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AN INTEGRATED TOOL ENVIRONMENT 
FOR EMBEDDED REAL-TIME SOFTWARE 

Daniel Galik, LCDR USN 

Luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA. 93943 

ABSTRACT 

The goal of such an environment is the design of large 
real-time software systems. A key component of this 
automated prototyping system is a high level prototyping 
language called PSDL (Prototype System Description 
Language). The main goals of using the Computer Aided 
Prototyping System (CAPS) and PSDL are to construct a 
prototype with a high degree of module independence and to 
do so rapidly. CAPS will provide an automated environment 
with facilities for retrieving reusable Ada software 
components based on PSDL specifications. The PSDL language, 
its associated prototyping method, and the use of reusable 
components from a software base make highly automated 
software tools practical, resulting in an ability to 
effectively produce reliable and cost-efficient models of 
hard real-time software systems. 

Ada, hard 
prototyping, 
reusability 
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INTRODUCTION 

With the demand for hard real-time and embedded 

computer systems increasing, it is becoming critical that 

new approaches be proposed for the development of large 

software systems. Typically, these large embedded systems 

have similar requirements for critical real-time control and 

high reliability. Software engineers and end-users would 

benefit from an automated methodology which allows 

validation of design specifications and functional 

requirements early in the development life cycle. A fast, 

efficient, easy-to-use tool would increase designer 

productivity and also allow the user to feel more confident 

that the final product is feasible. The Computer Aided 

Prototyping System (CAPS) is a currently conceptualized tool 

which provides these capabilities. It implements the rapid 

prototyping concept utilizing a high level prototyping 

language called Prototype System Description Language (PSDL) 

[Ref. l]. This paper reviews some of the recent work which 

has been accomplished in implementing components of the CAPS 

system, and proposes that the use of PSDL and its associated 

automated environment is well-suited for the prototype 

modeling of hard real-time software systems. 

The goal of rapid prototyping is to develop an 

executable model of the intended system. When utilized 

during the early stages of the development life cycle, rapid 
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prototyping allows validation of the requirements, 

specifications, and initial design, before valuable time and 

effort are expended on implementation software. Rapid 

prototyping initially establishes an iterative process 

between the user and the designer to concurrently define 

specifications and requirements for the time critical 

aspects of the envisioned system. The designer then 

constructs a model or prototype of the system in a high 

level, prototyping language (PSDL). This prototype is a 

partial representation of the system, including only those 

critical attributes necessary for meeting user requirements, 

and is used as an aid in analysis and design rather than as 

production software [Ref. 2: pp. 2-5]. During 

demonstrations of the prototype, the user validates the 

prototype's actual performance against its expected 

performance. If the prototype fails to execute properly or 

to meet any critical timing constraints, the user identifies 

required modifications and redefines the critical 

specifications and requirements (see Fig. 1). 
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This process continues until the user and the designer both 

agree that the prototype successfully meets the time 

critical aspects of the envisioned system. A key aspect of 

the process is the feedback from the user to the designer. 

This iterative communication process should result in a 

model that should ultimately meet the intended requirements 

of the user. Following this final validation, the designer 

uses the prototype as a basis for the design and eventual 

hand coding of the production software. The design of large 

scale Ada software systems typically have particularly 

strict requirements on: 

* accuracy 

* safety 

* reliability 

These are difficult to meet without extensive prototyping. 

A rapid prototyping environment for creating and modifying 

an executable prototype is needed. The PSDL language, its 

associated prototyping method, and programming environment 

apply well to the modeling and design of hard real-time 

embedded Ada software systems. 

The Computer Aided Prototyping System (CAPS) relies on 

three major software tools (see Fig. 2) to assist the 

designer in constructing and executing the prototype. 

First, the computer-aided environment includes a software 

base management system which creates uniform retrieval 

specifications for Ada software modules in the software 
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database and later retrieves these reusable modules for 

assembling the executable prototype. Second, a graphics

capable user interface including a syntax-directed editor 

expedites the designers' data entry at a terminal and 

prevents syntax errors in the design. Finally, an execution 

support system demonstrates and measures the prototype's 

performance and analyzes the accuracy of design 

specifications (Ref. 11]. Rapid construction of the 

prototype relies on application of the rapid prototyping 

methodology along with a support environment which automates 

the steps involved. 

A~~ 
A~ 

~-t\r~JS~sta.lM 

Figure 2. MAJOR SOFTWARE TOOLS 
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PROTOTYPE S¥STEM DESCRIPTION LANGUAGE 

PSDL was designed as the primary connection between the 

designer and the components of the CAPS. By definiti,on, 

PSDL is a high-level prototyping language with special 

features appropriate for defining critical real-time 

constraints, and is applied at the specification or design 

stage [Ref. 4: pp. 3, 23]. PSDL was specifically designed 

for the modeling of embedded and hard real-time software. 

PSDL and CAPS use as an implementation language the language 

Ada, which the Department of Defense has mandated as the 

required language to be used for the design of hard real

time embedded systems. Ada supports key software 

engineering principles including software portability and 

reuse. However, it is not perfect, nor is it the ultimate 

in programming languages [Ref. 9]. Ada constructs do not 

support real-time modeling directly, while PSDL constructs 

do provide effective techniques and tools to specify timing 

constraints. PSDL has selected and transformed the good 

language features of Ada primitive constructs into a small 

and simple set of PSDL language constructs, which is 

convenient for the designer of the prototype model. It is 

simpler to describe the structure of a system and the 

relation between system components in PSDL than in Ada since 

PSDL allows a designer to express his thoughts and ideas 

clearly, easily, and significantly faster at a specification 

or a design level with notations based on abstractions. The 

6 

l, 



important points are that the software tools.and the 

prototyping method of PSDL lead to a well structured 

prototype and that the resulting PSDL prototype is 

executable. PSDL components can be mapped into Ada 

directly. The methodology involves the use of specification 

and prototyping languages during the early design phase, and 

then use a language such as Ada as the implementation 

language for the final product [Ref. 11]. Ada is a large 

and powerful programming language. It is a good underlying 

programming or implementation language for PSDL. However, 

it is too hard and too cumbersome to use as a design 

language directly. The mapping between PSDL and Ada and the 

use of reuseable Ada components are the keys to making PSDL 

prototypes executable and useful in large Ada projects 

[Ref. l]. 

In order to rapidly construct a prototype, PSDL aids the 

designer in systematically refining and decomposing each 

critical component into its lower level components. Uniform 

PSDL specifications associated with each lower level 

description act as templates for retrieving reusable Ada 

software components having similar specifications from the 

CAPS Software Database. Thus, the use of PSDL pfoduces a 

computational model consisting of the basic building blocks 

needed to decribe the abstractions and concepts of the 

hierarchically structured prototype. The PSDL execution 

support environment then verifies the design and the 
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validity of the prototype's real-time requirements. The 

actual execution of the prototype model demonstrates whether 

these critical timing constraints will perform in an 

acceptable manner that meets the timing constraints of the 

system as a whole (Ref. 1: pp. 2-7]. 

We will now present some of the technical details and 

major constructs of the PSDL language as developed and 

discussed by Luqi [Ref. l]. PSDL supports the prototyping 

of large embedded real-time systems by providing a simple 

computational model that is close to the designer's view of 

the system. PSDL is based on a computational model 

containing OPERATORS that communicate via DATA STREAMS. 

Each data stream carries values of a fixed abstract type, 

and is a communication link connecting exactly two 

operators. The operators may be either data driven or 

periodic. Periodic operators have traditionally been the 

basis for most real-time system design, while the importance 

of data driven operators for real-time systems is beginning 

to be recognized [Ref. 10]. The PSDL computational model is 

based on enhanced data flow diagrams, which are directed 

graphs with associated timing and control constraints. The 

nodes of the graph are operators and the arcs are data flow 

paths, (see Fig. 3, where the numbers 10 and 20 above the 

bubbles A, B, c, are the maximum execution times given in 

the requirements of the real-time prototype). 
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Figure 3. OPERATORS AND STREAMS 

bp~A 
o wtr~ rJ.. i o..= C 

or~B 
~3~v-ctol "c:1~0~ 
b., ct 

Each operator is either a FUNCTION or a STATE MACHINE. 

When an operator fires, it reads one input value from each 

incoming arc, and puts at most one computed output value on 

each outgoing arc. The firing of an operator can be 

triggered either by the arrival of a specified set of input 

data values or by a periodic timing constraint. The firing 

of an operator and the production of an output value can 

also be subject to conditional control constraints that 

depend on locally available data values. This limited 

facility for interconnecting operators is well matched to 

the needs of real-time systems, in which each operator must 

complete its task within a fixed time limit [Ref. 11]. 

Each data stream is either a DATAFLOW STREAM, which 

guarantees each data element that enters is delivered once, 
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or a SAMPLED STREAM, which guarantees a dat~ element can 

always be entered into or delivered from the stream on 

demand. For example, in Figure 3, operator B has a sampled 

stream input. A data flow stream acts like a fife queue 

whose length is bounded by one. A sampled stream acts like 

a memory cell which always contains the most recent data 

value that has been put into the stream, and which can be 

updated at any time. In PSDL the control and timing 

constraints of the operator receiving a stream determine 

whether the stream is of the dataflow or sampled variety, in 

a way that guarantees there will be data values present on 

all of the input streams of an operator whenever it fires 

[Ref. 12]. 

In PSDL each operator can have a maximum execution time 

and a maximum response time, which are treated as hard real

time constraints. Operators with real-time constraints are 

either periodic (synchronous) or sporadic (asynchronous). 

The firing frequency of each synchronous operator is 

specified by giving its period. The minimum period between 

firings is also specified for each sporadic operator, 

recording the necessary assumptions about worse case 

operating conditions with respect to asynchronous external 

events. The individual timing constraints of a real-time 

system are relatively easy to describe using the facilities 

described above. However, large real-time systems often 

contain a mixture of periodic and sporadic operators. The 

10 
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interactions between such timing constraints can be quite 

complex and very difficult to analyze without some type of 

computer aid [Ref. 11] 

PSDL operators have two major parts: the SPECIFICATION 

and the IMPLEMENTATION. The specification part contains 

attributes describing the form of the interface, the timing 

characteristics, and both formal and informal descriptions 

of the observable behavior of the operator. The attributes 

both specify the operator and form the basis for retrievals 

from a reusable component library or software base. The 

implementation part determines whether the operator is 

atomic or composite. Atomic operators have a keyword 

specifying the underlying programming language (Ada in our 

application), followed by the name of the implementation 

module implementing the operator. This name is filled in as 

the result of a successful retrieval from the software base, 

or is supplied by the designer in case the module cannot be 

constructed from reuseable components and must be coded 

manually by the designer. Timing constraints are an 

essential part of specifying real-time systems. This is 

especially true for embedded, hard real-time systems which 

have hardware interface and synchronlzation factors to deal 

with. The most basic timing constraints are given in the 

specification part of a PSDL module, and consist of the 

MAXIMUM EXECUTION TIME, the MAXIMUM RESPONSE . TIME, and the 

MINIMUM CALLING PERIOD. The maximum execution time is an 

11 



upper bound on the length of time between the instant a 

module begins execution and the instant when it completes. 

The maximum response time for a sporadic operator is an 

upper bound on the time between arrival of a new data value 

and the time when the last value is put into the output 

streams of the operator in response to the arrival of the 

new data value. The minimum calling period is a constraint 

on the environment of a sporadic operator, consisting of a 

lower bound between the arrival of one set of inputs and the 

arrival of the next set. More complicated timing 

constraints can be given in the implementation part, using 

event controlled timers, triggering conditions, and output 

conditions. 

Control of sporadic operators is signified by the PSDL 

token TRIGGERED BY. This token will be qualified by either 

the additional token ALL or SOME. TRIGGERED BY ALL 

indicates that an operator is to be fired when new data 

values have arrived on all the input streams to the 

operator. TRIGGERED BY SOME implies that the operator will 

be fired by the arrival of a new data value on any one, or 

possibly all, of the input streams to the operator. For 

example, in Figure 3, operator Bis triggered by a sample 

stream. The new data value arriving in either "b" or "d" 

will trigger B. Another PSDL construct that is useful in 

the development of real-time systems is TIMER. It is used 

for such things as measuring the length of time between two 

12 
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events, or the length of time the system or an operator has 

remained in a particular state. For example, in Figure 4, 

Tis defined as a TIMER (see below). 

to t, t'l. t1 t4 tt tt t, t 
t t t t 

stwvt st-op ~ ~tcwt 

()7{~ to t, t. t\ -\:q. t'" t~ t; 

T== 0 1 2 0 0 1 2 3 

Figure 4. TIMER EXAMPLE 

THE PSDL PROTOTYPING METHOD 

The rapid construction of a prototype in PSDL is made 

possible by the associated prototyping method and support 

environment. The support environment reduces the efforts of 

the designer by automating some of the tasks involved in 

prototype construction. A PSDL prototype is constructed as 

a hierarchy of subsystems, referred to as the components of 

the prototype. Each component is either a reuseable module 

available in the software base or is defined in terms of the 

PSDL computational model. The code of the prototype usually 
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cannot be used in the final implementation because the 

prototype is not a complete representation of the intended 

system. PSDL was designed to support an automated 

environment for rapid prototyping. The most important parts 

of the environment are a static scheduler, a translator, a 

dynamic scheduler, a software based management system, and a 

syntax directed editor. The editor can provide a user

friendly interface and significantly reduce the amount of 

effort required of the designer. A graphical interface with 

a high resolution display and a pointer device is convenient 

for manipulating the enhanced data flow diagrams. The 

purpose of the PSDL prototyping method and its support 

environment is the rapid construction of executable 

prototypes for large real-time systems. The PSDL 

prototyping method develops a hierarchically structured 

design by a perocess of stepwise refinement, guided by the 

computational model and the software base. ·At each level, 

the system at the center of attention is modeled as an 

enhanced data flow diagram (see Fig 5). 

At l,z..,v& ')'I.+ I : 
to 
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While the model is created mostly in a top-down fashion, the 

process is guided by a tool for browsing through the 

reuseable components in the software base. Each of the 

operators and each of the data types associated with the 

data streams is subjected to further refinement [Ref. l]. 

In the iterative rapid prototyping environment, the 

initial version of the prototype will meet some but not all 

of the requirements, and will provide an initial structure 

from which to work. A prototype is evaluated and tested 

through execution by the designer. Once the de-signer 

believes that the prototype meets all the requirements, the 

prototype is demonstrated for the user. Identified faults 

are reviewed along with the specifications, and the 

iterative process of refinement continues. The advantage of 

PSDL and its associated automated prototyping tool is that 

this iterative refinement process can proceed quickly and 

ultimately should result in a model of a more reliable 

system that the user agrees will meet the requirements. 

Hard real-time constraints of embedded systems can be more 

effectively modeled using PSDL. 

The execution of PSDL prototype models is made possible 

through the use of an automated Execution Support System 

(ESS) which consists of three component parts, the 

Translator (TL), the Static Scheduler (SS), and the Dynamic 

Scheduler (DS). We will first examine the implementation of 

the Translator [Ref. 6]. Its basic function is to convert 

15 



the rapid prototyping model PSDL source code· that is input 

by the designer into Ada source code. output from the TL is 

provided to the Ada compiler/linker along with some 

additional information from the SS to produce Ada object 

code. The object code is then exported to the operating 

system and can be run for test and demonstration purposes. 

The TL passes real time constraints through without 

translation. The TL creates code to implement the PSDL 

operators as procedures which will be called by the main 

subprogram/schedule created by the ss. 

The effort required to produce a translator for CAPS 

was largely dependent on making use of a tool which makes 

possible the automatic generation of translators. That tool 

is known as the Kodiyak system. It is an Attribute Grammar 

based tool that was developed by Robert M. Herndon as a 

doctoral dissertation [Ref. S]. To produce a translator 

with Kodiyak, the user must create a source file containing 

a listing of the terminal and non-terminal tokens of the 

source language to be translated. It also contains a 

listing of the valid attributes which each token may take 

on, as well as any precedence relationships which may be 

required to properly evaluate ambiguous cases in the 

grammar. Finally, the file contains a listing of attribute 

equations. These equations describe the relationship 

between the source language (in this case PDSL) and the 

target language (Ada). The Kodiyak translator generator 

16 
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system utilizes these equations to produce a translator in 

executable c code. The translator thus created is an 

executable program. By running this program with a text 

file in the source language as input, an output file is 

created which contains the equivalent code in the target 

language. 

The static Scheduler (SS) subsystem of the ESS alone 

represents the single most important component of CAPS as 

the basic requirement for computer-aided rapid prototyping 

of hard real-time systems (Ref. 7]. The SS specifically 

addresses only those PSDL component operators with critical 

timing constraints whose precise performance determines 

whether the system, as designed, will meet the required 

timing specifications. The primary purpose of the SS is 

creation of a static schedule which gives the precise 

execution order and timing of PSDL component operators with 

hard real-time constraints in such a manner that all timing 

constraints are guaranteed to be met (Ref. 2: p. 7). 

Assuming that such a schedule is feasible given the system 

specifications, the static schedule contains the pre

allocated starting time and execution time for each critical 

operator. This structure implicitly denotes the precedence 

relationships between the operators. Without the benefit of 

a Static Scheduler, execution of the prototype would rely on 

basic• control flow and processor scheduling as currently 

utilized in the majority of software systems. Rapid 

17 



prototyping in general would benefit from CAPS without a 

static schedule. However, the SS provides CAPS with the 

unique capability required to realize increased gains in 

designer productivity and system reliability during 

development of hard real-time systems. 

The third subsystem component of the ESS is the Dynamic 

Scheduler (DS). It operates at runtime along with the 

prototype model and is designed to control the execution of 

all non-critical operators within the program. A non

critical operator is one which is not subject to hard real

time constraints. The DS is invoked each time there is 

spare time within the static runtime schedule created by the 

SS. At that time the DS commences execution of the next 

available module in its set of operators and continues to 

invoke non-critical modules until the available time is 

exhausted. At that point, operation of the DS is 

interrupted and control is returned to the ss to continue 

the time critical operations. Future enhancements 

identified in addition to the current Dynamic Scheduler 

design would provide debugging capabilities and statistical 

information [Ref. 8]. 
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CONCLUSION 

This paper has presented a brief introduction and 

overview of PSDL and its associated automated prototyping 

tool, the Computer Aided Prototyping System. CAPS and the 

use of PSDL offer the potential of serving as a valuable 

software development tool specifically for hard real-time 

systems. The prototyping process is speeded up by 

automation and by reducing the conceptual burden of the 

analyst and prototype designer. PSDL was designed to 

interface to an automated support environment with a 

software base containing reusable software components. PSDL 

has constructs for recording timing constraints, for 

defining operator and data abstractions, and for specifying 

non-procedural control constraints. The most important 

aspects of real-time systems design are enforcing maximum 

response time and data synchronization constraints. PSDL 

handles both of these aspects well. The execution support 

system allows the designer to check the feasibility of a set 

of real time constraints by monitoring and evaluating the 

execution of the prototype model. PSDL offers a software 

tool that is a most practical way to support rapid 

prototyping of hard real-time software systems. This 

together with the features of PSDL for large scale software 

design make it a good candidate for inclusion in an advanced 

Ada programming environment. An experienced PSDL user 

should be able to construct a prototype significantly faster 

19 



than an experienced Ada user [Ref. 1]. We can validate the 

hard real time system constraints by executing the 

constructed prototype. Further research efforts are in 

progress to implement all the subsystem components of the 

automated support environment of PSDL. 
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