being modeled in the hardware pronles include
characteristics of each computer such as CPU spesd and physical
RAM size. The hardware profile also models the network speed
betwesn each compurer. Current hardware profiles do not directly
support multi-processor computers, but they conld be modeled as
groups of separate nodes with very high “netwark speeds”

between therm.

~ Business-hour
Tequirements can differ greatly from after-hours computational

2 Object Server Profiles

Ob_;ect servers need to be profiled for metrics associated with each

method call in each object. The computztional time of each
menhoa call should be captured and normalized to 2 specific
hardware architecture. Since object servers ideally mun
continuously, the RAM of the object server must also be
measured end summarized. The hardware profile and the object
server profile are sufiicient to optimiza the server deployment for
the case where all the functionality contained in all the objects is
of equal value to the user. Meirics can be collected 2asily with a
small client application that exercises each method call and
records the data. Thus, actual implementation code for the
application isn’t needed to estimate the object server profiles.

4.5.3 Client Application Profiles

A client application profile characterizes frequencies of method
calls to be processed by the object servers. Since exact
frequencies of method calls are not algorithmically computable in
the general case, measurement is necessary to reliably estimate
frequencies of calls. The system must allow a user to create
typical scenarios and record the method calls that occur in the
scenaro. This could be dome by simulation or monitoring calls to
the object servers when the system s in a training mode. The plus
side to this methed is that the user could represent more complex
tasks involving many wuser interactions in a single profile.
Numerous tools exist for complex event processing in a
distributed system that could be used to facilitate this process [8,

9],

454 User Profiles

User profiles or Toles indicate how a user interacts thh the System : . .

over a giveh period of time. In simplistic terms, it-igflike keeping
track of how many times each button is selected over'a given time

interval. Average buttori push rates can be expressed'as number

of events per second. The user can collect this datz manually or
via automatically collected audit trails. Muliiple roles can exist
for each user. The user could then select a set of roles and have

the system come up with an optimal deploymeut stmievy to meet-

these criteria.

4.6 Profile Mappincrs

In order to compute the optimal deployment sirategy given a set of
profiles, one needs to map these profiles into equations that can
be solved for minimum response time. To fllustrate the mappings,
we present an exarmple. The example consists of three machines,
three object servers and three client applications. The method
demonstrates the differencss in deployment for a system tumed to
a users-specific Tole. Table 1 shows the proﬁle for the computer

hard.wa:e avaﬂable

Figure 1: Server Depldyment.

o b

AT S

>

ey

Table 4. Normalized Server Loads.

Table 1. Machine profile for example.
MACHINE RAM (bits) CPU Speed | SERVER | Method | CPU time (s) | Average Sizs of
(VIHz) . : Message (b)
SIX 512,000,000 = | 600 3 1 05796 >
2 . 112000
- \ A 2 2.6203 18400
BR733 1,024,000,000 = | 733 N —
128MB A 3 1.18175 44800
GIGA 1,024,600,000 = | 1000 & % Pl 176000
128SMB B 1 1.76655 4000000
B 2 3.70085 2720000
- Table 2 shows the network bandwidth available to comrmmicate c 1 3.0043 320000
from each machine to the other. In this example, the machines C 3 "
will have equal bandwidth between machines, as is the case when _ g '0‘ 00R080
all servers are running on the same local LAN. The speed of | C 3 0.48315 400000

communications between servers on the same machine is more
difficult to predict. These speeds usually lie in the interval
bounded by the speed of the machine’s back plane and the speed
of the network. It is dependent on the operating system,

implementation of the middleware, and other factors. For this

example, we assume that intra-machine communication is twice as
fast as inter-machine communication. In the absence of
measurements, the system can be run with best and worst-case
scenarios by specifying the boundary values identified above.

Table 2. Network speed.

Besides the hardware profiles, we need to have the server profiles.
Table 3 lists each server’s RAM requirements.-

Table 3. Server RAV requirements.

SERVER RAM Required (bits)
A 352,000,000 =44MB -
B 480,000,000 = 60MB
C 528,000,000 = 66MB

-Additional parts of the object server are the timing of each
individual method call available in each server and a list of

. complex method calls. All of these measurements were taken on a
single machine to normalize the values. In this example, server A
has one four methods, server B has two methods, and server C has

three methods.

Machine to [SIX BR733 GIGA
Machine . .

Speed (bps)

SIX 200,000,000 | 100,000,000 | 100,000,000 |~
BR733 100,000,000 ZO0,000,QQO 100,000,000
GQ:‘.:A 100,000,000 100,000,000 | 200,000,000

A complex method call is a method call that calls another object
server. These method calls require specxal handling in measuring
their load on the host server and in the objective function for
optimizing the system. Table 5 lists the complex method calls in

this example.

Table 5: Complex Method Calls
Complex Method Exterior Calls
B2 _ | C1

The last information needed to optimize the system is information
about the applications and the users. This step adds roles to the
‘list of profiles for the system to optimize. These roles have morg
realistic use patterns for the different jobs a user would actually.

perform on the system. For this cxmnple we will have three

client applications with two buttons, nine buttons and three

buttons respectively..

Let’s assume that there are three different roles the network of
computers supports for the user and the following is the use
pattern shown in Table 6, and that the buttons call the following
server methods showm in Table 7. Method calls that appear in
italics in Tables 7 and 8 are complex method calls. They appear
in italics to remind us that these methods require special handling
when figuring out the objective function. -

Table 6. Roles.
ROLE CALL PATTERN
(observation mterval is 990 seconds)
Role 1 50C1LBI+1Cl1.B2+]1C2Bl+1C1B6
Role2 10 C1.B1 +40 C1.B2+24 C3.B2
Rale3 50 C2.B5 + 10 C2.B9 + 30 C2.B3 + |
- C2B2+1C3.B2

63

Table 7. User interface calls.

Button vlethods Called
CLB1 Al

'CI.B?_A‘ A2+B.l°

C2.BI Cl+C2

C2.B2 C3

C2.B3 C.2)
C2.B4 C3.

C2B5. | Al+B2

C2.B6 B2

C2B7 | A4

C2.B8 C3+A3

C2.B9 Al+A2+A3+B82
C3.BI Cl1

C3.B2 B.l1+B2

C3.B3 C2

By substituting the user interface calls into the roles matrix, we
get an objective function for optimizing the system shown in
. Table 8. All other method calls will be ignored.

Table 8. Roles to server calls.

ROLE Methods Called in Role

Role | S50*(AD+1*¥(A2+B.)+1*%(Cl1+C2)
+1%*(B2)

Role 2 10*(AD)+40*(A2+B1)+24*B.1+ |
B2) |

Role 3 S0*(Al+B2)+10*(A1+A2+A3+
BN+30*(CH+1* (C3)+1*B.L+B2) |

4.7 Model Solutions

All of the information above is Tun through a LINGO model that
varies the location of the object servers on the different machines
to find the a solution set that minimizes the value of the objective
function. Changing any of these variables will lead to different
model cutputs [13]. For this example, the LINGO model
computes 2 solution on a 360MHz PC in less than one second.

LINGO is a comprehensive tool designed to make building and
solving linear, nonlinear and integer optimization models faster,
easier and more efficient. LINGO provides a completely
integrated package that includes a powerful langnage for
expressing optimization models, a full featured environment for
building and aditing problems, and a set of fast built-in solvers. It
is a product of LINDO Systems, Inc. and can be found on the web
at www.lindo.com

4.8 Model Outputs

This method outputs the following deployment strategies for the
different roles when setting different RAM limits and keeping all
other variables the same as in the last example. Solving the

optimization problem defined in section 4.1 with the peramerer

values determined in section 4.6 derives these resulss.

Table 9. Single user. RAWV limit set to 1.5.

Machine Role 1 Role 2 Role 3
(1 user) (1 user) (1 user)
SIX Nones None None
BR733 None None None
GIGA A; B, C A, B, C AB,C

Table 10. Single user. RAM limit set to 1.0.

Vlachine Rolel Role2 Role3
(1 user) (1 user) (1 user)
SIX Nomne - None None
BR733 B C A
GIGA AC A B B,C
"Table 11. Concurrent users. RAM limit set to 1.0.
Machine Role 1 Role2 Role 3
(28 user) (4 user) | (3 user)
- SIX None A &
BR733 B,C C B
GIGA A B c

From the model output, we can see that when a single user is
present and RAM is not a limiting factor, the result is that all the
servers migrate to the fastest machine. However, when we start to

limit RAM, the servers start to spread out. The first server to °

leave the fastest machine turns out to be different in each role.

- Multiple concurrent users also tend to spread the servers across

the available machines. The significance of the model is that '

different roles and different mumbers of concurrent users lead to
different optimal configurations in most cases for this example.
No single static configuration can outperform the ability to change
configurations based on perceived changes in the usage of the

system.

4.9 Validation Experiments

We tested the validity of the model by experimental measurement.
A test bed was created with Windows 2000 machines that match
the characteristics of the machines in the above example. Servers
were created using JDK 13 and RMI as the middleware.

Software to simulate the three different users was also created. -

The user was sirmlated with a random choice for button selection
that has a uniform distribution similar to the roles. This
simulation sofiware was instrumented to measure the acal dme
the sofiware was blocked waiting for an object server method call
to response [13]. All 27 different configurations were established

. and the average response time for each configuration was

64

measured and recorded. Berween each simuladon, the test bed
machines were rebooted.

L8
A

B s

.4 -

- All_27 configurations were tested twice. One tested the
- conf' guration vnth ‘the object servers using much less than the
stared mermory ‘neéds.’ Another tested the configurarion with the
object servers ‘using all of the sizted memory neseds. Some
configurations sirained the machines memory limits. These
configurations resulted in syseem failures in the test with the
object servers using all of the stated memory needs. These systerm
failures are listed as error in the tables of results. It should be
noted that Windows 2000 did a much berter job of swapping
when memory utilization exceeded 100% than a previously tested

operating system, Windows NT.

4.9.1 Experimentation Results

A tabulation of experimental results obtained from measuring the
outputs of a test system for all of the test scenarios can be found
in the dissertation [13]. The following sections detail some ofthe
results and observations for different test scenarios.

49.2 Role I :
The models chose a configuration of pattern | when RAM was set

at 150% utilization and a configuration of pattem 3 when RAM
was limited to 100% utilization. Pattern 3 was the third fastest
average response time in the minimal memory run and the fastest
average response time in the stated memory run. The fact that
pattern 10 was the fastest average response time in the minimal
memory run is a result of the variability of the simulation [13].
Pattern 1 was the fourth fastest on both runs even though it was
the predicted configuration when RAM usage was set to 150% of .
physical RAM in the model. More interesting from a software
engineering standpoint was the fact that the model proposed a
configuration that outperformed most configurations from ‘10 to
44:percent and that the rccommended pattems were. ﬁ'ee from

failures.

4.9.3 Role2 .
The models predicted a configuration of pattem 1 when R.AM was-

set"at 150% utilization and a configuration of pattern 2 when
RAM was limited to 100% utilization. In the two rums, the
models predicted configuration of pattern 2 was the second fastest
average response time in both runs, Pattern 1 was the fastest
average rtesponse in both rmuns, which is the predicted
configuration when RAM usage is 150% of physical RAM.
Again, the configuration chosen by the modél outperforimed most
configurations from 10 to 38 percent. When 4 concurrent users
were present, the model predicted pattem 26 which was the

second fastest in testmg

494 RoZe 3 .
The madels predicted a configuration of pattern 1 when RAMwas

set at 150% utilization and a configuration of pattem 5 when
* RAM was limited to 100% utilization. In the two muns, the
models predicted configuration of pattern 3 was the third fastest
average response time in the minimal memory run and the second
futesr average response time in the stated memory run. Pattern 1,
the fastest average response time in both runs, was the predicted
configuration when RAM usage was set to 150% of physical
RAM. The fact that pattern 12 was the second fastest ime in the
minimal memory run is a result of the variability of the simulation
{13]. Again, the model proposed configuration ocutperformed
most configurarions ffom 10 to 44 percent. When 3 concurrent
. users were present, the model predicred pattern 27, which was the

fastest in testing.

SRS s

P |ROLE1ROLEZ|ROLE 3 R2 (4)

4.9.5 Manning S/’zyrs

Ahhouch the model does a good Jjob of predicting performance
for a single point, the true strength of this approach is chaining’
these points together. By taking advantage of changes to tha
system at predictable points in time, we can do betier than any
single statically assigned server placerent, .

Table 12: Shift Changes.

R3(5) [R1c) |

2 HEo3s0is) 8266.52)11746.10[13925.95] 4964.73
3 |30 6417.17] 7802.17]11711.42)13066.21| 4333.77
4| 1079.64] 663638) 9124.94]14333.23020415 47 e
5 | 1140.80] 5953.00 2"-’513%3411333.3014614.38 7005.97
26 | 1355.59) 675250 05455 13839.301 1117.11
27 | 1306.69] 7380.83] 8259.05 12569.52 e i0512042.34

If we assume that we have a shift schedule that has the following
six unique manning requirements over the duration of the
schedule, then we can initiate object server ze-deployments to
coincide with the shift changes. The shaded areas in Table 12
indicate the deployment pattern recommended by the model. The
numbers in the matrix are. the.actual measured values for these

deployments.

We are only interested in the six deployment patterns listed in
Table 12. If we were to institute a static deployment for our

‘system, then we would be forced to pick just one of the
‘deployment patterns listed above. The system engineer would be

forced into some logic that mitigated a worst-case scenario.

However, since we have the ability to reason about different
manning schedules, then we can take advantage of this capability,
By allowing the system to adjust the location of its object servers
at shift changes, we gain substantial improvements to the system.

By comparing the models recommended deployment pattern
versus the other six deployment patterns in Table 12, we can
quantify this improvement. By dividing the model predicted
pattems measured performance by the measured performance of
the other patterns in the same column, we get the performance
improvement for each shift. Table 13 below contains these

‘values.
Table 13: Shift improvements.

PAT|ROLE 1]ROLE 2/ROLE 3| R2 (4) | R3 (3) | R1 (28)
2| THEEREO% 10%| 10%| 10%| 24%
3 [BEERG o 14%| 5% 10%| 4% 13%

1% 17| 18%| 26%| 29% it
16% 7%) 15%| 46%

26 29% 18% 66%

27| . 26%| 25% 68%

65

Interesting to note is that 'we are only comparing deployment
patierns that are of high probability of actually being used. Only
one entry in the table has a negative value, all other entries have a
substantial performance improvement. Clearly from Table 13,
any orgznization with known manning schecules thar flucmate
would benefit from this approach.

5. CONCLUSIONS

The approach produces usefill results even with a simplistic model
that doesn’t directly address queuing delay. The system responds
in a reasonable way with changes in the environment, consiraints
placed on the system, and different roles that a user might want.
Since all of these changes take place on real networks of
* computers, static deployment strategies will never utilize the
assets available to better support the end user. The strategies
chosen by our model were robust in the sense that performance
was good even when actual loads departed from predicted loads.

Predicting exactly how a user will interact with a system that
supporis multiple roles will always be an inexact science because
of the limitations inherent in modeling users, software, hardware,
etc. This system provides an adaptive software engineering
approach to a real world problem that currently does not have a
better solution. Adaptive reconfiguration of object servers enables
systems to automatically grow to the point where collective
machine limits are exceeded and hard failures occur. Perhaps the
most significant capability added by our modetl is the ability to use
predictive and planning information encoded as profiles to pre-

optimize system configuration in preparation for peak loads, - -
staying ahead of events and avoiding reconfiguration overhead .

during periods ofhigh load. .

6. FUTURE WORK

The system needs to be refined to more precxsely reflect the
workmgs of the network of computers in more complex
topologies. These refinements include allowances for asymmetric
commmunications, latency, and queuing delays. Aggregated tuples

of these models will be necessary to better evaluate the impact of

RAM utility on processing speed. The CPU constraint inn the
model could be replaced by.a function that more accurately
models the variation of quening delays with arrival rates..

By tying the logic with a tool that automaﬁcally generates object
servers [15], performance comparisons can be made between
spreading object types across multiple ObJB"t servers and
machines versyg replicating the original object server on multlple
machines.

The approach could also be used to optimize_ other Id.nds of

systems involving a mixed bag of server types, as long as those
servers can- be modeled as object servers. _This would enable
better deployment strategies, especially since many of these non-
object servers could be tightly coupled to object servers.

. REFERENCES
[1] Adler, R, “Distibuted Coordination WModels for
ClienvServer Computing,” J[EEE Transac"ons on

" Computers, pp. 14-22, April 1995.

18

“Software Enginesring with

[2] Berzins, V. and ZLugi,
Addison-Wasley, ISBN 0-201-

Abstractions™, chapter 6,
" 08004-4, 1991.

[3] Foster, I, Kesselman, C., Tuacks, S., “The Anaiomy of the
Grid: Enabling Scalable Virual Orgamzaums,”
International. Jowrnal on Supercomputer Applications,
2001.
Foster, 1., Roy, A., Sander, V., Winkler, L.,
Quality of Service for High-End Applications,” IEEE
Journal on Selected Areas in Communications Special Issuz
on QoS in the Internet, 1999. ;
Hsiao, C., King, C., “The Thread-Based Protocol Engines for
CC-NUMA Multiprocessors,” International Conference on
Parallel Processing 2000 Procezdings, pp. 497-304.

Kim, J., Lee, H. and Lee, S., “Replicated Process Allocation
for Load Distribution in Fault-Tolerant Multicomputers,”
IEEE Transactions on Computers, vol. 46, no. 4, pp. 499-
503, April 1997. ’

Lok, P., Hsu, W., Wentong, C. and Sriskanthan, N., “How
Network Topology Affects Dynamic Load Balancing,” JEEE
Transactions on Parallel and Distributed Technology, vol. 4,
no. 3, pp- 25-35, Fall 1996.

Luckham, D. and Frasca, B., “Complex Event Processing in
Distributed Systems,” Camputer Systems Laboratory
Technical Report CSL-TR-98-734.
Stanford, 1998.

(<]

)

[71

(8l

Luckham, D. and Vers, 7T, “An Event: Base b Archxtecture‘

(o1
Definition Language,” IEEE Trmxsactzam“van Software

Engineering, Vol 21, No 9, pp.717-734. Sep 1995.
[10]Lui, J, Muntz, R. and Towsley, D., “Bounding the Mean

Response Time of the Minimum Expected Delay Routing -

Policy: An Algorithmic Approach,” IEEE Transactions on
Computers. Vol 44, No. 12, December 1995, pp 1371
1382.

[11]Mehra, P. and Wah, B., “Synthetic Workload Generation for
Load-Balancing Experiments,” [EEE Transactions on
Parallel and Distributed Technology, vol. 3, no. 3, pp. 4-15,
Fall 1995. . ,

[12]Perrochon, L., Mann, W., Kastiel, S. and Luckham, D,
“Event Mining with Event Processing Networks,” The Third
Pacific-Asia Conference on Knowledge Discovery and Data
Mining. April 26-28, 1999. Beijing, China, 5 pages.

[13]Ray, W. “Optimization of Distributed, Object-Oriented
Svstems,” PhD Dissertation in Software Engineering, Naval
Postgraduate Schoal, September 2001.

[14]Ray, W., Berzins, V. and Lugi, “Adaptive Distributed Object
A.rchltecmres, AFCE4 Federal Darabase Colloguium 2000
Proceedings, pp. 313-330, September 2000.

[15]Ray, W. and Farrar, A, “Object Model Driven Code
Generauon for the ::nte:p—xse.”.LE:.E RSP 2001, June 2001.

66

“End-to-End

Stanford University,

(FY

A Unified Approach to Component Ass embly
. Based on Generative Programming”

Wei Zhao' BarrettR. Bryant' Rajeev R.Raje’ Mikhail Anguston® Andrew M. Olson? Carol C. Burt!

The UniFrame project comsists of a unified meta-component model (UMM) for distributed
component-based systems (DCS), and a Unified Approach (UA) for integrating components [7]. The ¢ e
parts of the UMM are: components, service and service guarantees, and infrastructure. A cre:atioz: o(‘:j're
software solution for a DCS using UA comprises of two levels: a) the component level — develo ; -
create components, test and validate the appropriate functional and non-fimctional (Quality of sel—vicli-lf
QoS features and deploy the components on the network, and b) the system level — a couectionb of
components, each with a specific functionality and QoS, are obtained from the network, and a semi-
automatic generation of a software solution for a particular DCS is achieved.-

It is assumed that different developers will provide on a network a variety of possibly heterogeneous
components for specific problem domains. For a specific problem, a search process will identify ;elevant .
components from those available on the network. Once these are identified, the task is to integrate these
disparate components in a specific solution for the DCS under construction. The UA assumes that the
generation environment is built around a generative domain-specific model (GDM) [4, 5] supporting

component-based system assembly. The distinctive features of UA are:

* The developer of 2 distributed application presents to the UA-based system a query, describing the
requirgd characteristics, in a structured form of a natural langnage. The query is processed using the
 domain knowledge (such as key concepts from a domain) and a knowledge-base containing the UMM
descriptions of the components for that domain. The domain knowledge and the knowledge-base are
" parts of the GDM. From this query a set of search parameters is generated which guides “head-
hunters” to perform a component search of the networked environment.. Headhunters are special
components responsible for locating components deployed by the developers for the specific domain
under consideration [8]. ' . F G ' o
The headhunters discover a set of applicable components that satisfy the finctional and QoS
requirements as indicated by the developer of the distributed system. The developer expresses the
QoS requirements by selecting an appropriate set of parameters from a catalog of parameters [2].
After the components are fetched, the distributed application is assembled according to the generation
rules embedded in the GDM. This assembly requires the creation of glue/wrapper interface between
various components. Two-Level Grammar (TLG) [3] is used to specify the generative rules and
provides the formal framework for the generation of the glue/wrapper code. This is implemented
according to the process of translating TLG specifications into executable code as described in [6].

QoS parameters are divided into two categories: a) sta@é and b) dynatnic. Static QoS parameters (e.g.
dependability) are processed during the generation. Dynamic QoS parameters (e.g., Tesponse time)
result in the instrumentation of generated target code based on event grammars [1], which at run time

produce the corresponding QoS dynamic metrics, to be measured and validated.

" This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S.
Army Research Office under contract/grant numbers DAAD19-00-1-0350 and 40473-MA, and by the U. S. Office

of Naval Research under award number N00014-01-1-0746.
. Department of Computer and Information Sciences, University of .‘A.Iabama at B@rmingham, Birmingham, AL

35294-1170, U. S. A., {zhaow, bryant, churt}@cis.uab.edu.) :
1 Department of Computer and Information Science, Indiana University Purdue University Indianapolis, -

Indianapolis, IN 46202, U. S. A., {rraje, aolson}@cs.fupui.edu. o
3 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, U. S. A,

mikau@es.nmsu.edu. ~

67

' QoS parameters given in the query provide a special dimension to the generated code - the
instrumentation necessary for the mun-time QoS metrics evaluation. Based on the query, the user has to
come up with a representative set of test cases. Next the implementation is tested using theé set of test
cases to verify that it meets the desired QoS criterda. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with
respect to the QoS) implementation is found, or until the collection is exhausted. In the latter case, the
process may request additional componenis or it may attempt to refine the query by adding more
information about the desired solution from the problem domain. If a satisfactory implementation is

found, it is ready for deployment.

The case study for the generative approach is a bank account management system. 1t is assumed that
different client and server components for a bank domain are available on the network. These components
(belonging to a category, i.e., server/client) do offer the same functionality but different QoS features.
After requesting the construction of this system, assume that the headhunters found the following
components: JavaAccountClient, J avaAccountServer, and CorbaAccountServer. The first two adhere
to the Java-RMI model and the third one is developed with CORBA. technology. The UMM specifications
associated with the components indicate that the two server components have the same functionality but
CorbaAccountServer has better service guarantees and meets the QoS specified in the system query,
thus the final system should assembled from the Java client and the CORBA server. Based on the
. generation rules embedded in GDM, a proxy server for the Java client component, a proxy client for the

.CORBA server component, a bridge driver between the two proxies and some other installation helper
. files can be generated to form an integrated account system. The assembled system will be deployed if it

meets the desired QoS criteria. If the system succeeds then a new set of UMM specifications will be
generated for the integrated system to insure that it is available for the discovery by other head- hunters

i.e., to act as a component of other possible application systems. - g

,References:

[1]1 M. Auguston, A. Gates, M. Lujan, Defining a Progr: am Behavior Model for Dynmnzc Ana]y*ers Proc.
SEKE '97, 9th Int. Conf. Software Eng. Knowledge Eng., 1997, pp. 257-262.

[2] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R, Bryazt, C. C. Butt, 4 QuaZz‘zfy of
Service Catolog for Software Components. Proc. Southeastem Software Eng. Conf.'(to appear), 2002.

[5] B. R Bryant, B -S. Lee, Two~LeveZ Grammar as an Ob_]ecz‘—Onerzz‘ea’ Requzrememﬁs Specgﬁcarzon
Language. Proc. 35" Hawaii Int. Conf System Sciences, 2002.

[417.C. Cleaveland, Prooram Generarors with XML and Java Prentice-Hall, 2001.

[3] K. Czamecki, U. W. Eisenecker, Generaz‘zve Programming: Methods, Tools, and 4pplzcaz‘zorzs
Addlson~Wesley, 2000.

[6] B.-S. Lee, B. R. Bryant, Aufomared Conversion from Reqzrzreme'zz‘s Documentation to an Objeci-
Orienied Formal Speczpcaz‘zon Lanouace Proc. A.CM Symp. Applied Computing (appear), 2002.

[71 R. R. Raje, M. A.LGLSLOD.. B. R. Bryant, A. \/L O_son, C. C. Burt, 4 Unified - pproac}’ jor the
Integration of Distributed Heterogeneous Software Components. Proc. Monterey Workshop Engineering __
Automation for Software Intensive System Integra.hon, 2001, pp.109-119. :

[8]N N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson, M. Auruston, G Cs BL.T‘E,.—i/z .47crzzz‘ecru7 e for the
UniFrame Resource Discovery Service. Submitted for publication, 2002. L

68

~ ‘Using an GObject Orieﬁiecﬂimlj\ﬁéééi for Resolving
Representational Differences between Heterogeneous

Systems

Paul Young, Valdis Berzins, Jun Ge, Lugi

Depariment of Computer Science
Naval Postgraduate School
Monterey, California 93943, USA

Email: {peyoung, berzins, jge, lugi}@nps.navy.mil

\BSTRACT
ne of the major concerns in the study of software
ateroperability is the inconsistent representation of the same real
rorld entity in various legacy software products. This paper
roposes an object-oriented model to provide the architecture to
onsolidate two legacy schemas in order that corresponding
ystems may share attributes and methods through use of an

utomnated translator. A Federation Interoperability Object Model

FIOM) is built to capture the information and operations shared
etween different systems. An automatic wrapper-based
anslator is discussed that utilizes the model to bridge data
spresentation and operation implementation differences between

eterogeneous distributed systems. .

Leywords

ateraperability, object-oriented, heterogeneous, wrapper-based.”

. INTRODUCTION - .

1 contemnporary object-oriented modeling, an object is a software
spresentation of some real-world entity in the problem domain.

01 object has identity (i.e., it can be distinguished from other _

bjects by a unique identifier of some kind), state (data associated
rith it), and behavior (things you can do to the object or that it
an do to other objects). In the -Unified Modeling Language
UML) these characteristics are captured in the name, attributes,
nd operations of the object, respectively. UML distinguishes an
adividual object from a set of objects that share the same
tiributes, opesations, relationships, and semantics; termed a class

1UML [1]. ;

“his view aof objects and classes has proven valuable in the
levelopment of countless systems in various problem domains
ncompassing all degrees of size and complexity. However, one
ommon characteristic of the majority of these object-oriented
levelopments is that they were produced by a development team
hat shared common objectives and had a common view of the
eal-world entites being modeled. Most projects also involve a

“his paper is authored by an employee(s) of the {U.S.]
jovernment and is in the public domain.

AC 2002, Madrid, Spain

SBN 1-58113-445-2/02/03

common architecture implemented on a common target platform,
using the same implementation language and operating system.
As a result a single scherne for depicting an entity’s narme,
attributes, and operations as well as the means for representing
- these properties has been the nomm. Therefore, capturing the
representation of these properties has not been an issue. The
software representation of the real-world entity should have the
same namne, attributes, and operations across all elements of the
architecture if the development team enforces consistency.

This is not necessarily the case when integrating independently
developed systems. The different perspectives of the real-world
entity being modeled by independent development teams will
most likely result in the use of different class names as well as
differences in the number, definition, and representation of
attributes and operations for that same real-world entity. These
representation differences must be reconciled if the systems are to

interoperate. :

This paper proposes an object-oriented model for defining the
information and operations shared between systems. The initial
use of the model is targeted for integration of legacy systems,
which generally have not been developed using the object-
oriented paradigm. However, defining the interoperation between
systems in terms of an object model provides benefits in terms of
increasing the visibility of the information and operations shared
between systems, and provides a foundation for easy extension as
new systems are added to an existing federation. The object model
defined in this paper can be easily constructed from the external
interfaces defined for most legacy systems (whether object-

oriented or not). :

~——

Section 2 categorizes representational differences that exist in
autonomnously developed systems. Section 3 introduces the
Object-Oriented Model for Interoperability (OOMI) as a means
for capturing the information required for resolving these
representational differences. Section 4 introduces an automated .
environment for constructing an instance of the interoperability
object model for a federation of systems, the OOMI Integrated
Development Environment (OOMI IDE). Section 5 presents an . -
overview of the use of this Federation Interoperability Object
Model (FIOM) by a wrapper-based translator for enabling

interoperability among legacy systems.

69

2. CATEGORIZING REPRESENTA-

P4

TIONAL DIFFERENCES

This paper =addresses two categories of variations in the
represeniation of a real-world entity on differént systems. The
first category concemns differences in the information utilized by
each component system to represent the entity. Termed
heterogeneiiy of scope, this refers to the fact that differing
amounts and types of information can be captured by various
systems to represent the state and behavior of an entity [10].

For example, suppose a federation of four autonomously
developed military systems contained information about an enemy
surface-to-surface missile launcher. Because independent
development teams created them, each system provides a different
perspective on what state and behavior information should be
contained in a model of that real-world entity. As can be seen
from Figure I, each system includes different aspects of the
entity’s state. For instance, systems A and D include information
about the missile system’s type, position, and time. System B
captures position, time and range information on the entity, and
Systemn C utilizes type, position, time, and range to describe the
missile systerr. Similarly, each system could capture different
aspects of the behavior of an entity. These differences in the state
and behavior used by a component system to characterize a real-
world entity can be thought of as providing different views of the

entity by the systems concerned.

System B Syzem C
. '\ :’ .
+ * ' . 4 ’
identifier v H identificr, .
-position g -ape,
<time . ?mmu 3
-fange '-. 3 4 ::: S
+ ’. E ' gc .:
.
> S .
Sysmm A . Sysem D
= . el "
.+
¢ ‘
identifier 4 identifier s
-(ypc . ST} * -ope
posidon Surface-To-Surface Missile . -posicon
~timt 2 ~time 1

N ‘

Figure 1. Differing Views of Real-World Entity ,

Even if two systems provide the same view of the entity being
modeled, that-is they both contain the same state and behavior
information about the entity, there may still be differences in the
representation of that information on different systems. This
heterogeneity of representation [10] tefers to differences in the
terminology used, format, accuracy, range of values allowed, and
structural representation of the included state and behavioral
information [3]. This difference in representation is illustrated in
Figure 2. by systems A and D. Even though these systems both
have the same view of our real-world entity, i.e. both capture the
type, position and time for the entity; they each represent the
information comprising that view in a different manner. For
xample, System A refers to. our entity a a
SurfaceToSurfaceMissile and names iis tfype atiribuie

missileDesignation. System-D refers to our entity as an SSM and

names its type arwibute missileType. Additionally, System A
captures the entity position in latitude/longitude coordinates and
time using Greenwich Mean Time (GMT) as the reference,
whereas System D records entity location using Military Grid
Reference System (MGRS) coordinates and records time using
Local Mean Time (LMT). Figure 2 illusirates the different views
of our example real-world entity and the various r: epresentations
provided for each view.

Sy B Sestex ©
View 3, . CrmnTuGrundMtle Grotins Fyres eAfiaolle Vimw3 ©
Nzme ? -mitsielocztion (MGRS) omelClaste o o . Neme
Posifion— . . ~ohuTEATEIC (LN ~msiFos (htfiudeongiede; .~ ©* = Tips
T 1 mimiRengs () . emslONTEe(GMT).., »*Positicn
¢ =mslfange (mmy - ., .t Time

3 .
g : Lt~ Range

o

Spetmm A LT @ Systen D
) = -~ -

“%’(}‘%@?&“ ﬁﬁ‘-émw

- Surfs Y Suri: e . - SSM
! ‘misldDuiraton v SurfaceToSurface Missil= ¢ nbalType
-pasion {bikudelongiede) L7 % stocation (MGRS}
time (GMT) J e (LMT)
g . 5 % View 1 L .
.) Y e Name Ll 3
R SThypEs s
. L e - . " Position- % o
- = Time~ . ®

Fignre 2. Differing Real-World Entity View Representations

OBJECT—ORIENTED MODELF FOR -
INTEROPERABILITY - - .

The goal of the research presented in this paper is to prowde a +
computer—azded methodology to aid in- the resolution of 7
differences in the representation of data between systems targeted *
for integration in order to enable system interoperability. Pitoura
defines interoperability as the capability of systems to exchange

"information and to jointly execute tasks [8]. The information

exchanged between interoperating systems consists of data
associated with the real-world entities being modeled by systems
of the federation. The joint execution of tasks reflects the
capability of an entity on one system to employ the services of an
entity on another. Thus, interoperation can be characterized in
terms of the real-world entities whose state and behavior are
shared between systems in a federation. As stated previously,
there can be-differences in view and representation of these real-
world entities. In order to achieve interoperability, a means for
bridging these differences in view and representation is needed.

As the basis for achieving interoperability between systems in a
federation, a model was defined for depicting the real-world
entities that represent the shared state and behavior [I 1]. The
model captures differences in view and representation. of thes

" entities and provides the means for bridging such dlfferences

Principal objectives of the model were to clearly depict the real-
world entities whose state and behavior are shared between
systerns in a federation, to pro'nde computer aid to the process of
determining the differences in view and representation of those
entities, to provide automation support for defining the
translations necessary to rtesolve representational differences
berween systems, and to capture the information required to
resolve differences in real-world entity scope and representation

between federation systems.

70

[n evaluating the objectives outlined above, it was determined that
in object-oriented approach offered the greatest promise for
satisfying these requirements. Object-oriented analysis and
lesign (OOAD) provides principles of zbstraction, information
1iding, and inheritance that can be employed to meet the spacified
zoals and objectives [4, 9]. However, conventional use of these
sbject-oriented principles and techniques is not sufficient for
‘esolving representiational differences between heterogeneous
:omponents of a system federation. Instead, a model-based
wproach built on OOAD principles is presented to satisfy the
equirements for heterogeneous systern interoperability. The
esulting model, the Object Oriented Model for Interoperability

‘OOM]), is described below.
3.1 Capturing Real-World Entities and Views

Che real-world entities whose state and behavior information are
hared among a federation of interoperating systems are modeled
n the OOMI using the concept of a Federation Entity (FE). The
‘E provides an abstract representation of the information being
hared while hiding the details of how that information is being
epresented on different systems. From the example introduced in
ection 2, an FE for the SurfaceToSurfaceMissile depicted in
"igures 1 and 2 is created to represent the real-world entity, as

hown in Figure 3:

‘or each FE, one or more Federation Entity Views (FEVs) are
ised to distinguish the differences in the state and behavior
nformation used for representing the same real-world entity on
[ifferent systems. Continuing the example, FEVs are created for
he three views of the surface-to-surface missile entity illustrated
n Figure 2, labeled SSM, GroundToGroundMissile, and

FroundTargetMissile for views 1 through 3 in Figure 3.

t is expected that for a federation of heterogeneous systems, a
mmber -of teal-world entities will be involved in the
nteroperation between systems. Under the OOMI, the collection . -
if real-world entities used to define the interoperation of a
pecified® federation of systems is termed a Federation .
nteroperability Object Model (FIOM). Figure 4 provides a
epresentative: FIOM containing the SurfaceToSurfaceMissile FE -
reviously introduced as well as -other FEs involved in the

nteroperation of a hypothetical federation. The notation used in)

Federation Interoperability Object Model (FIOM)

Figufe 4 is similar to UML, with each FE represented as a UL

package containing a list of the different views of that FE, with
B = . - i . 4

tI-{e details of the SurfaceToSurfaceMissile FE views described in

Figures 5 and 7.

<<Faderziion Entity>>
Surz‘aceToSur:’ace:\aﬁssﬂq
<<Fed=ration Entity View>> - <<Federation Entity Views>> j
SSM GroundTargerMissils]

[

<<Federation Entity View>>
{Gruund’l‘ oGrounde’ssﬂq

Figure 3. Defining Federation Entity (FE) and Federation
Entity Views (FEVs) for Modeled Real-World Entity

All of the nommal relationships between classes, packages,
interfaces;. and other elements used in the OOAD paradigm are
available for use with' federation entities in the FIOM.. For
example, in Figure 4 the previously = introduced
SurfaceToSurfaceMissile FE represents a specialization of a
GroumdLaunchedWeapon FE, which in'turn has a part-of relation
with an EnemyOrderOfBattle FE. : This endbles the OOMI to

exploit OOAD principles such as inheritance in modeling the = .-
. entities that define the interoperation between systems.

3.2 Capturing FEV Representations

In addition to providing dissimilar views of a real-world entity
defining the interoperation between components, different
systems may also provide varied implementations of a view. As
discussed earlier, these different implementations may result in

_ GroundLaunchedWeapon_View1
GmoundLaunchedWeapon_View2

GroundLaunchedWeapon_View]

T

.<.<qu':ﬁcn Entity>> <<Fodaation Entity>>
| GroundLaunchedWeapen A EnemyOrderOfBattle
* 1 :
e EnemyOrderOlBattle Viewl

EncmyOrderOfBattle View2

EnemyOrderOfBatls ViewkK

LF- Generalization

<<Folcmion Entily>> <<Fedeation Sntity: i
<<fcicxion Extity>>
Anillery Surfac=ToSurfadaMissile | ”
= FederstionEatiyZ
Artiflery_Viaw! SsM L ;
Artillery_View2 GroundToGroundMissiis . FadarationEnuiyZ_Viewl
- GroundTargetMissile FederatonEatinZ_View2
Artillery_ViewlL : - 5
¥ FedermtionEntinZ_ViewX

—<C~ Aggragation

Figure 4. Federation Interoperability Object Model (FIOIM) Representation

variations in the terminology, definition, and representation of ths
atiributes and operations defined for the same real-world entity.
In order to resolve these differences, the OOMI provides two
mechanisms to capture the possible alternative representations of
an entity’s view. The first mechanism, the Component Class
Representation (CCR) is a special-purpose class used to capture
the alternative ways various component systems may represent a
federation entity view. '

The typical approach to rtesolving representaiional differences
between systems involves the use of a number of point-to-point
translators between systerns to be integrated. For a federation of n
systems, this approach requires the specification of n(n-1)/2
translations. An alternative to the use of point-to-point translators
involves the use of an intermediate representation where the
information and operations being transmitted are converted from
the source representation to an intermediate representation and
then to the destination representation. The use of an intermediate
Tepresentation requires specification of 2n translations for a

federation of n systems.

In order to take advantage of the reduced number of translators
required with the use of the intermediate representation approach,
the OOMI adds a second special-purpose class to an FEV, the
Federation Class Representation (FCR). The FCR is used to
teflect the “standard” (as defined by the interoperability engineer
for the specified federation) representation used by the federation
for an entity’s view. Each FEV will contain exactly one FCR
representing this “standard” representation of the view. The FCR
serves as the intermediate representation for translation between a
source and destination system. Figure 5 illustrates the CCRs and
FCRs created for the system A through D representation of the
example surface-to-surface missile previously introduced in
Figure 2. Note that each FEV contains a single FCR whereas an
FEV may contain more than one -CCR- the SSM FEV includes
CCRs SurfaceToSurfaceMissile and SSM corresponding to System
A’s and System D’s representation of the view, respectively.

The FCR representation is based on an ontology containing the
federation-sanctioned depiction of an entity’s state and behavier.
This ontology can be developed specifically for a federation of
systems or it can be derived from a domain-specific or industry-
wide standard such as-the Defense Information Systems Agency's
(DISA’s) Defense Information Infrastructure (DII) Common

Operating Environment (COE) XML Registry or the Defense

Modeling and Simulation Office’s (DMSO’s) Functional
Description of the Mission Space (FDMS) namespaces [2, 3].

The FCR and CCR are each actually a composition of related
special-purposeé classes. These component’ classes contain
information nesded to assist the interoperability engineer in
identifying the real-world entities that represent the information
being shared between systems in the federation as well as define
the views and view representations of those entities.

3.2.1 Capturing Information Shared Beiween
Component Systems y :
The first of these component classes, the FCR Schema, is used to
characterize the “standard” representation of an entity’s view. In
general, a schema is a surmnmarized or diagrammatic representation
of something. In the OOMI the FCR schema contains the name,
attributes, and operations used to represent the “standard”
interpretation of an entity’s view. The FCR Schema is used to

provide an absiract representation of the information being sharad
between component systems, hiding the -details of how that

information is represented on different systems.

Similerly, the CCR Schema is used to characterize the component
systermn implementation of a federation entity view. The CCR
Scherna contains the name, zaiiributes, an operaidions ussd by z
speciiic component system to model a federation entity.

<<Federation Entity>> ’

SurfaczToSurfaceMissile

<<Federation Entity View=>>
SSM)

<<FCR>> <<CCR>>
SS — SurfaceT oSurfaceM issile

<<CCR>>
SSM

<<Federation Entity View>>
GroundToGroundMissile
<<FCR>>

GroundT oGroundM issile

<<CCR>>
GroundT oGroundMissile}

VAL

<<Federation Entity View>>
GroundT argetMissﬂq
<<F‘CR>> '
GroundTargetM issile

<<CCR>> ' .
GroundT: argetMlissile

Figure 5. FEV With Component Class Representation (CCR)
and Federation.Class Representation FCR)

3.2.2 Identifying - - Correspondences between

Representaiions -
Previous efforts toward integrating heterogeneous databases found
that a large part of the effort was consurned by determining
whether two entries in related databases represented the same
real-world entity [6]. An equivalent situation exists in the
integration of heterogeneous system components. ~ When
presented with a2 number of systems to be integrated, the
interoperability engineer must determine which classes used o0
realize the external interfaces of component systems reier o ﬂ}c
$ame -entity in the problem environment. Establishing this
correspondence .is crucial in order for systems 10 ex-change
information and operations and is the basis for defining the.
federation entities involved in systems interoperaion. Once
determined, this correspondence is captured in the model as an
association relating 2 FEV's FCR and CCR, as depicted 1

Figure 5.

In order ts assist the interoperability engineer in establishing the
correspondence between different representations of a fedaration
entity, the FCR and CCR also contain syntactic and semantic
information used to correlate the ‘“standard” and various
component system representations of the real-world entides
defining the interoperation. This information is represented using
the special-purpose classes FCR Syntaxr and CCR Spntax to
capture syntactic information on the “standard” representation and
component implementations of a federation entity view,
respectively. Similarly, special-purpose classes FCR Semantics
and CCR Semantics capture semantic inforrnation about the
“standard” and component representations, respectively. This
syntactic and semantic’ information is used to determine the
correspondence between component system and interoperability
classes in order to consiruct the entities, views and representations

of the FIOM.

Syntactic information is used to capture the composition and
structure of a class. Class composition is provided as a list of
‘erms depicting the name, atiributes and operations contained in
‘he class. Structural information describes which attributes are
ncluded as parameters to which operations, whether attributes
ind operations are visible outside the class, etc. The composition
ind structure defines a signature for the class that can be used for
:omparison with other classes. "Semantics are used to provide
nformation as to the meaning and behavior of a class; i.e., what

ioes the state information about a class represent and what actions.

loes the class perform? Behavioral information can be captured
n terms of a set of conditions an element must satisfy or a set of
:quations describing the dynamic behavior of the entity.

3.2.3 Capturing the Translations used to Resolve

Representational Differences
‘inally, the FEV contains the translations ‘required-to convert

)yetween each component system ° representation ‘and: the
‘standard” representation of that.view. These- translations. are -,

sy
dot

used to resolve differences in physical representation, accuracy
tolerances, range of values allowed, and terminology used in
representing a federation entity view. Two Uans?ations are
defined for each FEV- one to convert an instance of a CCR
Schema to an FCR Schema compliant instance, and the other 1o
convert from an FCR to CCR Schema instance. These
translations are defined by the interoperzbility enginesr and stored
in the FEV as 2 CCR-FCR Translation Class for subsequent use.

3.2.4 Federation Entity View Summary

Figure 6 provides a summary of the contents of an FEV illustraz-
ing Viewl of & hypothetical FederationEntity4 with the federation
representation of that view, FederationEntityd_View! FCR. and a
corresponding component . system @ rep_resen:tarion
Systemd_ClassI_CCR. Also depicted are the schema, syntax and
semantics, classes that comprise the FCR and CCR, as well a, the
translation class used to resolve differences between the

component and federation schema.

3.3 Resolving Differences in View of an FE

The translations depicted in Figure 6 and described in section
3.2.3 enable the conversion between two different representations
of a federation entity view. Rarely will two different systems’
view of a federation entity be identical. In order to share .
information and jointly execute tasks between two systems that
have different views of the entity(s) defining the interoperation,
these differences in view must be resolved. Fortunately it is just
as rare that different systems’ views of an entity dre mutually
exclusive (otherwise they wouldn’t be able to interoperate).

Generally, two or more systems’ view of the same entity will have
some areas of commonality. Two systems’ representations may

- capture. the same core state and behavior information of an entity
“with -each- including additional characteristics as required by the

specific application. In this situation a view could be defined for -

1

1 FederationEntityA_Viewl_FCR_Syntax

<<FCR Semantics>>
FederationEndtyA_Viewl_ FCR_Semantics

FederationEntityA. Viewl
<<FCR>> 1 | <<ccrR>> | 1
FederationEntityA_Viewl_FCR | SystemA_Class1_CCR
1 |FCRSchema CCR Scherm. 11
("FCRS}'NEX CCR Syntax s o
FCR Sermuntics CCR Semantics *
<<FCR Schema>> ' <<CCR Schema>>
FederationEntityA_Viewl FCR_Schema 1 - SystemA_Class]_CCR_Schema
1 [attribute : . attribute_t 1
— fhute 2]
i EntityA_Class]_Translation ..| fomes
operation_A aperdtion_1
_ . CCRtoFCR{CCR_Schema) : FCR_Schemma <<CCR Synax>> .
SEFCR Syniated FCRtoCCR(FCR, Schera) : CCR_Schema | L1
-) [System.—_CInssI_CCR_Syntax f

, S<CCR Semantics>> g
Eyste maA_Class1_CCR_Semantics }——'

Figure 6. Federation Entity View Archetype

73

the core state and behavior information, and separate views
defined for the extended information. The views containing the
xtended information can be comsidered to be subivpes of the
view containing the common core information. .

By detérmining the superiype-subtype relationships between
entity views, we can construct an inheritance hierarchy that can be
used to determine when the information contained in one system'’s
view of an entity is suitable for use by another. This hierarchy is
initially constructed by evaluating the atiributes and operations
contained in the FCR Schema for two views. Figure 7 shows the
FEV inheritance hierarchy constructed for the examnple surface-to-
surface missile entity. Due to space considerations, only the FCR
and component FCR Schema are shown for each FEV. Details of
inheritance hierarchy construction are contained in [11] and are
beyond the scope of this paper.

SurfzceToSurfaceMissile

<<FEV>>

SurfaceToSurfaceMissile_Viewd
<<FCR>>
SurfaceToSurfaceMissile_Viewll_FCR
} |FCRSdm
FCRSyrtax
FOR Sorentics
<<FCR Schema>>
SurfaceToSurfzceMissile_ Viewd _FCR Schema
1 |pasition
Time
<<é5\l>> <<FEV>>
SsM GroundToGroundMissile
<<FCR>> <<FCR>>
SSM_FCR GroundToGroundMissile FCR
1 [RRSchare 1 [FCR&choma |,
FCR Syntxx FCR Syntax.
FOR Srentis FCR Scmonties
<<FCR Schema>> <<FCR Schems>>
SSM_FCR_Schema GroundToGroundMissile FCR_Schema
ryme ! R

<<FEV>>
GroundTargatMissile

<<FCR>>
GraundTarperhissile_FCR

IRk
FURSyness
FCR Seremix

<<FCR Schemz>>
GrundTamretMissile_FCR_Schema

Range

I=

Figure 7. Federation Entity View Tnheritance Hierarchy

Then, throuch exploitation of t
‘behavioral sub‘y'pmg [7], we can aetemine when the information

contained in one system’s view of an entity is suitable for use by
another. Making this determination is easy when the producer’s
view of an entity is a subtype of a consurner’s view, i.e. when the
producer’s view extends the consumer's view. By Liskov and
Wing’s behavioral notion of subtyping, anywhere a supertype can
be used a subtype can be substituted without any difference in
behavior. Thus, in this instance the consumer will just ignore zny
additionzl information provided by the producer.

This determination is not as easy when the producer’s view is a
supertype of the consumer’s view, or when the producer’s view is
not a direct ancestor or descendent of the consumer’s view in the
inheritance hierarchy. However, it is possible that the supertype
of an entity’s view can be substituted for a subtype of the view if
the attributes and operations which extend the supertype are either
optional for the component system providing a representation of
the subtype view, or if default values can be specified for those
attributes and operations. Similarly, information can also be
shared between component systems that are not direct ancestors or
descendents of each other if there is a path in the inheritance
hierarchy defined between the producer view and the consumer
view, and the previously mentioned restrictions on supertype

extension hold.

4. CONSTRUCTING IN'.['EROPERABILITY
OBJECT MODEL FOR FEDERATION OF
HETEROGENEOUS SYSTEMS)

Enabfing a collection of -related software'isysterus to share

information and task execution has the potennaLfor significantly -
enhancing the capability of the resultant federahon of systems
over that of the individual components. The prewously introduced -

Object Oriented Model for - Interoperability is-used to enable

.information sharing and cooperative task execution among a

federation of autonomously deveIoped heterogeneous systems.
Using the information contained in the OOMI, computer aid can
be apphed to the resolution of data representational differences
between heterogeneous systems. In order to apply computer aid, a
model of the real-world entities involved in the interoperation,

" termed a Federation Imteroperability Object Model (FIOM), is

constructed for the specified systemn federation. Construction of
the FIOM is done prior to run-time by an interoperability engineer
with the assistance of a specialized toolset, called the Object

" Oriented Model for Interoperability Integrated Development

Environment (OOMI IDE).

' The Graphical User Interface (GUI) based OOMI IDE is used to:

1) discover the information and operations shared between
federation cornponents,

2) provide assistance in identifying the different representations
used for such information and operations by component systems,
3) define the transformations required to translate between

_ different representations, and

74

4) generate system-specific information used to resolve
renreswntanonal differences betwesn component systerms.

.T‘le first task in FIOM construction is determmmc the real-world

entities whose state and behavior are shared between sysiems in

the faderation. Each resultant federation entity is represemed n |

the FIOM as & packaae constructed from the classes contained in
the component systems’ external interface.

¢ Liskov and Wing notion o5

Determindione of the real-world entides that define the

interoperation of a federation is not merely a matter of identifying
the classes contained in the external interfaces of the included
systems. Because of the independently developed, heterogeneous
nature of the sysiems in the federation, each system may have 2
different representation for the real-world entities involved.
Identifying which of a component system’s classes are
representations of the same real-world entity is a key step in
achieving interoperability between the component sysiems.
Correlation sofiware is included as part of the OOMI IDE in order

to assist the interoperability engineer in this effort by providing = .

small set of proposed correspondences to be reviewed by domain
Xperts. :

After identifying the different means used by component systems
in the federation to represent the same real-world entity, the
transformations required to translate between different
representations must be defined. The OOMI IDE assists the
interoperability engineer in this task through the use of a GUI-
based matching process used to provide computer aid to
translation development, and the maintenance of a translation
library to enable the reuse of common translation algorithms.

Finally, class transformation and relationship information is
xxtracted from the FIOM for each component system. The
systern-specific information is used by a wrapper-based translator
o resolve representational differences between component

fysterns,

5. USING FIOM TO RESOLVE
REPRESENTATIONAL DIFFERENCES
BETWEEN HETEROGENEOUS SYSTEMS |

\s previously mentioned, system interoperability involves both. .. - -

he capability to exchange information between systems and the - &
h‘;

ibility for joint task execution among different systems [8]. Bot
apabilities mvolve one or more of the following kinds of actions:
i .

e - Send One system transmits a piece of information
C to another . :

o (il One system invokes an operation on another

» Return Returns a value to the caller :

e« Create Creates an object on the called system :

e Destroy Destroys an object on the called system [1] -

nformation exchange is accomplished through means of a Send
)peration, where one systemn, the producer, exports information
hat another system, the consumer, imports. Information
ransmitted by the producer system can be an object of some class
lefined for the producer, or it can consist of one or moare atiributes

f an object defined for the producer.

oint task execution is accomplished through the use of a Call
iperation where one system, a client, invokes an operation on
nother, which acts as a server for the requested action. In
nvoking an operation on a server, a client system must provide
he name of the operation requested as well as any parameters
equired by the server to perform the operation. Required
yarameters can be in the form of ome or more aftributes,
yperations, or objects. In addition, in response to a client Call
yperation, a server may return a set of attributes, operations, or

objects to 2 client via a Reurn operation, Create and Destroy
~actions are special instances of a system call. Care must b‘;.

xercised in their use due to the security risks they pose- the
potential for denial of service atiacks and the sprezd of
misinformation through the use of the Creaze operatl'oﬁ &:Ld thel
possible loss of vital information through unintended use of the

Destroy operation.

When information exchange or joint task execution takes place
berween heterogeneous systems, the interoperability object modal
consiructed during the pre-runtime phase for 2 specified
federation of component systems is used to derive z translator:
Differences in view and representation of information and tasks
shared between interoperating systems are reconciled at runtine
by the translator, which serves as an intermediary betwesn
component systerns. The translation function is implernented as
part of a software wrapper enveloping a producer or consumer
system (or both) in a message-based architecture, or alternatively
as part of the data store (actual or virtual) in a publish/subscribe
architecture. A software wrapper is a piece of code used to alter
the view provided by a component’s external interface without
modifying the underlying component code. Figure 8 shows an
overview of the use of software wrappers and the involvement of
the Federation Interoperability Object Model in the translation

 process.

The translations required by the wrapper-resident translator for
both information exchange and joint task execution are similar.
For information exchange, the source system provides the
exported information in the form of a set of attributes or objects of .
a producer class in the native format of the producer. In orderto -

- be utilized by a consumer system, the exported information must

be converted into the representation expected by the destination
system. : For joint task execution, a client system provides an

-operation name and a set of parameter values to a server system in

the. mative - format of the producer. The parameters may be
attributes, operations, or objects of a client class. Again, this -
information must be provided to the destination system in a .

- format recognized by that system. Thus the operation name and

75

parameter values must be converted to the server representation. .

As indicated abave, the translator must be capable of converting
instances of a class’s attributes and operations (or both attributes
and operations in the form of an object of the class) from one
representation to another. The information required to effect these
translations is captured as part of the FIOM during federation
design. Then, at run-time, the translator accesses the information
contained in the model to resolve differences in federation entity
view and to effect the translation between component and

standard representations of a view.

The translator utilizes the FE inheritance hierarchy described in
section 3.3 to first resolve differences in the number and type of
attributes and operations used to model an entity between two
systems in a federation. Then for two systems having the same
view of the attributes and operations used to model an entity, the
translator resolves differences in representation using the
translation operations included in the model with each federation

entity view. See [11] for more details.

Datatype A
Representation

Standard Type
Representation

AYS

Datatype X
Representation

T |

6. CONCLUSIONS

An Ob_vect—Onented Model for Interoperablhty (OOMI)
proposed in ‘this paper to solve the data and opera’aon
inconsistency problem in legacy systems. A Federation
Interoperability Object Model (FIOM) is defined for d specific
federation of systems designated for interoperation. - A specialized

toolset, the Object Oriented Model for Interoperability Integrated

Development Environment (OOMI IDE) is used prior to runtime

to construct the FIOM for the federation. The FIOM consists of a *

number of Federation Entities (FES) that contain the data and
operations to be shared between systems. The FIOM also
captures the translatons required to bridge differences in
representation of this data and operations. Then, at runtime, 2

‘wrapper-based translator utilizes the information contained in the

FIOM to automatically convert instances of real-world entity
attributes and operations to the "proper representation to enable
interoperation between systems

- At this stage, XML-based message translation is being studied for
implementation of the proposed model. The capability provided
by the XML family of tools coincides nicely with the requirernent
for data and operation representation capture and translation.

REFERENCES _ -
Booch,G., Rumbaugh, J., Jacobson, 1., The Unified Modeling
Lancuace User Guzde, Adchson-WesIey Longman, Inc.,
Readmg, MA, 1998.

“DII COE Data Emporium.” [htip:// diides.ncr. disamil
/xmlreg/user/index.ciim]

s
g

(2]

76

&)

FicureS Translator - FIOMInteractmn ,

“Functional Description of the Mission spm»
[http://fdms.msiac.dmso.mil/]

s

[4]
(]

and Sons, Inc., New York, NY, 1995.

Kahng, J., McLeod D., “Dynamic Clasmﬁcatzonal

Ontolovles Medxanon of Information Sharing in Cooperative

F ederated Database Systems”, Cooperative Infomazion

Systems, Trends and Directions, Academic Press, 1998.

Li, W., and Clifton, C., “Semantic Integration in

Heterogeneous Databases Using Neural Networks”,

Proceedmas of the 20® VLDB Conference, Santiaga, Chﬂe

1994, pp. 1-12.

Liskov, B., Wing, I, “A Behavioral Notion of Subtypmg,

ACM 'I‘ra.nsacnons on Programming Languages and

Systerms, Vol. 16, No. 6, Novernber 1994, pp. 1811-1841.

Pitoura, E., “Providing Database Inter-operability through

Object-Oriented Language Constructs”, Journal of Systems

Integration, Volume 7, No. 2; August 1997, pp. 99-126.

(9] Walsh, A, Couch, I, Steinberg, D., Java 2 Bible, IDG Books
Worldwide, Inc., Foster City, CA, 2000. ’

(10] Wiederhold, G., “Intelligent Integration of Information”,
ACM- SIG‘VIOD 93, Washmcrton, DC, May 1993, pp. 434-43

[11] Young, P., Integration of Heterogeneous Software Systems
Through Computer-dided Resolution of Data Representation
Di ferances Ph.D. Dissertation, Naval Postgraduate School,
Mouterey, California, March, 2002.

(61

(7

it

Khoshafian, S., Abnous, R., Object Orzerz:anon, John Wﬂey :,_ ;

Vs

+

3]

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5100

Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. John Salasin

Defense Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, VA. 22203-1714

Dr. Valdis Berzins, CS/Be
Computer Science Department
Naval Postgraduate School =
Monterey, CA 93943

Dr. Lugi, CS/Lq

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

71

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5100

Research Office, Code 09
Naval Postgraduate School
Monterey, CA. 93943-5000

Dr. John Salasin

Defense Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, VA. 22203-1714

Dr. Valdis Berzins, CS/Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Luqi, CS/Lq .

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

iy

	NPS-SW-02-013_001
	NPS-SW-02-013_002
	NPS-SW-02-013_003
	NPS-SW-02-013_004
	NPS-SW-02-013_005
	NPS-SW-02-013_006
	NPS-SW-02-013_007
	NPS-SW-02-013_008
	NPS-SW-02-013_009
	NPS-SW-02-013_010
	NPS-SW-02-013_011
	NPS-SW-02-013_012
	NPS-SW-02-013_013
	NPS-SW-02-013_014
	NPS-SW-02-013_015
	NPS-SW-02-013_016
	NPS-SW-02-013_017
	NPS-SW-02-013_018
	NPS-SW-02-013_019
	NPS-SW-02-013_020
	NPS-SW-02-013_021
	NPS-SW-02-013_022
	NPS-SW-02-013_023
	NPS-SW-02-013_024
	NPS-SW-02-013_025
	NPS-SW-02-013_026
	NPS-SW-02-013_027
	NPS-SW-02-013_028
	NPS-SW-02-013_029
	NPS-SW-02-013_030
	NPS-SW-02-013_031
	NPS-SW-02-013_032
	NPS-SW-02-013_033
	NPS-SW-02-013_034
	NPS-SW-02-013_035
	NPS-SW-02-013_036
	NPS-SW-02-013_037
	NPS-SW-02-013_038
	NPS-SW-02-013_039
	NPS-SW-02-013_040
	NPS-SW-02-013_041
	NPS-SW-02-013_042
	NPS-SW-02-013_043
	NPS-SW-02-013_044
	NPS-SW-02-013_045
	NPS-SW-02-013_046
	NPS-SW-02-013_047
	NPS-SW-02-013_048
	NPS-SW-02-013_049
	NPS-SW-02-013_050
	NPS-SW-02-013_051
	NPS-SW-02-013_052
	NPS-SW-02-013_053
	NPS-SW-02-013_054
	NPS-SW-02-013_055
	NPS-SW-02-013_056
	NPS-SW-02-013_057
	NPS-SW-02-013_058
	NPS-SW-02-013_059
	NPS-SW-02-013_060
	NPS-SW-02-013_061
	NPS-SW-02-013_062
	NPS-SW-02-013_063
	NPS-SW-02-013_064
	NPS-SW-02-013_065
	NPS-SW-02-013_066
	NPS-SW-02-013_067
	NPS-SW-02-013_068
	NPS-SW-02-013_069
	NPS-SW-02-013_070
	NPS-SW-02-013_071
	NPS-SW-02-013_072
	NPS-SW-02-013_073
	NPS-SW-02-013_074
	NPS-SW-02-013_075
	NPS-SW-02-013_076
	NPS-SW-02-013_077
	NPS-SW-02-013_078

