
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

An Integrated Tool Environment for
Embedded Real-Time Software

Galik, Daniel; Luqi
Naval Postgraduate School

D. Galik and Luqi, "An Integrated Tool Environment for Embedded Real-Time
Software", Technical Report NPS 52-88-008, Computer Science Department, Naval
Postgraduate School, 1988-.
https://hdl.handle.net/10945/65220

Downloaded from NPS Archive: Calhoun

..

.. .

NPSSZ-88-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AN INTEGRATED TOOL ENVIRONMENT
FOR EMBEDDED REAL-TIME SOFTWARE

Daniel Galik

LuQi

April 1988

Approved for public release; distribution is unlimited.

Prepared for:

National Science Foundation
Washington, DC 20550

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

K. T. Marshall
Acting Provost

This report was prepared for the Naval Postgraduate School. The work reported
herein was supported in part by the National Science Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

V
Chairman
Department of Computer Science

LUQ~
Associate Professor
of Computer Science

Released by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl~UTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) ..
NPS52-88-008

6a. NAME OF PERFORMING ORGANIZATION 6b . OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (If applicable)

52
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

8a. NAME OF FUNDING/ SPONSORING Sb . OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Agreement No. CCR-8710737 dated 27 Jul National Science Foundation 87

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Washington, D.C. 20550 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11 . TITLE (Include Security Classification)

AN INTEGRATED TOOL ENVIRONMENT FOR EMBEDDED REAL-TIME SOFTWARE (U)

12. PERSONAL AUTHOR(S) GALIK, Daniel, LUQI

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT ~Year, Month, Day) 115 PAGE COUNT
FROM TO April 1 88 26

16. SUPPLEMENT ARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if-necessary and identify by block number)

FIELD GROUP SUB-GROUP Ada, hard real-time system, embedded system, rapid
prototyping, design methodology, specification language,
reusability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The goal of such an environment is the design of large real-time software systems. A key
component of this automated prototyping system is ·a high level prototyping language called
PSDL (Prototype System Description Language). The main goals of using the Computer Aided
Prototyping System (CAPS) and PSDL are to construct a prototype with a high degree of
module independence and to do so rapidly. CAPS will provide an automated environment with
facilities for retrieving reusable Ada software components based on PSDL specifications.
The PSDL language, its associated prototyping method, and the use of reusable components
from a software base make highly automated software tools practical, resulting in an
ability to effectively produce reliable and cost-efficient models of hard real-time software
systems •

.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION
Ga UNCLASSIFIED/UNLIMITED GI SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

LUQI (408)646-2735 52Lq

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted . SECURITY CLASSIFICATION OF THIS PAGE
All other ed1t1ons are obsolete

~ U.S. Government Printing Office: 1911-606·2•3

UNCLASSIFIED

•

.
AN INTEGRATED TOOL ENVIRONMENT
FOR EMBEDDED REAL-TIME SOFTWARE

Daniel Galik, LCDR USN

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA. 93943

ABSTRACT

The goal of such an environment is the design of large
real-time software systems. A key component of this
automated prototyping system is a high level prototyping
language called PSDL (Prototype System Description
Language). The main goals of using the Computer Aided
Prototyping System (CAPS) and PSDL are to construct a
prototype with a high degree of module independence and to
do so rapidly. CAPS will provide an automated environment
with facilities for retrieving reusable Ada software
components based on PSDL specifications. The PSDL language,
its associated prototyping method, and the use of reusable
components from a software base make highly automated
software tools practical, resulting in an ability to
effectively produce reliable and cost-efficient models of
hard real-time software systems.

Ada, hard
prototyping,
reusability

KEYWORDS

real-time system,
design methodology,

1

embedded system, rapid
specification language,

INTRODUCTION

With the demand for hard real-time and embedded

computer systems increasing, it is becoming critical that

new approaches be proposed for the development of large

software systems. Typically, these large embedded systems

have similar requirements for critical real-time control and

high reliability. Software engineers and end-users would

benefit from an automated methodology which allows

validation of design specifications and functional

requirements early in the development life cycle. A fast,

efficient, easy-to-use tool would increase designer

productivity and also allow the user to feel more confident

that the final product is feasible. The Computer Aided

Prototyping System (CAPS) is a currently conceptualized tool

which provides these capabilities. It implements the rapid

prototyping concept utilizing a high level prototyping

language called Prototype System Description Language (PSDL)

[Ref. l]. This paper reviews some of the recent work which

has been accomplished in implementing components of the CAPS

system, and proposes that the use of PSDL and its associated

automated environment is well-suited for the prototype

modeling of hard real-time software systems.

The goal of rapid prototyping is to develop an

executable model of the intended system. When utilized

during the early stages of the development life cycle, rapid

2

•

' l
ii ,
)

l
)
t:
~

II
t:

•

prototyping allows validation of the requirements,

specifications, and initial design, before valuable time and

effort are expended on implementation software. Rapid

prototyping initially establishes an iterative process

between the user and the designer to concurrently define

specifications and requirements for the time critical

aspects of the envisioned system. The designer then

constructs a model or prototype of the system in a high

level, prototyping language (PSDL). This prototype is a

partial representation of the system, including only those

critical attributes necessary for meeting user requirements,

and is used as an aid in analysis and design rather than as

production software [Ref. 2: pp. 2-5]. During

demonstrations of the prototype, the user validates the

prototype's actual performance against its expected

performance. If the prototype fails to execute properly or

to meet any critical timing constraints, the user identifies

required modifications and redefines the critical

specifications and requirements (see Fig. 1).

(:!(.et~"""Vl'C b~•~ Co-'S'W\ACt
~~e..is - P""°totype.

j,

Ra.~~ l)"'°tota"p-e
ArJ..~s~

'

c,le.WM•~S"t'f°'-te - <;v'-te,1111
p'\.0-toty pe -

!.IMpte_.,..a"~

()l.oc.a.u o(r Ra.~~ Jae.~ Ow\d\ v,,;,,·~
3

This process continues until the user and the designer both

agree that the prototype successfully meets the time

critical aspects of the envisioned system. A key aspect of

the process is the feedback from the user to the designer.

This iterative communication process should result in a

model that should ultimately meet the intended requirements

of the user. Following this final validation, the designer

uses the prototype as a basis for the design and eventual

hand coding of the production software. The design of large

scale Ada software systems typically have particularly

strict requirements on:

* accuracy

* safety

* reliability

These are difficult to meet without extensive prototyping.

A rapid prototyping environment for creating and modifying

an executable prototype is needed. The PSDL language, its

associated prototyping method, and programming environment

apply well to the modeling and design of hard real-time

embedded Ada software systems.

The Computer Aided Prototyping System (CAPS) relies on

three major software tools (see Fig. 2) to assist the

designer in constructing and executing the prototype.

First, the computer-aided environment includes a software

base management system which creates uniform retrieval

specifications for Ada software modules in the software

4

(

~ ..,
J
:>
J
::>
t:
a..

"' t:

database and later retrieves these reusable modules for

assembling the executable prototype. Second, a graphics

capable user interface including a syntax-directed editor

expedites the designers' data entry at a terminal and

prevents syntax errors in the design. Finally, an execution

support system demonstrates and measures the prototype's

performance and analyzes the accuracy of design

specifications (Ref. 11]. Rapid construction of the

prototype relies on application of the rapid prototyping

methodology along with a support environment which automates

the steps involved.

A~~
A~

~-t\r~JS~sta.lM

Figure 2. MAJOR SOFTWARE TOOLS

5

.
" ,,. ..
iii ..
)

'

PROTOTYPE S¥STEM DESCRIPTION LANGUAGE

PSDL was designed as the primary connection between the

designer and the components of the CAPS. By definiti,on,

PSDL is a high-level prototyping language with special

features appropriate for defining critical real-time

constraints, and is applied at the specification or design

stage [Ref. 4: pp. 3, 23]. PSDL was specifically designed

for the modeling of embedded and hard real-time software.

PSDL and CAPS use as an implementation language the language

Ada, which the Department of Defense has mandated as the

required language to be used for the design of hard real

time embedded systems. Ada supports key software

engineering principles including software portability and

reuse. However, it is not perfect, nor is it the ultimate

in programming languages [Ref. 9]. Ada constructs do not

support real-time modeling directly, while PSDL constructs

do provide effective techniques and tools to specify timing

constraints. PSDL has selected and transformed the good

language features of Ada primitive constructs into a small

and simple set of PSDL language constructs, which is

convenient for the designer of the prototype model. It is

simpler to describe the structure of a system and the

relation between system components in PSDL than in Ada since

PSDL allows a designer to express his thoughts and ideas

clearly, easily, and significantly faster at a specification

or a design level with notations based on abstractions. The

6

l,

important points are that the software tools.and the

prototyping method of PSDL lead to a well structured

prototype and that the resulting PSDL prototype is

executable. PSDL components can be mapped into Ada

directly. The methodology involves the use of specification

and prototyping languages during the early design phase, and

then use a language such as Ada as the implementation

language for the final product [Ref. 11]. Ada is a large

and powerful programming language. It is a good underlying

programming or implementation language for PSDL. However,

it is too hard and too cumbersome to use as a design

language directly. The mapping between PSDL and Ada and the

use of reuseable Ada components are the keys to making PSDL

prototypes executable and useful in large Ada projects

[Ref. l].

In order to rapidly construct a prototype, PSDL aids the

designer in systematically refining and decomposing each

critical component into its lower level components. Uniform

PSDL specifications associated with each lower level

description act as templates for retrieving reusable Ada

software components having similar specifications from the

CAPS Software Database. Thus, the use of PSDL pfoduces a

computational model consisting of the basic building blocks

needed to decribe the abstractions and concepts of the

hierarchically structured prototype. The PSDL execution

support environment then verifies the design and the

7

validity of the prototype's real-time requirements. The

actual execution of the prototype model demonstrates whether

these critical timing constraints will perform in an

acceptable manner that meets the timing constraints of the

system as a whole (Ref. 1: pp. 2-7].

We will now present some of the technical details and

major constructs of the PSDL language as developed and

discussed by Luqi [Ref. l]. PSDL supports the prototyping

of large embedded real-time systems by providing a simple

computational model that is close to the designer's view of

the system. PSDL is based on a computational model

containing OPERATORS that communicate via DATA STREAMS.

Each data stream carries values of a fixed abstract type,

and is a communication link connecting exactly two

operators. The operators may be either data driven or

periodic. Periodic operators have traditionally been the

basis for most real-time system design, while the importance

of data driven operators for real-time systems is beginning

to be recognized [Ref. 10]. The PSDL computational model is

based on enhanced data flow diagrams, which are directed

graphs with associated timing and control constraints. The

nodes of the graph are operators and the arcs are data flow

paths, (see Fig. 3, where the numbers 10 and 20 above the

bubbles A, B, c, are the maximum execution times given in

the requirements of the real-time prototype).

8

...
z
,&,I

i
z
t
" >
j .,
(

J
al
J
:,
J
)
t: ..
" t:

I
~

'

\0

Figure 3. OPERATORS AND STREAMS

bp~A
o wtr~ rJ.. i o..= C

or~B
~3~v-ctol "c:1~0~
b., ct

Each operator is either a FUNCTION or a STATE MACHINE.

When an operator fires, it reads one input value from each

incoming arc, and puts at most one computed output value on

each outgoing arc. The firing of an operator can be

triggered either by the arrival of a specified set of input

data values or by a periodic timing constraint. The firing

of an operator and the production of an output value can

also be subject to conditional control constraints that

depend on locally available data values. This limited

facility for interconnecting operators is well matched to

the needs of real-time systems, in which each operator must

complete its task within a fixed time limit [Ref. 11].

Each data stream is either a DATAFLOW STREAM, which

guarantees each data element that enters is delivered once,

9

or a SAMPLED STREAM, which guarantees a dat~ element can

always be entered into or delivered from the stream on

demand. For example, in Figure 3, operator B has a sampled

stream input. A data flow stream acts like a fife queue

whose length is bounded by one. A sampled stream acts like

a memory cell which always contains the most recent data

value that has been put into the stream, and which can be

updated at any time. In PSDL the control and timing

constraints of the operator receiving a stream determine

whether the stream is of the dataflow or sampled variety, in

a way that guarantees there will be data values present on

all of the input streams of an operator whenever it fires

[Ref. 12].

In PSDL each operator can have a maximum execution time

and a maximum response time, which are treated as hard real

time constraints. Operators with real-time constraints are

either periodic (synchronous) or sporadic (asynchronous).

The firing frequency of each synchronous operator is

specified by giving its period. The minimum period between

firings is also specified for each sporadic operator,

recording the necessary assumptions about worse case

operating conditions with respect to asynchronous external

events. The individual timing constraints of a real-time

system are relatively easy to describe using the facilities

described above. However, large real-time systems often

contain a mixture of periodic and sporadic operators. The

10

"' en
z
"' IIL
)(

"' ...
z
"' ~
z
ct:
w
>
0
C)

...
C

0

"' u
::,
0
0
ct:
L
l&I
ct:

J

interactions between such timing constraints can be quite

complex and very difficult to analyze without some type of

computer aid [Ref. 11]

PSDL operators have two major parts: the SPECIFICATION

and the IMPLEMENTATION. The specification part contains

attributes describing the form of the interface, the timing

characteristics, and both formal and informal descriptions

of the observable behavior of the operator. The attributes

both specify the operator and form the basis for retrievals

from a reusable component library or software base. The

implementation part determines whether the operator is

atomic or composite. Atomic operators have a keyword

specifying the underlying programming language (Ada in our

application), followed by the name of the implementation

module implementing the operator. This name is filled in as

the result of a successful retrieval from the software base,

or is supplied by the designer in case the module cannot be

constructed from reuseable components and must be coded

manually by the designer. Timing constraints are an

essential part of specifying real-time systems. This is

especially true for embedded, hard real-time systems which

have hardware interface and synchronlzation factors to deal

with. The most basic timing constraints are given in the

specification part of a PSDL module, and consist of the

MAXIMUM EXECUTION TIME, the MAXIMUM RESPONSE . TIME, and the

MINIMUM CALLING PERIOD. The maximum execution time is an

11

upper bound on the length of time between the instant a

module begins execution and the instant when it completes.

The maximum response time for a sporadic operator is an

upper bound on the time between arrival of a new data value

and the time when the last value is put into the output

streams of the operator in response to the arrival of the

new data value. The minimum calling period is a constraint

on the environment of a sporadic operator, consisting of a

lower bound between the arrival of one set of inputs and the

arrival of the next set. More complicated timing

constraints can be given in the implementation part, using

event controlled timers, triggering conditions, and output

conditions.

Control of sporadic operators is signified by the PSDL

token TRIGGERED BY. This token will be qualified by either

the additional token ALL or SOME. TRIGGERED BY ALL

indicates that an operator is to be fired when new data

values have arrived on all the input streams to the

operator. TRIGGERED BY SOME implies that the operator will

be fired by the arrival of a new data value on any one, or

possibly all, of the input streams to the operator. For

example, in Figure 3, operator Bis triggered by a sample

stream. The new data value arriving in either "b" or "d"

will trigger B. Another PSDL construct that is useful in

the development of real-time systems is TIMER. It is used

for such things as measuring the length of time between two

12

l.

J

-- .
IJ
n
~
II
I..
(
LI

?:
.I
E
"

' II
•
) ,

Ci

,I

.
events, or the length of time the system or an operator has

remained in a particular state. For example, in Figure 4,

Tis defined as a TIMER (see below).

to t, t'l. t1 t4 tt tt t, t
t t t t

stwvt st-op ~ ~tcwt

()7{~ to t, t. t\ -\:q. t'" t~ t;

T== 0 1 2 0 0 1 2 3

Figure 4. TIMER EXAMPLE

THE PSDL PROTOTYPING METHOD

The rapid construction of a prototype in PSDL is made

possible by the associated prototyping method and support

environment. The support environment reduces the efforts of

the designer by automating some of the tasks involved in

prototype construction. A PSDL prototype is constructed as

a hierarchy of subsystems, referred to as the components of

the prototype. Each component is either a reuseable module

available in the software base or is defined in terms of the

PSDL computational model. The code of the prototype usually

13

LIJ
f/)

z
"' ~
X

"' ...
z
LIJ
~
z
0::
w
>
0
t,

...
C

C

"' u
:>
C
0
0::
~

"' a:

cannot be used in the final implementation because the

prototype is not a complete representation of the intended

system. PSDL was designed to support an automated

environment for rapid prototyping. The most important parts

of the environment are a static scheduler, a translator, a

dynamic scheduler, a software based management system, and a

syntax directed editor. The editor can provide a user

friendly interface and significantly reduce the amount of

effort required of the designer. A graphical interface with

a high resolution display and a pointer device is convenient

for manipulating the enhanced data flow diagrams. The

purpose of the PSDL prototyping method and its support

environment is the rapid construction of executable

prototypes for large real-time systems. The PSDL

prototyping method develops a hierarchically structured

design by a perocess of stepwise refinement, guided by the

computational model and the software base. ·At each level,

the system at the center of attention is modeled as an

enhanced data flow diagram (see Fig 5).

At l,z..,v& ')'I.+ I :
to

14

}

(1

While the model is created mostly in a top-down fashion, the

process is guided by a tool for browsing through the

reuseable components in the software base. Each of the

operators and each of the data types associated with the

data streams is subjected to further refinement [Ref. l].

In the iterative rapid prototyping environment, the

initial version of the prototype will meet some but not all

of the requirements, and will provide an initial structure

from which to work. A prototype is evaluated and tested

through execution by the designer. Once the de-signer

believes that the prototype meets all the requirements, the

prototype is demonstrated for the user. Identified faults

are reviewed along with the specifications, and the

iterative process of refinement continues. The advantage of

PSDL and its associated automated prototyping tool is that

this iterative refinement process can proceed quickly and

ultimately should result in a model of a more reliable

system that the user agrees will meet the requirements.

Hard real-time constraints of embedded systems can be more

effectively modeled using PSDL.

The execution of PSDL prototype models is made possible

through the use of an automated Execution Support System

(ESS) which consists of three component parts, the

Translator (TL), the Static Scheduler (SS), and the Dynamic

Scheduler (DS). We will first examine the implementation of

the Translator [Ref. 6]. Its basic function is to convert

15

the rapid prototyping model PSDL source code· that is input

by the designer into Ada source code. output from the TL is

provided to the Ada compiler/linker along with some

additional information from the SS to produce Ada object

code. The object code is then exported to the operating

system and can be run for test and demonstration purposes.

The TL passes real time constraints through without

translation. The TL creates code to implement the PSDL

operators as procedures which will be called by the main

subprogram/schedule created by the ss.

The effort required to produce a translator for CAPS

was largely dependent on making use of a tool which makes

possible the automatic generation of translators. That tool

is known as the Kodiyak system. It is an Attribute Grammar

based tool that was developed by Robert M. Herndon as a

doctoral dissertation [Ref. S]. To produce a translator

with Kodiyak, the user must create a source file containing

a listing of the terminal and non-terminal tokens of the

source language to be translated. It also contains a

listing of the valid attributes which each token may take

on, as well as any precedence relationships which may be

required to properly evaluate ambiguous cases in the

grammar. Finally, the file contains a listing of attribute

equations. These equations describe the relationship

between the source language (in this case PDSL) and the

target language (Ada). The Kodiyak translator generator

16

l

J

u

)

.
system utilizes these equations to produce a translator in

executable c code. The translator thus created is an

executable program. By running this program with a text

file in the source language as input, an output file is

created which contains the equivalent code in the target

language.

The static Scheduler (SS) subsystem of the ESS alone

represents the single most important component of CAPS as

the basic requirement for computer-aided rapid prototyping

of hard real-time systems (Ref. 7]. The SS specifically

addresses only those PSDL component operators with critical

timing constraints whose precise performance determines

whether the system, as designed, will meet the required

timing specifications. The primary purpose of the SS is

creation of a static schedule which gives the precise

execution order and timing of PSDL component operators with

hard real-time constraints in such a manner that all timing

constraints are guaranteed to be met (Ref. 2: p. 7).

Assuming that such a schedule is feasible given the system

specifications, the static schedule contains the pre

allocated starting time and execution time for each critical

operator. This structure implicitly denotes the precedence

relationships between the operators. Without the benefit of

a Static Scheduler, execution of the prototype would rely on

basic• control flow and processor scheduling as currently

utilized in the majority of software systems. Rapid

17

prototyping in general would benefit from CAPS without a

static schedule. However, the SS provides CAPS with the

unique capability required to realize increased gains in

designer productivity and system reliability during

development of hard real-time systems.

The third subsystem component of the ESS is the Dynamic

Scheduler (DS). It operates at runtime along with the

prototype model and is designed to control the execution of

all non-critical operators within the program. A non

critical operator is one which is not subject to hard real

time constraints. The DS is invoked each time there is

spare time within the static runtime schedule created by the

SS. At that time the DS commences execution of the next

available module in its set of operators and continues to

invoke non-critical modules until the available time is

exhausted. At that point, operation of the DS is

interrupted and control is returned to the ss to continue

the time critical operations. Future enhancements

identified in addition to the current Dynamic Scheduler

design would provide debugging capabilities and statistical

information [Ref. 8].

18

l

CONCLUSION

This paper has presented a brief introduction and

overview of PSDL and its associated automated prototyping

tool, the Computer Aided Prototyping System. CAPS and the

use of PSDL offer the potential of serving as a valuable

software development tool specifically for hard real-time

systems. The prototyping process is speeded up by

automation and by reducing the conceptual burden of the

analyst and prototype designer. PSDL was designed to

interface to an automated support environment with a

software base containing reusable software components. PSDL

has constructs for recording timing constraints, for

defining operator and data abstractions, and for specifying

non-procedural control constraints. The most important

aspects of real-time systems design are enforcing maximum

response time and data synchronization constraints. PSDL

handles both of these aspects well. The execution support

system allows the designer to check the feasibility of a set

of real time constraints by monitoring and evaluating the

execution of the prototype model. PSDL offers a software

tool that is a most practical way to support rapid

prototyping of hard real-time software systems. This

together with the features of PSDL for large scale software

design make it a good candidate for inclusion in an advanced

Ada programming environment. An experienced PSDL user

should be able to construct a prototype significantly faster

19

than an experienced Ada user [Ref. 1]. We can validate the

hard real time system constraints by executing the

constructed prototype. Further research efforts are in

progress to implement all the subsystem components of the

automated support environment of PSDL.

20

r

LIJ
Ln
z
I.I.I
~
)(

l&I

z
II.:
~
z
t

"' >
:) .,
(

::l

" J
::,
J
)
t: ...
II
t:

'

REFERENCES

1. Luqi. "Rapid Prototyping for Large Software System
Design". Ph.D dissertation, University of Minnesota,
1987.

2. Luqi. "Execution of Real-Time Prototypes". ACM First
International Workshop on Computer-Aided Software
Engineering, Cambridge, Mass. May 1987, Vol 2, pp. 870-
884; also Monterey: Naval Postgraduate School, 1987.
Technical Report NPS52-87-012.

3. Berzins, v. and Luqi, "Rapid Prototyping of Real-Time
Systems", to appear in IEEE Software 1988, also
Monterey Naval Postgraduate School, 1987, Technical
Report NPS52-87-00S.

4. Luqi and Berzins, Valdis. "Handbook of Computer-Aided
Software Engineering". "Languages for Specification,
Design, and Prototyping". van Nostrand Reinhold, 1988.

5. Herndon, Robert. "Automatic Construction of Language
Translators". Ph.D. dissertation, University of
Minnesota, 1988.

6. Moffitt, Charlie R. "A Language Translator for a
Computer Aided Rapid Prototyping System" , M. s. . thesis,
Naval Postgraduate School. Monterey, California. March
1988.

7. Janson, Dorothy M. "A static Scheduler for Hard Real
Time Constraints in the Computer Aided Prototyping
System (CAPS)", M.S. thesis, Naval Postgraduate School.
Monterey, California. March 1988.

8. Eaton, Susan L. "A Dynamic Scheduler for the Computer
Aided Prototyping System (CAPS)", M.S. thesis, Naval
Postgraduate School, Monterey, California. March 1988.

9. Booch, Grady. "Software Engineering With Ada",
Benjamin CUmmings Publishing Company, 1983.

10. MacLaren, L. "Evolving Toward Ada in Real Time
Systems", Proc. ACM SIGPLAN Notices Symp. on the Ada
Programming Language, November 1980, pp. 146-155.

11. Berzins, v. and Luqi, "Software Engineering With
Abstractions: An Integrated Approach to Software
Development Using Ada". Addison-Wesley 1988.

1

12. Luqi, Berzins, V. , and Yeh, R. , "A Pro·totyping
Language for Real-Time Systems", t.o appear in IEEE TSE,
1988. Also Technical Report 86-04, University of
Minnesota, 1986.

2

:..

Initial Dlatrlbutlon List

1' Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations 2
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations 2
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command 1
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center 1
NA VCOMMUNIT Washington

., Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command 1
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

Naval Sea Systems Command
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

National Science Foundation
ATTN: Dr. Kent Curtis, Director of Computer

and Computation Research
1800 G Street, NW
Washington, DC 20550

1

1

1

1

1

1

150

1

•

