
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

Rapid Prototyping of Real-Time Systems

Luqi; Berzins, Valdis
Naval Postgraduate School

Luqi and V. Berzins, Rapid Prototyping of Real-Time Systems, Technical Report NPS
52-87-005, Computer Science Department, Naval Postgraduate School, 1987.
https://hdl.handle.net/10945/65219

Downloaded from NPS Archive: Calhoun

I(.

i

NPS52-87-OO5

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RAPID PROTOTYPING OF REAL-TIME SYSTEMS

Va1dis Berzins

Lu Qi

February 1987

Approved for public re1ease; distribution un1imited

Prepared for:

Chief of Naval Research
Ar1ington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey. California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

This report was prepared for the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

VINCENT~
Chairman
Department of Computer Science

Note:

Associate Professor
of Computer Science

Released by:

Policy Science

This project was supported by the NPS Foundation Research Program which
was funded by the Chief of Naval Research, Arlington, VA 22217.

..

•

L&J
(I)

z
L&J
Q.

><
L&J

1-
z

-I.LI
:E
z
a:
LLI
>
0
C)

l­
et
C
L&J
u
:>
a
0
a:
Q.

L&J
a::

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When D•t• Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER

NPS52-87-005
4. TITLE (and Subtitle)

RAPID PROTOTYPING OF REAL-TIME SYSTEMS

7. AUTHOR(•)

Valdis Berzins
Lu Qi

9. PERFORMING ORGANIZATION NAME ANO AOOAESS

Naval Postgraduate School
Monterey, CA 93943-5100

11. CONTROLLING OFFICE NAME ANO ADDRESS

Chief of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME & ADORESS(II dllferent from Controlllnf Olllce)

16. DISTRIBUTION STATEMENT (ol thla Report)

Approved for public release; distribution unlimited

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBEA(•J

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WOAK UNIT NUMBERS

61153N RR014-01
N0001487 WR4E011

12. REPORT CATE
February 1987

13. NUMBER OF PAGES
32

15. SECURITY CLASS. (of thl• report)

UNCLASSIFIED
15•. DECLASSIFICATION/DOWNGRADING

SCHEDULE

17. DISTRIBUTION STATEMENT (ol the •batract entered In Block 20, II different lrotn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae •Ide II neceu-,, and Identity by block number)

20. ABSTRACT (Continue on reve.ne aide II neceu•ry and Identify by block number)

The main goals of the prototyping method associated with the PSDL language
are to rapidly construct a prototype with a high degree of module independence.
The first goal is addressed by an improved modularization technique and a
hierarchical approach. The second goal is addressed by an automated envi­
ronmento

DD FORM
I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S,'N 0102· LF- 014· 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (lnten D•t• •nteredJ

..

•

,u

..

•

Rapid Prototyping of Real-Time Systems

Luqi

Va/dis Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

The main goals of the prototyping method associated with the PSDL language are to rapidly con­
struct a prototype with a high degree of module independence. The first goal is addressed by an
improved modularization technique and a hierarchical approach. The second goal is addressed by
an automated environment.

1. Introduction

The demand for large, high quality software systems has increased to the point where a jump in

software technology is needed. Rapid prototyping is one of the most promising methods proposed for solv-

ing this problem. A prototype is an executable pilot version of the intended system, which is used as an

aid for analysis and design rather than for delivery to the user. Rapid prototyping is particularly effective

for ensuring that the requirements accurately reflect the real needs of the user, increasing reliability and

reducing costly requirements changes. This paper presents a method for rapidly constructing executable

prototypes for large real-time systems with the following properties.

(1) The prototype must satisfy and be traceable to its requirements. Iterated prototype construction is

used to analyze and firm up the requirements for the intended system.

(2) The prototype must be easy to modify. The prototype will be subject to many revisions before the

user is satisfied with the requirements as reflected by the behavior of the prototype.

(3) The prototype must be easy to read and analyze. The prototype serves to support analysis of the

intended system and to document an initial design. Clarity and simple high-level structures allow

designers to answer questions easily about the properties and feasibility of the system.

Our method was developed together with a Prototype-System Description Language (PSDL) [7] and an

automated prototyping environment [5].

I

The goal in constructing a prototype is different than in constructing a production quality software

system. Efficient use of designer time and rapid feedback for the user are more important than robust

operation, efficient use of machine resources, or completeness.

We use an integrated approach to prototyping that combines a computational model tailored for

describing real-time systems with a high-level prototyping language, a systematic design method for rapid

construction of prototypes, and an automated prototyping environment that should enable the effective use

of a software base containing reusable components. The computational model prevents hidden interactions

between system components and encourages designs with good module independence. The language sup­

ports the model, and combines it with a powerful set of data and control abstractions, to make it easy to

describe systems at a high level. The automated environment relies on a software base management sys­

tem for retrieving and adapting reusable software components [10].

A problem-oriented top-down strategy is used to focus the prototyping effort on a critical problem or

on selected attributes of the entire system. The major system attributes that must be demonstrated to the

user usually appear in a critical subsystem. It is necessary to create a quick sketch of the skeleton of the

intended system, because the environment of the critical subsystem must be at least partially simulated to

demonstrate the behavior of the prototype and an initial description of the intended system is needed as a

basis for discussion. This quick sketch can be built rapidly and understood quickly by means of a interac­

tive graphics editor for PSDL. During the iterations of the prototyping effort, our environment enables

each update to the prototype to be made quickly and easily. The prototype system gradually fulfills the

requirements in this process, which is discussed in more detail in Section 3.

The PSDL prototyping method results in a hierarchically structured prototype. The method pro­

vides a decomposition strategy for filling in more details at any level of the prototype design. It helps to

focus on the critical subsystems that must be refined to resolve the problems that motivated the rapid pro­

totyping effort.

The prototype is designed based on abstract functions, abstract data, and abstract control. This

high-level view emphasizes the overall configuration at each level without getting embroiled in low-level

2

..

..

,..,

..

details. The design is refined by decomposing abstract functions and data types into lower-level ones in a

process of stepwise refinement. Functional, data, and control abstractions are supported by PSDL and are

used to hide lower-level details in the prototyping method. Only the concepts directly used at each level

appear in the abstractions of the data flow diagram at that level.

1.1. Prototyping Language

We recognize that a good language for expressing design thoughts in terms of a precise model is

essential for rapid prototyping. PSDL [7] was designed to serve as an executable prototyping language at a

specification or a design level.

The prototyping method produces a. PSDL description of the prototype. PSDL provides sufficient

structures and descriptive ability to express the internal and external situation for the modules comprising

the system. A clear and powerful modularization model (see Section 2.2) is introduced in PSDL for build­

ing and describing the prototype. The model is based on datafl.ow under real-time constraints. The

decomposition of a composite operator is described in PSDL by an enhanced data flow diagram that

includes non-procedural control constraints and timing constraints. PSDL and its prototyping method are

concerned primarily with hard real-time systems. A hard real-time constraint is a bound on the response

time of a process or the period between invocations that must be satisfied under all operating conditions.

A hard real-time system [8] has hard real-time constraints as part of its requirements.

1.2. Previous Work

Two kinds of software system decompositions have been identified [4], one based on data.fl.ow and the

other based on control flow. There is no previous work providing a syntactic and semantic means of com­

bining data.flow and control fl.ow for software system design.

A number of non-procedural programming languages have been proposed in recent years. These

languages have the advantage of being easy to analyze, and of exposing the natural parallelism in an algo­

rithm. The design of the non-procedural control constraints of PSDL owes much to these ideas. One

difference between our work and previous approaches to rapid prototyping using applicative languages is

3

that we provide a black-box specification for each component in addition to an implementation. Black-box

specifications state which properties of the prototype are required in the intended system and can also be

used for retrieving reusable components from a software base.

Our approach to execution support for PSDL is based on previous work on scheduling tasks with

real-time constraints [8], which handles asynchronous tasks in terms of equivalent synchronous structures.

The application of these ideas to PSDL is described in [6].

There has been a fair amount of work on machine-aided rapid prototyping for systems without hard

real-time constraints. A system for prototyping user interfaces for interactive systems is described in [9].

Petri nets are used in [2] to prototype the synchronization and interprocess communication aspects of pro­

cess control systems. While the notation is not very easy to read, it does support automated deadlock

detection and performance evaluation in terms of steady-state probabilities for graph markings. A tech­

nique for modeling real world systems which is appropriate for typical data-processing applications 1s

described in [3]. This method does not address real-time constrain ts and is weak on data abstractions.

Many informal versions of data flow diagrams have been used extensively to model the data transfor­

mation aspects of software systems. Data flow diagrams are easy to read, revealing the internal structure

of a process and the potential parallelism inherent in a design, making data.fl.ow attractive to designers.

We believe an automated prototyping environment should provide graphical capabilities for displaying and

updating the system structure of the prototype. However, these informal notations do not provide a

unified mechanism to represent all of the relevant attributes of software systems (e.g. timing and control)

and are not sufficiently formal to be executable. A more precise model of a data.flow computation has been

developed in the context of hardware design. We have extended the model and the notation to include

control aspects and critical timing constraints in a two dimensional data flow diagram without losing its

natural benefits. These extensions are needed for the design of systems with hard real-time constraints.

2. Modularization

Problem decomposition is a central issue in the design of any large system. Two well known decom­

position methods, based on data.flow and control flow, are considered below. We propose a single uniform

4

..
..

I,

..

decomposition method that combines the advantages of both alternatives, and 1s applicable to systems

with hard real-time constraints .

2.1. Combining Data Flow and Control Flow

Each criterion for decomposing a software system is based on some computational model. Data.flow

and control flow are two popular decomposition criteria.. The components of a da.taflow decomposition a.re

independent sequential processes that communicate by means of buffered data streams, while the com­

ponents of a control flow decomposition are procedures that a.re called by and return to a main procedure

with a single thread of control. Good modularity is one of the key factors for increasing productivity, since

it reduces the debugging effort for producing a correct executable system, and improves the understandabil­

ity, reliability, and maintainability of the developed system. These features are especially important in

rapid prototyping. Iwamoto et al [4] suggest circumstances in which ea.ch of the two kinds of decomposi­

tion is preferable and give some restrictions sufficient to guarantee that the computed results are indepen­

dent of scheduling decisions. Their system does not address real-time constraints and is a. relatively low­

level extension to FORTRAN applications which is subject to many confusing restrictions. They use a

data.flow decomposition in cases where there is a mismatch between the structures of the input data stream

and the output data stream of an operator, introducing an intermediate data. stream of lower level data.

elements to resolve the structure clash. They also use a control flow decomposition in cases where the data

stream forks into several branches and is rejoined, or where the opera.tors on the branches influence each

other's results by means of state changes, because in these cases a data.flow decomposition will result in

computations whose results can depend on the unpredictable behavior of the process scheduler. An exam­

ple of the first case is a decomposition with a dispatch opera.tor that recognizes several alternative kinds of

inputs and routes them to the appropriate special purpose operator. A data.flow decomposition for such a.

structure requires extra. sequencing information in the data elements to make sure that the result streams

do not get out of order when they are merged, since the relative speeds of independent processes a.re not

predictable under the usual interpretation of data.flow. An example of the second case is a transaction with

multiple updates to a shared database, where the final state of the data.base may depend on the arbitrary

5

order of the updates performed by operators on parallel branches of the data flow graph.

To avoid the problems with data.flow decompositions mentioned above we have developed a new

underlying model of computation for PSDL [7], which is based on data.flow and guarantees that the results

of a computation do not depend on undetermined properties of the schedulers. Control constraints are

combined with the data.flow model to achieve the best modularity with sufficient control information.

Dataflow is used to simplify the interactions between modules, eliminating direct external references and

communication by means of side effects. The first problem with data.flow decompositions mentioned above

does not arise in our model because of a rule in PSDL which says that a composite operator cannot fire

again until all of the internal activity associated with the previous firing is complete. This rule provides a

kind of mutual exclusion that · prevents interference between successive actions by the same operator

without preventing concurrent execution of the components of a composite operator. The second problem

with data.flow decompositions does not arise in PSDL prototypes because there is no implicitly shared mut­

able data.

2.2. The PSDL Computational Model

The PSDL computational model is based on enhanced data flow diagrams [7). An enhanced data

flow diagram is a directed graph with associated timing and control constraints. The nodes of the graph

are operators and the arcs are data flow paths.

Operators are either functions (without an internal state) or state machines (with an internal state).

When an operator fires, it reads one input value from each incoming arc, and puts at most one computed

output value on each outgoing arc. The firing of an operator can be triggered either by the arrival of a

specified set of input data values or by a periodic timing constraint. The firing of an operator and the pro­

duction of an output value can also be subject to conditional control constraints that depend on locally

available data values. This limited facility for interconnecting operators is well matched to the needs of

real-time systems, in which each operator must complete its task within a fixed time limit.

A data stream carries values of an abstract data type. Both the built-in and user-definable data

types of PSDL are immutable. An immutable type has no operations for changing the state of a data

6

••

object, so that all changes appear as newly generated data values rather than as updates to existing data

objects. The generic built-in types of PSDL include tuples (records), one _ofs (tagged variants), sets,

sequences, maps (lookup tables) and relations. These types provide a powerful facility for defining finite

collections of any type of value, making it easy to construct a wide variety of user-defined abstract data

types. Conventional data types for numbers, strings, and truth values are also available in PSDL.

Each data stream is either a dataftow stream, which guarantees ea.ch data element that enters is

delivered exactly once, or a sampled stream, which guarantees a data element can always be entered into or

delivered from the stream on demand, at the cost of replicating elements or discarding older values. A

dataflow stream acts like a fifo queue whose length is bounded by 1. A sampled stream acts like a memory

cell which always contains the most recent data value that has been put into the stream, and which can be

updated at any time. In PSDL the control and timing constraints of the operator receiving a stream deter­

mine whether the stream is of the datafiow or sampled variety, in a way that guarantees there will be data

values present on all of the input streams of an operator whenever it fires [7]. Datafiow streams are

discrete data flows, and sampled streams are continuous data flows. Exceptions are treated as data values

of a special data type, which flow down data streams subject to the same rules as ordinary data values.

In PSDL each operator can have a maximum execution time and a maximum response time, which

are treated as hard real-time constraints. Opera.tors with real-time constraints are either periodic (synchro­

nous) or sporadic (asynchronous). The firing frequency of ea.ch synchronous opera.tor is specified by giving

its period. The minimum period between firings is also specified for each sporadic operator, recording the

necessary assumptions about worst case operating conditions with respect to asynchronous external events.

The individual timing constraints of a real-time system are relatively easy to describe using the facilities

described above. However, large real-time systems often contain a mixture of periodic and sporadic opera­

tors, with many different frequencies. The interactions between such timing constraints can be quite com­

plex and very difficult to analyze without computer aid. Control constraints can also be associated with

operators. These include conditions that act as guards for firing an opera.tor or passing an output value to

a data stream, and can control exception conditions or timers.

7

2.3. Hierarchical Decomposition

The PSDL prototyping method develops a hierarchically structured design by a process of stepwise

refinement, guided by the computational model and the software base. At each level, the system at the

center of attention is modeled as an enhanced data flow diagram. While the model is created mostly in a

top-down fashion, the process is guided by a tool for browsing through the reusable components in the

software base. Each of the operators and each of the data types associated with the data streams is given a

black box specification and subjected to further refinement. There are three possibilities at this point.

(1) A search of the software base succeeds in retrieving a reusable component whose specifications

match those of the required operator or type. The usefulness of partial matches is enhanced by

facilities for instantiating generic reusable components and by PSDL control constraints, notably

conditional guards that can limit the execution of a reusable component to the cases where its

behavior satisfies the requirements of the needed prototype component. In this case all required

lower level details are supplied from the software base, and no further effort is required of the pro­

totype designer.

(2) No match is found in the software base, and the behavior of the needed component is sufficiently

complex to be decomposable into a network of simpler types and operators. In this case, the com­

ponent is refined as a lower level data.flow model, and the process is repeated recursively. As in any

design process, the skill and experience of the designer are important factors determining the speed

and quality of the decomposition. PSDL contains a powerful set of built-in data. types and control

constraints to aid in this process [7].

(3) No match is found in the software base, and the behavior of the needed component is so simple that

further decomposition would not be useful. This case corresponds to an incomplete software base,

and should be infrequent for applications with a mature software base. In such a case, a small spe­

cial purpose module is coded in the underlying programming language (e.g. Ada), and is added to

the design data.base containing the prototype. If future developments in the same problem area a.re

anticipated, then the new module is also marked for addition to the software base. The actual

8

..

..

extension of the software base is done after the rapid prototyping effort is completed, because the

process of generalizing the module, developing a good specification for it, and certifying its correct­

ness are time consuming prerequisites for adding a component to the software base .

2.4. Locality and Component Scoping

PSDL has been designed to prevent implicit interactions between operators, thereby encouraging

model independence. Since there is no global data in PSDL, operators must rely on incoming data streams

for all input. Since all PSDL data values are immutable, operators cannot interact by means of state

changes in a shared muta~le data object. Two PSDL operators cannot interact by means of state changes

unless both have explicit data flow connections to the same state machine.

The state of a state machine operator is purely local in PSDL, and can be influenced only by sending

data. values to one of the input streams of the opera.tor. This is achieved by means of a local name scoping

rule for for composite opera.tors. Access to state machines must be local with respect to the design hierar­

chy: it is not possible to send a data stream directly to a component of a. composite operator, since the

names of the components are not visible outside the implementation part of the composite. It is also not

possible for two composite operators to share the same instance of a state machine as a subcomponent for

the same reason (although they could both use different instances of the same generic state machine).

This locality property facilitates the modification of PSDL prototypes, because the number of

modules impacted by a change is limited and can be determined by a relatively shallow mechanical

analysis of the data.flow structure of the prototype. It also makes it easier to distribute the parts of the

computation among several processors, because implicit interactions are difficult to implement in a loosely

coupled architecture. The localized nature of the PSDL computational model encourages the prototype

designer to first specify abstract state ma.chines or functions, and then to decompose them into loosely cou­

pled networks of independent operators, which is the preferred structure for distributed software.

9

3. Constructing a PSDL Prototype in the Prototyping Life Cycle

PSDL was designed together with the prototyping method presented m this paper. The steps for

constructing a PSDL prototype are described in this section. A diagram which shows the prototyping life

cycle and the steps for updating requirements is given below:

+--------------+ +---------- -+
I determine I requirements I construct I
I requirements I --------~------------->I prototype I
+--------------+ +----------- +

I
requirements adjustment I

I
+--------------+ prototype v +----------------+

ex e c u t e I < -+ - - - > I s y s t em
p r o t o t y p e I -> I imp l eme n t a t i on I

+- - - - - - - - - - - - - - + re q u i r eme n t s OK +- - - - - - - - - - - - - - - -+

We have chosen a real world example, a hyperthermia system, to demonstrate our design method.

The reasons for choosing this example are:

(1) The software system used for temperature control in the hyperthermia system is a typical embed­

ded system with hard real-time constraints.

(2) The application is significant and realistic. It is large enough to demonstrate the essential features

of large scale prototype programming, but not too large to publish.

The prototype shown in this section was constructed rapidly. The example is used at the end of each

subsection to illustrate the decisions and implementation details in the construction of a PSDL prototype.

3.1. Hyperthermia Example

The explanation of the probl~m addressed in the example consists of two parts. First, we give a gen-

eral description of a hyperthermia system, where a hyperthermia system is used, and how to separate the

prototype of the software subsystem from the whole system. Second, the requirements for the software

component of a hyperthermia system are discussed.

10

..

u •

Cancer specialists have been trying to selectively destroy tumor cells with heat. A hyperthermia sys­

tem is a medical device for treating tumors based on this idea, which uses a microwave generator connected

to a fine tuner and matching control system. The hyperthermia system uses microwave energy to produce

and deliver controlled local therapeutic heating directly to tumors for effective and safe treatment of

cancer. A computerized control system is to adjust power output automatically to maintain the therapeu­

tic temperature in accordance with the established patient treatment plan.

The hyperthermia treatment system consists of four subsystems: a computer system, an operator's

panel, a microwave generator, and a temperature sensor. The critical subsystem is the computer software

which receives input from the temperature sensor and produces control commands to operate the whole

system. The computer software controls the rest of the system, which is typical of real-time embedded sys­

tems. In order to demonstrate the behavior of the prototype, it is necessary to simulate the properties of

the rest of the system that are relevant to the software subsystem.

The behavior of the software subsystem is described by the following informal requirements, which

are rough and typical of the initial requirements supplied by a user.

(1) Accept input tumor data in the patient's medical record from an existing source.

(2) Prepare the probes and their corresponding structures in the microwave and temperature sensing

systems.

(3) After the preparation is completed, the power genera.tor starts generating microwaves and then the

software control system adjusts the intensity of the microwaves sent out in response to inputs from

probes in the temperature sensing system. The adjustment should be made according to the data

describing the microwave-temperature-time pattern.

(4) The desired hyperthermia temperature indicated for the therapeutic treatment is 42.5° C. The sys­

tem should reach the indicated temperature in less than 5 minutes in order to leave sufficient time

for the patient treatment plan.

(5) After the system reaches the indicated hyperthermia temperature, it should keep the temperature

stable for 45 minutes in order to kill tumor cells. During this period, the treatment system should

11

adjust the intensity of microwaves to keep the temperature stable with an error tolerance < 0.1 ° C.

(6) The software subsystem must appropriately control the other subsystems of the hyperthermia sys-

tern in order to ensure their correct operation.

3.2. Initial Steps

The initial steps for constructing a PSDL prototype perform a general analysis of the given problem.

The purpose of this analysis is to decide what questions the prototype is supposed to answer, to identify

which parts and attributes of the system to prototype, and to get the requirements for the prototype.

3.2.1. Decide what Questions the Prototype is Supposed to Answer

The purpose of each prototype is to answer some questions about the system to be designed. The

first step in our prototyping method is to determine which questions are supposed to be answered using the

prototype. Typical kinds of questions that can be answered using a prototype are whether the proposed

system behavior meets user needs, whether system input and output interfaces are acceptable, and whether

proposed real time constraints can be satisfied. In the hyperthermia example, the questions we address are

whether a real time control system satisfying the requirements is feasible, and whether the proposed control

system is safe for use in hospitals.

3.2.2. Identify which Parts and Attributes of the Intended System to Prototype

The next step is to determine which part of the system must be prototyped to answer the questions

identified above, which we will call the critical subsystem. In our example the critical subsystem is the

software component of the hyperthermia system, because the feasibility and safety of the temperature

probes and microwave generator are not in doubt. The critical subsystem has interfaces to the doctor, the

temperature probes, and the microwave generator. The attributes of the system that affect safety and

hence must be included in the prototype are the treatment temperature and the treatment time. The rela­

tion between the microwave power level and the treatment temperature must be determined and simulated

to allow the evaluation of the proposed control algorithms for the microwave power level.

12

" J

3.2.S. Form the Requirements Set for the Prototype

It is necessary to rewrite the requirements for the prototyping system into a clear and brief form

because the initial English description is usually long, redundant, and imprecise. PSDL assumes that the

requirements are structured as a set of named items. The PSDL facility for recording the correspondence

between the requirements and the parts of the prototype works best if each item in the requirements

represents a single constraint and different items represent independent constraints. The requirements can

be given as shown below, or a more formal notation can be used.

(1) Shutdown -- Microwave power must drop to zero within 300 ms of turning off the treatment switch.

(2) Temperature Tolerance -- After the system stabilizes, the temperature must be kept between 42.4°

C. and 42.6° C.

(3) Maximum Temperature -- The temperature must never exceed 42.6° C.

(4) Startup Time -- The system must stabilize within 5 minutes of turning on the treatment switch.

(5) Treatment Time -- The system must shut down automatically when the temperature has been

above 42.4° C. for 45 minutes.

3.3. Prototype Construction in PSDL

The steps for constructing a system component in a PSDL prototype are described briefly here and

then explained in terms of the hyperthermia example below. The designer first decides on the level of

detail that must be represented in the prototype, and writes a PSDL specification for the component. That

specification is used as a basis for searching the software base for a reusable software component that can

be used to implement the prototype directly. H the search succeeds, the prototype of the component is

complete, otherwise the designer attempts to decompose the component into a dataflow diagram consisting

of lower level operators and data types. IT the decomposition is successful, each of the lower level com­

ponent is then prototyped using the same method. H a useful decomposition cannot be found, the com­

ponent is coded in the underlying programming language and eventually added to the software base.

13

S.3.1. Decide on Level of Detail for the Prototype

One of the most important concerns is how much detail should be included in the prototype. Our

guideline is to include the minimum amount of detail implied by the previous choice of what questions to

answer (Section 3.2.1) and which part of the system to prototype (Section 3.2.2). At this point, the critical

things to keep in mind are:

(1) A prototype system is not a production system. The purpose of a prototype is to provide answers

to questions about the requirements and the properties of the proposed system. The prototype has

to include only the aspects of system behavior relevant to answering the questions. It does not

have to be a complete, reliable, and efficient realization of the proposed system.

(2) For the attributes and subsystem chosen to be prototyped, we do not have to design the prototype

in exactly as much detail as the intended system. Functional simulation can be used to reduce the

a.mount of detail which has to appear at a specific working level. Aspects that are not related to

the questions can be left out, or represented by low-cost mockups. For example, if the purpose of

the prototype is to determine the effectiveness of a proposed control algorithm, then the display for­

mats are not critical and off-the-shelf defaults can be used. Conversely, if the central questions are

related to human factors, then the format and placement of the displays may have to be

represented in detail, while the data content is not critical, and can be filled in by a random data

generator. Extraneous details can be treated as lower level attributes and left to be realized in

lower level components if the decomposition is eventually refined further, in response to more

detailed questions about the system.

There are several important considerations in determining the level of detail:

(1) Choosing a minimum set of subcomponents at each level of the decomposition hierarchy.

(2) Eliminating unnecessary decomposition if reusable components of the same or nearly the same

specifications can be found.

(3) Trying functional simulation m the underlying programming language for the components when­

ever it can be a simpler way to implement the specification.

14

3.3.2. Write a PSDL Specification for the Components

PSDL prototype components are either operators or abstract data types. Every component of the

prototype will eventually have both a specification and an implementation part in PSDL. Specifications

are developed for all of the components at a given level of the hierarchy before any of the implementation

parts are considered, and the process is repeated until no more decomposition is needed. The steps to be

followed in writing a PSDL specification part for a component are described in more detail below.

The function of each component is clarified by writing its formal description and attribute

specifications. Informal English descriptions are written for each component as design documentation if

the formal descriptions and the attributes specifications are considered insufficient to describe the com­

ponents or the design. The specification part of the top level operator in the hyperthermia example is

shown below:

OPERATOR brain _tumor _treatment _system
SPECIFICATION

INPUT patient _chart: medical _history, treatment switch: boolean
OUTPUT treatment finished: boolean
STATES temperature: real INITIALLY 37.0
DESCRIPTION
{ The brain tumor treatment system kills tumor cells using hyperthermia induced by microwaves. }

END

This operator is a state machine. The only component of the state that is needed for the purposes of

the prototype is the temperature of the tumor, which is specified to be normal body temperature in the ini-

tial state.

The medical _history is an abstract data type appearing as an external input to the system. A partial

PSDL specification for this data type is given below. The complete data type has many other operations,

but only those related to the brain tumor treatment system are included in the prototype. This illustrates

the principle of including only those details needed for the purposes of the prototype.

TYPE medical_ history
SPECIFICATION

OPERATOR get_tumor diameter
SPECIFICATION

INPUTS patient _chart: medical_ history, tumor _location: string

15

OUTPUTS diameter: real
EXCEPTIONS no tumor
MAXIMUM EXECUTION TIME 5 ms
DESCRIPTION
{ Returns the diameter of the tumor at a given location,

produces an exception if no tumor at that location. }
END
KEYWORDS patient _chart, medical _record, treatment _record, lab _record
DESCRIPTION
{ The medical history contains all of the disease and treatment information for one patient. }

END

3.3.3. Decompose Components not in the Software Base

After the components have been identified and specified, the software base is searched to determine if

they match existing reusable components. H the retrieval results in a reusable component with sufficiently

close specifications, then the implementation is finished. Otherwise complex components are decomposed

into more primitive parts, and simple ones are coded in the underlying programming language.

An abstract data type is decomposed by giving a representation for the values of the type in terms of

other simpler types and then decomposing the operators of the type. An operator is decomposed by

expressing it as a datafl.ow decomposition involving simpler types a.nd operators. This is done by identify-

ing some useful lower level operators, guided by the concepts to be found in the problem description and

requirements, and by considering the operators available in the software base. Such operators can be found

by means of the browsing tool, and by retrieving inexact matches to a PSDL specification from the

software base. The interconnections of the opera.tors and the types of the data streams are determined

next. Control constraints are added where needed, and the timing constraints of the composite component

are allocated to its parts at the next lower level.

The operator for the brain _tumor _treatment _system is not available in the software base. A further

decomposition is chosen to implement this operator because it is not a simple one. In order to check that

the requirements for maintaining the treatment temperature are met, it is useful to divide the prototype

into a control system and a simulation of the system to be controlled. In this case the system to be con-

trolled consists of the patient, together with the microwave generator, and temperature measurement sys-

tern. The only attributes of this system that are needed for the purposes of the prototype are the

16

temperature reading and the desired power level for the microwave genera.tor. The lower level operators

and the data streams connecting them are shown in the PSDL implementation part below.

IMPLEMENTATION
GRAPH

100

I
+<-----1 simulated patient

I I
I
I
I 100

I
temperature +-----> I

I
patient chart ----->I hyperthermia system

I
treatment switch -->I

DAT A STREAM treatment _power: real

CONTROL CONSTRAINTS
OPERATOR hyperthermia. _system

PERIOD 200 BY REQUIREMENTS shutdown
OPERATOR simulated _patient

PERIOD 200
DESCRIPTION { mechanically generated description } END

1

I
I<- - -+
I I

I
I
I
I
I

----+ treatment_power

----> treatment finished

The bra.in _tumor _treatment _system is described as a periodically executing feedback loop, which

implements a state machine. Each cycle in a PSDL data fl.ow diagram must be cut by a state variable. In

the example, the only cycle is cut by the state variable temperature. The period of the

brain _tumor _treatment _system is chosen to meet the emergency shutdown requirement, which requires the

system to set the power to zero within 300 ms of the time the treatment switch is turned off. This require-

ment will be met if the sum of the period and the maximum execution time of the hyperthermia system do

not exceed 300 ms. Since the treatment switch can change at an unpredictable moment, it ca.n be almost a

full period before the system samples the value of the switch. The hyperthermia _system must then be exe­

cuted before a response to the changed input signal can be generated. A tighter time bound cannot be

established without looking inside the hyperthermia system, which we want to avoid to preserve the

17

hierarchical structure of the prototype.

The control function is very important for the safety of the patient, and the temperature tolerances

are tight compared with the accuracy of commonly available thermometers, so that ample time must be

allocated for the accurate computation of the treatment _power. Since it takes some time for the tumor to

heat up in response to a higher power level, a sufficient time delay must also be allowed for the

simulated _patient, to avoid control instabilities in the actual system. Since both functions have roughly

equivalent demands for time. we allocate equal time periods for both components. Since this is the top

level of the design, there are no other processes competing for computing resources, so we can use the entire

period for executing the two functions. These considerations lead to a period of 200 ms, with maximum

execution times of 100 ms for each of the two components. The resulting timing estimates are approxima­

tions to the actual times. The accuracy of these values can be improved by measuring the running time of

the prototype or by using a static timing analysis tool for calculating worst case time bounds for loop free

code, using the instruction times of a particular compiler and machine, and by constructing an accurate

simulation of the power/temperature/time relationship for the human brain, to determine the delay time

that must be allowed for the simulated _patient.

The period must also allow the system to make adjustments to the power level fast enough to

guarantee that the temperature remains in the allowable range. The correspondence between temperature

tolerances and required response times would be determined in practice by means of experiments using the

prototype. These experiments are likely to spark changes to the timing requirements as well as to the con­

trol algorithms. An important reason for building prototypes of real-time systems is to help determine the

exact timing requirements that will suffice to guarantee functional properties of the system such as the

temperature tolerance requirement.

A software simulation of the patient (together with the microwave generator, tuning circuitry, anten­

nas, and temperature sensors) is included to allow the prototype to be tested. This is typical of many real

time applications, where the actual environment of the intended system is too dangerous or too expensive

to risk while testing a prototype with unknown and possibly faulty properties. We believe that simulations

18

•

of the environment of the software system are an essential part of rapid prototyping, and that any

language for prototyping real time systems must support the construction of such simulations.

The interface to the brain _tumor _treatment _system includes the abstract data type medical_history.

The implementation part of medical_ history is shown below.

IMPLEMENTATION
tuple[tumor descr: map[from: string, to: real]]

OPERATOR get _tumor_ diameter
IMPLEMENTATION

GRAPH

1

I
patient chart -->I tuple.get tumor descr

I

4

I
tumor location -->I

I

DAT A STREAM td: tumor_ description
CONTROL CONSTRAINTS

OPERATOR map.fetch

td
V

map.fetch

EXCEPTION no _tumor IF not(map.has(tumor _location, td))
END

END

--> diameter

Only one operation of this type, get _tumor_ diameter, is needed for the prototype, although additional

operations for creating values of the type will be needed to exercise the prototype. The type is modeled as

a tuple because a real medical history will contain many other components in addition to a tumor descrip-

tion. Since these attributes are not important for the prototype, they are not specified in detail. The

tumor description is modeled as a mapping from tumor location to tumor diameter because a patient can

have more than one tumor, and because the size of the tumor is the only attribute important for the proto-

type. Most of the available time is allocated to the table lookup function map.fetch because it involves

some searching, while the extraction of a fixed component of a record can be done in a small fixed amount

19

of time. In a mature system, the execution times for operations of built-in types such as tuple.get would be

obtained automatically from the software base.

The data types TUPLE and MAP are built into PSDL, and their implementations are retrieved from

the software base. A tuple is the Cartesian product of a number of component types, with symbolic names

for the components. A map is a function from a finite subset of one data type to another data type, and is

similar to a lookup table. The fetch and get _tumor_ description functions are primitive operations of the

map and tuple types, so that they need not be refined any further. Tuple is a parameterized family of

types with a get_ X operation for each component name X. Note the use of the exception control constraint

to turn an exception of the built-in map type into a different exception meaningful for the medical_ history

type. This is an example of the kind of local adjustment commonly needed to adapt a reusable component

to the needs of a particular prototype.

3.3.4. Repeat the Construction Steps for any Lower Level Components

The decomposition step has to be repeated for the components at lower levels until implementations

can be retrieved from the software base, or the parts are implemented by functional simulations coded in

the underlying programming language.

We show the decomposition of one component at each level of the hierarchy, continuing until we hit

the bottom. We have chosen a path down the hierarchy that terminates in a component implemented by a

functional simulation coded in Ada. The PSDL description for the hyperthermia _system is shown below.

0 PERA TOR hyperthermia _system

SPECIFICATION
INPUT temperature: real, patient _chart: medical_history, treatment switch: boolean
OUTPUT treatment _power: real, treatment_ finished: boolean
MAXIMUM EXECUTION TIME 100 ms BY REQUIREMENTS temperature _tolerance
MAXIMUM RESPONSE TIME 300 ms BY REQUIREMENTS shutdown
KEYWORDS medical_equipment, temperature _control, hyperthermia, bra.in _tumors
DESCRIPTION
{ After the doctor turns on the treatment switch, the hyperthermia. system reads the patient's medical

record, and turns on the microwave generator to heat the tumor in the patient's brain. The system controls
the power level to maintain the hyperthermia temperature (42.5 degrees C.) for 45 minutes to kill the
tumor cells. When the treatment is over the system turns off the power and notifies the doctor. }

END

20

\ ..

..

IMPLEMENTATION
GRAPH

10

I
t r e a t me n t s w i t c h - - - - - - - - - > I s a f e t y c o n t r o l

I

90

patient chart ---->I
I start up

temperature -->+-->!
I
I
I 90
I

I I
I - - - I - ->+
I I I
I - - >+ I

I
I
I
I

---> treatment power

+- ->I I - - - I - - >+ e s t i mat e d power
I maintain

I

DAT A STREAM estimated _power: real
TIMER treatment time

CONTROL CONSTRAINTS
OPERATOR start_up

I I
I-->+-------------> treatment finished

TRIGGERED IF temperature < 42.4 BY REQUIREMENTS maximum _temperature
STOP TIMER treatment time
RESET TIMER treatment _time IF temperature <= 37.0

OPERATOR maintain
TRIGGERED IF temperature >= 42.4 BY REQUIREMENTS maximum _temperature
START TIMER treatment time BY REQUIREMENTS treatment time, temperature tolerance
OUTPUT treatment_ finish;d IF treatment _time >= 45 min BY REQUIREMENTS tr-;atment _time

END

This example illustrates the use of an event controlled timer, a conditional output, and conditionally

activated operators. The treatment _time timer is reset (to zero} whenever the temperature drops below

body temperature (i.e. at the end of a treatment session). The timer is (re)started if the temperature is in

the range for effective hyperthermia, and it is stopped if the temperature goes out of the range. The

treatment _time timer is used to record the treatment time, and to control the transmission of the output

treatment_ finished from the MAINTAIN operator.

21

The MAINTAIN operator always produces the value TRUE for the treatment _finished switch, while

the ST ART_ UP operator always produces the value FALSE for the treatment_ finished switch. Since the

output of MAINTAIN is conditional, the TRUE value is transmitted only when the predicate giving the

output condition is true. The initial FALSE value persists until the conditional output is transmitted

because the treatment_ finished is a sampled data stream (as are all of the other data streams in this exam­

ple). Both ST ART UP and MAINTAIN are triggered conditionally. The guard predicates of these two

operators are mutually exclusive, so that only one of the two is executed in any given period.

The temperature going out of range is an undesirable event, which is prohibited by the temperature

tolerance requirement. The construction of the prototype forces the designer to recognize that this event is

possible, and raises the question of how the system should behave if the event does happen due to some

kind of malfunction. These events also form a basis for the comparison of alternative control algorithms

for the maintain operator. A plausible development history involves prototyping several control algo­

rithms, and comparing their behaviors by monitoring the frequency of stop timer events for

treatment time.

The specification for maintain operator at the next level of refinement is given below.

OPERATOR maintain
SPECIFICATION

INPUT temperature: real
OUTPUT estimated _power: real, treatment finished: boolean
MAXIMUM EXECUTION TIME 90ms

BY REQUIREMENTS temperature _tolerance
DESCRIPTION
{ The power is controlled to keep the power between 42.4 and 42.6 degrees C. }

END

The maintain operator is a specialized function which is not found in the software base. It is simple

enough so that further decomposition is not useful, so we choose to realize it using a functional simulation

in the underlying programming language. This decision is recorded in PSDL as follows.

IMPLEMENTATION Ada maintain
END

At the bottom level of the hierarchy, the PSDL implementation part gives the language in which the

22

....

,I

..,'

,J

module is implemented, and the name of the implementation module. The name of the implementation

module can be different from the PSDL name in cases where a reusable component is retrieved from the

software base. An Ada implementation for the maintain operator is shown below .

PROCEDURE maintain(temperature: IN real; estimated power: OUT real;
treatment_ finished: OUT boole~) IS

c: CONSTANT real:= 10.0;
BEGIN

IF temperature > 42.5 THEN estimated power := 0.0;
ELSE estimated _power:= c * (42.5 - te~perature);
END IF;
treatment_ finished := true;

END maintain;

This represents a conservative first design. It is very safe in the sense that it is very unlikely for the

temperature to go too high. The algorithm is based on a very simple physical model assuming the tumor

has no heat loss, so that the rate of temperature increase is proportional to the applied power level. The

model has the advantage of being very simple, so that it can be implemented quickly. It is not very accu-

rate, however, since the blood flow through the bra.in tissue will carry a.way excess heat. Because of this

oversimplification, the first version of the control algorithm may not ever apply enough power to reach the

hyperthermia temperature, viola.ting the startup time requirement.

This is typical of an iterated rapid prototyping effort. The initial version of the prototype will meet

some but not all of the requirements. It is often fastest to construct a system by successive approximation,

getting a quick skeleton in place that roughly approximates the required behavior, and then using that

skeleton as a basis for planning further efforts.

S.4. Evaluate the Constructed Prototype

A prototype is evaluated by running it through the preprocessor and then executing it on sample

input data using the PSDL interpreter and debugger. First the designer should test the prototype with

respect to the given requirements and fix any design faults. The designer can also answer some of the ques­

tions that motivated the prototyping effort at this point. Once the designer believes the prototype behaves

according to its specification, the prototype is demonstrated to the users or their representatives, who

23

identify faults in the observed behavior. These faults are recorded and traced back to the requirements.

The behavior of the prototype can also be measured to identify performance bottlenecks.

3.4.1. Test and Debug the Prototype

The PSDL execution support system should perform various kinds of static analysis and report cer­

tain classes of design errors. The most important of these are violations of timing constraints, which are

discovered by the static scheduler when it fails to find a valid schedule. Such errors can be caused either

by inconsistent constraints or by insufficient resources. The first kind of violation is a design fault, while

the second is an error in estimating the computing resources needed, and can often be corrected by allowing

the scheduler to use more processors. Other classes of errors detectable at this point include type incon­

sistency of interfaces, and modules without implementations. The last kind of error should be reported but

should not be fatal, triggering the automatic creation of a stub module that roughly simulates the missing

component by means of randomly generated output data of the appropriate types and a time delay con­

forming to the specified maximum execution time, if one is given. This should make it possible to simulate

important attributes of a partially completed prototype, providing feedback on critical questions early in

the process as possible .

As in any other activity, human error is possible in prototype construction. The designer must exe­

cute the prototype with a at least a minimal set of test data, to make sure that the behavior of the proto­

type conforms to the intentions of the design. The test cases produced in this stage should be saved, to

form the initial version of the demonstration to the user.

3.4.2. Answer Questions Based on Prototype Execution

The prototyping effort started with the identification of a set of questions. These questions can be

answered in part by the designer by choosing relevant input values and observing the behavior of the pro­

totype. Questions about the feasibility of performance constraints fall in this category. Sometimes the

questions involve clarification of concepts that are not precisely defined in the requirements. In such a

case, it is the designer's responsibility to propose a precise version of the concept, and to demonstrate to

24

....

J

the user how the designer's proposed definitions affect the behavior of the prototype. It becomes the user's

responsibility to examine the consequences of the definitions and current interpretation of the requirements,

and to judge whether the results are acceptable.

3.4.3. Identify Faults and Trace to Requirements

It is the user's responsibility to identify faults in the demonstrated behavior of the prototype, and to

communicate to the designer what aspects of that behavior are not acceptable and why. It is the designer's

responsibility to make sure that the full range of behavior which can be manifested by the prototype is

included in the demonstration. It is also the designer's responsibility to record the faults, and to trace

them to components of the prototype and to the requirements. The cross reference facilities of the design

database should aid this stage of the process.

3.4.4. Evaluate the Prototype Design

The example prototype is also evaluated by the designer to identify potential difficulties in the con­

struction of the deliverable version of the intended system. This can include gathering statistics about the

firing frequencies of the components of the prototype to identify potential performance bottlenecks, and

evaluating the appropriateness of the design concepts used in the prototype, taking the feedback from the

users into consideration. This evaluation may lead to new questions for the next iteration of prototyping,

and the identification of critical subsystems which are judged to be difficult to design or to be subject to

tight performance requirements with questionable feasibility. Analysis of the prototype can also provide a

cost estimate for the intended system.

In a serious prototyping effort for a hyperthermia system, it would be determined at this point that

the requirements on the temperature a.re difficult to meet, and that a careful detailed analysis of the techni­

cal problems involved is needed. The next step in such a case would be to bring in expert consultants in

the areas of biology, heat transfer, and control theory to develop an accurate simulation model of the ther­

mal properties of the human brain, and to propose and analytically investigate the stability and

effectiveness of a number of control algorithms. Several alternative versions of the control algorithm in the

25

maintain operator would be prototyped, and the behavior of each monitored during execution, to verify the

opinions of the experts.

3.5. Update the Requirements and Modify the Prototype

The designer has to negotiate with the user a set of extensions and modifications to the ·requirements,

based on the faults identified in the demonstration, and on cost and schedule estimates derived from the

prototype. This process is coupled with reinterpretation and redefinition of some of the informal concepts

appearing in the original requirements. IT such redefinitions are necessary, then another iteration of the

prototyping effort and another demonstration and user review is indicated.

In the hyperthermia example, an additional requirement results from the possibility of a premature

stop timer event for treatment time, indicating failure to meet the temperature tolerance requirement. This

possibility can be detected by execution of the initial prototype, which does not deliver a

treatment_ finished signal in less than one hour because it cannot maintain the hyperthermia temperature

at the required level. The situation is easily detected in a prototype demonstration, but it is easy to over­

look in other approaches to requirements analysis that do not involve computer aid. Further consideration

of the detected undesirable situation shows it could be due to either software or hardware malfunctions,

and that the absence of such a failure cannot be absolutely guaranteed. Consequently a new requirement is

needed to specify what "safe operation" means in the event of such a failure.

4. Supporting Environment

An automated support environment is essential for the rapid construction of prototypes. PSDL and

its prototyping method have been designed for use in an environment containing a software base manage­

ment system, a syntax directed editor with graphics capabilities, a design database, and execution support

system.

4.1. Software Base

The purpose of the software base management system is to store and retrieve reusable software com­

ponents [10]. In addition to implementation information, each component in the software base must have

26

.,

;

a. PSDL specification. The PSDL specification is organized as a. set of orthogonal attributes. Component

retrieval based on partial matches of these attributes must be provided by the software base management

system. A browsing capability similar to the one provided by the smalltalk environment, and a set of

operators for tailoring and instantiating generic components [5, 10] should also be provided.

We assume that a sufficiently large practical software base containing high quality reusable com­

ponents is available. It is important to have a relatively complete set of general purpose components for

performing the functions that are common to many systems, such as managing displays, sorting and

searching, parsing input strings, and managing lookup tables. Many of these functions can be effectively

encapsulated in a relatively small set of abstract data types. It is very important to provide generic ver­

sions of the reusable components, since it would otherwise be impossible to design with abstract data types

while relying on standard reusable components for performing common utility functions.

4.2. Designer Interface

The designer interface consists of a syntax directed editor for PSDL and a graphics tool for construct­

ing and displaying data flow diagrams. The syntax directed editor helps to speed up the process by elim­

inating syntax errors, automatically supplying keywords, and prompting the designer with a choice of legal

syntactic alternatives at each point. The graphics tool is a part of the syntax directed editor, which pro­

vides a graphical view of the data.flow diagram part of the PSDL implementation of a composite module.

It helps the designer visualize the relationships between the components of a decomposition by means of a

two dimensional data flow diagram, and provides a convenient way to enter and update the decomposition

information in the enhanced data flow diagram, which is part of a PSDL implementation of a component.

This capability is important because the text form of a data flow diagram is harder to understand than the

graphics form.

4.3. Design Database

The design data.base m the prototyping environment contains a PSDL design. Using a database

rather than a text file simplifies job of writing programs that analyze PSDL prototypes, and helps to pro-

27

vide a continuous cross referencing capability, by maintaining binary relations between pairs of syntactic

objects. This cross referencing capability is most important for requirements tracing, and is used mostly in

updating the requirements and adjusting the prototype to match. In this case the binary relationship is

satisfies-requirement. The design data.base must support retrievals of the form (1) given a requirement,

find all the PSDL components that realize it, or (2) given a PSDL component, find all of the requirements

it realizes.

4.4. Execution Support System

In order to construct and update a prototype rapidly, the execution support system for PSDL must

be efficient. Since prototype modifications a.re at lea.st as frequent a.s prototype runs in the expected usage

pattern for the execution support system, both preprocessing time and execution time must be given

roughly equal weight, making an interpretive implementation strategy preferable to compilation.

The execution support system should be able to save the state of a. computation, and to run several

alternative versions of a prototype from a given state without repeating the initial part of the computation.

This is important because the designer will be engaged in an interactive dialogue with the user, where a.

given aspect of the prototypes behavior is demonstrated, criticized, and alternatives a.re explored interac­

tively. Since it may have taken a long user interaction to arrive at the particular state to be examined, it

is not acceptable to require the designer and the user to go through many repetitions of that dialogue, or

even to incur the delay due to re-running the initial part of the dialogue from a. saved script. The need for

modifying the prototype in the middle of a. run implies the need for a dynamic loader that can be used in

the middle of a given execution of the prototype, and for some means for rapidly responding to changed

specifications for a component of the prototype. We assume there is a high quality software base of

sufficient size to accommodate most common variations on system behavior and a powerful software base

management system capable of retrieving reusable components efficiently.

The execution support system consists of a static scheduler, a dynamic scheduler, and a debugger.

An initial design for these components is described in [6]. The purpose of the static scheduler is to schedule

time for the computations with hard real-time constraints in such a. way that all of the timing constraints

28

•

,,..

will be guaranteed to be met. We use the standard approach of statically allocating time slots sufficient for

the worst case execution times of the operators. The abstract treatment of timing information is an impor­

tant property of the dataflow model since only the essential time orderings among the events in the compu­

tation are given. These time orderings act as constraints on the static scheduler, and allow the flexible

exploration of schedules for multi-processor configurations. The purpose of the dynamic scheduler is to

schedule the computations that do not have hard real-time constraints in time slots not used by the time

critical computations. The purpose of the debugger is to exercise the prototype, to collect statistics, and to

enable the designer to readily modify it to conform to new or modified requirements.

5. Conclusions

A strategy based on reusable software components is a promising practical approach to rapid proto­

typing. Good modularity is especially important in prototyping because of the need for making many

changes in a short time. A systematic method for prototyping is necessary but not sufficient for the rapid

construction of prototypes for large real-time systems. The method must be supported by a clear, simple,

and expressive computational model supported by a matching language and automated prototyping

environment, to make the process rapid. The same language must be used for designing the prototype and

for software base retrievals to realize the benefits of reusable software components. We have designed such

a model and language, as well as the kernel of such an environment. The language has been applied to a

number of examples, and appears to be quite effective for designing and analyzing real-time systems. Con­

struction of a prototype version of the environment is currently underway.

Better methods for organizing and retrieving reusable components from the software base are impor­

tant for the practical realization of the prototyping method presented here. There is no previous work on

retrieving components from a software base satisfying given specifications. Some promising directions

include software base organizations based on adaptive generalization hierarchies, and reusable components

retrieval based on specifications with a semantic canonical form. Computer-aided modification of proto­

type behavior is important for effective responses to user feedback during prototype demonstration sessions.

Previous theoretical results on merging software versions [I] can be extended and applied to this problem.

29

LIJ
U)

z
1.LI
0..
><
LIJ

t­
z
LI.I
:E
z
~
LI.I
>
0
t,

t­
~

a
LIJ
u
::)

a
0
a:
0..
Lu
a:

Efficient methods for implementing flexible interpreters with restarting checkpoints is another important

area for further investigation.

References

l.

2.

3.

4.

5.

6.

V. Berzins, "On Merging Software Extensions", Acta Informatica 29, 6 (1986), 607-619.

G. Bruno and G. Marchetto, "Process-Translatable Petri Nets for the Rapid Prototyping of Process

Control Systems", IEEE Trans. on Software Eng. SE-12, 2 (Feb. 1986), 346-357.

J. Cameron, "An Overview of JSD", IEEE Trans. on Software Eng. SE-12, 2 (Feb. 1986), 222-240.

K. Iwamoto and 0. Shigo, "Unifying Data Flow and Control Flow Based Modularization

Techniques", in Proceedings of the Fall COMPCON Conference, IEEE, 1981, 271-277.

Luqi, "Rapid Prototyping for Large Software System Design", Ph.D. Thesis, Computer Science

Department, University of Minnesota, 1986.

Luqi and V. Berzins, "Execution Aspects of Prototypes m PSDL", Tech. Rep.-86-2, Computer

Science Department, Univ. of Minnesota, 1986.

7. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", IEEE

Transactions on Software Engineering, to appear 1987.

8. A. K. Mok, "The Decomposition of Real-Time System Requirements into Process Models", IEEE

Proc. of the 198,I Real Time System, Symposium, Dec. 1984, 125-133.

9. A. Wasserman, P. Pircher, D. Shewmake and M. Kersten, "Developing Interactive Information

Systems with the User Software Engineering Methodology", IEEE Trans. on Software Eng. SE-12, 2

(Feb. 1986), 326-345.

10. R. T. Yeh, N. Roussopoulos and B. Chu, "Management of Reusable Software',, Proc. COMPCON,

Sep. 1984, 311-320.

30

.,r

Initial Distribution List

,
" Defense Technical Information Center 2

Cameron Station
,., Alexandria, VA 22314

Dudley Knox Library
Code 0142 2
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses 1
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 35
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

V aldis Berzins 35
Code 52Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 2
Arlington, VA 22217

31

"

.,;

..

