
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2002-12

Dynamic Assembly for System Adaptability,
Dependability, and Assurance

Luqi
Naval Postgraduate School

Luqi, "Dynamic Assembly for System Adaptability, Dependability, and Assurance,
(DASASA) Project", Technical Report, NPS-SW-013, December 2002.
https://hdl.handle.net/10945/65208

Downloaded from NPS Archive: Calhoun

NPS-SW-02-013

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Dynamic Assembly for System Adaptability,
Dependability, and Assurance (DASADA) Project

Progress Report (10/01/2001-9/30/2002)

By

Luqi

September 2002

Approved for public release; distribution is unlimited.

Prepared for: Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA. 22203-1714

REPORT DOCUMENTATION PAGE
Form Approved
0MB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washin!?ton, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

9/3 0/2002 Progress Rep ort

10/0 1/2001- 9/30/2002
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Dynamic Assembly for System Adaptability, Dependa?ility, and Assurance 01-K962
(DASADA) Project - Progress Report (10/01/2001 - 9/30/2002)

6. AUTHOR(S)

P rofessor Luqi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
S oftware E n gineering Automation C enter, REPORT NUMBER

N aval Postgraduate S chool, M onter ey, CA 93 943
NPS-SW-02 -013

9. SPONSORING I MONITORING AGENCY NA!v!E(S) AND ADDRESS(ES) l 0. SPONSORING/ MONITORING

D efense A dvanc e d Rese arch Project s Agency AGENCY REPORT NUMBER

3701 North Fairfax Drive

Arlington, VA. 22203-1 7 14
11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION/ AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

·The objective of our eff ort i s to analyze the research results of DASADA program, to
.Provide recommendations to t h e Progra;m _Manager on the merits of new software engineering
tec hnologies and their possible integr ation with respect to future Depart ment of Defense
(DoD) systems, and to facilitate the transfer of DASADA technologies to DoD users . Our

work focuses on appl ying DASADA t e c hnologies to the areas including r apid reconfigurable
weapon soft war e architecture , software module interoperability, COTS i nteraction and
collecting rel i able measures for predicting software development time by probes. For this
pur pos e , we conducted resea rch on Me t aH avioni cs architecture . descri ption language and
developed mode l s a n d me t h ods fo r solving the i n tegr at i on and i~terbperability probl ems in
compon ent-based distributed heterogeneous systems. Moreover, we developed a modified model
to predicate software development time a nd assess the risk on the basis of reliable
measures col lect ed in e arly phases of software development. We also educated DoD engineers
and military officers on DASADA technologies via distance learning and integrated concepts
a n d techno l pgies of DASADA into some courses s u c h as SW4 5 99 and SW4 5 82.
14. SUBJECT TERMS

Architecture Description Language, Interoperability, COTS integration, Risk Assessment

17. SECURITY CLASSIFICATION

I
18. SECURITY CLASSIFICATION 1 19. SECURITY CLASSIFICATION

ORREPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-0l-280-5500

ll

15. NUMBEROFPAGES

77

l 6. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18

298-102

Table of Contents

I. PROGRESS REPORT 1

1. Statement of the Problem Studied 1

2. Summary of Tasks Accomplished in FY02 .. 1

3. Highlights of Important Results ... 2

4. Delivers 6

IL APPENDICES · _ 8

Dissertations and Theses 9

1. "Heterogeneous Software System Interoperability Through Computer-Aided
Resolution of Modeling Differences", by P .Young 10

2. "Enhancements and Extensions of Formal Models for Risk Assessment in Software
Projects", by Michael R. Murrah 10

3. "Class Translator for the Federation Interoperability of Object Model (FIOM)", by
S.C. Lee 11

4. "XML As a Data Exchange Medium for DoD Legacy Databases", by K.
Pradeep , ... 12

5. "Application Programmer's Interface (API) for Heterogeneous Language
Environment and Upgrading the Legacy Embedded Software", by T. C.Moua 12

FY2002 Technical Publications : 13

1. "Formal Specification of Generative Component Assembly Using Two-Level
Grammar", by B. Bryant, M. Augustan, R. Raje, A. Olson and C. Burt 14

2. "Quality of Service Behavioral Model from Event Trace Analysis", by J.
Drummond, Luqi, W. Kemple, M. Augustan and N. Chaki 22

3. "A Better XML Parser through Functional Programming", by 0. Kiselyov 38

4. "Holistic Framework for Establishing Interoperability of Heterogeneous Software
Development Tools and Models", by J. Puett.:54

5. "Optimizing Systems by Work Schedules (a Stochastic Approach)", by W. Ray,
Luqi, and V. Berzins : 59

6. "A Unified Approach to Component Assembly Based on Generative
Programming", byW. Zhao, B. Bryant, R. Raje, M . Augustan, A. Olson and C.
Burt , 67

7. ''Using an Object Oriented Model for Resolving Representational Differences
between Heterogeneous Systems", byP. Young, V . Berzins, J. Ge, and Luqi 69

III. DISTRIBUTIONLIST 77

111

RADM David R. Ellison
Superintendent

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Richard S. Elster
Provost

This report was prepared for and funded in part by the Defense Advanced Research Projects
Agency.

This report was prepared by:

Reviewed by:

Luqi
Director, Software Engineering
Automation Center

1

Luqi
Professor, Computer Science

Released by:

D. W. Netzer
Associate Provost and
Dean of Research

Progress Report

Dynamic Assembly for System Adaptability, Dependability, and Assurance
(DASADA) Project

10/0l/2001-9/30/2002

1. Statement of the Problem Studied

The DoD is aware that as software becomes more complex,
it will become extremely critical to have the ability for
components to change themselves by swapping or modifying
components, changing interaction protocols, or changing its
topology. The Defense Advanced Research Programs Agency
formed . the Dynamic Assembly for Systems Adaptability,
Dependability, and Assurance (DASADA) program in order to
task academia and industry to develop dynamic gauges that
can determine run-time composition, allow for the continual
monitoring of software for adaptation, and ensure that all
user defined properties remain stable before and after
composition and deployment. The objectives of this project
are to analyze the research results of DASADA program, to
provide recommendations to the Program Manager on the
merits of new software engineering technologies and their
possible integration with respect to future Department of
Defense (DoD) systems, and to facilitate the transfer of
DASADA technologies to DoD users.

In FYOl, we have accomplished following tasks:

• Conducted critical study and review of the 19 DASADA
projects,

• Educated DoD engineers and military officers on DASADA
technologies via distance learning,

• Conducted in-depth case study of one the EDP programs,
• Developed checklist and template for DASADA technology

evaluation,
• Developed a guide to help DoD managers to select

software metrics in acquiring new technologies for
weapon systems software.

2. Sunnnary of tasks accomplished in FY02

• Educated DoD engineers and military officers on DASADA
technologies via distance learning.

1

• I~tegrated concepts and technologies of DASADA into
some SW courses

•

•

•

• SW4599 - Automated Hardware/Software Integration in
DOD

• SW4582 - Weapon Systems Software Safety
Conducted research on MetaH avionics
description language.

architecture

Developed models and methods for solving
integration and interoperability problems
co~ponent-based distributed heterogeneous systems.

the
in

I

Developed a modified model to
development time and assess the
reliable measures collected in
development.

predicate software
risk on the basis of
early phases of SW

3. Highlights of important results

In FY02, we have made lots of efforts on educational
programs to propagate the DASADA technologies to the
military students and direct doctoral and master students
to apply DASADA technologies to DoD projects. We offer two
courses (SW4599 and SW4582) to integ~ate the coricepts and
technologies of DASADA.

SW 4599-,-- Automated Software/Hardware Integration in_Dop

Automated software/hardware integration is a key problem
for current software development in DoD. This course covers
some important aspects of this field, including software
prototyping, interface integration, data integration, and
control integration. Automatable decision· support methods
for soft~are/hardware integration are also discussed.

SW 4582- 1-- Weapon Systems Software Safety

This course treats software safety from · a systems
perspective. It contributes to introduce the system safety
technologies to the DoD officers. This course addresses the
topic of safety along three dimensions: systematic
assessment and management of risk, designing safety into a
system starting with system conceptualization, and applying
system safety theory, principles, techniques, and tools to
build safety cases for the purposes of certifying and
accrediting software for use in safety-critical
applications and infrastructures.

2

We . conducted in-depth study of DASADA technologies include
follows:

• MetaH (modeling, timing analys~s),
• UNCLE (constraint consistency: ·9auges) ,
• QRAM (resource allocation gauges),
• IMPACT (system load tracking ·._and visualization),
• SIM-TABASSCO (Semantic Inter?perability Measures:

Template-Based Assurance of Semantic Interoperability
in Software Composition),

• Veridian Pacific-Sierra Research (terrain-reasoning . . ·.

software being reconfigured via the Venice tool),
• Proteus (run time and design time gauges for alternate

architecture deployment).

On the basis of the study of
directed our doctoral and master
series of research efforts on · th,e
reconfigurable weapon software. ·
module interoperability, COTS
development time predicting.

these technologies, we
students to conduct a
areas including rapid

architecture, software
integration and SW

Research on MetaH avionics architecture description
language

which the We conducted the study
emerging standard SAE
Language (AADL) and
beneficially support

to identify ways in
Avionics Architecture

associated tools and
avionics safety and

Description
methods can

airworthiness
certification.

We gave preliminary recommendations and guidelines for
extension and use of the AADL and supporting tools and
methods for avionics system safety assurance and avionics
system design assurance.

We also conducted a comparative survey of FAA and Army
avionics airworthiness certification processes, .. guidelines,
standards and methods. Acquisition reform and the MilSpec
Reform initiative encourage the use of commercial
standards, processes and products wherever suitable. An
improved ability to reuse civil . avionics can reduce
military acquisition costs. An MDL toolset suitable for
both civil and military applications can have its cost
shared across a larger market. Consequently, this study
evaluated both civil and Army airworthiness certification
regulations, guidelines, standards and methods.

3

Research on software module interoperability and COTS
integration

Meeting future system requirements by integrating existing
stand-alone systems is attracting renewed interest.
Computer communications advances, functional similarities
in related systems, and enhanced information description
mechanisms suggest that improved capabilities may be
possible; but full realization of this potential can only
be achieved if stand-alone systems are fully interoperable.
Interoperability among independently developed
heterogeneous systems is difficult to achieve: systems
often have different architectures, different hardware
platforms, different operating systems, different host
languages and different data models.

We have developed the Object-Oriented Model for
Interoperability (OOMI) to capture the information required
for resolving modeling differences in a federation of
independently developed heterogeneous systems. In this
study, ~ model of the information and operations shared
among systems, termed a Federation Interoperability Object
Model (FrOM), is defined so that defining the
interoperation between systems in terms of an object model
provides a foundation for easy extension as new systems are
added to the existing federation of systems. Construction
of the FIOM is done prior to run-time with the assistance
of a specialized tool set, the OOMI Integrated Development
Environment (OOMI IDE) . Then at runtime, OOMI translators
utilize the FIOM to automatically resolve differences in
exchanged information and in inter-system operation
signatures. This study provides an efficient way to
integrate existing stand-alone systems and enable the
software module interoperability for many DoD large-scale
applications.

Legacy software systems in the Department of Defense (DoD)
have been evolving and are becoming increasingly complex
while providing more functionality. The shortage of
original , software designs, lack of corporate knowledge and
software ' design documentation, unsupported programming
languages, and obsolete real-time operating system and
development tools have become critical issues for the
acquisition community. Consequently, these systems are now
very costly to maintain and upgrade in order to meet

4

current and
requirements.

future functional and nonfunctional

we addressed the issue of interoperability in
system databases and evaluated XML as a
transferring message data between varied systems.

DoD legacy
tool for

With the demands for increased communication, the dire
requirement for a common mode of information transfer is
greatly realized. Many legacy systems have developed their
own unique interfaces. XML is one solution which can help
ease the transition to a common interface. A software
program was developed to generate select messages in their
native and XML formats.

We proposed a new interoperability model for re-engineering
of old procedural software of the Multifunctional
Information Distributed System Low Volume Terminal (MIDS­
LVT) to a modern object-oriented architecture. In the MIDS­
LVT modernization acquisition strategy, only one Computer
Software Configuration Item (CSCI) at a time will be
redesigned into _ an object-oriented· program while
interoperability with other unmodified CSCis in the MIDS­
LVT distributed environment must be maintained. Using this
model, each legacy CSCI component can be redesigned
independently without affecting the others.

Research on methods for predicting SW development time and
assessing the risk

Risk management is most effective in impacting the
project's success if project risks are identified and
mitigated early in the software lif ecycle. We developed a
set of metrics for risk assessment and development efforts­
predicting. These metrics can be automatically collected
from early phases of the life cycle of software
development. Based on the metrics, the Modified Risk Model
was developed. Additionally, the Modified Risk Model is
versatile enough to be adapted to any software development
activity.

The Modi£ ied Risk Model is a macro model developed to aid
program managers in effectively planning the required
effort to deliver software products. The model projects the
probability of completing a software project, subject to
the available resources supplied by management. Inverse,
when given the probability of completing a software

5

project, this model can predicate the required efforts of
SW development . This approach to software project risk
management is unique because the model's input parameters
are derived. Different program managers would derive the
same projections on the same software project,.

4. Deliverables

• Dissertations and Theses
1) Michael R. Murrah, Enhancements and

Formal Models for Risk Assessment
Projects, Ph.D. dissertation, Naval
School, Monterey, CA, .September 2002. -

Extensions of
in Software
Postgraduate

2) Paul E. Young, Heterogeneous Software System
Interoperability Through Computer-Aided Resolution
of Modeling Differences, Ph.D. dissertation, Naval
Postgraduate School, Monterey, CA, July 2002.

3) Shong Cheng Lee, Class Translator for the Federation
Interoperability Object Model (FIOM), Master's
thesis, Naval Postgraduate School, Monterey, CA,
March 2002.

4) Kris Pradeep, XML As A Data Exchange Medium For DoD
Legacy Databases, Master's thesis, Naval
?ostgraduate School, Monterey, CA, March ~002.

5) Theng C. Moua, Applicati_on Programmer's Interface
(API) for Heterog·eneous Language .Environment and
upgrading the Legacy Embedded Software, Master's
thesis, Naval Postgraduate School, Monterey, CA,
March 2002.

• Papers
1) Luqi, Ying Qiao, Lin Zhang, "Computational Model for

High-confidence Embedded System Development",
Monterey Workshop 2002--- Radical Innovations of
Software and Systems Engineering in the Future,
Venice, Italy, October, 7-11, 2002.

2) J. Drummond, Luqi, W. Kemple, M. Auguston, and N.
Chaki. "Quality of Service Behavioral Model from
Event Trace Analysis." Proceedings of the 7

th

international Command and Control Research and
Technology Symposium (CCRTS 2002), Quebec City,
Quebec, 16-20 September 2002.

3) W. Ray, Luqi, and V . Berzins. "Optimizing Systems
by Work Schedules (a Stochastic Approach)."
Proceedings of the Worksh'op on Software Performance
(WOSP 2002), Rome, Italy, 23-26 July 2002.

6

i r

4) P. Young, V. Berzins, J. Ge, and Luqi. "Using an
Object Oriented Model for Resolving Representational
Differences between Heterogeneous Systems."
Proceedings of 17th ACM Symposium on Applied
Computing, Madrid, Spain, 10-14 March 2002.

5) w. Ray, Realizing Adaptive Systems, 17th Annual ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Washington State
Convention & Trade Center, Seattle, Washington, USA,
November 4-8, 2002.

,-

7

Heterogeneous Software System Interoperability Through Computer-Aided
-Resolution of Modeling Differences

· · Paul E. Young (Ph. D)

Meeting future system requirements by integrating existing stand-alone systems is
attracting renewed interest. Computer communications advances, functional similarities
in related systems, and enhanced information description mechanisms suggest that
improved capabilities may be possible; but full realization of this potential can only be
achieved if stand-alone systems are fully interoperable. Interoperability among
independently developed heterogeneous systems is difficult to achieve: systems often
have different architectures, different hardware platforms, different operating systems,

· different host languages and different data models.
The Object-Oriented Method for Interoperability (OOMI) introduced in this

dissertation resolves modeling differences in a federation of independently developed
heterogeneous systems, thus enabling system interoperation. First a model of the
information and operations shared among systems, termed a Federation Interoperability
Object Model (FIOM), is defined. Construction of the FIOM is· done prior to run-time
with the assistance of a specialized_ toolset, the 00lv1I Integrated Development
Environment (OOMI IDE). Then at runtime 00lv1I translators utilize the FIOM to
automatically resolve differences in exchanged information and in inter-system operation
signatures.

Enhancements and Extensions of Formal Models for Risk Assessment in
Software Projects

Michael R. Murrah (Ph. D)

The Modified Risk Model is a macro model developed to aid program managers in
effectively planrring the required effort to deliver software products. The model projects
the probability of completing a software project, subject to the available resources
supplied by management. This approach to software project risk management is unique
because the model's input parameters are derived. Subjective variables are not part of the
model. Different program managers would derive the same projections on the same
software project. .

Risk management is most effective in impacting the project's success if project risks
are identified and mitigated early in the software lifecycle. The Modified Risk Model was
developed specifically for this purpose. Additionally, the Modified Risk Model is
versatile enough to be adapted to any software development activity.

Validation of the model occurs in approximately 2,000 software projects. During these
preliminary experiments, the Modified Risk Model out performed the macro models of
Basic COCOMO and the Simplified Software Equation. However, to date, operational
tests have not been conducted on the model.

10

·.•; ,

-~ --

The Modified Risk Model requires four parametric inputs, all of which are
automatically collectable and derived extremely early in the software lifecycle:

• Organization. The 1v1RM implements a measure to capture the efficiency of a
software development organization.

· • Complexity. The 1v1RM architecture accommodates interface with the
Computer Aided Prototyping System developed at the Naval Postgraduate
School. (Dupo02) and this research are capable of deriving key complexity
measures from the machine generated specification code. The 11RM is capable
of using different complexity measures as a "plug- ins"; thus, allowing the
model to interface with organizations not equipped with CAPS.

• Requirements. A software project can be viewed as a finite set of issues that
require resolution prior to project completion. These issues are not fully
revealed in the beginning of the process. The 11RM captures the stability of the
known issues and adjusts projections based on the introduction or deletion of
additional issues. As with the other model parameters, requirements volatility is
completely adaptable to unique software development situations. A risk analyst
can choose to monitor the change in the project's risk or implement static
projections.

• Management Trade-Offs. To successfully develop software, a balance must
exist between the organization (efficiency), product attributes (complexity), and
project stability (requirements volatility). fu reality, this is not always the case.
It becomes · the responsibility of management to balance the equation.
Management applies resources (time and people) to achieve a successful
balance.

The Modified Risk Model lets management know how well balanced is the software
development. The risk analyst also has the ability to derive the Management Trade-Offs
within a -confidence interval. With this information, management can implement any
suitable staffing profile to achieve the model's projection.

Class Translator fbr the Federation Interoperability Object Model (FIOM)

Lee, Shong Cheng (Master)

There is a growing need for systems to inter-operate in order to facilitate information
sharing and to achieve objectives through joint task executions. The differences in data

· representation . between the systems greatly complicate the task of achieving
interoperability between them. Young'~ Object Oriented Method for futeroperability
(00:MI) defines an architecture and suite of tools to resolve representational differences
between systems. The 001\11 architecture and tool suite will reduce the labor-intensity
and complexity of the integration of disparate systems into a cooperative system of
systems (federation of systems) and their subsequent deployment. At the heart of this
architecture is the definition of translations between any two different classes of objects
and a run-time component (the Translator) that will execute such translations.

11

This thesis describes a prototype framework that implements the O0:MI, a prototype
class translation code generator that assists an Interoperability Engineer in the definition
of the translations and a prototype Translator that executes these translations.

Xtv.1L As A Data Exchange Medium For DoD Legacy Databases

Kris Pradeep (Master)

This thesis addresses the issue of interoperability in DoD legacy system databases and
evaluates XML as a tool for transferring message data between varied systems.

With the demands for increased communication, the dire requirement for a common
mode of information transfer is greatly realized. Many legacy systems have developed
their own unique interfaces. XML is one solution which can help ease the transition to a
common interface.

This thesis is a part of a larger team effort. In contributing to this larger effort, a
software program was developed to generate select messages in their native and XML
formats.

Application Programmer's Interface (API) for Heterogeneous Language
Environment and upgrading the Legacy Embedded Software

Theng C. Moua (Master)

Legacy software systems in the Department <?f Defense (DoD) have been evolving
and are becoming increasingly complex while providing more functionality. The shortage
of original software designs, lack of corporate knowledge and software design
documentation, unsupported programming languages, and obsolete real-time operating
system and development tools have become critical issues for the acquisition community.
Consequently, these systems are now very costly to maintain and upgrade in order to
meet current and future functional and nonfunctional requirements.

This thesis proposes a new interoperability model for re-engineering of old
procedural software of the Multifunctional Information Distributed System Low Volume
Terminal (MIDS-LVT) to a modem object-oriented architecture. In the l\1IDS-LVT
modernization acquisition strategy, only one Computer Software Configuration Item
(CSCI) at a time will be redesigned into an object-oriented program while interoperability
with other unmodified CSCis in the l\1IDS-LVT distributed environment must be
maintained. Using this model, each legacy CSCI component can be redesigned
independently without affecting the others.

12

Formal Specification of Generative Component Assembly Using
Two-Level Grammar *

Barrett R. Bryant
Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294-1170, U. S. A.

bryant@cis.uab.edu

Mikhail Augustan
Computer Science

New Mexico State University
Las Cruces, NM 88003, U. S. A.

mikau@cs.nmsu.edu

Rajeev R. Raje Andrew M. Olson Carol C. Burt
Computer and Information Science

Indiana University Purdue University Indianapolis
Indianapolis, IN 46202, U. S. A.

Computer and Information Sciences
University of Alabama at Birmingham
Birmingham, AL 35294-1170, U. S. A.

cburt@cis.uab.edu { rraje, aolson }@cs.iupui.edu

Abstract

Two-Level. Grammar (TLG) is proposed as a for­
mal_ specifimtion language for generative assembly of
components. Ijoth generative domain models and gen­
erative rules may be expressed in TLG .and these spec­
ifications may be automatic~lly translated into an im­
plementation which realizes an integration of compo­
nents according to the principles of the Unified Meta­
component Model {UMM) and Unified Approach {UA}

. to component integration, Furthermore, this imple­
mentation realizes Quality of Service {QoS) guarantees
by means of static QoS verification. at the time of sys­
tem· assembly, and dynamic QoS validation on a set of
test cases.

1 .. Intr_oduction

The recent shift in the focus of OMG (Object
Management Group) to "Model Driven· .Architecture''

. - (MDA) (17} is a recognition that to create.mechanized
software and bridging of component architectures re­
quires standardization not only of infrastructure but
also Business and Component Meta-Mod~ls. This em­
phasizes . the fact that a comprehensive meta-model,

·This material is based upon work supported-by, or iii part
by, the U. S . • -u-my Researcli Laboratory and the U. S. Army·
Research Office under contrac;t/grant numbers DA.AD19-00.l7
0350 and 404T3-1iA, and by the tJ. $. Office of Naval Research
tUlcier a:nrarci number N00014-Ql-l-0746.

that seamlessly encompasses heterogeneous compo­
nents by capturing their necessary aspects including
Quality of Service (QoS) and associated guarantees,
.is needed for creating future-generation of distributed
systems; ;,·

' ••'i-

The UniFrame project proposes a unifie4. meta-
. component model (UMIYI) [18] for . dis,{r,ibuted
(:Omponent-based systems, and a Unified Approach
(UA) [19] for integrating these components. The core
parts of the UMM are: components, service and service
guarantees, and infrastructure. UMM provides an
opporttm.ity to bridge gaps that currently exist in the
standards arena. The creation of a software solution
for a distributed computing system (DCS), ~g UA,
has two levels: a) component level - developers create
components, test and validate the appropriate QoS
and deploy the components on the network, and b)
system level - a collection of components, each with a.
specific functionality and QoS, and a semi-automatic
generation of a software solution for a particular D CS
is achieved.
. . The basis for the automatic generation of software
is a Generative Domain Model (GDM) as employed .
in Generative Programming [9]. This model.~onsists
.of two parts: a·.problem space and a solution space.
The former is. the collection of concepts and features
that occur in an application domain, such as a par­
ticular kind of business, and that determine ~h~ na-

. ture of problems in the domain. These may be e.x­
pressed in various ways, but common on~ arc UNIL,
ER and feature diagrams. A corresponding solution

14

space is a coflection of specifications of software sys­
teri1s that present solutions to the problems in the prob­
lem space. For a software system constructed out of
components, as envisioned here, such a specification
will .be e:...."})ressecl in terms of a collection of specifica­
tions for standardized components, which are supplied
by vendors. These specifications must also include con­
figuration knowledge, which describes how components
may be combined or depend upon one another and how
a system is constructed from its constituent compo-

-ncnts.
Component development and deployment starts

with a UMNI requirements specification of a compo­
nent from a particular domain. This specification is
natural language:.like and indicates the functional (i.e.,
computational) and non-functional (i.e., QoS param­
eters) features of the component. This specification
is then refined into a formal specification, based upon
the theory of Two-Level Grammar (TLG) (7]. Both
generative domain models and generative rules may be
e.xpressed in TLG and these specifications may be au­
tomatically translated into an implementation which
realizes an integration of components.

This paper is organized as follows. Section 2 de­
scribes the Two-Level Grammar specification language
and section 3 describes the principles of the Unified
Approach to system assembly· from components. ;rn
section 4, · a ; case study is presented illustrating how
these principles are realized. Finally we con~ude · in
section 5. i'i

;a
2. Two-Level Grammar

granµnars defining the set of type domains and the
set of fµnction definitions operating on those domains,
respectively. These grammars may be defined in the
con_te..'-i of a class in which case type domains define
instance variables of the class and function definitions
define methods of the class. The synta..--..: of TLG class
declarations is:

class ldentifier-1 [extends Identifier-2, .'.. ldentifier-n].
instance yariable and method declarations

end class [Identifier-1].

Identifier-1 is declared to be a class which inherits from
classes ldentifier-2, ... , Identifier-n. · In the above syn­
tax, square brackets are used to indicate the extends
clause is optional so a class need not inherit from any .

. other class. The instance variables comprising the class
definition are declared using domain declarations of the
f~llowing form:

· Jdentifier-1, ... , Identifier-m ::
data-object-1; ; data-6bject-n.

where each data-object-i is a combination of domain
identifiers, singleton data objects, and lists of data ob­
jects, ·which taken together as a union form the type
of ldentifier-1, ... , Identifier-m. Syntactically, domain
identifiers are capitalized, and singleton data objects

. are finite lists. of natural language words · written en­
tirely in lower case letters. For improved readability, .
domain.identifiers ate italicized and data objects are
represented in typewriter font. Predefined types in­
clude Integer, Boolean, Qharacter, String, lists, . sets,
bags, and mappings. Postfix operators * and + may ·
also be used to define lists of zero or more and one or
more elements, respectively.

Function definitions comprise the operational part
of a TLG specification. Their syntax allows .for the se­
mantics of the function to be expressed using a struc­
tured form of natural language. Function definitions
take the forms:

function signature.
.function· signature :

function-call-1, •.. , function-call-:n.

Two-Level Grammar (TLG)° was originally devel­
oped as a specificatic;m language for programming lan­
guage syntax and semantics (8] 1 and later used as
an executable·specification language and as the basis
for conversion from requirements expressed in· natu­
ral- language into a formal.specification (6]. TLG is
a .formal notation based upon natural language and
the functional, logic, and object-oriented programming
paradigms. 'J:'.LG allows queries over the knowledge
base, such as a problem or solution domain, to be ex­
pressed in a natural language-like manner which is con­
sistent with the way in which Ut1IM is e..'Cl)ressed. TLG
is then a framework under which a natural)anguage
may be used to both describe and inquire about the
nature of components and systems, while maintaining
the formalism of formal specification languages. The
combination of natural language and formalization is
unique to TLG. and also fits UMNI well.

The name ''two-level" in Two-Level Grammar comes
from the fact that TLG consists of two conte.."Ct-free

where n~l. Function signatures are a combination of
natm:a.l language words and domain identifiers. For
improved readability, we will use .boldface type.to rep-

. resent the function keywords. Domain identifiers in the
conte."'Ct of a function typically correspond to variables .
in a conventional logic program. Some of these vari­
ables will typically be input variables and some will
be output variables, whose values are instantiated at
the conclusion of the function call. Therefore, func-

15

{
\"D~I-

j

Figure 1. Two-Level Grammar Implementation

tions usually return va.lu'.es through the output vari­
ables rather than directly, in which case the direct re­
turn value is considered as a Boolean true or false.
true means that control may pass to the ne.'\.-t function
call while false means the rule has failed and an alter-' . .

native rule should be tried if possible. Besides Boolean
values, functions may return regular values, usually the
result of arithmetic calculations. In this case, only the
last function call in a series should return such a value.

· Methods of class objects are called by writing a sen­
tence or phrase containing the object. The result of
the method call is to insi;antiate the logical variables
occurring in the method definition. In any class.for ev­
ery instance variable of simple type there are get and
set methods to access or modify that variable.

TLG· is implemented as part of a specification de-
. velopment environment which facilitates the construc­
tion of TLG specifications from natural language using
a domain knowledge ba.~e structured as a Generative
Domain Model (GDM) expressed in XML (eXtensible
Markup Language) [5], and then translates TLG spec- ·
ifications into e."'<ecutable code. The natural language
requirem~nts are translat~d into a conte:i..-tual know!.:
edge representation [15] wpich niay then be e.'--pressed
using TLG. The .TLG is t}ien translated into VDM++
(10], the object-oriented e,.'ctension of the Vienna De­
velopment Methe~ (VDM) specification language [13].
The lFAD VDM Toolbox™ (111 may then be used to
·generate code in an object-oriented programming lan­
ruacre such as Java or ·c++, as well as a UML (Unified 0 0

1viodeling Language) model. The overall description of
this process is described in Figure 1. Furthei; details of
the implementation a.re given in [14].

16

3. . Unified Meta-Component Model
(-UMM) and Unified Approach (UA)

In ·general, different developers v.-ill provide on the
· Internet a variety of possibly heterogeneous compo­

nents oriented towards a specific problem domain.
Once all the components necessary for implementing
a specified distributed system are available and a spe­
cific problem is formulated, then the task is to assemble
them into a solution. The UA assu.111es that the gener­
ation environment is built around a generative domain­
specific model supporting component-based system a.,­
sembly. The distinctive features of the approach are as
follows:

• The developer of the desired distributed system
presents to this process a system query, in a struc­
tured form of natural language, that describes the
required characteristics of the distributed system.
The query IS processed using the domain knowl­
edge (such as key concepts from a domain) and a
knowledge-base containing the UMM description
(in the form of a TLG) of the. components for
that domain. From this query a set of search pa­
rameters is generated which guides "head-hunter"

· age~ts for a component search in -the distributed
environment. Head-hunters serve to _ locate the
componeii.ts which are needed to complete the re-
quested system [22]. · ·· ' · ·

.; • .-;f~\~
• The framework, with the help of the infrastruc­

ture, collects a set of potential components for that
. domain, each of which meets the Quality of Se!Yice
(QoS) requirements speci:fie~ by the · developer.
QoS requirements are e.."'<Pressed in terms of a cat­
alog of para.meters established for this purpose [4].

· After the components are fetched, the system is as­
sembled according to the generation. rules elJ:!bed­
ded in the generative domain model. Essentially,
the generated code constitutes the glue/wrapper
interface · between · the components. Since TLG
may be :used to provide for attribute evaluation .
and transformation, syntax and semantics process­
ing of languages, parsing, and ·code generation,
the TLG formalism is used to specify the genera­
tive rules · and the output of th~ TLG will provide
the desired target code (e.g., glue and wrappers
for components and necessary infrastructure_ f~r
distributed run-time architecture). All of this 1s
implemented acco"rding to the process for trans­
lating TLG specifications into executable code as
described earller.

.- Along with the g~erated system will be a formal
· UN.ll\lI specification of the generated system so that

it may be used in subsequent assemblies. This
formal t.lAiM specification will also be-a basis for
generating a set of test cases to determine whether
or not an assembly satisfies the desired QoS.

• Static QoS parameters (e.g. dependability of the.
component) are processed during generation time
and hence will be processed by the TLG directly.
Dynamic QoS parameters (e.g. response time
ofthe component) result in instrumentation of a-en­
era_ted target code based on event ~am.mars [t 2],
which at run time will produce the corresponding
QoS dynamic metrics which may be measured and
validated.

To summarize, the inputs for the system assembly.
1nd generation step are: the query for the system build,
UIYLM _descriptions of the components found by head­
mnters, and the QoS parameters for the system build.
The outputs are 'the generated code instrumented for
:he dynamic QoS metric evaluation and auxiliary code
1eeded to compile, assemble and run the system, and
UlYLM description of the generated system which makes
.t possible to add the new component to th.e" compci-
1ent database. TLG is the formalism for representin.,.
qrvillI's, GDM's, QoS parameters, supporting queries:
md generation rules. Only the queries that have coun­
;erparts in the GDM are prqcessed. The GDM contains
~eneration rules for system assembly :from the compo-:
1ents. The query language is an essential part .of the .
;1.p,woach since the query provides the input for compo­
ae~ search via the headhunter mechanism and follow­
ing7glue and wrapper·generation. The query supplies
fue initial parameters for the headhunters to. search in
~he distributed environment and gives the input for the

5eneration step i~self. ·
QoS parameters given in the query provide yet an­

::ither aspect for the generated code - the instrumenta­
cion necessary for: the run-time QoS metrics evaluation.
Basec.l. on the query or informal requirements, the user
has to come _up with a representative set of test cases.
Ne.."'Ct the implementation is tested using the set of test
cases to vepfy that it meets ~he desired QoS criteria.
ff it dpes_ not, it is discarded. After that, another .im- ·
plementation. is chosen from the component collection.
This :process is repeated until an optimal (with respect
to the QoS) nnplementation is found, or until the col­
ledian is exhausted. In the latter case, the process
may request additional components or it may attempt
to refine the query by adding more information about
the desired solution from the problem domain. If a
satisfactory implementation is found: it is ready for de­
ployment. The complete view of°this system is shown
in Figure 2.

J.rt'lc=snCClJ(~

'------,.+---...J

I
ll='<=s

Figure 2. System Assembly in UniFrame

A few attempts have been made to incorporate QoS
(quality of service) into component-based software sys­
tems. The Aster project [12] uses architectural de­
scriptions of components and their interactions in­
cluding non-functional properties; to customize ~d­
dleware. Quality Objects (QuO) [3] is a :framework for
?rovi~ng _QoS to software applications composed of ob­
Jects clistnbuted over wide area networks. QuO bridges
the gap between socket-level QoS and distributed ob­
ject lev~l QoS, emph~g spe:;.ification, measuring,
controlling, and a?apting to changes in Qos: ·RAPm­
ware (16] is. an approach to component-based devel­
opment of adaptable and dependable middleware. It
uses rigorous software development . methods to sup-
port interacti:ve · applications e."'Cecuted across hetero­
geneous networked :n~onments. Pro.~es~L (21] is. ·
a language for descnbmg non-.ft,mctional properties of

· software, which may include QoS.properties. The Uni­
fied Approach is concerned not only with specifyina­
QoS properties of components, but also to assure sat~ ·
isfaction . bf these properties in an implementation re­
sulting :from assembling the components. It should be
noted that the assurance of QoS (as described above)
indic~tes that a .component can guarantet? appropriate·
values fo~ its QoS parameters in an 'ideal' situation. ·
This does· not guarantee that a component will be able
to either provide this QoS under failure circumstances
or will a:utomatically adjust its QoS to hide the fail­
ures. For the failure situations, the ideas :provided by
Aster,-QuO, or RA.PIDware can be incornoi-ated into
illv!IYI and U A. -

4. A Case Study ·

This section desqibes a simple e.°'\:ample of a. bank
account- management system in order to illustrate some

17

of representation features of the UA. The specification
of bank accounts should include its attributes and the
operations it should perf91'!ll, such as check balance,
deposit, or withdra,v. ';rhls information may be e..x­
preSsecl by the fol101v-ingi feature model in Two-Level
Grammar:

class BankAccount.
Acco·untNu.mber, PIN:: String.
Balance.:: rloat.
check balance.
deposit Float.
withdraw Float.

end class.

Assume that the GDM in ·this e..~ample contains a rule
for system assembly, as mentioned in Section 3, that
specifies that a Bank Account Management System
consists of one of each of the two component types,
AccountServer and AccountGlient, each of which has
an attribute of type BankAccount. For this ·exam­
ple, let there be two instances of AccountServer and
one instance of AccountGlient. Server components are
heterogeneous - JavaAccountServer adheres to the
Java-Rl\lII model; while Gorba:A.ccountServer uses the
CORBA model. The client, JavaAccountClient is de­
veloped by using the Java-R.J.vlI model and is imple­
mented as an applet. ·The goal is to assemble a bank.
account management system from these available com­
ponents. The UMM descriptions of these components
would indicate their relevant properties, including: 1)
the interface of the JavaAccountServer:

void javaDeposit (r10Jt ip);
void j avaWit.hdrat. (float ip)

throt.s overDrat.Exception;
float javaBalance () ;

and QoS parameters Availability > 85% and
Response Delay < 30-ms, 2) the interface of the
CorbaAccountServer;

vo~d corbaDeposit (float ip);
void corbaWithdraw (float ip)

throvs overDrawException;
float corbaBa1ance () ;

anrl QoS para.mete.rs A11a.ilabil:ity > 90% and
Response Delay < IOms, ?Jld 3) the interlace of the
JavaAccountClient:

void depositMoney (float ip);
void withdravMoney (float ip);
float checkBalance ();

and QoS parameters Availability >. 90% and
Response Delay< 50-ms. The complete Uivllv'! speci­
:fi.cat~ons for _these components are desc..ribed in [20}.

Queries are stated in a stmctured form of natural
language and then. processed into TLG, The general
form of a query is to request creation of a system that
has certain QoS parameters. The name of the sys­
tem is important in identifying the application domain
and the QoS parameters should also follow the cata­
log standards. A sample query for the above exa.111-
ple can be informally stated as: Create a bank account
management system that has availability 2:: 50% and
response delay < 100 ms. This query requires the sat­
isfaction. of one static and one dynamic QoS parame­
ter. From the query and the available knowl_edge in the
GDM associated T-vith the bank account management
systems, a query v,ill be formulated for a headhunter
in the Ul\l!IY!. In response, the headhunter will discover .
the three components and their QoS properties. Note
that the availability QoS parameter is used to screen
potential components at the time they are retrieved.
The catalog specification for this paramete!-" suggests
that the availability criteria should be multiplied, so
the availability of the Java-Java system is 76.5% and
for the Java-QORBA system 81%, both meeting the
stated criteria. . The process of locating components
through the head-hunter .mechanism is described fur­
ther in (22].

Two-Level Grammar is used. as the formalism for
both the ID/IM and generative rules. The_~:1IMI\II for­
malization establishes the context for whichthe:genera­
tive rules may be applied. The TLG functionsiwclude . . ~-
generative rules for construction of the wrappe,ir/glue.
code and the event grammar instrumentation to ~ure
the QoS of the bank account record management sys­
tem. The GDM for bank account management systems
will be d~cribe·d accerding to this template, including;
both generation rules and QoS parameter processing.

A sampling of TLG rules which. may be used to gen­
erate the appropriate glue/wrapper code to connect the.
components of the bank accoll?-t management system
is presented below. These rules are based on select­
ing from the GDM of the 9ank account management·
systems the appropriate system model for this two­
component DOS. We :first give type domain definitions.

GlientUM.lvI, ServerUMM :: UM.1.vf.
GlientO:perations, ServerOperations :: {In!e1jace}*.

The GiientUM1vI would be the UMN~ specification
of JavaAccountClien,t presented previously and the
SeruerUMlvl would be the UN.Thi specification of
JavaAccountServer or CorbaAccountServer. Client­
Operations and S erverOperations are defined as a list of
Interface's. We assume that types U}1flvl and Interface
have already been defined. ·

18

~--

· .. , ~ _,-

The generation rule to produce-Java code for two
'UMM models representing a client and server, respec­
tively, is shown below. This rule is e:;.-pressed using
a. TLG function which has a signature followed by a
set of rules (or sub functions) to be executed when the
function is called. Function keyvtords are indicated in
bold font;

SetUpCode :=

Gomponentlvlodel generate java code
Ope'!';ations := . '

generate java code for OperationMavpino
return · · _,

import CorbaPackageName . *;
public class JavaClassName {

generate system from ClientUMM and ServerUivfJ'vl: private CorbaObjectGlass GorbaObjectName .
// initialize COREA client module '
public void init () {

ClientOpera.tions := ClientUMM get operations.
ServerOperations := ServeruMM get operatic~,
OperationM apping :=

map ClientOperations into ServerOperations,
ComponentModel :=

ServerUMM get component model,
generate java code for OperationMapping
. using ComponentModel.

The main tasks are to map client operations onto server
operations, e.g., depositMoneyin JavaAccountClient
maps to corbaDeposi t in CorbaAccountServer or t~
javaDeposit in JavaAccountServer, and then gener­
ate the code to implement this mapping. The gener­
ated code will be in Java since the client code is in Java
and must seamlessly inteiface with it. If the client is
in C++ or other language, similar rules will be defined
and many rules will be language independent. .

The actual mapping to be defined will be based upon
?'_natural language analysis of the names of operations. -
~he closer the names match the vocabulary in the fea'­
ture model, the more easily the system can establish
~e correct mapping. This depends .upon both the ca:i-e

· and style with which the user has written the interface
method names and so may vary widely. For this ex­
ample, it can be seen that the correspondence between
names, while not exact, is relatively close.

The next set of rules describes the specifics of gen-•
erating COREA code in Java to implement the map­
ping that a.rises by integrating the JavaAccountClient ·
with th~ CorbaAccountServer. The generated code is
distinguished from types (variables) and function·key­
w~rds by using .a typewriter font:·

CorbaPackageName :: String
f!orbaObjectGlass, GorbaObjectName :: String.
GlassName, JavaGlassName :: Siring.
generate java code OperationMapping

using corba :
CorbaPackageName :=

OperationMa.pping get corba package name
CorbaObjectClass :=

OperationMapping get corba object type;
GlassName := OperationMapping get class name,
JavaGlassName := Java II GlassName,
CorbaObjectName := object II ClassName,

SetUpGode_ .
}

Operations
}.

This rule generates the class structure required by the
Java implementation, which consists of a function ini t
to set up the COREA ORB and the operations needed
in the ,server. This includes the code to initialize the
COREA object so that future operations can refer to
it. · It is necessary to first extract the naines of the
CORBA package, class of the COREA object to be
referenced within the package, and the name of the
cl:85s itself. These are all stored in the OperationM ap­
pmg. The name of the Ja-va. cl_ass generated is simply
the string "Java" concatenated 1 with the name of the
seryer class, i.e. 1 JavaCorbaAccciuntServer. The name
o_f the CORBA object is generated in a similar wa.y.

The rule below describes the mechanism for generat- ,
ing individual methods in JavaCorbaAccountServer. •
For simplicity, only the case where the class is to con­
tain a single niethod is shown. Multiple methods are
handled simi,larly.

generate java code for
OperationN amei Argv.mentList1 RetumType
maps to .
OperationName2 Argv.mentLisp2 RetumType:

JavaReturnType := java type of RetumType,
JavaArgu.mentList :=

list all Argument from Argv.mentList1
.mapped to JavaArgument

by function java argmnent of
Argument is J avaArgv,ment:

JavaArgumentListDefinition :=
separate JavaArgume./i,tList:"by , ,

OperationGall := generate java code for
OperatipnName2 ArgumentList1 ReturnType,

return
public J avaReturnType · Ope'rationN ame1

· (JavaArgumentListDefinition) {

1 The TLG concatenation operation (II) djffers from j1L,t~p0:-
sition in tha.t it does ?ct produce a space between the ·operands.

19

}.

EventTrace • setBeginTime ();
Operation Call
EventTrace. setEndTime ();
EventTrace .

calculateResponseTime ();

This generation assumes that the methods have the
same return type and so the main task is to e."1.--press
the arguments of the first operation in terms of Java
syntax, generate the appropriate method call, and in­
strument the code with the event grammar mecha­
nism to measure the response time. The former is
accomplished by using a TLG list comprehension to
map the arguments in ArgumentList1 into correspond­
ing Java arguments represented by JavaArgumentList.
Each· Argument from ArgumentList1 is mapped into a
JavaArgument using the function java argument of
Argument is J avaArgument. There is a subtlety here
in that JavaArgumentList is an abstract syntax repre­
sentation of the desir1::d argument list and so this must
be made into concrete syntax using the separate oper­
ation which adds the appropriate commas in between
the argument declarations. The appropriate metI:i.od
call is handled by the rule below.

generate java code for
OperationName ArgumentList ReturnType:

ldentifierList := ·
list all Argument from ArgumentList

mapped to Identifier by .
function argument id of Argume.nt

is Identifier,·
IdentifierListinGall :=

sep~ate IdentifierList by , ,
return

GorbaObjectName .. OperationName
(IdentifierListinGall);.

Again a list comprehension is used to extract the ar- ·
guments from the argument list, this time only the
identi£.er part. (achieved ~y function· argument id
of Argument is Identifier),: Likewise, the abstract syn­
ta.,: representation must be made concrete by comma
separators.

Finally, the event grammar instrumentation is
added to measure the time at the beginning of the
server method ·call and again. at the end so that the
actual response time can be evaluated against the re­
quired QoS (< IO Oms)~ The QoS metri~ for "response

. delay" mean e.-x:ecution tim~ for each method call within
the server or client, and require the instrumentation of
each generated_ wrapper for the· client/server method

call 1Yith au.'\:ilia.ry functions able to check the clock at
the beginr_1ing and at the end. of method call, calcu­
late the duration, and submit it to the execution mon­
itor (also generated as a pa.rt of ins~entation). vVe
assume that these are taken care of by a class called
EventTrace. Each of the two example systems "\'till be
implemented 1vith the code for canJ,ing out event trace
computations according to test cases which must be
supplied by the user. These test cases will be e.xecuted
to verify that. the bank account management system
satisfies the QoS specified in the query. If the system
is not verified, it is discarded. This verification process
fa carried out for each of the generated bank account
management system (two in the above e.;::ample). Then
the one with the best QoS is chosen, in the above e."Cam­
pl~ the C~rba.<\.c~ountServer a,r;_d JavaAccountClient
combination.

. For the e."<:ample UMlYI specification, the following
code for the depositMoney function would be pro­
duced.

public void depositMoney (£loat ip) {
EventTrace. setBeginTime ();
objectCorbaAccountServer. deposit (ip);
EventTrace setEndTime (); .
.EventTrace calculateResponseTime:· () ;

}

5. Summary and Conclusions

The UMM provides a. framework for constructing
systems that involve interoperation of heterogeneous
and distributed software components:'It is based on:
a) a meta-component model, b) interpretation by a·
Two-Level Grammar of queries requesting distributed
systems, c) forri:lal specification, oased on Two-Level
Grammar of components and systems, d) generative
rules, along with their formal specifka-tions, for as­
sembling _an ensemble of components from available
choices, and e) validation and assurances of QoS us-
ing event grammars. , ·

In the future, the efficient generation and update
of a distributed computing system will require at least

. a semi-automatic integration of software components,
based on their advertised QoS, in such a way that it
meets the QoS constraints specified by the user. The
result of using UM11I, v,ith the tools and techniques
it embodies, . is semi-automatic construction of. such a
system. A simple case study is provided· in this pa-

. per for illustration, b1.1t the principles of the proposed
approach can be applied to larger applications.

20

).

Acknowledgements. The authors would like to
thank IFAD for proYiding au academic license to the
IFAD VDM Toolbox in· order to conduct this research.

· References

(l] Ang11ston, :M. Program Behavior Model Based
· on Event Grammar and its Application for De­
bugging A~tomation. In Proc. ·2nd Int. Workshop
on A-utomated and Algorithmic Debugging, pages
277-<Wl, 1995.

(2] Auguston, M., Gates, A., Lujan, M. Defining a
Program Behavior Model for Dynamic Analyzers.
In. Proc. SEKE '97, 9th Int. Conj. Software Eng.
and Knowledge Eng., pages 257-262, 1907.

[3] BBN Corporation. · Quality Objects (Quo),
http://ww.dist-systems.bbn.com/tech/Qu•,
2001.

[4] Brahnmatb, G. J., Raje, R. R., Olson, A. M., Au­
gustan, ~-, Bryant, B. R., Burt, C. C. A Qual­
ity of Service Catalog for Software Components.
In Proc. (SE)2 2002, Southeastern Software En­
gineering Gonf. (to appe.ar), 2002. ·

[5] Bray, T., Paoli, J., SperbergMcQueen, C. M., .
Maler, E. Extensible Markup Language (XML). .
1.0. Tecl]..llical report, W3C, October 2000 ..
http://www.~3c.org/:xm1.

t6J Bryant: B. R Object-Oriented Natura.I Language
Require:nents Specification. In Proc. ACSC 2000,
23rd Australasian Computer Science Conj., pages
24-30, 2000. .

(7J Bryant, B. R., Lee, B.-S. Two-Level Gramm~
as an Object-Oriented Requirements Specifkation
Language. In Proc. 35th Hawaii Int. Conj. System
Sciences, 2002. · · ·

(8] Clea:veland, J. C., Uzga.Iis, R. C. Grammars for
Programming Languages. Elsevier North-Holland
Inc., 1977. ·

[9] Czarnecki, K., Eisenecker, U. W. Generative
Programming: .Methods, Tools, and Applications.

· Addison-Wesley, 2000.

[10) Durr, E., van Katwijk, J. VDM++, A Form.a.I
Specification Language for Object Oriented De­
signs. In COMP EURO 92, pages 214-219, 1992.

[11] IFAD. The VDM++ Toolbox User Manual. Tech­
nical report, IFAD, 2000.

21

(12] INRIA-Roc~uencourt. ASTER: Soft-
ware Architectures for Distributed Systems,
http://www-rocq.inria .fr/solidor/work/ • ~ h•znl
2001. . asi.e_ •-'-' '

(13} Larsen, P. G., et al. Vienna De~elopment Method
-- Specification Language - Part I: Base Language.
Report, ISO /JEC 13817-1, December 1996.

[14] Lee, B.-S., Bryant, B. R. Automated Conversion
from. Requirements Documentation to an Object­
Oriented Formal Specification Language. In. Proc:
A CM Symp. Applied Comp11.ting (to appear), 2002.

[15] Lee, B.-S., Bryant, B. R. Conte..'Ctual Knowledge
Representation for Requirements Documents in
Natura.I Language. In Proc. FLAIRS 2002, 15th
Int. Florida AI Research Symp. {~o appear), 2002.

[16) Michigan State University. RAPID--
ware: Component-Based Development of
Adaptable and Dependable Middle.ware

J

http://WT.im'.cse.msu.edu/rapidware,2001.

(17] Object Management Group (OMG). Model
Driven Architecture: A Technical Perspective.
Technical report, OMG Docurq.ent No. ab/2001-
02-01/04, February_ 2_001. .

[18) Raje, R. .R. UMM:· Unified Meta-object Model
for Open Distributed Systems. In Proc. ICA3PP
2000, 4th IEEE Int. Con/. Algorithms and Archi­

. tecture for Parallel Processing, 2000.

[19] Raje, R. R., Augustan, M., Bryant, B. R., Olson,
A. M., Burt, C. C. A Unified Approach for the In­
tegration of Distributed Heterogeneous Software
Components, In Proc. Monterey Workshop En­
gineering Automation for Software Intensive Sys-

. terns, pages 109-119, 2001. · ·

(20] Raje, R. R., Auguston, M., Bryant, B. R., O~­
son, A. M. 1 Burt, C. C. A Quality of Service­
. based Framework for Creating Distributed Het­
erog~neous Software Components. Submitted for
p1tblication,• 2002.

[21] Rosa, N. S., Cunha,. P. R. F., Justo, G. R. R.
. Proces/iF1 : A Language for Describing Non-­
Functional Properties. In Proc. 35th Hawaii Int.
Conj. System Sciences, 2002. ·

(22] Siram, N. N., Raje, R R., Bryanti B. R., Olson,
A. M., Augustan, M., Burt, C. C. An Architec­
. ture for the UniFrame Resource Discovery Service.
Submitted for publication, 2002.

I . I ·

Quality !of Service Behavioral lYiodel From Event Trace Analysis

John Drummond ..
SPAWARBYSCEN

San.Diego Ca92152-5001
(619)553-4131, drurnmond~spawar.nayy.mil

Valdis Beizins, Luqi, William Kemple, Mikhail Augnston, Nabendu Chaki
Naval Postgraduate School

555 Dyer Road, Monterey, CA 93943,..5118 USA
. (831)656-2610, berzins@cs.nps.nayy.mil

(831)65 6-2735 lugi@cs.nps.navv.mil,
(~31)656-2249, kemple@cs.nps.nayy.mil

(831)656.:. 25 09, augustdn@cs.nps.nayy.mil
(831)656-:25 09, nchaki@np·s.nayy.mil

Abstract

..

The distributed co~and & control environment includes limited computer resources and
numerous mission critical applications competing for these scarce resources. Additionally the
stringent constraints ;and considerable complexity of distributed co:rmpand & control systems can
create a condition *at places extreme demands upon. the allocated resources and invites a
potential for prograni errors. Consistent qU:ality of service cli,stribution can be a critical element in
ensuring effective dverall program completion- while avoiding potential errors and process
failures. The potential for errors and process failures can be understood . and addressed by
performing a practi~ai analysis of the r~source deployment procedures utilized within this
enviro~ent. However, analyzing resource-based quality . of service within a distributed
command & control environment is a demanding endeavor. This difficult task can be simplified

• This work sponsored by the Defense Advance·d R~search ProJects Agency, Information Technology Office
(DARPA-ITO)

22

by directly examining specific quality of service actions that take place during pro2::ram
.. execution. Therefore, to pragmatically isolate these actions and develop a practical qualit{ of
service behavioral model, the research discussed in this paper has implemented an event trace
approach to examine the exact quality of service execution path during program operatio_n.

Introduction

The command & control environment is especially complex and may certainly exhibit
dynamically changing attributes during its operation. The processing of command & control
elements can exhibit perplexing difficulties such as abrupt mission changes, and dynamic tactical
sm:prises[Ham 99]. Many critical applications within this environment could benefit from
dfafi:ibuting the processing loa~. Distribution of the processing load does however also increase
the overall complexity of the environment. Despite the expanded complexity, the augmentation
to command & control envir~:mments of distributed P.rocessing is desired. The distributed
processing environment can provide added benefits over the non-distributed approach due to the
capacity for improvement in program accessibility, overall performance, additional_ sharing of
limited resources, and the increased fault tolerance capabilities. However, this distributed
command & control environment does present an expanded assemblage of requirements and

. constraints for effective computer resource control. The efficient allocation of computer
resources can be considered a major element of these requisites. The direct imp~em~ntation of

·' resource control features into the distributed command il, control infrastructure can be ··extremely
· advantageous for software programs :that contain mission critical requirements. Implementing
quality of service features into the distributed c;:ommand. & control :infrastructure fa not a trivial
task. Additionally, subsequent to implementing the quality of service features, an examination
must be performed upon the effectiveness of the implementation.

To- properly ascertain that the essential quality of service .based system resources ·are being .
re~onably utilized and efficiently shared among these programs some evaluation of the resource
deployment method should. be conducted. However, current analysis techniques for evaluation of
resource depioyment and control are somewhat lacking in that there is no ~xacting method to
focus exclusively upon specific quality of service actions that take place during actual program

. execution. Therefore, the analysis of proper employment and dispersion of available.resources is
the fo·cus of this research in the area of distributed com:mand ·& control processing. This direct
analysis can be carried out though the use. of quality of sep/2ce based behavioral ~odels. The
development characteristics of the behavio~ model are described in the next section.

Approach

The foundation for the approach to developing the quality ·of service behavioral model considers
·a centralized resource provisioning mechanism for control of all computer resources that can be
found within the end-to-~nd pathway. Typically communicatio:q. based quality of service analysis
approaches have focused upon the network resource provisioning implementations that utilize a

23

decentralized res01~rce management technique to disperse the required communication bandwidth
resources at num~rous locations (e.g. ATM switches, etc). The scope of the research being
pursued in this paper expands this quality of service analysis of resource deployment to include
computer resources that can consist of CPU, Network, Disk, I/O, and Memory. These resources
can be considered pritical elements within a true end-to-end distributed environment and have a
direct bearing upon[any quality pf service capabilities.·

This focus of efficient quality of service within the total end-to-end pathway is a much needed
elemenffor curren~ DoD systems as stated by the Defense Advanced Research Projects Agency
Quorum program manager [Koob 99] "While emerging network-level QoS mechanisms (such as
RSVP) are an esse~tial enabling technol9gy for Quorum, th.ey are in~uf:ficient in that they are
limited to communications QoS. Quorum defines "end-to-end11 as being the quality-of-service

. seen by the application, which calls for coordinated QoS management across middleware,
operating systems, and networks."

For the purpose of this research investigation the mechanism for controlling and coordinating
these critical quality of service resources will be centralized witlrin a singular system as can be
found within the Linux/RK resource kemel[Rajku:rp.ar 98]. This research does not examine the
multiple controller communication/network mechanism mentioned earlier. This investigation is
accomplished by an in-depth look at various quality of service and resource deployment
characterizations as rwell as the application ofl:righ level modeling and quality of servi?t~alysis.
The detailed analys~~ is attained through the utilization of the -SPAW AR System CenfePb.A.RP A
Quorum Integration Test & Exploitation project (Quite) testbed environment located a.:t the
SP AW AR System Center. Other specific logical conditions and constraints for this work include
distributed systems~ heterogeneous environment, multiple diverse. quality . of. service levels.
essential for progrf1I11 execution (i.e. application requirements vary high/low needs), and
available resources qan include network bandwid~ CPU, memory, etc.

: . . .

. i ·. . .

T9 achieve a precis6i analysis of quality of service pr~cedures an appr:oach has been implemented
to examine the exact quality of service execution path during program operation. The evaluation

I . .

approach utilized in[this research is based upon an event trace concept employed by [Augustan
00] originally as anl analysis tool for focusing upon correctness in C language programs. This
event trace concept ~scusses the idea that testing and debugging are mostly concerned with the
program run-time behavior, and states that developing a precise model of program behavior
becomes the .first step towards any dynamic analysis.

The method of p~rforming the quality of serviee event trace analysis begins with an event trace
of a targ~ted application. This event trace is utilized as the basis · for developing the quality of
service behavior that characterizes the targeteg. program. The quality of service based event trace
approach allows for a detailed quality of service parameter examination. This event . trace is
utilized as the tool for collecting the predefined quality of service metrics and allows for in-depth
analysis based upon these previously developed metri~s. The specific events· to be isolated within

24

..· -r:

these paramete_rs .for this research are based upon actions that may have temporal properties (e.g.
Event Start, Event Stop) or simply be atomic in nature (e:g. Initialization). This follows the ~vent
trace work of [Augustan 98]: "Every event defines a time interval which has a beginning and
end. For atomic events, the beginning and end points of the time interval will be the same."

The procedures for performing the quality of service event trace include:

• Develop operative models of execution pathways (quality of service & resource control
specific statement execution) within the target application based upon identifiable details
such as resources requested, resources utilized, resources available, etc.

• Initiate the development of a working model of program behavior based upon quality of
service factors. This is accomplished by producing abstractions of events that ·are
fundamental to specific quality of service actions performed 4uring program execution,
which includ~: ·

• Quality of service · request statement execution that requests resource
reservation.

- .
• Procedure execution that focuses upon tp.e evaluation and negotiation of

available resources to be appJ,ied to the originating resource request _ .
• Software statement execution .of procedures for proper utilization of the

·assigned resources.

• . Executi~n of statements . responsible . for the detection of any resour?e .
needs change 'within the application software.

• . Execution· of procedures focusing upon the re-negotiation based on
increase or decrease of available and previously assigned resources.

• Execution of reallocation statements for specific resources by the resource ·
controller.

• .Sending and receiving of quality of service related messages by both the
application and resource controller software ..

• Identify quality of service specific application program points that directly Telate to
appropriate resource deployment as illustrated in Figure 1. Such elem.ents ha~e direct
conseque~ces l1,pon quaµty of service behavior and include:

• QoS specific message passing .
• Application QoS violations
• QoS negotiations .
• • QoS resources and control of resources
• QoS re-negotiations
• . QoS level

25

Target
program : Program

Start
Initialize

;: ,.
Process/Threads):

Start i:
:•

=· ,.
:.
I: :. ~-:•

=· :. :. :.
'• :.
:-
:• .. • ... :~

:• 1 •••••-•Un••-........ o -•••-••u•• ••

~: Re.Negotiate
l: Resource
): i
·• :. :. =· .
=· :•
!: ·Allocate
!•
:• Resource ,.

Request
Resource

Resource
Utilized

Negotiate
Resource

Set

:+ ·•-'-'~ ... : .. -'-'-'-'-''-'·'-'-~''-'-'-'·'-'-'-:'"·'-' .· ·>

;
j · · · Figure 1. Quality of Service Program Points.

i ; .

_,;.~;,,.:

au~lity
Of ·

Service
Level

• Instrume:q.t the. targeted progr8II1 based upon these previously identified specific
quality o{ service program points. This direct_ .code instrumentation will allow for
effective ?vent trace recording at the precise locati_on of the quality of service actions
of interest.

I

. .

At this point it is necessary to further expand upon the events of interest for ·quality of service
analysis and the development of the behavior model. An event is a detectable action that
influences · the overall achievement of the desired quality ·of service level. The event is the
smallest element of the quality of service behavior :rp.odel. The discovery of this action is noted
by the embedded instrumentation within the targeted program sources at the pre-defined program

26

;

point'?,as previously shown in Figure 1. The event attributes describe the event and include the
process or thread within which this event has occurred, arid a boolean attribute denotino- the
associated quality of service action of success/failure. ;:;,

The event model is construc~ed from a specific quality of service based action and all the
attributes relevant to this action. The event model is applied _to the event trace for the purpose of
constructing the quality of service behavior. There are eight events of interest and their respective
attributes that form the composition of the behavioral model.

The resource request" event is critical to the development of the behavioral model because it
represents the applications mechanism for acquiring the proper resources for successful program
execution. Within the quality of service behavioral model every resource reque§t event and
·subsequent failure/success attribute is indicative of the applications behavfor. Th~ resource
request event model is composed of the -action of requesting resources · and the set · of event
attributes that include: depth level 'DP, process type 'TP, location 'LC, path 'PA, resource type
'RT. The request resource event RQ = {DP, TP, LC, PA, RT}, this event modeJ is iIIustrated in
the next figure. ·

Event
.Attributes QoS

· Event·

Figure 2. Reso~rce Request Event ModeL

The· quality of servii:e ·vioiation event i~ an important ele~ent of the behavioral model as it is
representative of a quality . of service fault. This failure event lias a . causal relation to the
preceding quality of service associated attempt actions that include res~:mrce negotiation, resource
request, resource r~-negotiation, and resource assign. Within the composition of the quality of
service behavioral model failure is indicative of the applications behavior. The quality of service
violation event model consists of the-resource request failure, or resource negotiation failure, or
resource re-negotiation failure~ or resource assigned failure actions and the set of event attributes:
depth level 'DP, process type 'TP, location 'LC; path 'PA, resource type 'RT. The quality of
service violation event QV = {RT, DP, TP, LC, PA} and this event model is illustrated in the
next figure. ·

27

i ,
!

Event
Attributes

QoS
Event

Figure 3. Quality Of Service Violation Event Model.

The quality of service leyel event supports the behavior model as it represents the action of the
resource controller ~ppropriating the requested resource. Within the quality ofservice behavioral
model the appropriEition of resources is a significant action in the attainment of proper quality of
service and conseq"$.ently characterizing the applications behavior. The quality of service level

. event model is· ~oID;posed of the action of resource reserve cre~tion success action through the
resource controller &nd the set of event attributes that include: depth level 'DP, process type 'TP, -
location _'LC, path !'PA, resource type 'RT, resource size 'SZ, resource period 'RP, resource
deadline 'RD, and r~source used 'RU. The quality of service event QL=_ {DP, TP, LC, PA, RT,
SZ, RP, RD, RU}, tliris event model is illustrated in the next figure. · _;...

I • .

Event .
Attributes

QoS Event

Figure 4. Quality Of Service Level Event ;t\tlodel.

The resource µegotiation event is an important part of the behavior model because it represents
the transaction of establishincr a resource set with the resource controller. This event is signifi. cant . 0

in the acquisition of resources and therefore an important in the development of the applications
quality of service behavior. The· resource negotiation event model is comprised of the action- of
setting up this resource set and the event attributes that include: depth-level 'DP, process type

28

·.(,

'TP, location 'LC, path 'PA, resource type 'RT. The resource negotiation event RN= {DP, TP,
LC, PA, RT}, this event model is illustrated in the next figure.

Event
Attributes

QoS Event

Figure 5. Resource N ~gotiati?n Event Model.

The system re_servatio~ event is a component in the behavj.or model because it represents the
action by the system, and other applications not currently being targeted by the event trace, of
requesting resources from the resource controller. When the focus is directed only at the target
program for evaluation the system resource event simply represents a· competing load
application. This event is critical to the quality of service behavior model because it enables an
evaluatj.on of the target program under ·resource competition load. The system reservation event
model consist of this resource reservation action by these competing users through the resource
controller and the set of event attributes_that include: process type 'TP, location 'LC; path 'PA,

. resource type 'RT, resource size 'SZ~ resource period 'RJ;>, resource deadline 'RD, ~d resource
used 'RU. The system reservation event SR= {TP,.LC, PA, RT, SZ, RP, RD, RU}, this event
model is illustrated below.

Event
Attributes ·

Figure 6. System Reservation Event Model.

QoS Event

The resource assignment event is a critical element in the quality of service behavior model
because it describes the action of assigning r~sources by the resource controller to the requesting ·

. .

29

I
thread/process. Tl1e resource assignment event model is composed of the action of attaching the
resource set to th_t specific process/thread through the resource controller and the set of event
attributes that include: depth level 'DP, process type 'TP, location 'LC, path 'PA, resource type
'RT. The resource! assignment event SR= {DP, TP, LC, PA, RT}, this event model is illustrated
in the figure belov{.

Event
Attributes

QoS
Event

· i Figure 7. Resource Assign Event Model.
!
i

• I

The pa~ length ev~nt.is part of the quaj.ity of service behavior model because it represents the
action of traversing the quality of semce- path to a succeeding program point level 1!,'ithln the
event trace'. -The palli length event model consists . of the action of proceeding through program
points and the set 6f event attributes that includ~: depth level 'DP, process type 'TI\ location
'LC, path 'PA. The1path lerigth event_PL = {DP, TP, LC, PA} and this event model iifJP,.ustrated
b~~ - ~-

Event
Attribute~

'

QoS

_ Figure 8. Path Length Event Model..

· The resourc·e re-neg~tiation event :i:s critical to the quality 9f service-behavior :tnodel because it is
representative of th¢ process/thread actions to · correct a preceding quality of service violatiop..
The resource re-neg6tiation event model is comprised of the action of re-negotiating the amount
of resource requestdd through the re~ource controller and the set ·of event attributes that include:

I . . . • '
depth level 'DP, process type 'TP, location 'LC, path 'PA, resource type 'RT, resource size SZ,
resource period 'RP, and resource deadline 'RD. Th~ resource re-negotiation event RR ·_ {DP,
TP, LC~ PA, RT, SZ, RP, RD}, this event model is illustrated in the next figure.

30

Event
Attributes

QoS Event

Figure 9. Resource Re-Negotiation Event Model.

These specific: event trace quality of service actions which comprise the event models are
· infonp.ally ·stth_ctured with no imposed overall ordering structure as they occur asynchronously.

However, ·the~e-is a partial ordenng within a specific thread/process execution as denoted by the
tbread/proce)S~-· depth level attribute, and a causal ordering between request events(resource
negotiati9n;'t¢quest resource, resource re-negotiation, resource assign) and fault event(quality of
se:rvife violation). After the event occurs ,the.· event trace notes the specific attributes of the .

4 • • •

quality of . service action such as. type(quality of service resource), level(path depth),
path(?,ggre_g,?-!~ ·progression of the event trace), ptype(process or thread), and loc(within the
process/thread).- This data is noted and a boolean evaluation process _determines its
success/failu& attribute

The behavioral 7model is composed of resource request events 'RQ, res~-µ.rce nego:tiation events
'RN, resource_.assign events 'RA, quality of service events 'QV, resource re-negotiation events
'RR, quality·ot'service level events 'QL, systeni reservation events 'SR, anci path length _events
'P:(,. Potentiai' f~ure b.ehaviors are comprised of the following sets of events: {RN, QV}, {RQ,
QV}", {R:Q, -QV,_RR, RR, RR, QV}, {RR, QV}, and {RA, QV}. Typical success behaviors are
composed~.(~ets of events that include: {RN}, {RQ, QL,_ RA}, {RR, QL, RA}, and {RA}. An
· example ~o{ a/quality of service behavior model that characterizes quality of service failure is
illustrated m-the next figure. . . --; .,..

:· ..

. . , ·

. . .. • Behavior
.•. 7.:.-_- Model

QoS
Events

31

Figure 10. Quality Of Service Behavior lYlodel. ··

-
The behavioral mo;del can be utilized to isolate specific quality of service behaviors. For example
in the failure occurrence illustrated in above with the events {RQ, QV, RR, RR, RR, QV} the
program point of failure can be isolated through eX.:amination of the event trace results. This
search can be achieved through a retrace of the execution path to the specified depth level of the
distinct(named) tl:usead/process, and by examination of the event attributes associated with the
failure event quali~ of service violation QV = {DP, TP, LC, PA, RT}. .

I

The quality of serrice event trace on the targeted application collects these events and based
I

upon this il+formatibn the quality of service behavior can be constructed. The behavior model is
· partially ordered syt of event types (e.g. resource request) and event attributes (success/fail
boolean). The qua.If.ty of service metrics of the event trace are calculated based on qu.ality of .
service actions. These calculations include elements such as the· number of resource re­
negotiation events : that . have occurred, and the number of application quality of service
violations. The results of these event trace metrics mclude the lists· of specific processes/threads
identities and therr j resource specific events. This information provides the necessary data to
construct the qualit}f of service behavior. ·;~~ .

• I

!
··•

' . --~~.~-.. ~~"- :·· ' .
. . .. t:·.'~l'f.·~• ;

Applying The Eve:ijt Trace 1~r, -
i . ••'t'.7:('

This discussion has'ith.usfar focused upon the composition of the quality of service event trace.
The model of this generalized (general case)° approach can be applied to the specific c~e
implementation of , pre-selected application. The employment of the quality of service event
trace mialysis is b~ed upon the ·event models applied to· a target application program that has
been instrumented for accurate feedback. This analysis is then utilized to develop an overall
quality of service b¢havior for characterization pf tp.e command & control systems application
that can be applied Ito •mitigation of discovered quality of se~ce related efficiency problems.
Through direct exrujnination of the event trace results, specific potential failure regions (QV
events) can be isolated to specific path locations and thread/process depth levels that denote the

• -1 '

distinct program pojnt within the targeted application. The potential error region can then be ·
adjusted to improve j:b.e quality of service level achievement probability. ·

i ' . .

The selection of the target program/environment for this work has be~n subjectively inspired
· through the research of the DARPA Quorum program. The specific emphasis of the_ DARPA­
ITO sponsored Quorum program is the development of computing environments with quality of
service attributes, controls, and guarantees oii local to global scales[Koob 99]. This Quorum
program is a _ multi-million dollar collaboration of fifty top research groups reJ:Jresenting
universities, industries, and SP AW AR System Center. The quality of service event .trace r~search ·

32

·~ ;t.

,.

reported in this paper leverages from this DARPA project focus and this ~ssociation has provided
ahighdegree ofvaluableinput. .:,><, -· . _ ·

A failure detection program was isolated as a candidate target application based upon the loaical
co~dit~ons and con~traints discussed earlier._This fast failur~ detection program has as its pn:iary
objective the efficient and prompt detection of node failures vvithin group communication
software as utilized within distributed mission critical systems of the AEGIS environment. The
fast failure detection program was designed and developed under the DA.RP A-ITO Quorum
Integration, Testbed and Exploitation (Quite) project efforts.

As noted in [Drummond 02] this program can be set up .to take advantage of .a resource
management system based upon quality of service procedures or operate as a simple non-quality
of service application "The Fast Failure Detector can be built and executed on its own or it can
be executed while taking advantage of facilities like Linux!RK. [Oikawa 98] and
Ensemble[Birrnan 00] group communication." For the purpose of this -event trace analysis
research the Fast Failure Dector program has been implemented using both the Linux/RK kernel
and the Ensemble group con:µn}illication software_.

The specific area of concentration within this targeted environment is based upon the following
problem domain characteristic~: distributed computing environment, multiple heterogeneous ·
systems, network medium connection~, software applica:fions with specific requirements ·(quality
of service resource needs), centralized. resource . controf software , (with quality of service
,awareness), metrics data gathering instrumentapon so~are. This , specifically · isolated
con:fputing environment can be readily encounte:r~d within the AEGIS system, as well as in many
other DOD and commercial systems. AEGIS is a combat system architecture that contains a
computer-based command & decision . component. The core element of the AEGIS architecture
provides simultaneous operations capability. These operations include measures against multi­
mission threats including anti-air, anti-smface, and anti.:submarine~ The _problem space of this
domain requires specific level~ of perfo:i;mance to operate-correctly.

EXJ?licit quality of service program points that directly relat~ to resource utilization have been
isolated within the target program. Based upon these program points the target appl;ication has
been mstrumented. This has been accomplished by direct-source code instrumentation that allows ,
for effective eyent trace recording at the actual location where the quality of service specific
actions take place. The anaiysis results can be utilized to develop an· overall characterizatio~ of
the fast failure detection program for any mitigation of discovered quality of service related
efficiency problems. Th~ specific event trace analysis has examined the quality of serviqe events
and related quality of service characteristics of this fast failure detection program within a
distributed environment. ·

-
For this application of the quality of service event trace ru+alysis approac~ to the specific case of
the selected targeted application the follovying distinct events arid attributes have been recorded

33

within each qualil of service event tr~ce ex~cution. These events, their actions and attnbutes ,
follow the event models described earlier.

EVENT ACTION ATTRIBUTE
RES_NEG Resource Set Negotiation RES_TYP, PATH, LOG, LEVEL, PTYPE

REQ_RES
I

Resource Request RES_TYP,PATH,LOG,LEVEL,PTYPE

RES_ASG i Resource Assignment RES_TYP, PATH, LOG, LEVEL, PTYPE

PATH_LN i Quafii'j of Service Program PointTraveisal PATH,LOG, LEVEL, PTYPE

QOS_VIO Qualii'j of Service Violation RES_TYP, PATH, LOG, LEVEL, PTYPE
;

RES_RNG
i

Resource Re-Negotiation . RES_TYP, PATH, LOG, LEVEL, PTYPE,
SIZE, PERIOD, DEADLINE.

QOS_LEV Resource Appropriation RES_TYP, PATH, LOG, LEVEL, PTYPE,
SIZE, PERIOD, DEADLINE, USED

SYS_RES i System/Application Resource Reservation RES_TYP, PATH, LOG, PTYPE, SIZE, I

I PERIOD, DEADLINE, USED

Table 1. Quality of Service Events: · . .-1;.

. i .
These specific evett fypes (shown in table 1) that have been included_ within the quality of
service event trace iof the target failure detection program were chosen because they·represent
distinct actions durihg program execution that have a_ direct influence resource utilization. ·These
event types include attributes that are closely associated with and help descri,be these actions. . .

The quality of service events occur asynchronously within the quality of service event trace and
are inform.ally structured with no overall strictly imposed ordering, however there is a p~ai
ordering within each executing thread. ·

The RES_ TYP notaµ.o:o. represents the event trace attribute that denotes· the type of resource(RT)
reservation that is r~quested. Tb.is event attribute is not utilized during the analysis of-this target
failure detection progrmn, as the sole resource that~ been reserved by this program is the CPU .
resource. When it is used, the other possibl~ resources that this attribute can represent ~elude
Disk, :t:Tetwork, andl Memory. The PATH attribute references the total event trace quality of
service path(P A) 'id;ngth that has" ·been· recorded during the application execution. This path.
element represents a simple integer value that is dynamically updated and recorded· as the event
trace proceeds. ThiJ integer value indicates the aggrygate· progression of the event trace. The
quality of service event trace attribute labeled LEVEL is similar to the Path element. However,
this element reflects the specific pro~ess or thread execution path depth(DP) as it proceeds
though the operations necessary· to attain a specific level of quality of service. This element is
also a simple integer that is dynamically updated and recor9-ed .as the process or thread executes.
The LOC attribute references the specific processing Jocation(LC) that the quality of service

34

,· . · . .. ·'· .

-- ; ey_ep.t tras;e _is recording from within the specific process . or tbre_§.d.Th;is attripute is a simple char
type .apd includes FFDMAm, FFDINIT, KSYSTEM, THREAD1,_):JIR.EAD2, and TI1READ3.
The next attribute in the quality of service event trace output data is titled PTYPE. This attribute
indicates the specific task type(TP) that has been recorded. Two of the possible task types
include ·process, and thread which are directly related to the failure detection application. The
SIZE attribute re.fleets the resource size(SZ) being requested. The SIZE attribute is measured in
resource units. The PERlOD attribute indicates the period(RP) that the resource is utilized
wi~. The D~ADLINE attribute relates to specific information(RD) utilized by Deadline
Monotonic and Earliest deadline First scheduling policies. The USED attr;ibute reflects the event
of resources being allocated(RU). The TOTAL element indicates the additive figure of all
resources that have ·been allocated. The AV AL element is representative of the total resource
available as indicated by the resource kernel. This element is also measured in resource units.

For this case study additional fabricated competing application tasks RSl, RS2, and system
processes such as _DISK were executed during the event trace. The competing application is a
simple CPU resource load program that requests large amounts(400.0 & 200.0 units) of this
resource. its sole pmpos~ is to present the target program with a resource competitor for
evaluation under load. The system proces~ is produced by the resource kernel for continuos disk
access and requests a nominal amount of CPU resource(0.299 ~ts). The resource kernel also -

· indicates a setback of rninimnm 90 resource units that··cannot be allocated.

:Conclusion
' ..
trhe concluding results of this examination have produced high-level quality of service behavior
representations of the fast failure detection program. This quality of service event trace analysis
has shown the capacity to specifically ·reveal various failure points, potential reso~ce re­
negotiation inef:ficiencie.s, and l_engtbily quality of service path calls. All of these elements have a
direct bearing upon the quality of service based resource .deployment efficiency for the
distributed command & control fast failure detection application pro~am and envrronm.ent.

. .
The events of interest from the resulting case study examination ·demonstrate a typical success
behavior composed of {RN}. Also discovered were potential failure behaviors illustrated as a
progressive pattern of potential for failure that concludes with a quality of senjce violation and

. final fail:ure. This progression can ·be see in patterns composed of {RQ, QV, RR, QL, RA}, {RQ,
QV, RR, RR, QL, RA}, {RQ, QV, RR, RR,~ QV}. For this final failure the program.point of
failure can be isolated through examination of the event trace results and the event attributes as
shown in Table 2 below. This examination includes a-retrace of -the execution path to the
specified .depth levei of the distinct(named) thread/process, and by isolation of the event
attributes associated with the failure event quality of service vioiation = {DP, TP, LC, PA, RT}.
Where DP= 7-11, TP=THR.EAD, LC=TBREAD2, PA=34-38, RT=CPU.

. ETTYPE PATH LEVEL LOC PTYPE SIZE PERIOD DEADLINE TOTAL AVAIL
QOS VlO 34 7 THREAD2 THREAD 610.299 90 .

35

RES RNG I 35 I 8 I THREAD2 I THREAD I 6.000 I 50,000 I 50.000 I 610.299 I 90
RES RNG I 36 I 9 I THREAD2 I THREAD I 4.000 I 25.000 I 25.000 I 610.299 I 90
RES RNG I 37 I . 10 I THREAD2 I THREAD I 2000 I 12000 I 12.000 I 610.299 I 90
QOS YIO I 38 I 11 I THREAD2 I THREAD I I I I 610.299 I 90

Table 2. Event Trace Results.

It is interesting to note in performance analysis that this complete denial of resources could have
a catastrophic consequence for the requesting thread or process. This result could also translate
into an uncertain dutcome for the total program execution resulting in total program failure. This
instance of a potential for total program failure was evident in the case study of the fast failure
detection progra.ni. During the quality of service event trace analysis execution that included
competition for resources that produced the data found in Table 2, the fast failure detection
program exhibited a total collapse of the THREAD2 task. This failure of the specific thread to
reserve necessary resources from the resource kernel in tum resulted in an abort of the program.

1Jms far this work has specifically been directed towards the area of developing quality of
servi~e behavior.models for targeted distnouted command & control programs. This utilization

-of the quality of service event trace approach. to behavioral modeling can be further expanded for ·
inclusion into a development! analysis :framework.

References

[Augustan 00] Augustan, M., Assertion Checker For The C Programming Language Based On
Computations Over Event Traces, Fourth International Workshop on Automated Debugging,
AADEBUG200O, Munich, Germany, August 2000.

. .
[Augustan 98] Augustan, M., Building Program Behavior Models, Proceedings of the European
Conference on .Art.{:ficial Intelligence ECAI-98, Workshop on Spatial and Temporal Reasoning,

Brighton, England, /August 23-28, 1998.

[Birman ooj Birmb; · K.., et al., "The. Horus a~d Ensemble Projects: Accomplishments and
Limitations", Proceedings of the DARPA Information Survivability Conference & Exposition

. . .
(DISC~X '0?), Hilt~n Head, South Carolina, January 2000.

[Drummond 02] Drummond; J., Wells, D., Rahman, M., Detecting Failure Within Distributed
·Environments, SPAW.AR Tecbnical Paper TR1884, Space and Naval Warfare Systems Center,

San Diego, Ca. ~oq2.

[Ham 99] Ham, M. Berzins, V. Luqi, Kemple, W.,. Evolution· of C41 Systems~ Command & .
Control Research and Technology Symposium, 1999.

[Koob, 1999], .Koob, G., Background for DARPA-ITO Quorum Mission Statement,· Defense
AdvancedResear~h P~ojects Agency ~ormation Technology Office, 1999.

36

A B_etter XML Parser.
through :irunctional Programming

Oleg Kiselyov

··· Software Engineering, Naval Postgraduate School
Monterey, CA 93943

oleg@pobo:x:.com
oleg@acm.org

Abstract. This paper demonstrates how.~ higher-level, declarative view
ofX:ML parsing as folding over XNIL documents has helped to design and
implement a better XlvIL parser. By better we mean a full-featured, al­
gorithmically optimal, pure-functional parser, which-can act as a stream
prpcessor. By better we mean an efficient SAX parser that is easy to use,
a parser_ that does not burden an application with "the maintenance of a
glqbal state across severai callbacks, a parser that eliminates cl~ses of
possible application errors_ , .
This paper describes such better XML parser, SSAX_ We demonstrate

I

th$,t SSAX is a better parser by comparing it with several XML parsers
writt~n in various (functional) languages, ·as well as with the reference
XML parser Expat. In the experience of the -author the declarative ap-

. preach has.greatly helped in the development of SSAX. We argue that
the more expressive, reliable and easier to use application interface is
the outcome of implementing the parsing engine . as an enhanced tree
fold combinato~, which fully captures the control patte:z:n of the depth-
first tree traversal.

Keywords: XML parsing, trave_rsal, tree fold, Scheme, Haskell
I

1 Introduction

On the surface of it, parsing of XML presents no problems. We merely need to
apply ya~c/lex or a similar tool to the Extended BNF grammar in the XML
Recomm~p.dation. XN.[L parsing ought to be even easier in functional languages,
thanks t9 the development of intuitive parsing combinator libraries_ · ·

. It corµes as a surprise then that all but two functional-style XNIL parsers
barely cob.ply even with a half of the XJYIL Recommendation (13]. Norie of the
pure or mostly functional-style XML parsers support X.lvIL Namespaces. vVith
the exception of FXP [101, the existing functional-style parsers cannot process
XJYIL documents in a stream-wise fashion. These parsers thus exhibit siv,i-Acant
processing latency and are limited to · documents that can fit vyithln. the avail­
·able memory. The application interface of the only one functional, full-featured:

S. Krishnamurthi, Q_ R. Ramakrishna.n (Eds.):J•ADL +002, LNCS 2257, pp. 209-224, 2002_
© Springer-Verlag Berlin Heidelberg 2002 ·• . . -

38 ·

r
•,

- ""'-"O ------J - .

•
stream-oriented parser FXP mirrors the API of the reference X.iYIL parser Ex­
pat [..J:]. The latter is not01ious_ for its dim cult and error-prone application inter-

·. · •face.· · · ·
XI\/_[[, is markedly more difficult to parse than it is commonly thought. It is·

by no means sufficient for a parser merely to follow the Extended BN"P grammar
of XlvIL. Besides the grammar, the Xl"\1L Recommendation [1:3] specifies a great
number of rules (e.g., whitespace handling, attribute value normalization, entity
references e:x.-pansioh) as well as well-formedness and validity constraint checks,
which a parser must implement. v1lhitespace handling rules in particular require
an unusually tight coupling between tokenizing and parsing.

· The second peculiar aspect of XJv.CL parsing is its strong emphasis on effi­
ciency and the convenience of the application interface. The traditional · view of
p·arsing as a transformation of a source document into an abstract syntax tree is
deficient for several classes of XNIL applications. We should note .first that the
traditional approach does apply to XL~, where it is called a Document Object
Model (DOM) parsing. The DOM approach is a necessity for ?-pplications that
repeatedly traverse and search the abstract syntax tree of a document. Other
applications however scan through the document tree entirely, and only once.
Such applications can potentially process an XML document as it is being read.
Loading the whole document into memory as an abstract syntax tree is then in­
efficient both in terms of time and memory. Such applicati9ns can benefit from
a lower-level, event-based model of XML parsing called a Simple Application
Programming Interface for XML (SAX). A SAX parser applies user-defined ac­
tions to elements, attributes. and other XML .entities as they are identified. The
actions can transform received elements and char~cter_data on the fly, or can in­
corporate them into custom data structures, including the DOM tree. Therefore,
a SAX parser can always ac½ as_ 'j' DOM parser. The converse is not true.

Although the SAX X.iY.IL parsing model is more general, more memory effi­
cient and faster, SAX parsers are regarded as difficult to use: "It feels like you
are trapped inside an eternal loop when writing code. You :find yourself using
many globaj. variables and conditional statements" [3].

Is it possible to implement an efficient, compliant, stream_-oriented XML
parser with a c.op.ven,ient ·user interface that minimizes the amount of user-·
application state? Furthermore, can functional programming help to design. and·
to implement such a parser? .

This paper proves by ·construction that the answer to both questions is yes. ·
The contribution of this paper is a SSAX parser [7], a C?mplifil!t SAX. XML
pars~r that is being used in several industrial applications. SSA._X is not a toy
parser: it fully supports XlvIL N amespaces, character, internal and extern.al
parsed entities, xml: space, attribute value normalization, processing instruc­
tions and CDATA sections. At ·the same time, SSAX mini~es the amount
of application-specific state that has to be shared among user-supplied event
handlers. SSA..X makes the ·maintenance of an application-specific element stack
unnecessary, which eliminates several classes of common bugs. SS_tUC is .vvritten
in a pure-functional :5ubse~ of Scheme. Therefore, the event h~dlers are refer-

39

A Better X!\iIL Parser through Functional Programming

entially transparent, which makes them easier for a programmer to ·write and to
reason :;i.bout. The superior user application interface for the event-driven XlvlL
parsing: is in itself .a contribution of the paper. The paper demonstrates that
this interface is not an accident but the outcome of a correctly chosen control
abstraction, which captures the pattern on depth-first traversal of trees.

The key design principle of SS_t-\...X was a view of an Xiv.IL document as an
n-ary tiee laid out i_n a depth-first order. XlvIL parsing is then a tree traver­
sal. vVe !revie-vv- the topic of functional-style tree traversals in Section 2. vVe will
concent¾ate on efficiency and on· capturing the pattern of such traversals in a

higher-order combinator1 foldts. In Section 3 we describe the SSA...X parser,
which is· an implementation of foldts with the tree in question being an Xll/.IL
document. Section 4 demonstrates on several concrete examples that the SSAX
parser is indeed efficient, easier to use and less error-prone, compared to other
SAX parsers, in particular the reference XN.IL parser Expat and its pure func­
tional analogue FXP. V./e conclude in Section 5 that functional programming is
intuitive and helpful not only for processing X1v.IL but for parsing it as w~ll.

2 Depth-First Traversals of Trees ·

vVe start!with a very simple example of a functional-style depth-first tree traver­
sal and gradually extend it ·to improve efficiency and to abstract the pattern
of the traversal. Although th~ SSAX parser has been implemented in Scheme,
this sectfon will use Haskell-notation. The latter is more succinct; furtheilllore1

it is more convenient for direct. comparison with important papers on tree fold-.
ing [51[6], which use Haskell notation. · · .. ,.

Our iirees are represented by the datatype

datai Tree = Leaf String I· Nd [Tree]
I
!

Given su;ch a tree, we turn to· our first problem of concatenating strings at-
tached to. all leaves, in their depth-first traversal order. If we view our trees as
realizations .of an _XTY.IL information set [l4L our first problem becomes that of
computing·a string-value for the·root node· of the b;i.formation set . ·

The obvious solution to the problem

str_value1:: Tree -> String
str_value1 (Leaf str) = str .
str_valuei (Nd kids) = foldr (++) 1111 (map str_value1 kids)

where

foldr:: (a->b->b) -> b -> [a] -> b

-foldr ..t: z 0 = z .I.

foldr f z ·(~:xs) = ..t: ..,. (foldr :r z xs) .I.

40

,-

.•

Vlt::C:, .1.)...1.:JC. J.JU y

•
although elegant, is deficient. Indeed: let us apply str_value1 to a full binary
tr~e of depth k Tvho_se leaves:are one-ch_ara~ter striilc,as (2k leaves total). Executina-

. -str._,ralue1 then requires · k2k character.:.m~ving operations and produces (k _:
1)2k garbage characters. The algorithm can· be impi-dved by noting that we do
not have to concatenate the strings eagerly. Instead: we can accumulate strings
in a list and join them after the traversal.

str_value2:: Tree -> String
str_value2 = concat. str_value2'

str_value2' (Leaf str) = [str]
str_value2' (Nd kids)= concat (map str_value2' kids)

This halves the amount of garbag~ and the number of character movements.
However, appending two lists of size 2i takes 2i operations. The algorithm still
has the time complexity of O(k2k); it still produces . k2k-l + 2k+l list cells of
garbage. The best solution is to build a list of strings in the reverse order - with
the reversal and concatenation at the very end: ·

str_value3:: Tree -> String
str_value3 = concat . reverse (str_value3' [])

str_value3' seed (Leaf str) = str : seed ·
str_value3' seed (Nd kids) = foldl str_value3' seed kids

where

foldl: ·: (a->b->a)"-> a-> [b] ..:>:a
foldl f z O = z
foldl f z (x:xs) = foldl f (f z x) xs

Some language systems offer a string-concatenate-reverse function1 which halves
the amount of the produced garbage. The running time of str_value3 is linear
in the size of the tree. The ~ount of garbage .:... while unavoidable - grows
only linearly with the .size of the tree. The function _str_value3 differs from
str_value1 and ·str_value2 in another_ aspect. The actions at children nodes of
the same node are no longer independent. The actipns are threaded through the
seed.argument and must be performed in order. The independence of actions in
str_valuei and str_value2 manifested itself in the presence of map, which is

·absent in str_value3.
- We now turn to the next_ example - computing a. digest of a tree. vVe want

to traverse a tree depth-first and to compute an JvID5 hash of all encountered
nodes and leaf values. A hash function is generally non-associative. Therefore,
·we have no choice but to use a stateful tr_aversal similar to that of str_va:1ue3 . .

. md5To.i t: : MD5Contert
md5Update:: String -> MD5Context -> MDSContext
md5Final: : MDSCon.text -> String

41

A Better XML Parser through ::Functional Programming

tree_digest: ; Tree -> String

tree_digest = md5Final . (tree~digest' md5Init)
tree_digest' ctx (Leaf str) =

md5Update 11 /lea£ 11 $ md5Update str $ md5Update 11 lea:f 11 ct:=:
tree_digest' ctx (Nd kids)=

md;5Update 11 /node 11 $ foldl tree_digest' (md5Update 11 node 11 ctx)
kids

Can we separate the task of tree traversal and recursion from the task of trans­
formation of a node and a state? The benefits of encapsulating common patterns
of computation as higher-order operators instead of using recursion directly are
well-known [11] [5J. For lists1 the common pattern of traversal is captured by the
familiar {oldl and foldr operato:rs1 which can be generalized to trees [~1][6]:

foldt:: (String -> a) -> ([al -> a) -> Tree -> a
fold~ f g (Leaf str) = f str
fold{ f g (Nd kids)= g (map (foldt f g) kids)

I

Unlike the functions str_value1 and str_value21 the efficient str_value3' can­
not be expressed via fo1:dt in a simple way b~cause the actions at branches are
dependent on the history of the traversal and cannot be simply mapped,- to
children nodes'. Such functions are often distinguished [11] by an extra param­
eter, which acts as a an acc~ulator or a continuation: (cf. str_i:raiue2' with
str_value3' above). Such functions can be written as second-order folds [11], ·

. which return procedures as results. In our !;xample:

str_value31 tree = conc3.:t $ reyerse $ (str_value31' tree O)
where

i str_value31' = foldt (\str seed-> str: seed)
: · C\netl..kids seed .-> :f oldl (flip ($)) seed new..kids)

This representation requires higher-order features of the language and often not
as efficient because (str_value31' tree) creates as many.closures as there are
nodes in the tree. The closures are then applied to (], which generat~s the final
result. In strict languages such as NIL or Scheme (used in the following-sections),
closure cr~ation is relatively expensive.

To make 11 mapping' of an accumulating function to·a tree efficient, we intro­
duce ~ ·mqre general control operator:

i

foldts : : (a->a) -> (a->a->a) -> (a-> [Char]->a) -> a-> Tree-> a
foldts·fdow-n. fup there seed (Leaf str) = fhere seed str
foldts fdow"ll fun fhere seed (Nd kids) = ·

. fup seed$. f~ldl (foldts fdow-n. fup fhere) (fdown seed) kids

A user instantiates folcits· with three actions; for compa...rison, foldr requires
only one action and foldt needs two. The three foldts actions are threaded via

42

a seed parameter, which maintains the local state. An action accepts a seed as
one of its arguments and returns · a new seed as the result. The action fhere is
applied to a leaf of the tree. The action fdow-:n is invoked·-vvhen a non-leaf node
is entered and before any of the node's children are visited. The :Edown action
has to generate a seed to be passed to the first visited child of the node. The
action fup is invoked after ail children of a node haYe been seen. The action
is a function of two seeds: the first seed is the local state at the moment the
traversal process enters the branch rooted at the current node. The second seed
is the result of visiting all child branches. The action :fup is to produce a seed
that is taken to be the state of the traversal after the process leaves the current
branch.

The two previously considered examples- computation of a string value and
of a digest for a tree - can easily be written with f oldts:

str_value32 = cone at . reverse . (str_value32' O) .
where

str_value32' = foldts id (_->id) (flip (:))

In this example, the seed is the list of leaf values accumulated in the reverse
order. The there action prepends the value of the visited leaf to the list. The
actions f dow and fup are trivial: they merely propagate the seed.

tree.:.digest2 = md5Final . (foldts fd_.fu fh md5Init)
whe~e fh ctx str = md5Update 11/leaf" $· md5_Update str $

md.SUpdate "leaf 11 ctx
f d ctx = mdSUpdate "node'' ctx .
_fu _ ctx . = md5Update- 11 /node II ctx

The computation of the tree digest is no :in.ore complex. The seed is ·the MD5
cont~. The f down and fup actions mark the fact" of entering and exiting a
non-leaf node: This example clearly demonstrates that consuming node values
and updating the .local state are separated from the task of traversing the tree
and recurring int9 its branches. This separation makes operations· on tree nodes
simpler to write· and to comprehend.

3 XML Parsing as . Tree Traversal

The enhanced tree fold, foldts 1 has more than theoretical interest. The foldts
combinator is literally at the core of the pure functional Xl.YlL parser SS.A.t-X. To
see how foldts applies to Xiv.IL parsing·, we note that an X...NIL document \vi.th
familiar angular brackets is a concrete representation of a tree laid out in a depth­
first order. Elements, processing instructions,· CDATA sections and character
data are the nodes of such a tree. The latter three are always the leaf nodes.
Attributes are collections of named values attached to element nodes .. Since
element ~odes can be non-terminal nodes, the moments the traversal enters and
leaves an element node must be specifically marked, respectively as the start and

43

A Better Xl\11 Parser through Functional Programming

the end:tags. XlvIL parsing then is a depth-first traversal of an Xl"'vIL docum.~nt
regarded as a tree. Xiv.IL parsing is a pre-post-order: down-and-up traversal as.

- · it invokes user actions when the traversal process enters a node and again when
the process has visited all child branches and is about to leave the node.

Just ilike the foldts, the SS_~X framework captures the pattern of the XJ.vIL
document traversal (i.e. , parsing). To be more precise, the framework carries out
such P,~sing chores as tokenizing, Xl"'vIL nam.espace resolution and the names­
pace context propagation, the whitespace mode propagation, the expansion of
character and parsed entity references, attribute value normalization, maintain­
ing the traversal order. ·The user can therefore c9ncentrate on the meaningful
work - what to do at encountered nodes .

. At the heart of SS.A..i"'(is a function SSA..t:make-parser, which takes user­
supplied node action procedures (also called content handlers) and instantiates
the corresponding XML pars.er. Similarly to foldts, SSAX:make-parserrequires
three mandatory handlers: new-level-seed, finish-element, and char-data­
handler. These handlers closely correspond to the procedural parameters f down,
fup and fhere passed to foldts. The output" of SSAX:make-parser is a proce­
dure Po:rt .:....> Seed -> Seed. The first argument is a port from which to read
the input XlYIL document. The port is treated thr:oughout the SSAX. framework
as if it were a "unique" parameter, using the terminology from the progra:mmine;
language Clean. The second argument to the parser is the initial value of the
application state7 the seed. The parser returns the final value of the seed, .. ,the
result of a tree-induced composition of the user-supplied handlers. . ~'-''

SSAX:make-parser also accepts a number of optio;nal handlers, which'<will
be called when the parser encounters a processing instruction, a document type
declaration, or the root element. If the optional handlers · ar~ omitted, the in­
stantiated parser will be non-validatmg. SSAX:make-parser is• actually a macro,
which integrates the handlers into the generated parser code. We can regard
SSAX:in.a.kle-paiser as a staged parser.

The s~mantics of SSAX:make-parser is the same as that of foldts. Both
traverse a tree in a depth-first order and invoke handlers at "interesting points".
Besides the traversal state SSAX:make-parser also maintains the list of active
entities and the namespace context. The user handlers of SSAX:make-parser are ·
also more compl~x, receiving as additional arguments the name of the current.
element and its attributes. ·

In the following section · we · consider several typical instantiations of
SSAX:make-parserJ with the goal of estimating SS_t\...X complexity and compar­
ing it with other XlVIL parsers. The comparison will demonstrate the benefits of

modeling the SS_~X p~er after. f old~s.

4 SS_A.X Examples arid Comp_arisons

4.1 · The Complexity of SS_;LX P~sing

The first example of using SSA~~ is untagging. This is a common '' XlvIL to text'!
translation that removes all markup from· a well-formed Xiv.IL document. vVe

44

[

Oleg h.ise!yov

should point out that this is the same example as the one discussed in Section 2.
Indeed: untagging is precisely determining the string-value of an Xl.Y.IL document
tree. The example in Section 2 operated on trees represented as lin..lced data
structures in memory. In this section a tree is an X!'Y.IL document itself. In both
casesi we traverse the tree and accumulate all character data as we encounter
them. As Section 2 e..xplained, it is beneficial to accumulate the character data
in a list in reverse order and join them at the very end.

The procedure to remove markup from an XlvIL document is shown below.
This is an instantiation of the SSAX parser with three handlers: new-level-seed

(def;ne (remove-markup ::anl-port)
; Accumulate the text values of leaves in a seed, in reverse order
(let ((result

:ccss.AX:make-parser

)

NEW-LEVEL-SEED
(lambda (elem-gi attributes namespaces expected-content seed)

seed)

· FINISH-ELEMENT
(lambda

(elem-gi attributes namespaces }'arent-seed seed) seed)

CHAR-DATA-HANDLER
(lambda (string1 string2 seed)

(let* ((seed . (cons string1. seed))) .
(if (string-null? string2) seed (cons st~ing2 seed))))

::anl-port '())))
(string-concatenate-3:everse result) · .·

))

and f inish-eiement merely propagate the seedi while char-data-handler adds
the character da~a to the list. Since the optional docnm.ent-type and root element
handlers are ·omitted, the remc:ive-:markup parser is non-valid~ting. The pieces
of character data are passed to char-data-handler in two string arguments
for efficiency. The similarity of the remove-markup code with str_value32 of
Section 2 is striking. vV~ must note however that str_value32 relied on foldtsi
which traversed a linked structure of type Tree in memory. The remove-markup
procedure on the other hand parses an XNIL document, which it reads from a
given input port. vVhen this port contains_ a document such as the one on Fig. li
the procedure yields a string "01234567''. To verify that remove-markup, just
~ str.:value32, runs in time and space that grows only linearly with the size
of XtvIL documents, we applied the procedure to documents such as the one
on Fig, 1 of increasing depth. We ran all benchmarks on a Pentium ill Xeon
500 Ivffiz computer with 128 Ivffi of main memory and FreeBSD 4.0-RELEASE
op·eratirrg system. The benchmark Scheme code was compiled by a Gambit-C 3.0

45

A Better X!\IIL Parser through Functional Programming

<node><node><node><lea£>0</lea£><lea£>1</lea:f></node>
<node><lea£>2</lea£><lea£>3</lea:f></node></node>

<node><node><lee.:f>4</lea£><lea£>5</lea:f></node>
<node><lea£>6</lea£><lea£>7</lea:f></node></node></node>

Fig. I. A full binary tree as an X!vlL document·

~ 3000
rn

. 5 2500
al
.§ 2000

4000 r;:::::=:=;:::==:::=::=;---.-.-.--,,,.--,
~e~sur~d · liE • I ,,"~

3500 lg_est fit ----- ,,/

__ ,,_,,_,,,,--

JI.--
.,.,,"'"'

~ 1500 ,-

O 1000 ~-/

·soo _JM._/

25000 r:=::r=====::=;--.--.-.--.----.
m ~!f}i~red ·_ * · _ / '

i ::: ~ /,,/---/
u 10000 ,;;J(--

j 5000 '- · ~-<--------< _;,(/
0 _:,,;;r' • I • I •

-

0 ""· '--'-....:............L..---''---'---'----l-.L--l

o 2 4 -s a 10 12 14 16 1a 0 2 . 4 6 8 10 12 14 16 18 ·- -
The number of leaf elements (thousands) The number of leaf elements (thousands)

Fig. 2. Performance of the SS.AJ:C parser for documents of the form given on
Fig. 1. The CPU time and the cumulative amount of allocated memory are
plotted as functions of the number of leaf elements in the input XJVIL document.
Most of the allocated memory was garbage-collected ·

compiler: Figure 2 shows the result. The SSA.."X parser indeed has ·the linear· space
and time complexities. Thi& is the experimental result, obtained by measuring
the performance of the full-scale Xl'\11 parser. ·

4.2 SSAX ·and Expat

No discussion of XML parsing ea.n avoid Expa{ which is the reference Xl'VIL ·
parser, written in C by James Clark [4]. Expat is ·a S~, i.e., a s~eam-oriented
parser. As the user passes it chunks of the input XlVIL document, Expat. identifies
elements, character data o~ other entities and invokes the appropriate handler
(if the user has registerecl. one). The .siz~ of the ch~· is ~ontrolled by th~ userj
chunks can range from one byte to the whqle XNIL document".

A tutorial article"about Expat (::?] explains well how Expat is supposed to be
used. A user application ·most certainly has to have "a good stack mechanism
in order i;o keep track of current contaxt ... Th~ things you're likely to want to
keep on a stack are the currently opened element and it's attributes. You push
this information onto the stack in the start hancller and vou pop it off in the end
handler." _A,.s an illustration, the· .Expat tutorial discussves a sam.pl~ application
outiine . c, which prints an element outline for an XlYlL document, indenting
child. elements to distinguish them from the parent ~lement that contains them.
In this case, the stack is represented by a global ~ariable Depth, which controls

46 ·

,,

.•.
the amount of indenting white space to print before the element name. The vari­
able is incremented in a user-supplied start-element handler: and is decremented
in the end-element handler. A simplified code for the two user handlers is given
on Fig. 3.

int Depth;
void start(void *data, const char *el, canst char **attr) {
int i;
for (i = O; i < Depth; i++)

printf(II 11) j

printf (11 1/.s\n.11
, el);

Depth++;}

void end(void *data, con.st char *el) { Depth--; } ·

int main(void) {
XML_Farser p = XML_FarserCreate (NULL);
DIT..-8etElementHandler(p, start, end); f* register the callbacks *f
I* invoke XML_Farse() passing the buffer with the XML document

or a part of it *I}

Fig. 3. A simplified code for the outline. c application, using E:;:cpat

It is instru9ti,;,:e to compare the Expat application' outl~ne. c with the cor­
responding SSAX application; whose complete code is given on Fig. 4.

~' In the Expat application, the maintenance of the application state; .the Depth,
is split across two separate handlers. This fact increases the possibility of an
error.· The ssax-outline application on the other hand has ·no global.yariables
or other application-specific stack to maintain. Unlike the Expat handl~rs, SSA..X
handlers can be largely decoupled and thus easily written and understood.

The function ssax-outlin.e also illustrates the benefit of the SAX XML
parsing' mode. '+lie function prints element names as they are identified and
accumulates no data .. It can therefore process documents of arbitrary size'- far
bigger than the amount of available.memory. The_ function ssax-out].ine is a
true stream processor, with low memory requirements and low laten~y.

To compare the performance of SS~~ and Expat, we ran several benchmarks. ·
vVe need to discuss first the difference in input modes of the two P8?"Sers. _An,
application that uses R~at is responsible for reading an XML stream by blo.cks
and passing the blo~ to Expat, specifically noting the last block. Expat requires
the calling application be able to · determine the end of the X-'l\l.IL 4ocum.ent
stream before parsing the stream. If an application can do that, it can· read the
stream by large blocks. An. application can potentially load the whole document
into memory and pass this single block to Expat. Expat uses shared ,5:ubstrings
e.xtensively, and therefore is specifically optimized for such a scenario. ;If we take
a document from a (tcp) pipe, it may qe impossible to tell offhand-when to stop

47

A Better X:iVIL Parser through Functional Programming

(derine (ss2.Z-outline ::anl-port)
CqSSAX:make-parser

! NEW-LEVEL-SEED
i .

(lambda -Celem-gi attributes ncmespaces expecteci.-content seed)
(display seed)
(display elem-gi) (newl;ne)
(string:...append " 11 seed))

· FINISH-F.LF.Mfil\IT

(lambda

; indent the element n2BJ.e
pr;nt the I!.2!!1.e 0£ the element
advance the ;ndent level

restore the :indent level

(elem-gi attributes nam.espaces parent-seed seed) parent-seed)

CH.AR-DATA-HANDLER
(1;3.Illbda (string1 string2 seed) seed)

)

::anl -port II II))

Fig. 4. _The complete code for the outline application, using SS_Q_ The seed
describes the depth of an element relative to the root of the tree. To be more
precise; .the seed is the string of space characters to output to indent the current
element

reading~ Furtliermore, if we unwittingly try to read a character p13,St the logical
end of sq-earn, we may become deadlocked. SSAX reads ahead by no m9re,JJ:ian
one character, and only when the parser is positive the character to read a.h:ea.d
must be ~vailable. SSAX does not need to be told when the docume~t is ended.
On the contrary, SSAX will tell us when it has :finished parsing a root (or other)
element. 1SSAX can therefore safely read from pipes, can prncess sequences of
XML documents without extra delimiters, and can handle selected parts of a
document.

The performance benchmarks are based on the code to remove mar1:cup from
an input XNIL document. This task, which was described in the previous section,
simulates a.typical Web service reply processing. Two input documents are XlvIL
encodings of full binary trees of depth 15 and 16. The docum~nts are similar to
the one on Fig. 1. The documents contain more markup than character data
and, in addition, exhibit deeply nested elements. Overall the benchmark task
is a gootj. e..xercise of X!vIL parsing engines. The first benchmark application,
_string-'¼alue. c, implements the most favorable to E:1.-pat scenario: it reads the
whole dobument into memory, passes it to Expat and asks the parser to remove

I • . . •

the markup. The second benchmark application, str:ing-value-by:-one. c, also
uses Expat and also loads the whole document into memory first. The appli­
cation however p~ses the content of that buffer to Expat one character at -a
time. This simulates the work of the SS-A-X parser. Finally, a SS_JL"'(benchmark
string-value-ssax. scmlik.ewise loads an·XlvIL document first, opens the mem­
ocy· buffer as a stri..ng port and passes the port to SS&"'(. The complete benchmark
code is a part of the SS_4.,_;C project °['T].The results are presented fo. Table 1.

48

.,
.;.

Tabfo 1. User/system times: in seconds, for running three benchmarks on -rrvo
sample X:iYIL docume11.ts. The timing results were obtained from a precise vir­
tual clock and reproduce within 3%. Platform: FreeBSD 4.0-RELEASE system:
Pentium III Xeon 500 lv.IHz, Bigloo 2.4a Scheme compiler. The numbers above
reflect acthjties that occur entirely in memory. There was no i/ o of any kind,
there were no page faults

benchmark /XlvIL-tree-depth-15 /XlviL-tree-depth-16 /

string-value.c 0.105/0.016 I 0.213/0.022
string-value-by-one.c 0.747 /0.014 I 1.494/0.012
string-value-ssa..""<:.scm 1.092/0.024 I 2.170/0.095

File size, bytes 8841723 ' 11769,459

The most notable result of the benchmarks is that a Scheme application is
only 1.4 times slower than a comparable well-written C application, string­
val ue-by-one. c. SSAX seems quite competitive in · performance, especially
keeping in mind that the parser and all of its handlers are referentially transpar­
ent. The ability to r.ead from pipes and streams whose end is not known ahead
of paising costs performance. We do think however that the-feature is worth
the price. ,Shared substrings, present in sonie Scheme systems (alas not in the
compiler used for benchmarking) will mitigate the trade-off.

4.3. FXP, the Functibri.a.lEquivalent :to Expat:i and SSAX
I ..

The closest to SSAX JC.LY.IL parser is FXP [IO], which is a purely functional, vali-
dating XML parser" shell" with a functional variant ofthe event-based interface ..
FXP is written· in ~ML. Both SSAX and. FXP invoke user-suppli~d handlers.
(called "hooks11 in FXP) at "interesting" ·moments ~during Xl\1L parsing. The
hooks receive an application state parameter and must return a possibly new
state. The ways SSAX and FXP frameworks are instantiated to yield a specific
XN.IL processing· application are also surprisingly similar, modulo·static/ dynamic
typing. FXP "vitally relies" on S111/s parameterized modules for customization
while SSAX depends on Scheme's macros. ~ ...

The most notable difference between SSA..X and FXP is the interface between
the parsing engine and the event handlers {hooks). SSAX is based ollfoldts,
whereas the interface of FXP seems to be a pure fune~onal an?,logue of Expat's
application interface. The difference between the S~_A._;(and FXP interfaces is
important and instructive. A sample FXP application· discussed at ~he end of the
FXP _A.PI documentation· (10] is a good example to illustrate that difference. The
application converts an X1v11 document to an abstract synta.x tree form, which·
is not unlike the Tree datatype from Section 2. A SS.AX distribution includes a
similar function SSAX: XML->SXML. It is instructive tq· compare event .handlers of
the two applications. In both cases the event haJJ.dle~s ·are pure functionalj they '

49

A Better J_(!\,iL Parser through Functional Programming

receive from the parsing engine recognized pieces of mark-up or character data
and c:,ccum.ulate them in a parse tree.

In the FXP application1 the application data ~ the seed1 in · SSlL"X termi­
nology -:- represent the partial document tree constructed so far. _/!,,.s the FXP
documehtation describes it1 the seed has t;;;m components - a stack and the
content.! At any point the stack holds a:U currently open start-tags along with
a list of their l'eft siblings. The content component accumulates the children of
the current element that are knovvn so far. In the initial state, both components
are empty. Character data event handlers add the identified character data to
the content of the current element. The hook for a start-tag pushes that tag
together with the content of the current _elem.ent onto the stack. The element
started by that tag becomes the current element. The end-tag hook reverses the
content <Df the current elem.ent, pops the tag of the current element off the stack
and compines ~t with its content. The constructed tree is then prepended to the
content q>f the parent element which now becomes the current element. ·
· The 9ode for the comparable SSAX application is given on Figure 5. The
code dads correspond to the description of the FXP application to a certain
extent. However, simple-XML->SXML is notably simpler. Whereas FXP applica-·
tion's-state is comprised of a stackand the content1 simple-XML->SXML's state is
a r,egular list. The list contains the preceding sib~gs of the current element or a
piece of character data, in reverse document order. Maintenance of FXP's stack
was split across two separate hooks: the handlers for the start and the- end tags.
The FXP handlers have to detect possible stack underflow errors. In couttp.st,
the handlers of simple-XML->SXML are relieved of any stack maintenanc~?-.~d
er:ror handling responsibility: The function ·simple-XML->S:X:ML does not 1?,ave
any stack. As Figure 5 shows, simple-DIL->SXML handlers hardly do anything
at all. The handler ne-w-level-seed is particularly trivial; finish-element is
not more; complex either. The simpler the handlers are, the easier: it is to write
them and to reason about them. . .

We should point out that not only simple-XML->SXML lacks a· stack, the
SSAX p~sing engine itself does· not have an explicit stack of cw;rently open
X11L elerp.ents. The traversal stack is implicit in activation frames of a recursive
procedur~ ti:andle-start-tag· of the SSA..t~ framework. If there is no exp:µcit
stack, th~re can be no stack underflow errors: Thus the comparison between
FXP andi SS.A_X indicates that the SSAX framework provides a higher level of
abstracti6n for SA_;{ Xl\11 parsing. This is the direct consequence of building
SS_t~X arJund the foldts tree traversal combinator. ·

!

4.4 Other Xl'v.IL Parsers Written in FunctionaJ: Languages

Th~re are several other XL-VIL parsers implemented in functional languages: CL­
XlvIL (written in Common Lisp) 1 .XISO (written in ~cheme), Tony (in OCaml),
and Ha..lCml (in Haskell). They are all DOM parsers. Neither of these parsers can
process an XlvlL document" on the fly:'' in a stream-like fashion. · .

Parser CL-XlvlL [l] is the most thorough of the group. It checks all well­
formedness and most of the validation constraints given· in the X!V~ Recom-

50

J

Oleg Kiselyov

mendation. It is the only parser among those considered in this paper (besides
SSAJ{ and Expat) that supports Xlv.fL,namespaces, X:iVIL whitespace handling:
general entity expansioni attribute value normalization, and the proper handling
of CDATA sections. CL-XML is the least functional-style parser: it is v,,--ritten in
imperative style: with extensive reliance on global and dynamic-scope variables.

XISO [fJJ is a mostly-functional parser implemented in Scheme. It is a· pure
DOntf, non-validating parser. It is does not check many of Xl.vIL well-formedness
constraints either. Another parser of the similar quality is Tony [8], which is
wTitten in OCaml. It is not a pure functional parser: the parsing state and a
character data accumulator are mutable. Like XISO, Tony does not detect or
expand entity references, does not handle CDATA sections, does not support
namespaces - it does not even handle newlines in attribute values.

One component of HaXml [12], a collection of utilities for using Haskell and
XML together, is an XlvlL parser. The parsing component includes a hand­
written Xl"'Y.IL lexer, which. produces a token stream for the parser proper. The
latter is based on a slightly extended version of the Hutton/Meijer parser combi­
nators. The HaXml parser does not do the normalization of attribute values and
does not support JG/lL nam~spaces. It does not detect many well-form.edness let
alone validation errors. The separation between the lexing and the proper pars­
ing stages in HaXml is a principal weakness as tokenizing an XML document
heavily depends on the parsing context. The weakness manifests itself, for exam­
ple, in parser's failure to handle newlines and special characters within quoted
strings. ·

The Ha..t"<{ml parseris:;,a DOMparser. :An XML document-is first tokenized,
then it is converted intoJ:a parse, tree representation~ which is handed over to

(define (simple-XML->SXML port)
(reverse

((SS.A.X:make-parser
NEW-LEVEL-SEED

)

(lambda (elem-gi attributes namespaces expected-content ·seed).
l ()~

FINISH-ELEMENT
(lambda (elem-gi attri.butes namespaces parent-seed seed)

(cons (cons elem-gi (reverse seed)) paxent-seed))

CHAR-DATA-HANDLER
(lambda (string1 string2 seed)
. (if (string-null? string2) (cons stringi seed)

(cons* strillg2 st~ing1 seed)))

port l ())))

Fig. 5. A simplified SSA.X :XML->SXML function from the SS~~ distribution

51

A Better Il<lL Parser through Functional Progran,n,ing

a user application. Because Haskell is a non-strict language however: the lexer
does no~ generate new tokens until they are required by the parser. The parser
does no~ make a new node of the parse tree until this node is accessed in the
user ap~lication code. Thus the Ha..Xm1 framework could act si~ilar to a SA_;(
parser despite its multi-phase processing. This potential is not realized as Ra.Xml
eagerly loads the whole document into a string1 to let the lexer backtrack or look­
ahead by arbitrary amount. In contrast, SSA.X never backtracks a character
and never looks more than one character ahead. Therefore SS.A..t'C can handle
(sequences of) documents from a .TCP pipe or other stream.

5 · Conclusions

In this paper we have shown an example of a principled construction of a S~'(
XN.IL parser. The parser is based on a view of Xlv1L parsing as a depth-first
traversing of an input document considered as a spread.:.out tree. vVe have con-

. sidered the problem of efficient functional traversals of abstract trees and of
capturing the pattern of recursion in a generic and expressive control structure.
We have found such efficient and generic higher order operator: foldts. Unlike
the regular tree fold, f oldts permits space- and time-optimal accumulating tree

• traversals.
The foldts operator became the core of SSAX, a SAX parser th.at .walks an

· XJ\11 document and invokes user-supplied handlers when it identified elem'.$.):its,
processing ~tructions, character data and other entities. Th~ SSA.X~·pat~ing
engine effectively abstracts the details of the Xl"VII.i document tree; the engine ·
makes it unnecessary for user handlers to maintain their own stack of open
elem·ents; the engin~ reduces th_e amount of application state shared among the
user handlers to the bare :rnini~um. The comparison with other SAX parsers (the
reference XML parser Expat and its functional analogue FXP) shows that SSAX
provides a higher-level abstraction for SAX X1v1L parsing. The user~handlers of
SSAX are referentially transparent, are less· error-prop.e to write and to re~on
about. .

The SS_tl parser is a full-featured, pure-functional, stream-oriented, algo­
rithmically· optimal SAX parser,. which also makes user handlers easier to write
and thus removes whole cl.asses of possible bugs. The combination of these fea­
tures distinguishes SS_AX arri.~ng other Xiv.IL parsers. The features are the effect .
of the princ~pled SSA.X construction: in p~ticularly, of the f oldt s traversaj
operator.

_4..cknowledgments

I would like to thank Slrriram Krishnamurthi for ~~ua.ble discussions: detailed
comments and suggestions. This work has been supported in part by the National

· Research Council Research Associateship. Program, Nav~ Postgraduate School:
and the _tu-my Research Office under contracts 38690-1':[..t\. and 40473-:MA-SP.

52

Oleg Kiselyov

References

l. }Lnderson, J.: Common Lisp support for the 'Extensible Markun Lanruac-e'
(CL-XML). Version 0.906, June 2, 2001. · -

0 0

http://homepage.mac.com/jam.es_anderson/XML/doCU!!l.entation/cl-:x:ml.html
221 ..

. .

2. Cooper, 0.: Using Rxpat. xml.com, September, 1,.1999.
http://,;n.,-w . .xml.com/pub/a/1999/09/expatiinde:x:.html 217

3. Dunford, M.: DOM X:w.IL: An Alternative to Expat. -
http://www.phpbuilder . com/columns/matt20001228 .php3 210

4. E.xpat XML Parser. Version 1.95.1, October 21, 2000.
http://sourceforge.net/projects/expat 210,217

5. Hutton, G.: .A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355-372, ju1y 1999.· 211,. 213

. 6. Gibbons, J., Jones, G.: The Under-appreciated Unfold. Proc. Intl. Con£. Functional
Programming, pp. 273-279, Baltimore, Marylancr, September 27-29, 1998. 211, 213

7. Kiselyov, 0.: FunctionaI·XlvIL parsing framework: SAX/DOM and SXLvlL parsers
with support for XML Nam.espaces and validation. Version 4.9, September 5, 2001.
http://pobo:x:.com/-oleg/ftp/Scheme/:x:ml .html#XML-parser 210, 219

8. Lindig, _C.: Tony- a XIYIL Parser and Pretty Printer. Version 0.8.
http://www.gaertner.de/-lindig/softvare/tony.html 222

9. van Mourik, H.: XML parser in Scheme. Version: 0.9.23, June 2, 1998.
http ://student. tvi. tudelft .nl;-tw-585306/ 222 .

10. Neumann, A.: The Functional XML Parser. Version 1.4.4, October 30, 2000.
http://WWW.Informatik.Uni~Trier.DE/~aberlea/Fxp/ 209,220

11. Shea.rd T., Fegara.s, L.:·rA fold _for all sea.sons. ,Proc. Con£. on Functional P_rogram­
ming and Computer Architecture (FPCA'93), pp:.233~242, . Copenhagen, Denmark,
June 1993. 213 .· · · ·

r 12. Walla~e M., Runciman, 0.: HaXml. Version 1.02 release, May 3, 2001.
. http://vTvTW.cs.york.ac. uk/fp/HaXml/ 222
13. World Wide Web Consortium. Extensible Markup Language (D/IL) 1.0 (Second

Edition). W30 Recommendation October 6, 2000.
http:/ /vw;;. -w3. org/TR/REC-xml 209, 210

14. World Wide Web Consortium. XML In.formation Set. W30 Candidate Recommen- .·
dation. May 14, 2001.
http:/ /VWit. -w3. org/TR/xml-infoset 211

53

Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools and ModeJs

Joseph Puett
Naval Postgraduate School

833 Dyer Street
Monterey, CA 93943 USA

(831)-656-2361

jfpuett@n ps .navy. mil

ABSTRACT
This research is an initial investigation into the development of a
Holistic Framework for Software Engineering (HFSE) that estab­
lishes mechanisms by which existing software development tools
and models will interoperate. The HFSE captures and uses de­
p~ndency relationships among heterogeneous software develop­
ment artifacts, the results of which can be used by software engi­
neers to improve software processes and product integrity.

Keywords
Software Development Tool Interoperability, Software Evolution,
Software Quality Function Deployment (SQFD), Relational Hy­
pergraph fy:[odeling, Requirement and Specification Dependency
Traceability; Software Environment

1. 1NTRODUCTlON
A great deal of software engineering research has been conducted
with tfie aim of developing or improving individual aspects of
software development Examples include research into software
evolution models, requirements engineering, risk and cost estima­
tion, software reuse, prototyping, testing, software integration,
software maintenance, re-engineering, performance analysis, do­
main analysis, and architecture design. Typically, these individual
aspects of software development require the software engineer to
recognize that dependency relationships ex~t and to provide any
bridging between different development models and tools (see
Figure I).

I· Quality Control I

I Rc-Engincamg I tj'°,__. I

I SWEwllllion I · ~ . ~ ~ I JUskMgmt I
I Rqt!Engin=ing I~ 9 ~ I CastEstimalion I
I Project M=gc:mcnt I ~ ~ ,~ ., Prototyping I

I Softw= Reuse I ~ + \ ~ I Softw=Tcsting I
I S\V Mmitcmncc IJC f ~ I Arcltitcctmc D'"lign I

j Dom:ilnAru,Jysis \

Figure 1. Typical SW Development Process Interaction

However, with limited e.xception (6][9], there has been little re­
search into holistic models of how these various threads and proc­
esses could most efficiently and effectively interact Currently,
there is inadequate communication of risk and requirements
across disjoint tools and models [8]. A holistic :framework prom- _
ises to provide seamless interoperability between these tools and
models improving both process and product The e.xistence of
such a framework enhances the discovery of dependencies among
different aspects of the software engineering process and allows
software engineers to implement process improvements that pro­
vide product integrity with respect to those dependencies. While
the long-term goal of this research is to support all aspects of
software engineering, the immediate goal is to demonstrate the
theoretical feasibility of integrating a selected subset of models
an~ tools using a Holistic Framework.

2 .. HOLISTIC ~.RAl\1:EvYORK
2.1 Overview

,. .. i.

Central to a holistic view of software development is software
evolution. A software-evolution system must provide strong ver- ·
sioa control of all artifacts produced during system development
and track dependencies among artifacts. In today's distnbuted
development environments, the evolution-control system must
provide for co !lab oration between multiple users at multiple sites,
provide mechanisms for notification when cfo:µ1ges made by ~ne
· developer affect the work of another, and when appropriate, pro­
vide blocking when on:-going wor~ of one developer would be
counter-productive to attempted work by another. The artifacts to
be controlled vary in both purpose and format Examples include:
organizational policy and vision documents, business case docu­
ments, development plans, evaluation criteria., release d,escrip­
tions, deployment plans, status assessments, user's manuals, re­
quirements and specifications, customer interviews, meeting min­
utes, code, software documentation, software architecture docu­
ment, unit tests, test cases, and test results. The formats var.1 as
well: data · base entries, text documents, spreadsheets, images,
drawinas, audio files, and video clips. The long-term goal of the
HFSE is to ·establish dynamic traceability, dependency tracking,
and. integration over this diverse set of information and formats.

By relating inputs and outputs of various software process models
through an evolution interface that attaches and records the de­
pendencies among evolution artifacts {4], information required by
various processes can be automatically generated and obtained as
needed. Such a model requires interaction between a GUI, an
evolution control component, and an object model component. ·

54

TI1e Evolution Model and Object Model interact with subordinate
software development tools and processes (see Figure 2).

SIY Dcw:lopmcnl 100/:r

Figure 2. Holistic Model of SW Process Interaction

Considerations in establishing this higher level holistic framework
include identifying the medium for representation of information
(e.g., tree structure), establishing a communications medium (e.g.,
net, databases, publish and subscnoe w/ COREA, object mecha­
nisms using Xtv!L), accounting for process order (e.g., sequential,
para!Iel, hybrid), providing missing data, accounting for ambigu­
ity of inputs and outputs, accounting for conflict resolution be-
tween models, and providing for extensibility. ·

2.2 The Ideal HFSE.
The ideal Holistic Framework for establishing interoperability of
software development tools and models should include the fol­
lowing characteristics:

2.2.1 Non-proprietary . .
The HFSE should be generic and non-proprietary. The frame­
work should allow any model or tool to be incorporated. The
framework should not be established solely for. use with a specific .
group of tools.

2.2.2 · SupportRealTools .
The ~SE should support real software developmenUools. · The
framelor.k should not be established simply to support re- .
search!iaboratory software development tools but must account
for tools used to build real software.

2.2.3 Process Independent
The HFSE should be independent of the software developmen~
process. The :framework. should be of •benefit regardless of
whether a software development team uses the spiral development
model, the evolutionary prototyping model, the waterfall model,
the rapid application development model, the Win-Win model,
etc.

2.2.4 Domain Independent .
TI1e· HFSE should be able to .integrate tools for any softw~ do­
main. The framework can be used equally well to link together
tools that are used to design and build command and control sys­
tems or embedded real-time systems, or information system ap­
plications. This is not to suggest, though, that tools integrated for
use with a particular domain could be successfully applied to

. qeve!op software in a different domain.

2.2.5 Extensible
TI1e HFSE should be extenSio!e. Not only should it be possible to
include new process models or tcofs by using the framework, but
it should also be possible to modify or update the attnoutes cf the

55

framework based on new technologies or new attributes reauired
by new process models. ·

2.2. 6 Reduce Time to 1v.farket
Use of the HFSE should improve the speed in which software is
produced.

2.2. 7 Reduce Development Cost
· Use of the HFSE should decrease the cost cf developed software.

2.2.8 Improve Product Quality
Use of the HFSE should increase the quality of developed soft­
ware.

2.2.9 Easy to Use
The HFSE should be intuitive and easy to use.

2.3 Research Scope.
Of these ideal characteristics, only some will be directly ad­
dressed and validated by this research. In particular, the charac­
teristics descnoed in para,,araphs 112.2.1-22.5" above will be used
to establish the framework. Mathematical relationships (princi­
pally from Graph Theozy, Object Oriented Analysis & Design
(OOAD), and Category Theory) will be used to demonstrate the
validity of established constructs. The characteristics descnoed in
paragraphs "22.6-2.2.9" will be only lightly addressed in the
dissertation, but there are plans for formal validation of these
efficiencies to be undertaken as future research.

3. HYPOTHESIS.
The following is a statement of the reseai:ch hypothesis:

It is tliecretically feasible to integrate a selected set·of.software
development tools and/or models through application of a Holistic
Framework for Software Engineering (HFSE). Where:

• The HFSE consists of an extended Software Evolution model
integrated with a Federation Interoperability Object Model of
the subordinate software development tools/models. ·

• The integrated tool/model set provides additional interopera­
bility (Le. additional data exchange and joint task execution)
beyond the interoperability available prior to the application
of the HFSE to the set.

4. RESEARCH PLAN & lv.[ETHODOLOGY.
Conducting this research consists of executing the following ma­
jor tasks: I) Identify and holistically define the essential charac­
teristics of individual software development process models and
toois, 2) · Embed Quality Function Deployment in the Relational
Hypergraph Software Evolution Model, 3) Apply the Object­
Oriented Model for Interoperability for heterogeneous systems to
establish an interoperability federation between software devel­
opment process models, 4) Integrate the extended Evolution
model and the object federation, 5) Prototype the HFSE, and 6)
Apply the HFSE to a selected set of tools to establish evidence
that the interoperability of the integrated.tool set is improved.

4.1 Characterizing Tools & l\tlodels.
The first major step in this research is to identify and define the
essential characteristics of sofuvare development process mode1s
and tools so that these characteristics can be used to appropriate~y
e.-ctend the Relational Hypergraph Software Evolution Model and

be used t9 construct an Object Federation. The approach to this
portion of the investigation is to analyze the structure, inputs, and
outputs of a small collecti9n of individual tools. To provide a
breadth of coverage of sofu-1are development (yet, manage the
scope of the investigation) five tools ,,ill be analyzed. Tiies·e will
be dra..:vn from the areas ofrequirements engineering [9], project
risk [SJ, prototyping and implementation [7], reme, and testing.
A methodology that may prove useful here is to perform a domain
analysis (of this subset of tools) and produce. a feature model of
that domain [2]. Next, these essential features will be compared
and refined in the context of the objects defined in the Evolution
Model; their common characteristics, structures, and relationships
as descnoed by Category Theorf [5]; and the objects needed for
establishing an Object Federation [IO]. Such comparisons will
provide a holistic descriptive model of the essential characteristics
of software development tools.

4.2 Embedding QFD in the Evolution Model
The next major step in the research requires establishing _depend­
·ency relationships between software development constructs
within an evolution context. One way of developing this evolu­
tion interface is by extending an existing Software Evolution
model (4] with Quality Function Deployment (QFD) [3] to intro­
duce a continuum of dependencies between software artifacts.
Existing models rely on predefined artifacts and limited depend­
ency tracking. A QFD continuum separates relevant dependen­
ciesi'priorities from noisy data and is an improvement over current
models [4] that only provide primary ancl secondary dependencies
with no articulation as to importance (and type) of the depend­
ency to the rest of the design. The HFSE will provide semi­
automated mechanisms for establishing the continuum of depend- .
encies among software development artifacts. · Such an extension
also improves the vertical, horizontal, and temporal dependency
graph between these artifacts . .

4.3 Establishing the Object Model
Finally, it is necessmy to develop an interaction framework be­
tween the subordinate process models and the extended evolution
model. One promising approach is to use an Object-Oriented
Model for Interoperability (OOMI) for resolving represe~tational
differences between heterogeneous systems [IO]. Tjlis approach
establishes a high-level Federation Interoperability Object Model
(FIOM) that allows interaction between the objects of existing
heterogeneous systems. By establishing such an object federation
between existing process models (or their tools) and then integrat­
ing that federation with the extended evolution mode~ inputs an,d
outputs between the subordinate models (or, tools) wr11. be avail­
able to each other while at the same time reporting that interaction
to the · extended evolution model Our approach is similar to that .
of the High Level Architecture (HI.A), but applied in a different
context. The success of this research will help clarify the tradeoff
between interoperability via conformance to a single global data
standard versus the use of multiple representations, ontoJogies,
and translations.

5. EVALUATION
Evaluation of the research wiU be initially undertaken by con­
structing a prototype HFSE integration .tool, used for integrating
subordinate software development tools. The HFSE prototype
will be applied .to a small representative subset of tools/models
forming an integrated software development enyironment The

integrated tools wili then be used in a software developmem: sce­
nario. Evaluation will be under..a.~en against a control £rouu to
provide evidence that . the interoperability of the intei;rr;rted tool
suite is improved. Finally, the research will a..'tempt by tiieoreticel
arguments to characterize the class of tools and models that could
also be unified v,ith additional effort.

5.1 Experim.entalDesign
Afier the HFSE integration tool prototype is construcred, a static
group comparison test [l] performed as a laboratory experiment
will be used to provide confuming evidence of the research hv­
pothesis. In this case, the HFSE prototype (the experimental vari­
able) is applied to a selected subset of tools/models (the observc.­
tion group). The performance of the integrated subset of
tools/models (after the application of the HFSE) is then ;:ompared
to the performance of the same too Is/models operating without the
benefit of integration by the HFSE when applied in a software
development scenario. The comparison in this case will be to
determine if there are any improvements in interoperability be­
tween the tools. Specifically, the research will be accumulating
evidence of additional data exchange and additional joint task
execution enabled by the application of the HFSE to the subset of
tools/models. The evaluation will · also be seeking counter­
evidence that the HFS~ reduces (or inlu.oits) data exchange and/or
joint task execution.

5.2 Internal and Externai Validity.
[1] identifies the conditions for which scientifically sound ex­
perimen~on should occur.. · In- order for an experiment to be

· s9i!mtifically sound, the experiment must bound sources of inter-
nal and external invalidity. Intemal validity deals.Nlith the ques­
tion of whether or not the application of the process (the HFSE)
was, in fact, the· sole direct contnouting cause of the measured
result (improvements to tool interoperability); Esct~n:iaf validity
deals with the question of whether the result can be generalized to

. external populations and sets outside the experiment The static
group comparison proposed controls some (but not all) of these
sources of invalidity.

5.2.1. Sources of Intemal Invalidity
5.2.1.1 History
This source of internal invalidity arises because of specific events
occurring between measurements of the outcome that are in addi­
tion to the experimental variable. This source is not adequately
controlled during the proposed experiment because once the tool
set is integrated by the HFSE, its state may change between time
periods that we search for evidence of improvements in interop­
erability of the observation group. The state may change because
we will be seeking interoperability improvements during an active
evolutionary software development effort. While unlikely to be
the cause, these state changes cannot be ruled om as the effect of
additional improvements in interoperability. The only way to
control this source of invalidity would be to measure all changes
in interoperability at each atomic time step (perhaps every sec­
ond) of the software development effort. Given that the_ main
interest is in establishing evidence in a complex evoluttomuy
development effort (perhaps measured in days, weeks, or
months), such an approach is impractical. instead, we wi11 at- .
tempt to mitigate this source of invalidity by attempring to det~r­
mine and document the direct cause of each improvement to lll­

teroperability . .

· 56

1

5.2.1.2 Maturation
This source of int<!rna! inva[iqity aris~s . b~cause of processes
within the observation group change as a function oftime, inde­
pendent of any applic;ation of the HFSE. Again, this source of
invalidity is not controlled and cannot be ruled out because soft­
ware development process tools may have internal processes
which are activated- solely by time (e.g. automatic updat­
ing/rectifying of databases). Such processes will change the state
of the observation group, meaning that it may not be possible to
~stablish that the direct cause of differences in the observation
group were a result of the HFSE. As in the case of nHistory," we
will attempt to mitigate this source of invalidity by attempting to
determine and document the direct cause of each improvement to
interoperability.

5.2.1.3 Testing
This source of internal invalidity arises when the act of taking an
observation changes the state of the observed item and thus influ­
ences future observations. This source of invalidity~ adequately

· controlled since observing the evidence of improved interopera-
bility within the tool set is unlikely to generate any changes to the
state of the set

_ 5.2.1.4 Instrumentation
~is source .of internal invalidity arises because of c~ge~ in the
observing · instrument or changes in the observers create a bias
between measurements. This source of invalidity could be a
problem in the proposed experiment since we will be looking for
"improvements in interoperability" - perhaps influenced by sub­
jective -opinion. The key for controlling this source of invalidity
is· to carefully define what an "improvement'' means, to define

· what "interoperability" means, and to unifonnly apply th~e.de:fi-..
nitions to the comparison set We will begin .with: the following -::
definitions: ·i!

J;• Interopez-a:bility: data exchange and/or joint task exe-
:;: cution between two separate tools/models

• Improvement: evidence of the existence of interopera­
bili1y found in the integrated tool/model ·set, not found
in the disjoint tool/model set ·

If these definitions prove insufficient to explain or account for
witnessed phenomena during the experiment, the definitions will
be refined appropriately.

5.2.1.5 Statistical Regression
This source of internal ·invalidity arises when the observation
sample group has been selected from the extremes of-the potential
observation population. Since the tools/models selected are more
appropriately termed a "convenience" sample, this source of inva­
lidity is not applicable to this experiment and therefore ~ con­
troiled.

5.2.1.6 Selection Biases
This source of internal invalidity arises because of biases in the
selection of the observation group. As mentioned in paragraph
5.2. IS, our observation group of tools is a _convenience sample,
chosen primarily on the basis of the a.vai!ability of the too1/modeL
Several of the tools/models were specifically developed with a
view that they could be eventually integrated (the prototyping tool
[7] and risk management model [8]). Because we have selected
these tools/models for observation based on th:is bias, this source

57

of invalidity is present in the experiment and therefore is not con­
trolled. To mitigate this somewhat, an outside model was chosen
as the requirements engineering model. This bias may be fimh:r
-mitigated by selecting representative, yet external, tools/models
for the reuse a.-id testing portions of the experiment.

5.2.1.7 Experimental MortaHty
This source of internal invalidity arises when there is a loss of
part of the observation group during the experiment It is nor
expected that application of the HFSE will result in the loss of
any tool/model; therefore, this source of invalidity should not
occur and therefore~ controIIed. .

5.2.1.8 Selection-Maturation Interaction
This source of internal invalidity arises in multi-observation
group experiments when interaction ·between the observation
groups is mistaken for the effect of the experimental variable.
Since this experiment does not involve the interaction of the wo
observation groups, it cannot occur and therefore~ controlled.

5.2.2 Sources of External Invalidity

5.2.2.1 Interaction ofTesting and the E..werimental
Variable
This source of external invalidity arises when a pretest might
change the observation groups' responsiyeness to the experimental
variable. In this case, no pretest is applied to the observation
group, therefore there i~ _no opportunity for bias. Thus, this
source of invalidity~ controlled.

5.2.2.2 Interaction.of Selection and the Experimental
Variable . . .
This source of, external inYalidity arises because of interaction
effects between the selected observation group and the e."CFeri-

. mental variable. In this case, the experimental variable· is the
application o{th·e HFSE prototype, which h~ as its core the Hy­
pergraph Evolution Model [4]. This model, the prototyping
model (7], and the risk model [8J were originally designed to
work together. Therefore, their interaction may unfairly bias the
generality of the result. Thus, this source of external validity ~
not controlled and brings into question the application of the
~SE on other, randomly selected tools/models.

5.2.2.3 Reactive Arrangements
This source of external invalidity arises because of the reactive
results of experimental arrangements. For instance, if we choose
tools for the experiment with AP!s (for experimentai"convenience
and because we believe they will be easier to integrate with the
HFSE prototype),. we cannot then conclude that the result of the
experiment is generally applicable to all tools (for instance, those
without APis). Such a situation does exist in thIS e."<perimenr
because at least two of the tools/models (the prototyping tool [71
and the risk model· [SD have been chosen for their experimental
convenience. Thus, this source of invalidity is not controlled. We
are attempting to mitigate the degree of this external invalidity by
selecting some commercial tools in .addition to those tools.

5.2.2.4 1v.fultiple Treatment of the Experim.ental Vari­
able Jnteiference
This source of external invalidity arises when there are multiole
treatments of the experimental variable on the same observation
group. Since the HFSE will only be applied once to a particular

set of tools, there is no opportunity that this source of invalidity
will occur. Thus, it§. controlled.

5.2.3 Summary of Experimental Validity
Table 1 (below) summarizes the sources of invalidity associated
with the proposed experiment

Table 1: Summary of Sources ofinvaiidity

b
Historf I Not Contro!Ied

~ Maturation I Not Controlled
C:
;:: Testing Controlled ,=

c:: Instrumentation Partially Controlled C
:...

I !cl Regression Controlled ..s
t;...

Selection I Not Controlled 0

"' ..,
Mortality Controlled 8

;::,
0 Interaction of Selection Controlled CiJ

& Maturation

,!.
Interaction of Testing Controlled

Bo and Exp Variable
><·- Interaction of Selection .tt1 -0

Not Controlled t;... :=
and Exp Variable 0 cx:: ·• >

"' C: ., ,_.
Reactive .Arrangements_ Not Controlled -~-

- ex:: c5 C Multiple Treatment of
Controlled CiJ

·. Exn Var Interference

It is evident, that even with mitigation measures that ths:re are a
number of sources of invaljdity. Because of limitations in the
scope of this research, these sources of invalidity wi11 not be for­
mally addressed (only discussed). However, there are plans for
future research to address !fiese shortcomings.

6. CONTRIBUTION
The most important original contnouti"on to the field of Software
Engineering that this Dissertation: proposes is to establish the
feasibility of a Holistic Framework that captures dependency
relationships between software artifacts. so that the relationships
can be visualized and leveraged. Establishing an HFSE and ap­
plying it to a set of software developmegt tools or models will
improve the efficiency and effectiveness of software development
in a number of ways. First, the entire process of software devel­
opm\!nt will become more automatic. As long as model/tool in­
puts and outputs can be supplied through the holistic model, dif­
ferent tools- will be able to "interact automatically, with less in-·
volvement by.the software engineer. Second, because all artifacts
within the holistic model are tracked together as a large depend­
ency graph, it is possible to extract select "slices" of the depend-

58

ency graph for particular pu.,.-poses, allowing more "focused" de­
velopment. For example, since the holistic model interacts ,;,.ith
existing process models such as sofhvare risk, reuse, and testing;
it will then be possible to extract a "slice" of the entire deoend­
ency graph (a slice that represents the greatest risk) so that proto­
typing and analysis effort is not wasted on developing artifacts
that are already well defined, understood, and/or successfully
implemented in previous versions. Finally, such a :framework
will allow software engineers to identify and reason about nrevi­
ously unknown relationships between software development arti­
facts leading to both process and product improvements.

7. ACKNOWLEDGiV.IENTS
This dissertation research is sponsored in part by the Space and
Naval Warfare Systems Center, San Diego.

8. REFERENCES
[I] Campbell, D. T._and Stanley, J.C., Experimental and Quasi­

Experimental Designs for Research, Houghton Mifflin Com­
pany, Boston, 1963.

[2] .Czarnecki, K and Eisenecker, U.; Generative Programming:
Methods, Tools, ~d Applications; Addison Wesley, 2000.

[3] Haag, S., Raja, l\tL K., and Schkade, L. L., "Quality Functipn
Deployment Usage in Software Development," Commun.
ACM,39, I, (1996), 41-49.

[4] Harn, M.; Berzins, V., and Luqi, "Software Evolution Proc­
. ess via a Relational Hypergrapll. Model," Proc. IEEE/IEEJ/

JSAI Int. Conf. on Intelligent TransportationSysi;ems (f o- ·
kyo, Japan, Oct 5.:3, 1999), 599-604. . . :;;,,;;.-;:. ·

[5] Krishnan, V. S., An Introduction to Category Theory,North
· Holland, New York, 1981.

[6] · Kruchten, P., "A Rational Development Process,". CrossTalk,
9(7),July 1996, STSC, Hill AFB, UT, pp. 11-16.·

[7] Luqi and Ketabchi IvL, "A Computer-Aided Prototyping
System" IEEE Software, March 1988, pp. 66-72.

[SJ Nogueira de Leon, J.C., "A Formal Model for Rislc Assess­
ment in Software Projects," PhD Dissertation, Naval Post-
graduate School, Sept 2000. ·

[9] Rational Corporation, Ra.tional Unified Process: Best Practices for
Software DevelopmentTeams, ReportTP--026A, rev. Nov 1998.

[IOJYoung, P., Ge Jun, Berzins, V., Luqi, "Using an Object Ori­
ented Model for Resolving Representational Differences be­
tween Heterogeneous Systems," Proc. Monterey Workshop
(Nfonterey, Calif., June 2001), 170-17~.

-~

. Optimizing Systems by Work Schedules
. (A Stochas·tic Approach)

Luqi William J. Ray
Naval Postg_raduate School

833 Dyer Road
MontereyL CA 93943

(831) ~56-2509

Naval Postgraduate School
833 Dyer Road

Monterey, CA 93943
(831) 656-2735

Valdis Berzins
Naval Postgraduate School

833 Dyer Road
Monterey, CA 93943

(831) 656-2610

wjray@nps.navy.mil ILiqi@nps.navy.mil berzins@nps.navy.mil

ABSTRACT
Many systems have very predictable points in time where the
usage of a network changes. These systems are usually
characterized by shift changes where the manning arid functions
performed change from shift to shift. We propose a pro-active
optimization approach that uses predictable indicators like
manning schedules, _season, mission, and other foreseeable
periodic events to c;on:figure distributed object seryers. Object­
Oriented computing is fast becoming the de-facto standard for
software development and c!Jsta1nited object servers are becoming
more common as transaction rates increase.

' Optimal dep loyme~t ".strategies for object servers change due to ·
variations in object servers, client applications, operational
missions, hardware µio4i:fications, and various other changes to
the environment .. ·

A.s distributed object servers become more prevalent, there.is; . ,
more need to op~e the deployment of object servers to best.·
serve tbe end user's · changing needs. A system.that automatically
generaeh object server deployment strategies would allow users
to take full advantage ofthcir network of computers.

The proposed method profiles object servers, client applications,
user inputs and network resources. These profiles determine an.
optimization model.that is ·solved to produce an optimal · •
_ deployment strategy for the predicted upcoming usage by the

""users of the system if computers and servers.

The validity of the model was tested by experimental
measurement A test bed was created and different manning
schedules were s~ulated. The results of the experimentation
showed that the average response time for a user could be

- improved by. altering the deployment of the servers according to
the scheduled mann~~ of the system. The model was robu~ in
the sense that the deploTI!lents that produced optimal response
times in the model ·also produced optimal or near-optimal
response times in the actual implementation of the test-bed.

Permission co make digical or hard copies of all or part' of this work for
personal or classro:im use is granted wichoucfee provided chat copies arc
not made or disrnoutcd for profit or commercial advantage and chat
copies bc:ir chis notice ·l!Ild the full citation on the fim page. To copy
otherwise., or n:publ~h.:· to post on servers or to rt:dismourc to Jim,
requires prior specific permission and/or a fee.
WOSP '02, Juiy 24-26, 2002, Rome. Icaly.
Copyrighr 2000 ACi'v! l;-58113-000-0/00/oooo .•• ~s.oo .•

59

Categories and Subject Descriptors
Primary Classification: D.1 (Programming Techniques]

Additional Classifications: D.1.3 (Programming Techniques]:
Concurrent Programming. - distributed programming, D2.l2
[Software . Engineering] Interoperability - distributed objects,
D3.4 [Programming Languages]: Processors - optimization,
D3.3 [Programming Languages]: Language Constructs and
Features-· concurrent programming structures.

General Terms
General terms are as follows: Measurement, Performance, Design,
and Experimentation. ·

Keywords.
Keywoi:as_ are as foI!ows: . Object-Oriented :Programming,
Stochastic Optimization, Distributed Computing, Load Balancing,
and Perfonnance Tuning.

1. INTRODUCTION
The future. of computing is heading for a universe of distnouted
object servers. • The evolution of object servers to clistnouted
object servers will parallel the. evolution of the relational
databases .. Over time, object servers will provide functionality to
more clie~t applications than their original applications, just as
relational ·databases were used by more applications than the
origirutl application. In both cases, systems optimized for the
original . application may not perform well for the new
applications. Tools that allow a programmer to model an object
and easily create object servers with all the necessary
infrastructure code needed to work as a dista"J?uted object server
are available [15]. This will lead to an explosion in the number of
object s~rs available to client applications.

A user's network of computers will change :frequently. Object
.servers, a!iplications, hardware and user preferences will be in a
constant State of flux. No static deployment strategy can
efficiently use the assets accessible on the network in such an
environment.

No system can accurately predict user interaction i;vith a system.
Two separate users performing the same job will interact with a
system differently. The same user may interact differently while
performini the same job ac different times. System usage parre~
are often~ and uns-..able so that the measured usage pattern ror

j

!
a given time intervals is oft~n a poor predictor of the pattern in the
next time interval. For this reason, we propose an adaptive
approach using a relatively simple approximate model.

Mos. deploymenr straregies today are statically dictated by the
system engineer's view of how the systems will be utilized. Of
course, the system engineer doesn't revisit these strategies every
time hardware, sofrware or user interactions change. Our goal is
to allow the user to update usage, hardware and software profiles
whenever necessary. .Any time a profile is updated, the model
would be nm and an automated reconfiguration of the object
server deployment could occur. In most cases, the :frequency of
change will be greatest in the hardware and usage pattern profiles.
Since many of these changes ·can take place without the
knowledge of a system engineer or the budget to employ one, a
method that allows the userS to update these profiles and initiate
the reconfiguration is desired.

2. PREVIOUS WORK
There has been little work on deployment strategies for distributed
object servers. The closest relevant research is in the fields of
load balancing, client/server performance and distnouted
computing. Most state of the art load balancing techniques.
address scheduling of given set of tasks on· a set of given
machines. Some techniqut:s only deal with tasks that are
independent Others deal with dependent tasks that are usually
linked together by temporal logic and mutual exclusion
constraints (6, 7, 11). !
ptper approaches to decreasing the average client response time
inciude the use of replicas or clusters. These techniques usually
involve making replicas of servers and distnbuting these replicas
across machines. The optimizations then look at balancing
requests across the replicas [6]. These techniques require
additional hardware resources and add complexity to the
architecture. Synchronization of replicas requires two-phase
commits in order to guarantee consistency of data. The strategy
works best when read-only queries predominated. As the update
rate increases, the level of performance can deteriorate .quickly.

Many vendors claim to · address optimization within their
products. Most of these involve the employment of replicas and
clu.s,ters embedded in the logic of their EEJB, COREA or DCOM
enterprise tools, like Allaire's Jrun or Borland's Vistoroker.
These products work best if your system has just a few stateless
object classes with numerou$ {nstances and plenty of available
hardware. IBM's Distnouted Application Partitioning (DAP)
automatically determines how to place objects in a distnouted
program. DAP monitors the. execution and records how often
particular objects communicate with each other. Then it computes
an ideal placement by deterJD,ining the :ininimum cut set of a
graph. While these products have value, they are limited to
qptimizing servers implemented within their tool. The ability to
reason about performance over a mixed bag of object servers
regard.J.es~ of middlewarc (EEJB, CORBA, DCOM)
implementation was not found in. any product or previous
research. · ·

Research in optimization of distributed, real-time systems is also
widely available. This research is aimed at real-time systems
where the optimization is directed at the scheduling of tasks,
similar to many loaii balancing techniques. In no'!l-real time
systems where user interactions dictate the majority of the tasks,

decerminisdc scheduling of tasks is impractical. Conversely,
moving object server locations a,-ound in a distributed, real-time
system is ofu:n impractical. For these reasons, this work is
directed at the non real-time arena

Other approaches to improving the performance of servers include
hardware improvements. These approaches usu.ally involve
shared-memorf multiprocessor systems. While research focused
on hardware, such as the Cache Coherent Non-Uniform Memo,y
Access (CC-rHJMA), does i.-nprove the perf0Im2I1ce of objec!
servers, these solutions are not an option for most system
engineers [5]. Much of the research involved in shared-memory
multiprocessor systems relies on the exisrence of the fast, reliable
shared-memory, which doesn't exist in a heterogeneous network
of low cost computers. Multi-processor systems are orders of
magnitude more expensive than single .CPU systems. While these
systems may be the only option for large monolithic servers,
multi-server architectures can distnoute their servers across much
cheaper singl';! CPU systems to gain needed perfonnance.

: Research in Grid Computing also has emerged as an important
new field in ~tnouted computing. Large-scale resource sharing
across multiple organizations increases both the set of available
network resources and the complexity of the . underlying
architecture .. The need for authentication, authorization, resource
access, resource discovery, and other challenges require
applications to conform to "intergrid protocols" [3,4]. While
these added complexities would be needed for environments like
the Internet, they are not as useful in much" smaller, single
organization environments.

Most of the previous work relies on estimating fu,ture loads by
measuring past loads. Our approach augments thisjvith profiles of
predicted usage patterns that can be chosen based:o~higher-level .
context information such as current mission. .

3. CURRENT PRACTICES
Because of the difficulty in. producing the infrastructure code
necessary to · support distnouted object computing, many
developers produce huge monolithic object servers (14]. A
powerful machine is llStlally needed to adequately handle this
server and successful applications that experience large increases
in the number of users may outgrow the capabilities of the fdstest
avai1abie single machine.

With automated code-generation tools, servers will be much
easier to produce an.d reconfigure (15]. This allows servers to be
partitioned by allocating um-elated o~ loosely related objects types
to different physical servers that can be deployed across the
network to take advantage of the available assets. By taking
advantage· of all the assets o:n the network, faster response times
can be achieved [14]. ·

Loosely related object types are object types that contain
associations to other object types. When these object types reside
in different physical object servers, the result is an object server
that calls on other object servers. A server that calls other servers
is a complex server [I].

Many networks of computers are installed with a single pJLi-pose in
mind. Over time, these networks support an evolving set of tasks.
Even thou!tll the ori!rinal role the network played can change
dramatically, rarely does a single system engineer revisit the
deployment strategy for the . entire system. Wnat a user ends up

60

< .

with is usually the product of multiple application engineers'
choices made based on the latest incremental changes without
regard for the system as a whole and interactions among its roles.
It is infeasible, because of cost, to hire a system engineer to re­
assess the whole system every time a change occurs. In the end,
the user is left with a system whose deplo}'ment strategy borders
on randomness.

Any proposed solution to increasing performance can run into
resistance if the cost is too great. System engineers regularly
dismiss solutions that require re-implementation of the software.
Re-implementation can occur either by changing the architecture
or by conforming to a single implementation. The costs incurred
by changing software can make even the most expensive hardware
more attractive. Collection of the necessmy information is also a
concern. The more intensive and time consuming the collection
becomes, the Jess likely the solution will be used. In the end, it
becomes a delicate balance to increase model fidelity without
increasing this burden on the system engineer.

4. OPTIMIZATION OF DISTRIBUTED
OBJECT-ORIENTED SYSTEMS
The goal of this paper is to descnoe a method that can generate
distnouted object oriented server deployment architectures to take
advantage of network resources for the purpose of reducing
average client response time. A system that carries out this
method must be able to reason about deployment strategies of ·
loosely related objects. The proposed system maps all of these
p_rofiles into equations to minimize average client response time.

Average client response time was chosen as the optimization
criteria over others. In this paper, the goal was to be user centric.
Criteria that focused on maximizing machhi~ utilization were not ·
gennane. Average client response . time was · chosen·. over ·
minimizing the maximum response time of'one call because :the
method 1'.!kes into account the entire usage profile.

Our approach is to collect base system data by measurement to
calibrate our model. The model is used to predict optimal
deployment patterns for given usage patterns, har_dware, etc. To
validate the · model presented in this . paper, all possible
deployment patterns were implemented and measured in a real test
bed. The goal is to show that by minimizing the sum of the
projected CPU load on the servers and their interactions, that we
can lower average client response time.

4.1 Optimization Model
The optimization model wm minimize the sum of all of the
response times for a given call pattern over a given time interval.
Since we want to allow the user the freedom to nm client
applications from . anywhere on the network,· we will ignore all
processing on the client machines and all network delay between
client machines and server machines. Queuing delay is addressed
in a simplistic manner by limiting CPU utilization. Limiting this
model to a local area network minimizes the importance of
latency. The only factors we will consider for optimizing our
server deployment are the processing on the object server and the
net\vork delay berween complex object servers. Therefore, the
objective function that we wish t? minimize is: ·

]Yfinimize [f Y. anm * Ra * S;.onn + f f B (i]
~~o Sm ~j;:'oQfi

61

subject to the follo,ving four constraints:

I. Object Sezyers ca,,'.not be split across machines.

a nm = 1, iff server n is running on machine m

a nm = 0, other,vise

2. Eai;:h Sen-er can run on only one machine (no multiole
instances of the sa.-rie server). ·

vn[f: a_= r]
m~a

3. RAM usage by the object servers cannot pass a sec
threshold on each machine. ·

'lim[ta..*V.!i;T.*U]
4. CPU time on a given machine cannot surpass the

corresponding real time interval.

v'm[f a-*R,*S- s c]
•=O S~

where:

N

M

= Number of object servers

= Number of physical machines

= Normalized machine load of server n (seconds, s)

S tUJnn =Speed of the normalizing machine (MHz)

Sm
Bri.
Qif

Tnr
V,. ·

u
C

= Speed of machine m (MHz) -

= Data sent between server i to serverj (bits, b)

= Network Speed between server i to serverj (bps)

:= Physical RAM on machine m (bits, b)

= Memory allocated by server n (bits, b)

=Multiple to limit RAM utilization [0.1,3.0J

= Time Interval [seconds, s]

NO-IE: The optimization process varies all anm !llld finds the

minimum for the above objective functjon and constraints. · Oy
is dependent on anm . It is a function of the relative location of
the two servers. Dep(!nding on this function, the system of
equations may be linear or non-linear, ·For the exam~les in this

p_aper, Qii = (1 + f ~;~. aj.) * L, where L is the LA.'llf
RT=O

si,eed. All other terms are fi.xed either by measurement or input.

4.2 Evolution
Q;rer time, a collection of hardware, software and · user
requiremencs will change in a given environment. Common
hardware changes consist of adding new compucers, removing old
computers, upgrading CPUs, modifying RAM and modifying
network bandwidth capacity. Each_ of these hardware changes

will produce an event that would trigger the system m re-evaluate
its deployment strategy.

Software can also be quite dynamic in nature. New object servers
and applications can appear. Old ones can be removed. Existing
· object schemata and methods can be changed. Each of these
changes would trigger an event to re-evaluate the deployment
strategy.

4.3 Loosely Related Objects
Not all objects types that are related rrrost nqcessarily be contained
in a single object server. There is a point where the performance
ohhe system would improve by moving the object type into a
different server. TI1is is usually the case when none of the
application code exercises an inter-server method call or exercises
it only very rarely. Large message sizes and slow network speeds
will push for related object types to be co-located. Large queuing
delays and increased swapping costs work to spread object types
apart. The approach wr11 be able to reason about. not only
deploying object servers, but also recommend the schema
supported by these object servers.

4.4 · Roles and Usage Patterns
User requirements can also be in a state of flux. Most computer
systems are used to support multiple jobs. Business-hour .
requirements can differ greatly from after-hours computational .
_requiremen.ts. A developer's network of computers can support
piultiple projects, but may need to be optimized for a single
project for demonstrations. In the military, the operational
mission being supported can change significantly. For example, a
set of distnouted object servers could be used to support many
applications aboard a ship. These applications could handle such
tasks as Anti-Submarine Warfare (ASW), Anti-Surface Warfare
(ASUW), Anti-Air Warfare (AAW), Electronic Warfare (EW),
humanitarian missions and rescue missions. The relative
computational activity of these applications could differ
significantly on different missions of the ship.

. - .
Optimizing a system of object servers for all posSI"ble roles would
not be optimal when the system is only performing a couple of
missions at a time. By profiling each role, the user could choose
to re-optimize his deployment to decrease the response time when

· user chosen· roles change. In .this way, the user could tune his
system to give peak perfonnance.for the task he is currently trying
to perfonn.

4.5 Profiles
The tric1.-y part is to figure out what elements are needed in the
different profiles, how to map these profiles into equations and
then model how these profiles interact with each other. The more
complex. the modeling of the hardware becomes the more
computationally intensive the approach will become. Initially we
demonstrate an approach with rather simplistic profiles to
demonstrate its capabilities.

4.5.1 Hardware Profiles
The aspecrs being modeled in the hardware profiles include
characteristics of each computer such as CPU speed and physical
RAlvf size. The hardware profile also models the network speed
between each compurer. Current hardware profiles do not directly
support multi-processor computers, but they could"be modeled as
groups of separate nodes with very high "network speeds"
between rhem.

62

4.5.2 Object Server Pm.files
Object servers need to be profiled for metrics associated with each
method call in each object. The computational time of each
method call should be captured and normalized to a soecific
hardware architectu.re. Since obJect servers ideaII; run
continuously, the RAM of the object server must also be
measured and summarized. The hardware profile and the object
server profile a.re sufficient to optimize the server deployment for
the case where all the functionality contained in all the objects is
of equal value to the user. Metrics can be coI!ected easily with a
small client application that exercises each method call and
records the data. Thus, actual implementation code for the
application isn't needed to estimate the object server profiles.

4.5.3 Client Application Profiles
A client application profile characterizes frequencies of method
calls to be processed by the object servers. Since exact
frequencies of method calls are not algorithmically computable in
the general case, measurement is necessary to reliably estimate
frequencies of calls. The system must allow a user to create
typical scenarios and record the method calls that occur in the
scenario. This could be done by simulation or monitoring calls to
the object servers when the syst_em is in a training mode. The plus
side to this method is that the user could represent more complex
tasks involving many user interactions in a single profile.
Numerous tools exist for comple.x. event processing in a
distnouted system that could be used to facilitate this process (8,
9].

4.5.4 User Profiles
User profiles or roles indicate how a user interacts ,.;,{th' the system
over a given period of time. In simplistic terms, ,id~4like keeping
track ofhow many times each button is selected·over'a.-given time
interval. Average button push rates can be expressed as number
of events per second. The user can collect this ~ti. manually or
via automatically collected audit trails. Multiple roles can exist
for each user. The user could then select a set of roles and have
the system come up with an optimal deployment strategy to meet
these criteria. .

4.6 Profile Mappings
In order to compute the optimal deployment strategy given a set of
profiles, one needs to map these profiles into equations that can
be solved for minimum response time. To illustrate the mappings,
we present an exarw,le. The example consists of three machines,
three object servers and three client applications. The method
demonstrates the differences in deployment for a system tuned to
a users-specific role. Table 1 shows the profile for the computer
hardware available. ·

Figure 1: Server Deployment.

Table 1. Machine profile for example.

.MACffii';"E f R~vI (bits) CPU Speed
(1v1Hz)

SIX 1512,000,000 = 600
64MB

BR733 1,024,000,000 -1 r~ - .:,.:,

I2SlvIB

GIGA 1,024,000,000 = I 1000
128MB

- Table 2 shows the network bandwidth available to communicate
:from each machine to the other. In this example, the machines
will have equal bandwidth between machines, as is the case when
all servers are running on the same local LAN. The speed of
communications between servers on the same machine is more
difficult to predict These speeds usually lie in the interval
bounded by the speed of the machine's back plane and the speed
of the network. It is dependent . on the operating system,
implementation of the middleware, and other factors. For this
example, we assume that intra-machine communication is twice as
fast as inter-machine communication. In the absence of
measurements, the system can be run with best and worst-case
scenarios by specifying the boundary values identified above.

Table 2. Network speed.

Machine to SIX BR733 GIGA
Machine
Speed (bps)

SIX 200,000,000 100,000,000 100,000,000

BR733 100,000,000 200,000,opo 100,000,000
...

G!G-A
,~.'(. '

100,000;000 100,000,000 200,000,000

Besides the hardware profiles, we need to have the server profiles.
Table 3 lists each server's RAM requirements. ·

Table 3. Server RAM requirements.

SERVER RAJ.VI Required (bits)

A 352,000,000 = 44:MB . ·

B 480,000,000 = 60MB

C 528,000,000 = 66MB

Additional parts of the object server are the timing of each
individual method call available in each server and a list of
complex method calls. All of these meliSUrements were taken on a
single machine to normalize the values. In this exampie, server A
has one four methods, server B has two methods, and server C has
three methods.

Table 4. Normalized Server Loads.

SER''l-:ER I Method I CPU time (s) I Average Size of
Message (b)

A I I I o.5796 I 112000
A 12 --0-.:, I , ,,o~ / IS400
A /3 I 1.1s115 I '!'!soo
A /4 I 2.0264 j 176000

B I I I 1.16655 / 4000000

B I z I 3.1oos5 12120000

C I I I 3.0043 I 320000

C /2 I 4.8o4o I 4000000

C I 3 l o.4s815 / 400000

A complex method call is a method call that caIIs another object
server. These method calls require special handling in measuring
their load on the host server and in the objective function for
optimizing the system. Table 5 lists the complex method calls in
this example.

Table 5: Comple.1: Method Calls. I Exterior Calls
C.l

The last information needed to optimize the system is information
abo½t the applications and the users. This step adds roles to the

· list of profiles _for the system to optimize. These roles have more
· . realistic use patterns for the different jobs a user would actually..

perform on the system. For this example, we will have three
client ·applications with two buttons. nine buttons and three

63

b~ons respectively. ·

Let's assume that there are three different roles the network of
computers supports for the user and the following is the use
pattern shown in Table 6, and that the buttons call the following
server methods shown in Table 7. Method calls that appear in
italics in Tables 7 and 8 are complex method calls. They appear
in italics to remind us that fu..ese m_ethods require special handling
when figuring out the objective :function.

Table 6. Roles.

ROLE· CALL P ATTERJ.'f

_(observation interval is 990 seconds)

Role l 50 CI.Bl+ 1 Cl.B2 + 1 C2.Bl + 1 C2.B6

Role2 10 Cl.Bl +40 Cl.B2+21_C3.B2

Role3 50 C2.BS + 10 C2.B9 + 30 C2.B3 + l
C2.B2 + l C3.B2

I

I

Table 7. User interface calls.

Button j Methods Called

Cl.Bl I A.l

CI.B2 j A.2+B.I

C2.Bl I C.J + C.2

C2.B2 / C.3

C2.B3 j C.2

C2.B4 I C.3

C2.B5 - I Al +B.1

C2.B6 j B.2

C2.B7 - A.4

C2.B8 C3 +A.3

C2.B9 A.! + A.2 + A.3 + B.2

C3.Bl C.l

C3.B2 B.l +B.2

C3.B3 C.2

By substituting the user interface calls into the roles matri'<, we
get an objective function for optimizing the system shown in
Table 8. All other method calls will be ignored.

Table 8. Roles to server calls.

ROLE Methods Called in Role

Role 1 50 *(A.I)+ 1 * (A.2 + B.1) + 1 * (C.1 + C.2)
+ 1 * (B.2)

Role2 10 *(A.I)+ 40 * (A.2 + B.1) + 24 * (B.l +
B.1)

Role3 50 * {A.I + B.2) + IO * (A.I + A.2 + A.3 +
B.1) + 30 * (C.2) + l * (C3) + 1 * (.]3.1 + B.2)

4.7 Model Solutions
All of the infomiation above is run through a LINGO model that
varies the location of the object servers on the different machines
to find the a solution set that roin4nizes the value of the objective_
function. Changing. any of thes~ variables wm lead to different
model outputs (13]. For this e..xample, the LINGO model
computes a solution on a 360"MHz PC in less than one second.

LINGO is a comprehensive tool designed to make building and
solving linear, nonlinear and integer optimization models faster,
easier and more efficient. LlNGO provides a completely
integrated package that includes a powerful language for
expressing optimization models, a full :featured environment for
building and editing problems, and a set of fast bmlt-in solvers. It
is a product of LINDO Systems, Inc. and can be found on the web
at v,ww.lindo.com

4.8 Model Outputs
This me!hod outputs the following deploymen! strategies for the
different roles when setting different R.AJ.\1 limirs and keeping all
orher ~-fables the same as in the last example. Salving the

64

optimization problem defined in section 4.1 with the para,-ne,er
values detennined in section 4.6 derives these resuli:s.

Table 9. Single user. R.:\l-YI limit set to 1.5.

Machine I Rolel I Role2 I Role3
(1 user) (l user) (1 user)

SIX j None j None / None

BR733 j None j None j None

GIGA I A,B, C I A,B,C I A,B, C

Table 10. Single user. R.At""\1 limit set to 1.0.

Machine I Role 1 Role2 Role3

(1 user) (1 user) (1 user)

SIX None· None None

BR733 B C /A
GIGA A, C jA,B B,C

Table 11. Concurrent users. RA.111 limit set to 1.0.

Machine Role 1 Role2 I Role 3

(23 user) (4 user) __ {3 user)

SIX None A ·/A ··••""-·--

BR733 B,C C r:a;:•.
GIGA A B I c •>

· · - •'"

From the model output, we can see that when a smgle user IS

present and RAM is not a limiting factor, the result is that all the
servers migrate to the fustest machine. However, when we start to
limit RAM, the servers start to spread out The first server to '
leave the fastest machine turns out to be different in each _ role.
Multiple _ concurrent users also tend to spread -the servers across
the available machines. The significance of the model is that ·
different roles and different numbers of concurrent users lead to
different optimal configurations in most cases for this example.
No single static configuration can outperform the ability to change
configurations .based on perceived changes in the usage of the
system.

4.9 Validation Experiments
We tested the validitv of the model by experimental measurement.
A test bed was creat~ with Windows 2000 machines that match
the characteristics of the machines in the above example. Servers.
were created us#ig JDK 13 and RMI as the mi~dleware.
Software to simulate the three different users was also created.
Toe user was simulated with a random choice for button selection
that has a uniform distnoution similar to the roles. 1:!'Js
simulation software was instrumented to measure the acrual rune
the software was blocked waiting for an object server merhod ~I
to response (13]. All 27 different configurations w_:re e~lished
and the averaae response time for each connguratton was
measured and r~corded. Be-cween each simulation, the test bed
machines were rebooted.

~-'""~":: •· ;--.. :-· -- ; r :·,•~; ;·•:•-~

. All . _27 configura_tions were tested trvice. One tested the
. confimtion ;v1th ·the · object servers using much less than the

Stat~d menior:i"needs. . Another tested the configuration with the
object server.; using all of the stated memory needs. Some
conforurations strained the machines memory limits. These
confi~rations r~sulted in system failures in the test with the
objec; servers using all of the stated memory needs. These system
failures are listed as error in the tables of results. It should be
noted that Windov,-s 2000 did a much better job of swapping
when memory utilization exceeded l 00.% than a previously tested
operating system, Windows NT.

4.9.1 Experimentation Results
A tabulation of experimental results obtained from measuring the
outputs of a test system for all of th~ test scenarios can be found
in the dissertation [13]. The following sections detail some of the
results and observations for different test scenarios.

4.9.2 Role 1
The models chose a configuration of pattern_ 1 when RAM was set
at 150% utilization and a configuration of pattern 3 when RAlYI
was limited to 100% uti1ization. Pattern 3 was the third fastest
average response time in the minimal memory run and the fastest
average response time in the stated memory run. The fact that
pattern l O was the fastest average_ res~onse time !n the. minimal
memory run is a result of the variability of the simulation [13].
Pattern 1 was the fourth fastest on both runs even though it was
the predicted configuration when RAM usage was set to 150% of
physical RAM in the model. More interesting from a software
emrineering standpoint was the fact that the model proposed a
co~:ffouration that outperformed most c;onfigurations from 10 to
44 ., p;cent and that the recommended patterns .were .free from ·
failures. · · · ·

4.9.3 Role2
The models predicted a configuration ofp~ttem 1 when RAlYI was ·
se(at 150% utilization and a configuration of pattern 2 when
RA1Yf. was limited to 100% utilization. In the two runs, the
models predicted configuration of pattern 2 was the second_fastest
avera!re response time in both runs. Pattern I was the fastest
avera:e response in both runs, which is the predicted
confi~tion when RAM usage is 150% of physical RAM.
Again, the configuration chosen by the model outperformed most
configurations from .10 to 38 percent When 4 concurrent users
were present, the model precijcted pattern 26 which was the
_second fastest in testing.

4.9.4 Role 3
The models predicted a configuration of pattern I when RAM was
set at 150% utilization and a configuration of pattern 5 when
RAM was · limited to 100% utilization. In the two runs, the
models predicted configuration of pattern 5 was the third fastest
average response time in the minimal memory nm and the second
fastest average response time in the stated memory run. Pattern l,
the fastest average response time in both nms, was the predicted
confi!ruration when RAM usage was set to 150% of physical
RAJ.Yl The fact that pattern 12 was the second fastest time in the
minimal m=oryrun is a result of the variability of the simulation
[l3j. Again, the model proposed configuration outperformed
most configurations from IO to 44 percent. Vlhen 3 concurrent
users were preserit, the model predicted pattern 27, which was the
fasresc in testing.

65

4.9.5 Manning Shifts
Although the. model does a good job of predicting performance
for a single pain~· tne·tiue streng"J1 of this approach is· chafoina ·
these points together. By ta.Icing advantage of cha,·uzes to fu;
system at predictable pofrits in time, we cari" do bette; tha., any
single statically assigned server placement .

Table 12: Shift Changes.

P /ROLE l /ROLE 2 /ROLE 3 /R2 (4) /R3 (3) /R1 (28)

2 89934 ittJJ...aJ~ s26?.s2/11146.10/13925.95/ 4964.73

3 /~~lqti 6411.11/ no2.1111111.421306621 4333.77

4 1079.64/ 668638 9124.9414333.2220415.47~~1

5 1140.80 113353014614.58 7005.97

26 1355.59

27 1306.69 73 80.83 1204234

If we assume that we have a shift schedule that has the following
six unique manning requirements over the duration of the
schedule, then we can initiate object server re-deployments to
coincide with the shift changes. The shaded areas in Table 12
indicate the deployment pattern recommended by the model. The
nwnbers in the matrix are. the;actual measured values for.these
deployments.

We are only interested in. the six deployment patterns listed in
Table 12. If we .were to institute a static deplO:¥JI!ent for our
system, then - we would be forced to pick just one of the
·deployment patterns listed above. The system engineer wourd be
forced into some. logic that mitigated a worst-case scenario.

However, since we have the ability to reason about different
manning schedules, then.we can take advantage of this capability:..
By allowing the system to adjust the location of its object servers
at shift changes, we gain substantial improvements to the system.

By c~mparing the models recommended deployment pattern
versus the other six deployment patterns in Table 12, we can
quantify this improvement By dividing the model predicted
patterns measured performance by the measured performance of
the other patterns in the same column, we get the perfonnance
improvement for each shift. Table 13 below contains these

·values.

Table 13: Shift improvements.

PAT ROLE1 ROLE2 ROLE3 R2 (4) R3 (3) R1 {28)

2 I o/c~~orc -: 7 Q I '. •-. •':"l---1~~~ 10% 10% 10% 24%

3 ~"-""a'.o/c ~-£... 0
~•.:~

14% 5% 10% 4% 13%

4 11% 17% 18%1 26% 39%~:f~e,?/o
1-- - ... ~,.-:"': ·..:.-

5 16% o/clt/1•·0¼1 7 0 f~i~i;:-,:1.-~
7% 15% 46%

26 29% 18% 1 A.%,~7Eli/4j • ::°!-~!-:,.:~• . 10% 66%

27 . 26%1 25% 10%1 16% 11~_:/.;;·01~
j .,.\ r.J •. ,i-.,,. 68%

Interesting to note is that ·we are only comparing deployment
patterns that are of high probability of actually being used. Only
one enny in the table has a negative value, all other entries have a
substantial performance improvement. Clearly from Table 13,
any organization with kno;"v'Il ma.,ning schedules that flucruate
would benefit from this approach.

5. CONCLUSIONS
The approach produces useful results even ,vith a sii"llplistic model
that doesn't directly addres~ queuing delay. The s-jStem responds
in a reasonable way with changes in the environment, constraints
placed on the system, and different roles that a user might want
Since all of these changes take place on real networks of
computers, static deployment strategies will never utilize the
assets available to better support the end user. The strategies
chosen by our model were robust in the sense that perfonnance
was good even when actual loads departed from predicted loads.

Predicting exactly how a user wrll interact with a system that
supports nrultiple roles will always be an inexact science because
of the limitations inherent in modeling users, software, hardware,
etc. This system provides an adaptive software engineering
approach to a real world problem that currently does not have a
better solution. Adaptive reconfiguration of object servers enables
systems to automatically grow to the point where collective
machine limits are exceeded and hard failures occur. Perhaps the
most significant capability added by our model is the ability to use
predictive and planning information encoded as profiles to pre­
optimize system configuration in preparation for peak loads, ·
staying ahead of events _and avoiding reconfiguration overhead .
during periods ofhigh load.· .

6. FUTUREWORK
'1)1e system needs to be refined to more precisely reflect the
workings of the network of computers in more complex
topologies. These refinements include allowances for asymmetric
communications, latency, and queuing delays. Aggregated tuples
of these models wi1l be necessazy to better evaluate the impact of
RAM utility on processing speed. The CPU constraint in the
model could be replaced by. a function that more accurately
models the variation of queuing delays with arrival rates ..

By tying the logic with ~ tool that automatically generates object
servers (15], performance compJ!rlsons can _be ~de between
spreading object types across multiple object serve~ and
machines versQi..replicati~g the original object server on multipl~
machines.

The approach could also be used to· optimize. other kinds of
systems involving a mixed bag of server types, as long as those
servers can• be modeled as object servers •. This would enable
better deployment strategies, especially since many of these non­
object servers could be tightly coupled to object servers.

1. REFERENCES
[1] Adler, R., "Distnouted Coordination Models for

Client/Sm-er Computing," TE:P:P: Transactions on
Computers, pp. 14-??, April 1995.

66

[2} Berzins, V. and Luqi, "Sofuvare Engineedm;: ·with
Abstractions", chapter 6, Addison-Wesley, ISBN-0-201·
08004-4, 1991.

[3] Foster, I., Kesselman, C., Tuecke, S., "The Anatomy of the
Grid: Enabling Scalable Virtual Orga.-iizations;"
International. Jow11al on Supercomputer Applications,

[41

[5]

[6]

[7]

[8]

(9]

2001. .

Fosrer, I., Roy, A, Sa:,der, V., Vnnkler, L., '-"End-i:0-End
Quality of Service for High-End Applications," IEEE
Journal on Selected Areas in Communications Soecial Issue
onQoSinthelntemet, 1999. •

Hsiao, C., King, C., "The Thread-Based Protocol Engines for
CC-NUMA Multiprocessors," lntemational Conference on
Parallel Processing 2000 Proceedings, pp. 497-504.

Kim, J., Lee, R and Lee, S., "Replicated Process Allocation
for Load Distnoution in Fault-Tolerant Multicomputers,"
IEEE Transactions on Computers, vol. 46, no. 4, pp. 499-
505, Apn1 1997.

Loh., P., Hsu, W., Wentong, C. and Sriskanthan, N., "How
Network Topology Affects Dynamic Load Balancing," IEEE
Transactions· on Parallel and Distributed Technology, vol 4,
no. 3, pp. 25-35, Fall 1996.

Luckham, D. and Frasca, B., "Complex Event Processing in
Distributed Systems," Computer Systems Laboratory
Technical Report CSL-TR-98-754. Stanford University,
Stanford, 1998.

• . . ' .' ~-:t,"\\ : .--.... ~. • ., .
Luckham, D. and Vera, J., "An Event.,.Basec[Architecture ·
Definition Language," IEEE Transacnqns.iion Software
Engineering, Vol 21, No 9, pp.717-734 .. Sep . .1995.

[l OJ Lui, J., Muntz, R and Towsley, D., "Bounding the Mean
Response Time of the Minimum E.--cpected Delay Routing
Policy: An Algorithmic Approach," IEEE Transactions on
Computers. Vol 44, No. 12, December 1995, pp. 1371-
1382. . .

[l l]Mehra, P. and Wah, B., "Synthetic Workload Generation for
Load-Balancing Experiments," IEEE Transactions on
Parallel and Distributed Technology, vol. 3, no~ 3, pp. 4-19,
Fall 1995.

[12]Perrochon, L., Mann, W., Kasriel, S. and Luckham, D.,
"Event :Mining with Event Processing Networks," The Tlrird
Pacific-Asia Conference on Knowledge Discovery and Data
iv.fining. April 26-281 1999. Beijing, China, 5 pages.

[13JRay, W., "Optimization of Distnouted., Object-Oriented
Systems," PhD Dissertation in Software Engineering, Naval
Post:,;,araduate School, September 2001.

(14]Ray, w.; Berzins, V. and Luqi, "Adaptive :r;>istn'bured Object
Architectures," A,FCEA Federal Database Colloqui1!117- 2000
Proceedings, pp.313-330, September 2000. •

[I5JRay, . W. and Farrar, A, "Object Model Driven Code
Generation for the Enterprise." IEEE R.sP 2001, .iune 2001.

-~

,•

A Unified Approach to Component Assembly
Based on Generative Programming*

Wei Zhao
1

Barrett R. Bryant
1

Rajeev R. Raje2 Mikhail Auguston3 Andrew l'YI. Olson2 Carol c. Burt'

The UniFrame project consists of a unified meta-component model (Ulvl.!\,f) for distribu4 · ,
component-based systems (DCS), and a Unified Approach (UA) for integrating components [7]. The c~;~
parts of the UN.0:v.f are: components, service and service guarantees, and infi·astrocture. A creation

0
.c

software solution for a DCS using UA comprises of two levels: a) the component level - develop~r:
create components, test and validate the appropriate functional and non-functional (Quality of Service·_
QoS features and deploy the components on the network, and b) the system level - a collection. of
components, each with a specific functionality and QoS, are obtained from the network, and a semi­
automatic generation of a software solution for a particular DCS is achieved. -

It is assumed that different developers will provide on a network a variety of possibly heterogeneous
components for specific problem domains. For a specific problem, a search process will identify relevant .
components from those available on the network. Once these are identi:fied, the task is to integrate these
disparate components in a ~pecific solution for the DCS under construction. The UA assumes that the
generation environment is built around a generative domain-specific model (GDM) [4, 5] supporting
component-based sys1em ~s~mbly. The distinctive features of UA are:

• Toe developer of a distributed application presents to the UA-based system a query, describing the
required characteristics, in a structured fo~ of a natural language. The query is processed using the
domainlmowledge (such as key concepts from a domain) and a knowledge-base containing the UMJ:v.[
descriptions of the components for that domain. The domain lmowledge and the knowledge-base are

· parts of the GDM. From this query a set of search parameters is generated which guides "head­
hunters" to perform a component search of .the networked environment.. Headhunters are special
components responsible for locating components deployed by· the developers for the specific domain
up.der consideration [8]. ·

• The headhunters discover a set of applicable components that satisfy the functional and QoS
requirements as indicated by the developer of the · distributed system. The developer expresses the
QoS requirements by selecting an appropriate set of parameters from a catalog of parameters [2].
After the components are fetched, the distributed application is assembled according to the generation
rules embedded in the GDM. This assembly requires the creation of glue/wrapper interface between
various components .. Two-Level Grammar (TLG) [3] is used to specify the generative rules and
provides the formal :framework for the generation of the glue/wrapper code. This is implemented
according to the process o~translating TLG specifications into executable code as descn'bed in [6].

• QoS parameters are divided into two categories: a) stati_c and b) dynamic. Static QoS parameters (e.g.
dependability) are processed during the generation. Dynamic QoS parameters (e.g., response tjme)
result in the instrumentation of generated target code based on event grammars [l], which at run time
produce the corresponding QoS dynamic metrics, to be measured and validated.

• This material is based upon work supported by, or in part by, the U.S . .Army Research Laboratory and the U.S.
Anny Research Office under contract/grant numbers DAAD19-00-l-0350 and 40473-NfA, and by the U. S. Office
ofN aval Research under award number N000 14-01-1-0746.
1 Department" of Computer and Information Sciences, University of ~abama at Binningham, Birmingham, AL
35294-1170, U.S. A., {zhaow, bryant, cburt}@cis.uab.edu. .
1 Deuartment of Computer and Information Science, Indiana University Purdue University Indianapolis,
Inciiar"iapolis, IN 46202, U.S. A., {rraje, aolson}@cs.iupui.edu. . .
3 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, · U. S. A.,
mikau@cs.nmsu.edu.

67

QoS parameters given in the query provide a special dimension to the generated · code - the
instrumentation necessary for the run-time QoS metrics evaluation. Based on the query, the user has to
come up with a representative set of test cases. Next the implementation _is tested using the set of test
cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with
respect to the QoS) implementation is found, or until the collection is exhausted. In the latter case, the
process may request additional components or it may attempt to refine the . query by adding more
information about the desired solution from the problem domain. If a satisfactory implementation is
found, it is ready for deployment.

The case study for the generative approach is a bank account management system. It is assumed that
cfu.!ferent client and server components for a bank domain are available on the network. These components
(belonging to a category, i.e., server/client) do offer the same functionality but different QoS features.
After requesting the constrUction of this system, assume that . the headhimters found the following
components: JavaAccountClient, JavaAccountServer, and CorbaAccountServer. The first two adhere
to the Java-RMI model and the third one is developed with COREA technology. The 1..JN.lli1 specifications
associated with the components indicate that the two server components have the same functionality but
CorbaAccountServer has better service guarantees and meets the QoS specified in the system query,
thus the final system should assembled from the Java client and the COREA server. Based on the
generation rules embedded in GDM, a proxy server for the Java client component, a proxy client for the
.CORBA server component, a bridge driver between the two proxies and some other installation helper

. files can be generated to form an integrated account system. The assembled system will be deployed if it
meets th_e desired QoS criteria. If the system succeeds then a new set of lJN11v.[specifications will be
generated for the integrated system to insure that it is available for the discovery by other head-hunters,
i.e., to ·act as a compon~nt of other possible_ application systems. i/ .;./·:,:_·~ .,

-,iJ: ,

.References:
.. . ~ .. ~--- -

[l] M. Augustan, A. Gates, M. Lujan, Defining a Program Behavior Model for Dynamic Analyzers, Proc.
SEKE 197, 9th Int Conf. Software Eng. Knowledge Eng., 1997, pp. 257-262.

[2] G. J. Brabnmath, RR Raje, AM. Olson, M. Augustan, B. R Bryant, C. C. Burt, A Quality of
Service Catologfor Software Components. Proc. Southeastern Software Eng. Con£. (to appe~), 2002.

[3] B. R. Bryant, B.-S. Lee, Two-Level Grammar as an Object-Oriented Requirements Specification
Language~ Proc. 35th Hawaii Int. Co~ System Sciences, 2002~ . ·

[4] J. C. Cleaveland., Program Generators with XML and JCil(a, Prentice-Hall, 2001.

[5] I(_ Czarnecki, U. W. Eisenecker, Generative Programming: lvfethods, Tools, and Applications.
Addison-Wesley, 2000.

[6] B.-S. Lee, B. R. Bryant, Automated Conversion from Requirements Documentatiorz to QJ1.. Object­
Oriented Formal Specification Language. Proc. ACM Symp. Applied Computing (to appear), 2002.

. .
[7] R R Raje; M. Auguston, B. R. Bryant, A. rvi Olson, C. C. Burt, A Unified Approach for the
Integration of Distributed Heterogeneous Software Co71J.ponents. Proc. Monterey Workshop Engineering
Automation for Software Intensive System Integration, 2001, pp.109-119.

[8] N. N. Siram, R.R. Raje, B. R Bryant, A. M. Olson, M. Auguston, C. C. Bu_n:,An Architecture for the .
[JniFrame Resource Discovery Service. Sµ.bmitted for publication, 2002. · ·

68

l ' ,;,.

, ~ r '•I ... ,_ , • •.. • 1 .-.- s •

~using an Object Oriented f\/lodef for Resolving
-Representational Differences between Heterogeneous

Systems

Paul Young, Valdis Berzins, Jun Ge, Luqi

Department of Computer Science
Naval Postgraduate School

Monterey, California 93943, USA

Email: {peyoung, berzins, jge, luqi}@nps.navy.mil

IBSTR4.CT
)ne · of · the major concerns in the study of software
1teroperabi1ity is the inconsistent representation of the s~e real
rorld entity in various legacy software products. Tlns paper
reposes an object-oriented model !o provide the architecture_ to
onsolidate two legacy schemas m order that con:espondmg
ystems may share attributes and methods through use . of an
utomated translator. A Federation Interoperability Object Model.
FTO?vl) is built to capture the information and_ operations shared
etween different systems. An automatic wrapper-based
11I1s!ator is discussed that utilizes the model to bridge data
!presentation and operation implementation differences between
eterogeneous distributed systems. ·

Ceywords . .
.1terqperability, object-oriented, heterogeneous, wrapper-based.

.. INTRODUCTION
:1 contemporary object-oriented modeling, an object is a softw~e
!presentation of some r:81-w_orld entity !n _the problem domain.
,n object has identity (1.e., it can be dtstingmshed from ?ther
bjects by a unique identifier of some kind);state (d~ associate~
rith it) and behavior (things you can do to _the object or that it
an d;° to other objects). In the ·Unified Modeling Lai:guage
UML) these characteris~cs are cap~red in the n8;ffi~, ~butes,
nd operations of the object, respecttv~ly. UML d1stingu1shes an
1dividual object from a set of objects that share the same
rtnlmtes, ope"ijl.tions, relationships, and semantics; termed a class
,1 UML (!]. . .

'his view of · objects and classes has proven valuable in the
levelopment of countless sys:terns in various. pToblem domains
,ncompassing all ~e~ees of stZe a_nd_ complexity. H?weve:, one
:ommon charactenstlc of the maJonty of these object-onented
tevelopments is that they were pFoduced by a develop:11ent team
hat shared common objectives and had a common VIew of the
eaI-world entities being modeled. Most projects also involve a

rhis paper is authored by an employee(s) of the [U.S.]
}overnment and is in the public domain.
;Ac 2002, Madrid, Spain
:SBN 1-58 I 13-445-2/02/03

69

common architecture implemented on a common target platform,
using the same implementation language and operating system.
As a result a single scheme for depicting an entity's name,
attnoutes, and operations as well as the means for representing
these properties has been the norm. Therefore, capturing the
representation of these properties has not been an issue. The
software representation of the real-woTld entity should have the
same name, attributes, and operations across all elements of the
architecture if the development team enforces consistency.

This is not necessarily the case when integrating independently
developed systems. The different perspectives of the real-world
entity being modeled by independent development teams will
most likely result in the use of different class narµ~ as well as
differences in the number, definition, and representation of
attributes and operations for that same real-world entity. 'IJiese
representation differences must be reconciled if the systems are to
interoperate. ·

This paper proposes an object-oriented model for defining the
infonnation and operations shared between systems. The initial
use of the model is targeted for integration of legacy systems,
which generally have not been developed using the object­
oriented paradigm. However, defining the in{eroperation between
systems in terms of an object model provides benefits in terms of
increasing the visibility of the information and operations s_hared .
between systems, and provides a foundation for easy extenS1on as
new systems are added to an existing federation. The object model
defined in this paper can be easily constructed from the external
interfaces defined for most legacy systems (whether object-
oriented_or not). _ ·

Section 2 cateaorizes representational differences that exist in
autonomously developed systems. Section 3 introduces the
Object-Oriented Model for I~teropera~ility (OOMI) ~ a means
for canturino- the information required for resolvmg these
represe~tatio;aI differences_ Section 4 introduc~ an autom~t.ed .
environment for constructing an instance of the mteroperab11ity
object model for a federation of systems, the ?0-01 Integrated
Development Environment (OOlVIT II?E), Section :l _P:esents. an
overview of the use of this Federation Interoperabtltty Object
Model (FIOM) by a wrapper-based translator for enabling
interoperability among legacy systems.

2. CATEGORIZING REPRESENTA­
TIONAL DIFFERENCES
This paper addresses two categories of vananons in the
representation of a real-world entity on different systems. The
first category concerns differences in the infonnation utilized by
each component system to represent the entity. Termed
heterogeneiiy of scope, this refers to the fact that differing
amounts and types of information .can be captured by various
sysrems to represent the state and behavior of an entity [I OJ.

For example, suppose a federation of four autonomously
developed military systems contained information about an enemy
surface-to-surface missile launcher. Because independent
development teams created them, each system provides a different
perspective on what state and behavior information should be
contained in a model of that real-world entity. As can be seen
from Figure I, each system includes different aspects of the
entity's state. For instance, systems A and D include information
about the missile system's type, position, and time. System B
captures position, time and range information on the entity, and
System C utilizes type, position, time, and range to descnoe the
missile system. Similarly, each system could capture different
aspects of the behavior of an entity. These differences in the state
and behavior used by a component system to characterize a real­
world entity can be thought of as providing different views of the
entity by the systems concerned.

System B

Sys11:111A

.idwilkc
~
-pasiticn
--dmu

.id.cn.tiJk.t
"'90SitrJD
•time
-r:iasc

·'

S)oncm C

'

' ' ! .
i

Surface-To-Surface Missile

...

ilknlifki:
~'pc
-posia,o
-time

' •r.msc

'·

Syso:m D
·•:

jd,:ntjFier

·<,-pc
•pasitloo
-tiau:

Figure 1. Differing Views of Real-World Entity

.,

Even if two systems provide the same view of the entity being
modeled, that is they both contain the same state and behavior
information about the entity, there may still be differences in the
representation of that information on different systems. This
heterogeneity ·of representation [I OJ refers to differences in the
terminology used, format, accuracy, range of values allowed, and
structural representation of the included state and behavioral
information [5]. This difference in representatio'n is illustrated in
Figure 2 by systems A and D. Even though these systems both
have the same view of our real-world entity, i.e. both capture the
type, position and time for the entity; they each represent the
information comprising that view in a different manner. For
example, System A refers to. our entity as a
SuifaceToSwfocel,,fissile and names its type attribute
missileDesignation. System ·D refers to our enc:i-cy as an SSlvf and

70

names its type attribute missileType. Additionally, Syste~ A
captures the entity position in latitude/longitude coordinates and
time using Greenwich Mean Time (GMT) as the reference,
whereas System D records entity location using Military Grid
Reference System (rvIGRS) coordinates and records time usin,r
Local Mean Time (LMT). Figure 2 illustrates the differem: view~
of our example real-world entity ai,d the various icoresentatiom
prnvided for each view. . •

Sy~B

S~A

...
' I •- •

1
.fK ~.

r""'tt"r!T.1-rMjolt,. v;_. ~ -
--nu!C!,u. N=
-auU'#:tl:liu:dc'b~Q:. •••··1}11=
--au:IObi1T"=c ttiMTJ.. .., •. Pcsiticn
....m.n;.:t ,.. . • • •T,m,

~ ,_ R:is=

SurfacoToSurf:= M'usile -~
! .cnttlP:Tn-:

.li=l.
Nome

.a.. T}•po· :
-Position•
'"'lim•_.

·,
' ·:

•. .focaan tMG~1
"-<i=lLMn

Figure 2. Differing Real-World Entity View ~epresenta.tions

3 •.. OBJECT-ORIENTED lVIODEL FOR
INTEROPERABILITY ·: .-;.ff[c! :
The goal of the research presented in tpis paper is to provide a ;_
computer-aided methodology to aid in the resolution of X •·

· differences in the representation of data between systems targeted ·
for integration in order to enable system interoperability: Pitoura

_ defines interoperability as the capability of systems to exchange
information and to jointly execute tasks [8]. The information
exchanged between interoperating systems · consists of data
associated with the real-world entities being modeled by systems
of the federation. The joint execution of tasks reflects the
capability of an entity on one system to employ the services of an
entity on another. Thus, interoperation can be characterized in
terms of the real-world entities whose state and behavior are
shared between systems in a federation. As- stat~ previously,
there _can be-differences in view and representation of these real­
world entities. In order to achieve interoperability, a means for
bridging these differences in view and representation is needed.

As the basis for achieving interoperability bi;tween systems in a
federation, a model was defined for depicting the real-world
entiti~ that represent the shared state and behavior [l I]. The
model captures _differences in view and representation. of these
entities and provides the means for bridging such differences.
Principal objectives of the model were to clearly depict the real­
world entities whose state and behavior are shared between
systems in a federation, to provide computer aid to the process of
determining the differences in view and represenration of those
entities, to provide auromation support for defining the­
translations necessary to resolve representational differences
between systems, a.-,.d to capture the information required to
resolve differences in real".worid entity scope and representation
between federation systems.

[n eva!}lating t~e objectives outlined above, it was detennined that ·
in object-oriented approach offered the greates;: promise for
;atisfying these requirements. Object-oriented analysis and
:!esign (OOAD) provides principles of abstraction, information
1iding, and inheritance that can be employed to meet the specified
~oals and objectives [4, 9]. However, conventional use of these
Jbject-oriented principles and techniques is not sufficient for
·esolving representational differences between heterogeneous
:ornponents of a system federation. Instead, a model-based
tpproach built on OOAD principles is presented to satisfy the
·equirements for heterogeneous system interoperability. The
·esulting model, the Object Oriented Model for Interoperability
'OOMI), is described below.

;.1 Capturing ReaI-vVorld Entities and Views
rhe real-world entities whose state and behavior information are
:hared among a federation of interoperating systems are modeled
n the OOMI using the concept of a Federation Entity (FE). The
:E provides an abstract representation of the information being
hared while hiding the details of how that information is being
epresented on different systems. From the example introduced in
ection 2, an FE for the SwfaceToSzufaceMissile depicted in
1igures 1 and 2 is created to represent the real-world entity, as
hewn in Figure3;

1or each FE, one or more Federation Entity Views (FEVs) are
1Sed to distinguish the differences in the state s,nd behavior
11formation used for representing the same real-world entity on
!i:tferent systems. Continuing the example, FEVs are created for
~e three views of the surface-to-surface missile entity illustrated
rt Figure 2, labeled SSM, . GrozmdToGround.Missile, and
rroUJZdTargetMissile for views I through 3 in Figure 3.

t is expected that for a federation of heterogeneous-systems; a
1umber .. of real-world entities will be · involved in the
11teroperation between systems. Under the 00:MI, the c:o!Iection .
,f real-i,y_i0rld entities used to define the interoperation of a
pecified" federation of systems is termed a Federation
rzteroperability Object Model. (FJOM). Figure 4 provides a
epresentative FIOM containing the SurfaceToSurfacelviissile FE ·
,reviously introduced as well as -other FEs involved in the
riteroperation of a hypothetical federation. The nota~on used in

Federation Interoperability Object Model (FIOiYl)

.. <~Faicr::tica E:itis.y>>

_Groundl:nmc:hed\Voapan I

Oroundt:znc:h<dW~a11_ Vi=,vl
Orourul!.:unc:hed\Veopon_ VIO\'IZ

Grnund!.:unc:hcdWcpa11_ ViOIYJ

*

<<Fa!c:1:0ZI cnt y>> <<Fedc:ttian:ntitv.:b­

Sut(:u::ToSurf~ile -1 Anillct)· I

Figure 4 is sir:iil.ar to lfML, wirh each FE represented as a UML
package contammg a 11st of the different views of that FE with
the details of the SurfaceToSurfaceMissile FE views describ,ea· 1• F. - d - , n 1gures ::i an , •

<<Federation Entit'J>>

S urfaceT 0Surfac1,lvfissile /

<<Fcdet:ition .Entity Vie:v>>

GrounaToGroundMissi!e /

· <<Fcdt:·J.tion Entity Vi:-.\:>>

GrounaTargetMissile /

Figure 3. Defining Federation Entity (FE) and Federation
Entity Views (FEVs) for Modeled Real-World Entity

~I of the normal relationships between classes, packages,
mterfaces;. and other elements U1Sed in the OOAD paradigm are
available for use with federation entities in the FIOM. . For
example, in Figure 4 the previously introduced
SwfaceToSwfacelvfissil? FE represents a specialization of a
GrozmdLaunchedWeapon FE, which in•t_um h~ apart of relation
with an EnemyOrderOfBattle FE. · This enables the 001vil to
exploit OOAD principles such as inheritance in modeling the

. entities .that define the interoperation between systems.

3.2 . Capturing FEY Representations
In addition to providing dissimilar views of a real-world entity
defming the interoperation between components, different
systems may also provid~ varied implementations of a view. As
discussed earlier, these different implementations may result in

t~

<<Fa!a=Dl.Entity>>

EnemyOrdcrO!B:lltlc /

EncmyOrd:rOCBotlle_ VICIV I
EncmyOrdcrOCll:illlc_ ViO\VZ

<<Fck::zticn c:tlitv>>

F ede.r..JicnEl!lityZ I
Anil!<n· v .. wt
Millc:y:VicwZ

SSM
OrouniiroGrounc!Missil4
Gtwru!T:r;iuMnsilo

Fdcr.licnc:1~·Z_V1ew J
Fed=lionE:llityZ_ V,ev:?

F~er.uicnEnlI1:yZ_Vtc:r.~x

-<>.~:no•

Figure 4. Federation Interoperability Object Model (FIOIYI) Representation

71

variations in the terminology, definition, and representation of the
attributes and operations defined for the same real-world entity.
In order to resolve these differences, the 00:tvfI provides two
mechanisms to capture the possible alternative representations of
an entity's view. The first mechanism, the Component Class
Representation (CCR) is a special-purpose class used to capture
the alternative ways various component systems may represent a
federation entity view.

The typical approach to resolving representational differences
bet\.veen systems involves the use of a number of point-to-point
translators between systems to be integrated. For a federation ofn
systems, this approach requires the specification of n(n-1)/2
translations. An alternative to the use of point-to-point translators
involves the use of an intermediate representation where the
information and operations being transmitted are converted from
the source representation to an intermediate representation and
then to the destination representation. The use of an intermediate
representation requires specification of 2n translations for a
federation ofn systems.

In order to take ad:vantage of the reduced number of translators
required with the use of the intermediate representation approach,
the OOMI adds a second special-purpose class to an FEV, the
Federation Class Representation (FCR). The FCR is used to
reflect the "standard" (as defined by the interoperability engineer
for the specified federation) representation used by the federation
for an entity's view. Each FEV will contain exactly one FCR
representing this "standard" representation of the view. The FCR
serves as the intermediate representation for translation between a
source and destination system. Figure 5 illustrates the CCRs and
FCRs created for the system A through D representation of the
example surface-to-surface missile previously :introduced in
Figure 2. Note that each FEY contains a single FCR whereas an
FEV may contain more than one ·CCR- the SSM FEV includes
CCRs SuifaceToSwfaceMissile and SSM corresponding to System
A's and System D's representation of the view, respectively.

The FCR representation is based on an ontology containing the
federation-sanctioned depiction of an entity's state and behavior.
This ontology can be developed specifically for a federation of
systems or it can be derived from a domain-specific or industry­
wide standard such as·the Defense Information Systems Agency's
(DISA's) Defense Information I¢astructure (DII) Common
Operating Environment (COE) ~ Registry or the _ Defense .
Modeling and ~imulation Office's (DMSO's) Functional
Description of the Mission Space (FDNIS) namespaces (2, 3].

The FCR and CCR are each actually a composition of related
special-purpose classes. These component · classes contain
information needed to assist the interoperability engineer in
identifying the real-world entities that represent the information
being shared between systems in the federation as well as define
the views and view representations of those entities.

3.2.1 Capturing Information Shared Between
Component Systems ,
The :first of these component classes, the FCR Schema, is used to
characterize the "standard" representation of an entity's view. In
general, a schema is a summarized or diagrammatic representation
of something. In the OOMI the FCR schema contains the name,
attributes, and operations used to represent the "standard"
interpretation of an entity's view. Tne FCR Schema is used to

72

provide an abstract representation of tli.e information being shared
between component systems, hiding the details of how that'
information is represented on different systems.

Similarly, the CCR Schema is used to chai-acterize the component
system implementation of a federation entity view. The CCR
Schema contains the name, attributes, an operations used by a
specific component system to model a federation entity.

<<Federation Entity>>

SurfaceToSurfacei:vfissile

<<Federation Entity View>>

SSM

<<FCR>>

SSM

<<CCR>>

1---,----1 SurfaceToSurfacel'Yf issile

<<CCR>>

SSM

<<Federation Entity View>>

GroundToGroundMissile

<<FCR>> <<CCR>> I GroundToGrounclliiiissi!eHr-~-ro-un_dT_o_G_ro_u_ndM_is_SJ_ile-,I

<<Federation Entity View>:>

GroundTargetM issile

<<FCR>> <<CCR>> I GroundTargetMissile H,.._G_ro_un_dT __ -ar-~_f_is_s_ile'j

Figure 5. FEY With Component Class Representation (CCR)
and Federation.Class Representation {FCR)

3.2.2 Identifying Correspondences between
Representations
Previous efforts toward integrating heterogeneous databases found
that a large part of the effort was consumed by determining
whether two entries in relate~ databases represented the same
real-world entity [6]. An equivalent situation e.-dsts in the
integration of heterogeneous system components. Wnen
presented with a number of · systems to be integrated, the
interoperability engineer must determine which classe~ used to
realize the external interfaces of component systems rerer to the
·same entity in the problem environment. Establishing this
corresoondence . is crucial in order for systems to exchmge
infomiation and operations and is the basis for de:fini.11g t.i.e ..
federation entities involved in _systems interoperation. Once
determined, this correspondence is captured in the mod~! ~ :11
association relating a FEV's FCR and CCR, as dep1ctea m
Figure 5.

In ord11r to assist the interoperability engineer in establishing- the
correspondence between different representations of a feder;tion
entity, the FCR and CCR also contain syntactic and semantic
information used to correlate the "standard" and various
component system representations of the real-world entities
defining the interoperation. This information is reoresented usina
the special-purpose classes FCR Syntax and CCR Syntax t~
capture syntactic information on the "standard" representation and
component implementations of a federation entity view,
respectively. Similarly, special-purpose classes FCR Semantics
and CCR Semantics capture semantic information about the
"standard" and component representations, respectively. This
syntactic and semantic · information is used to determine the
correspondence between component system and interoperability
classes in order to construct the entities, views and representations
of the FIOM.

Syntactic information is used to capture the composition and
m-ucture of a class. Class composition is provided as a list of
:enns depicting th~ name, attributes and operations contained in
:he class. Structural information describes which attributes are
:ncluded as parameters to which operations, whether attributes
md operations are visible outside the class, etc. The composition
md structure defines a signature for the class that can be used for
:omparison with other classes. · Semantics are used to provide
nforrnation as to the meaning and behavior of a cl!15s; i.e., what
ices the state information about a class represent and what actions.
ices the class perform? Behavioral information can be captured
n terms of a set of conditions an element must satisfy or a set of
:quations describing.the dynamic behavior of the entity. ·

~.2.3 Capturing the Translations used to Resolve
'Zepresentational Differences · ·
~inally; the FEV contains the translations ·required· to conv,ert
>etween each · component system· representation ·and: the
'standard" repr~entation of that. view. These translations . are ••

FederarionEntityA_ View!

<<FCR>> 1 I
Feder:itionEntityA_ Viewl_FCR ..

1 FCRSchema

~ FCR.Synl:llC
FCR. San:mtics

<<FCR Sc hcma>>

Fecler:1tionEntityA_ Viewl_FCR_Schem:i
l

1 attnoutc_a -

used to resolve differences in physical representation, accuracv
tolerance~, range of v_alues allowed, and terminology used i~
rep,:esentmg a federation entity view. Two translations are
denned for each FEY- one to convert an instance of a CCR
Schema to an FCR Schema compliant instanc~ and the o·h

"'"'' L er to
convert. from an=- FCR to _CCR Schema instance. These
translations are deimed by the interoperability en!lineAr a d • _ d · th "" ~ n s,o, e
m e FEY as a CCR-FCR Translation Class for subsequent ._ , u_e.

3.2.4 Federation Entity View Summary
Figure 6 provides a summary of the contents of an FEV" ·1r _
• r/• 1 f h h . , 1 ustra,­
rng r zew ? a ypot e_tical FederationEntityA. with the federation·
representa~on of that VJew, FederaJionEntityA _View J _FCR, and a
correspondmg component . system · representatio
SystemA_Classl_CCR. Also depicted are the schema, syntax annd
seman~cs. classes that comprise the FCR and CCR, as well ~ the
translation class used to resolve differences between the
component and federation schema.

3.3 Res~lving Differences in View of an FE
The translations depicted in Figure 6 and descnbed in section
3.2.3 enable the conversion between two differenfrepresentations
or a federation entity view. Rarely will two different systems'
view of a federation entity be identical. In order to share
inforrn~on and_jointly execut: tasks between two systems that
have different V1ews of the entity(s) defining the interoperation
these differen~es in view must be resolved. Fortunately it is ju~
as rar~ that dtffe:ent systems' views of an entity are mutually
exclusive (otherwise they wouldn't be able to interoperate).

Generally, two or more systems' view of the same entity will have
some areas of connnonality. Tw9 systems' representations may
°:pture. the_ same. core ~t~ and behavior_ in!ormation of an entity
w1th_-each m~lu~mg add1~on~ ch_aracter:sttcs as required by the
specific application. In this srtuation a Yiew could be defined for

<<CCR>> I 1

SystemA_Cl:issl_CCR

.. · CCRSdiema. 1
CCR. Syntllx • CCR.S=ics

<<CCR Schema>>
l

SystemA_Classl_CCR_Sc:hcrn:i

:ittncutc_t ...!...
attnoutc_B

Entity.'-Cl:issi_ Tr:!nsl:ition
lltlnDUtC 2

op=ion_A op<r:ition_l

<<FCR Svnra.'(>>
CCRioFCR(CCR_Sdicma): FCR._Sdicna. <<CCR Svnta"C>>

~ Fetler:itionEn tityA_ Yiewt_FCR_Synt:u I FCRtoCCR(FCR._Schem:i) : CCR_Sdiem:i .
lsystemA_CI:issl_CCR_Syntn.'C f-!..

<<FCR Semantics>> <<CCR Semantics>>

_:_j Fetler:1tionEntityA_ Yiewl_FCR_Sem:mtic:s I I SystemA_Cl:issl_CCR_Sem:intlc:s ~

Figure 6. Federation Entity View Archetype

73

the core state and . 6ehavior infonnation; and sepa.-ate views
defined for the extended infonnation. The views containing the
extended infonnation can be considered to be subtypes of the
view containing the common core information.

By determining the supertype-subtype relationships bet\veen
entity views, we can constuct an inherit2nce hierc.rchy that ca, be
used to determine when the information contained in one system's
view of a., entity is suitable for use by another. This hierarchy is
initially constructed by evaluating the attributes and operations
contained in the FCR Schema for two views. Figure 7 shows the
FEV inheritance hierarchy constructed for the example surface-to­
surface missile entity. Due to space considerations, only the FCR
and component FCR Schema are shown for each FEV. Details of
inheritance hierarchy construction are contained in [l I] and are
beyond the scope of this paper.

Surface ToSurfa:cMissile j
<<FEY>~

SumceToSurfaceMissile Viev.O I
<<FCR>>

Sur{:n:cToSurfoccl',!is,Dc_Vicnil_l'CR

~
l'CRScbam
FCRSy,ta.
FCRlalmlllct

«FCR. Scl,an:i>>

Sun:u:cTaSurf•ccMwilc_Vic:nil_FCR_Schcm•

I Position - rune

f
<<FE\I>> I <<Fl!V>> I

iSSMl GrotmdToGroundMissi!e J

<<FCR>> <<FCR>>

SSM_FCR GmuntII'aGrount!MwDc_FCR

I Rll!:<h= I FCllS:hcm
~ FCR~'ynm ~ FCRSy,,I::<

R:R.!ammit:s fClt-
<<FCR.~>> <<FCR. SchcmP>

SSM_FCR_Schcm:t GroaatlT'0Grnuat!Mwile_FCR_Schcm:i

...L TYi"' ...L llon!!'

~ -
-t'<f-EV>>

GroundTargctMissilc

<<FClb->

Gnia.nul'":ir,:.ctl\1is.tilc_FCR

I l't:R .. -=,,.
~ R.11.S),u,;

r-ctt!l=l::J

<cf"Cit Sclrc:n::>>

GniuntlT'or,:ctMl.rn1c_FCR_Schcm:i

...!... ~

Figure 7. Federation Entity View Inheritance Hierarchy

74

Then, through exploita..ion .of the Liskov and Wing notion 'of
behavioral subtyping [7], we can determine when the informatiori
contained in one system's view ofan entity is suitable for use by
another. Making this determination is ea:,-y when the producer's
view of a,7 entity is a subtype of a consumer's view, i.e. when the
producer's view extends the consumer's view. By Liskov and
Wing's behavioral notion of subtyping, anywhere a supertype ca.,
be used a subtype ca., be substituted without any difference in
behavior. Thus, in t.tiis instance the consumer will just ignore a,7y
additional information provided by the producer.

This determination is not as easy when the producer's view is a
supertype of the consumer's view, or when the producer's vie'.v 'is
not a direct ancestor or descendent of the consumer's view in the
i.nheritance hierarchy. However, it is possible that the supertype
of an entity's view can be substituted for a subtype of the view if
the attributes and operations which extend the supertype are either
optional for the component system providing a representation of
the subtype view, or if default values can be specified for those
attributes and operations. Similarly, information can also be
shared between component systems that are not direct ancestors or
descendents of each other. if there is a path in the inheritance
h'ierarchy defined between the producer view and the consumer
view, and the previously mentioned restrictions on supertype
extension hold.

4. CONSTRUCTING INTEROPERABILITY
OBJECT MODEL .FOR FEDERATION OF
HETEROGENEOUSSYSTElVIS
Enabling a collection of ·related soft~vareJ ?Ystems to · share . ;;,.
information and.task execution has the poten~uor significantly , -
enhancing the capability of the resultail.t . faj~on of eysterns _ \
over that of the individual components. The prev,:i;ggsly introduced ' ,.,
Object Oriented Model for Interoperability is used to enable :,
information sharing and cooperative task execution among a
federation of autonomou~ly developed heterogeneous systems.
Using the information contained in the OOlvfI, computer aid can
be applied to the resolution of data representational differences
between heterogeneous systems. In order to apply computer aid, a
model of the real-world entities inYolved in the interoperation,
termed a Federation Interoperability Object Model (FIOM), i~
constructed for the specified system federation. Construction of
tlie FIOM is done prior to run-time by an interoperability engineer
with the assistance of a specialized toolset, called the Object
Oriented Model for Interoperability 1ntegrated Development
Environment (OOMI IDE). - .

The Granhical User Interface (GUI) based OOMI IDE is used to:
]) discover the information and operations -Shfl.Ted between
federation components,
2) provide assista.,ce in identifying the different representations
used for such information and operations by component systems,
3) define the transformations required to translate between
different renresentations, and
4) genera'.te system-specific information used to resolve
representational differences between component systems .

· The first task in FIOM construction i's determfr1ing the real-wor'.d
entities whose state and behavior are shared berween systems m
the federation. Each resultant federation entity is represented in
the FIOM as a package constructed from the classes contained in
the component systems' external interface.

~ -

Determin~ion" of the real-world entities that define the
interoperation of a federation is not merely a matter of identifying
the classes contained in the external interfaces of the included
systems. Because of the independently developed, heterogeneous
nature of the systems in the federation, each system may have a
different representation for the real-world entities involved.
Identifying which of a co.mponent system's classes are
representations of the same real-world entity is a key step in
achieving interoperability bet\.veen the component systems.
Correlation software is included as part of the OOMI IDE in order
to assist the interoperability engineer in this effort by providing a .
small set of proposed correspondences to be reviewed by domain
exper.s.

After identifying the different means used by component systems
in the federation to represent the same real-world entity, the
transformations required to translate between different
representations must be defined. The 001\,1! IDE assists the
interoperability engineer in this task through the use of a GUI­
based matching process used to provide computer aid to
translation development, and the maintenance of a· translation
library to enable the reuse of·connnon translation algorithms.

Finally, class transfonnation and relationship information is
~xtracted from the FIOM for each component system. The
;ystem-specific information is used by a wrapper-based translator
:o resolve representational · differences between component
;ystems.

5. USING FIOM TO RESOLVE
REPRESENTATIONAL DIFFERENCES
BETWEEN HETEROGENEOUS SYSTEMS
l,.s previously mentioIJ.ed, system interoperability involves .both,
he capability to exchange infonnation between systems and the. -. •·
tbility fOJ' joint task execution among different systems [8]~ Both· .• · ·
:apabili:ties involve one or more of the following kinds of actions: .. .

~!

• ·· Send One system transmits a piece of information
to another

• Call One system invokes an operation on another

• Return Returns a value to the caller

• Create Creates an object on the called system
• Destroy Destroys an object on the called system [1]

nforrnation exchange is accomplished through means of a Send
,peration, where one system,, the producer, exports information
bat another system, the consumer, imports. Information
ransmitted by the producer system can be an object of some class
lefined for the prod·ucer, or it can consist of one or more attributes
,fan object defined for the producer. ·

oint task execution is accomplished through the use of a Call
tperation where one system, a client, invokes an operation on
nether, which acts as a server for the requested action. In
nvoking an operation on a server, a client system must provide
he name of the operation requested as well as any parameters
equired by the server to perform the operation. Required
1arameters can be in the form of one or more attributes,
,perations, or objects. In addition, in response to a client Call
,peration, a server may return a set of attnoutes, operations, or

75

objects to a client via a Return operation. Create and D '"' . • • I • e-,ro;.
actJo~s ar7 spec_1a instances of a system call. Care must be
exerc1~ed m their _use d3e to _the security risks they pose- the
p~t:nt:Ial . f~r dental or seTYJce &' at"i.acks and the spread of
m1smfonnat1on th:_ou~h ""the ~e 01 the Create operation and the
possible Joss ~f vm,l m.1.onnation through unintended use of the
Destroy operation.

When infonnation exchange or joint task execution takes place
berween heterog:neous systems, the interoperability object model
cons°::cted &' dunng the pre-nmt!me phase for a specified
federaaon 0.1. component systems 1s used to derive a translaror·
Differences in view and representation of information and tasb
shared between interoperating systems are reconciled at rontime
by the translator, which serves as an intermediary between
component systems. The translation function is implemented as
part of a software wrapper enveloping a producer or consumer
system (or both) in a message-based architecture, or alternatively
as part of the data store (actual or virtual) in a publish/subscribe
architecture. A software wrapper is a piece of code used to alter
the view provided by a component's external interface without
modifying the underlying component code. Figure 8 shows an
overview of the use of software wrappers and the involvement of
the Federation Interoperability Object Model in the translation
process.

.
The translations required · by the wrapper-resident translator for
both information exchange and joint task execution are similar.
For information exchange, the source system provides the
exported information .in the form of a set of attnoutes or objects of
a producer class in the native format of the producer. In order to

· be utilized by a consumer system, the exported information must
be converted into the representation expected by the destination
system. For joint task execution, a client system provides an
.operation name and a set of parameter values to a server system in
the native · format of the prod1,Icer. . The parameters. may be
attributes, operations, or objects of a client class. Again, this
information must be provided to the des~ation system in. a

· format recognized by that system Thus the operation name and
parameter values must be converted to the server representation.

As indicated above, the translator must be capable of converting
instances of a class's attributes and operations (or both .attributes
and operations in the form of an object of the class) . from one
representation to another. The information required to effect these
translations is captured as part of the FIOM during· federation
design. Then, at run-time, the translator accesses the information
contained in the model to resolve differences in federation entity
view and to effc;ct the translation between component and
standard repres7ntations of a view.

The translator utilizes the FE inheritance hierarchy described in
section 3.3 to first resolve differences in the number and type of
attributes and operations used to model an entity between two
systems in a federation. Then for two systems having the same
view of the attributes and operations used to model an entity, the
translator resolves differences in representation using the
translation operations included in the model with each federation
entity view. See (11] for more details.

Datatype_A
Representation

Standard Type
Re pres en cation

Datatype_X
Reprcsemaion

lf•-..io=:.~er-.~·1 ¥&

~--•·. · · ·. Fedel'ation ·1nteroper8.bility. Object Model .. . :: :- _:.·; · ·. ·

C,....,~c:r-_V.:-1 ~yOrJ,::rOJlb.a:W_t;,_. I
~·cir-_\. .. .,..: ~~-v-... -:

~·cp-_v... .. J

;.:~. ti--==-.i....,..;~;...=
.:r.

Figure 8. Trans.Iator - FIO~ Interaction

6. CONCLUSIONS
An Object-Oriented Model for Interoperability (OQMI). is
proposed in ·this paper to solve the data and operation
inconsistency problem in legacy systems. A Federation
Interoperability Object Model (FIOM) is defined for a specific
federation of systems designated for interoperation. · A specialized
toolset, the Object Oriented Model forinteroperability Integrated
Development Environment (OOMI IDE) is used prior to runtime
to construct the FIOM for the federation. The FIOM consists of a ·
number of Federation Entities (F'Es) that contain the data and
operations to be shared between systems. · Toe· FIOM also
captures the translations required to briage differences in
representation of this data and operations. Then, at runtime, a
wrapper-based translator utilizes the information contained in the
FIOM to automatically convert instances of real-world entity
attributes and operations to the ·proper representation to enable
interoperation between systems. .

· At this stage, XML-based message translation is being studied for
implementation of the proposed model. The capability provided
by the XML family of tools coincides nicely wit~ the requirement
for data and operation representation capture and tra,,slation.

7. REFERENCES
[I] Booch,G., Rumbaugh, J., Jacobson, I., The Unified Modeling

Lang,..tage User Guide, Addison-Wesley Longman, Inc.,
Reading, MA, 199S. .

[2] "DII COE Data Emporium." (http:// diides.ncr.disa.rnil .
/xmlreg/user/index. cfrn]

76

[3] ''Functional Description of the Mission Space."
(http://fdms.msi~.dmso.mi1/] ,, ... : -~,~,,

[4] Khoshafian, S., Abnous, R., Object Orient~iion, John Wiley
and Sons, Inc., New York, NY, 1995; ,~,

(5] Kahng, J., McLeod D., "Dynamic Clas'sificati.onal
Ontologies: Mediation of Information Sharing in Cooperative
Federated Database Systems", Cooperative Jnfonnation
Systems, Trends and Directions, Academic Press, 1998.

(6] Li, W., and Clifton, C., "Semantic Integration in
Heterogeneous Databases Using Neural Networks",
Proceedings of the 20 th VLDB Conference, Santiago, Chile,
1994, pp. 1-12-

(7] Liskov, B., Wing, J., "A Behavioral Notion ofSubtyping,"
ACM Transactions on Programming Languages and ·
S~ems, Vol. 16, No. 6, November 1994, pp. 1811-1841.

[8] Pitoura, E., "Provjding Database Inter-operability through
Object-Oriented Language Constructs", Journal of.Systems
Integration; Volume 7, No. 2; August 1_997, pp. 99-126.

(9] Walsh, A., Couch, J., Steinberg, D., Java 2 Bible, ID.G Books
Worldwide, Inc., Foster City, CA, 2000. .

(1 OJ Wiederhold, G., "Intelligent Integration ofinformation",
ACM-SIGMOD 93, Washington,_DC, May 1993, pp. 434-437.

[I 1] Young, P., Jntegratio·n of Heterogeneous Sofrware System~
. Through Computer-Aided Resolution of Data Representatton

Differences, Ph.D. Disse~tion, Naval Postgraduate School,
Monterey, California, March, 2002.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09 1
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. John Salasin 1
Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA. 22203-1714

5. Dr. Valdis Berzins, CS/Be 1
Computer Science Department
Naval Postgraduate School·
Monterey, CA 93943

#:
6. ~ Dr. Luqi, CS/Lq 7

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

71

INITIAL DISTRIBUTION LIST

1. Defense Technical fuformation Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 - 2
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09 1
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. John Salasin 1
Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA. 22203-1714

5. Dr. Vaid.is Berzins, CS/Be 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Dr. Luqi, CS/Lq 7
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

77

	NPS-SW-02-013_001
	NPS-SW-02-013_002
	NPS-SW-02-013_003
	NPS-SW-02-013_004
	NPS-SW-02-013_005
	NPS-SW-02-013_006
	NPS-SW-02-013_007
	NPS-SW-02-013_008
	NPS-SW-02-013_009
	NPS-SW-02-013_010
	NPS-SW-02-013_011
	NPS-SW-02-013_012
	NPS-SW-02-013_013
	NPS-SW-02-013_014
	NPS-SW-02-013_015
	NPS-SW-02-013_016
	NPS-SW-02-013_017
	NPS-SW-02-013_018
	NPS-SW-02-013_019
	NPS-SW-02-013_020
	NPS-SW-02-013_021
	NPS-SW-02-013_022
	NPS-SW-02-013_023
	NPS-SW-02-013_024
	NPS-SW-02-013_025
	NPS-SW-02-013_026
	NPS-SW-02-013_027
	NPS-SW-02-013_028
	NPS-SW-02-013_029
	NPS-SW-02-013_030
	NPS-SW-02-013_031
	NPS-SW-02-013_032
	NPS-SW-02-013_033
	NPS-SW-02-013_034
	NPS-SW-02-013_035
	NPS-SW-02-013_036
	NPS-SW-02-013_037
	NPS-SW-02-013_038
	NPS-SW-02-013_039
	NPS-SW-02-013_040
	NPS-SW-02-013_041
	NPS-SW-02-013_042
	NPS-SW-02-013_043
	NPS-SW-02-013_044
	NPS-SW-02-013_045
	NPS-SW-02-013_046
	NPS-SW-02-013_047
	NPS-SW-02-013_048
	NPS-SW-02-013_049
	NPS-SW-02-013_050
	NPS-SW-02-013_051
	NPS-SW-02-013_052
	NPS-SW-02-013_053
	NPS-SW-02-013_054
	NPS-SW-02-013_055
	NPS-SW-02-013_056
	NPS-SW-02-013_057
	NPS-SW-02-013_058
	NPS-SW-02-013_059
	NPS-SW-02-013_060
	NPS-SW-02-013_061
	NPS-SW-02-013_062
	NPS-SW-02-013_063
	NPS-SW-02-013_064
	NPS-SW-02-013_065
	NPS-SW-02-013_066
	NPS-SW-02-013_067
	NPS-SW-02-013_068
	NPS-SW-02-013_069
	NPS-SW-02-013_070
	NPS-SW-02-013_071
	NPS-SW-02-013_072
	NPS-SW-02-013_073
	NPS-SW-02-013_074
	NPS-SW-02-013_075
	NPS-SW-02-013_076
	NPS-SW-02-013_077
	NPS-SW-02-013_078

