
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

Automated Translation from a Prototyping
Language into Ada

Luqi; Moffitt, C. II
Naval Postgraduate School

Luqi and C. Moffitt II, "Automated Translation from a Prototyping Language into
Ada", Technical Report NPS 52-88-009, Computer Science Department, Naval
Postgraduate School, 1988.
https://hdl.handle.net/10945/65221

Downloaded from NPS Archive: Calhoun

7

NPSS2-88-OO9

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AUTOMATED TRANSLATION FROM
A PROTOTYPING LANGUAGE INTO ADA

C. Moffitt, II

LuQi

April 1988

Approved for public release; distribution is unlimited.

Prepared for:

National Science Foundation
Washington, DC 20550

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

K. T. Marshall
Acting Provost

This report was prepared for the Naval Postgraduate School. The work reported
herein was supported in part by the National Science Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

V
Chairman
Department of Computer Science

Associate Professor
of Computer Science

Released by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
i,. 1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
,

NPS52-88-009

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION ..
()

Naval Postgraduate School
(If applicable)

52
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

Ba. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

National Science Foundation Agreement No. CCR-8710737 dated 27 Jul 87
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Washington, D.C. 20550 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO . NO. NO ACCESSION NO.

11 . TITLE (Include Security Classification)

AUTOMATED TRANSLATION FROM A PROTOTYPING LANGUAGE INTO ADA (U)

12. PERSONAL AUTHOR(S} MOFFITT, C. II and LUQI

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month, Day) 115. PAGE COUNT
FROM TO APRIL 1988

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP rapid prototyping, attribute grammars, Ada, specification,
language translator, computer aided' software engineering

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Rapid prototyping with a computer aidea software prototyping system automates an important
part of the development effort. Designers develop software prototypes in Prototype System
Description Language (PSDL) at specification level. The automated translation described
in this paper provides the mapping from PSDL to Ada and generates a translator for the
execution •

.
,

>120 . DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

KJ UNCLASSIFIED/UNLIMITED (Kl SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

LUQI (408)646-2735 52Lq
DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other ed1t1ons are obsolete 0 U.S. Government Printing Office: 1915--101•243

UNCLASSIFIED

,,

•

AUTOMATED TRANSLATION FROM A PROTOTYPING LANGUAGE INTO ADA 1

C.Moffiu, n
Luqi

Naval Postgraduate School
Monterey, California 93943

ABSTRACT
Rapid prototyping with a computer aided software prototyping system automates an important part of the
development effort. Designers develop software prototypes in Prototype System Description Language
(PSDL) at specification level. The automated translation described in this paper provides the mapping from
PSDL to Ada and generates a translator for the execution.2

KEYWORDS

rapid prototyping, attribute grammars, Ada, specification, language translator, computer aided software
engineering

1. A Computer Aided Prototyping System (CAPS)

A CAPS has been proposed in "Rapid Prototyping for Large Software System Design" [Luqi, 1986].

The central objective of the system is to optimize the use of the programmer's time and improve the quality

of developed prototypes [Luqi Benins, 1988]. The objective of prototype development is to:

(1) provide a firm set of requirements and functional specifications which will guide
development of the production software. ·

(2) ensure agreement between customer and developer as to the requirements and expected
performance characteristics of the system

(3) generate a modular, skeletal structure of the software system which will serve to guide
further implementation

(4) shorten prototype development time and thus accelerate production system delivery

(5) assist in estimating the ultimate development costs of the finished system

The CAPS architecture consists of a set of major subsystems [Luqi Ketabchi, 1988]. Each subsystem

complements the others and forms a powerful tool for prototyping large and real-time software systems.

Figure 1 illustrates the relationship of the various subsystems.

1 Ada is a registered trademark of the United States Government Ada Joint Program Office.

2This research was 111pported. in part, by the National Science Foundation 1Dtder grant number CER-8710737.

1

USER INTERFACE -

,,
PROTOl'IPE SYSTEM
DESCRPTON LANGUAGE

,,
REWRITE SUBSYSTEM

, ,
H

SOFTWARE DESIGN EXECUTION SUPPORT
MANAGEMENT SYSTEM - SYSTEM

, ,

PROTOTYPE
- DATABASE -

SOFlWARE BASE

Figure 1. The overall structure of CAPS

2. "Prototype System Description Language (PSDL)"

The core of the CAPS is the Prototype System Description Language (PSDL) [Luqi Berzins Yeh,

1988]. It is optimized for use at the specification and design level[Luqi, 1988]. PSDL allows the user to

describe the system in tenns of its required or desired performance characteristics. Much ·or the detail of

implementation in a programming language is abstracted away. The questions emphasized are, what does

the system do?; and what performance parameters must be met? Special language constructs exist for

describing real-time systems. This data-flow based language encourages modular design of the prototype,

and by extension the eventual production version of the software system.

2

•

PSDL provides two kinds of system components, opentor and data stream, fm constructing software

prototypes.

(1) Operators

PSDL models a software system as a set of OPERA TORS communicating via DATA STREAMS

[Luqi, 1986]. In PSDL, Operators may be either atomic or composite. Composite operators can be decom­

posed into two or more operators, each of which may be composite or atomic. Atomic operators cannot be

further decomposed. PSDL envisions a hierarchical breakdown of the system into logical components

which are as simple as possible without becoming trivial. No special rules for decomposition are imposed.

This distinction allows the modeling of hierarchically structured programs as sets of operators. Operators

at higher levels in the program structure are composite while those at the lowest level of the program struc­

ture are the atomic operators. PSDL can therefore be used to support top down design sttategies.

Operators may be either data driven or periodic. Undez this schema, the firing of a data driven

operator is accomplished due to the presence of data in its' input data stream(s), while the firing of a

periodic operator is dependent upon timing constraints which must be met during program operation. The

data driven operator allows the modeling of systems which utilize data flow as a means of control vice the

more ttaditional timing control in real-time systems. In either case, when an operator fires, it reads one

data object from each of its' input streams and writes, at most, on object to each of its' output streams

[Luqi, 1986].

A third classification of operators is allowed. An operator may be either a function or a state

machine. This description relates to the values output from the operator. The output value of the function

type operator is dependent solely on the current set of values present on the input streams to the operator.

The output of the state machine type depends, not only upon the current set of input values, but also on

the values of a finite number of state variables internal to the operator.

(2) Data Streams

In PSDL, data streams represent a communication link between exactly two operators. One operator

is the producer of the data while the other is the consumer of the data. There are two types of PSDL data

stteams. One is the is a DATA FLOW STREAM the other is the SAMPLED STREAM. The DATA

3

FLOW S1REAM can be thought of as a first in first out (FIFO) queue ~le of holding, at most, one

data value. This data value may be used one time by the consumer operat(r. It may not be overwritten by

the producer. In effect, this stream guarantees deliver of the data value, and guarantees that each indivi­

dual data value will be read once and only once. The second type queue can also be thought of as a queue

of length one. In this case, however, the data value may be overwritten by the producer before the consu­

mer reads it, or may be read multiple times by the consumer, « not at all. In the sampled stream case,

delivery of an individual data value is not guaranteed. The choice of data stream is dependent upon the

control conditions specified for the operator.

2.1. "Operator Control in PSDL"

Two types of control are allowed in PSDL. The first is periodic. This is a common form of operator

control in which operators are fired by some regular schedule. Periodic control is supported in PSDL by

several constructs. The primary construct is PERIOD followed by a time value. Period implies that the

operator must fire sometime between the beginning of the period and some deadline which defaults to the

end of the period. Thus, PERIOD is an upper bound on the length of time allowed between any two firings

of a given operator. This is an explicit period.

The second type of operator is sporadic. Sporadic operators represent the second form of control

allowed in PSDL. Sporadic operators are triggered by the arrival of data on the input streams of an opera­

tor (Luqi, 1986). This form of control is what is referred to as Natural Data Flow (NDF) in the PSDL

schema. It is dependent on the flow of data through the prototype to cause the firing of operators. How­

ever, timing control may be introduced to this form of control through the use of special PSDL tokens.

These tokens are:

MAXIMUM EXECUTION TIME CMEn
MAXIMUM RESPONSE TIME CMRn
MINIMUM CALLING PERIOD (MCP)

A time value would be specified with each of the above tokens. These three language structures are

a major means of specifying real-time constraints for a system in PSDL. :MET is an upper bound on the

length of time which may elapse from the beginning of execution of a module to the end of the execution

of that module. :Miff has two different interpretations. The first applies to periodic operators. In this case,

4

.,
,,,

•

0

MRT is an upper bound on the time from the beginning of a period and the time when the last data has

been output onto the output stream of the operator. The second case for MRT applies to Sporadic opera­

tors. For the Sporadic operator, MRT is an upper bound on the elapsed time from the arrival of new data

on the input streams to the operator and the time when the last data value is placed on the output stream of

the operator. MCP is a lower bound on the elapsed time allowed between the arrival of one set of values

on the input streams of an operator and the arrival of the next set of values on the input streams. All opera­

tors may have MET. Sporadic operators may have MRT and MCP. Ha sporadic operator has an MRT it

must also have an MCP [Luqi, 1986].

NDF control of sporadic operators is signified by the PSDL token lRIGGERED BY. This token will

be qualified by either the additional token ALL or SOME. lRIGGERED BY ALL indicates that an opera­

tor is to be fired when new data values have arrived on all the input streams to the operator. TRIGGERED

BY SOME implies that the operator will be fired by the arrival of a new data value on any one (or possibly

all) of the input streams to the operator. The designer must specify which input streams the TRIGGERED

BY ALL/SO:ME consbllction refers to. He may specify a proper subset of the input streams in either case.

In this way, if an operator has multiple input streams, but only a few of them are critical to the firing of the

operator, the designer may so specify. Conditional firing of operators can be accomplished by the addition

of input or output predicates in the PSDL specification.

2.2. Timer

TIMER is a PSDL construct which is useful in the development of real-time systems. A timer is an

abstract state machine. In PSDL it is somewhat like a stopwatch. It has the primitive operations of

START, STOP, RUN, and RESET. It is used for such things as measuring the length of time between

two events, or the length of time the system or an operator has remained in a particular state. In the proto­

type CAPS, TIMER does not function in the same way as a clock construct for an operating system. It

does not provide normally direct control of operator firing. It can be used as a value for a PSDL input or

output conditional to act as a guard to the firing of an operator. It is primarily provided to collect statistics

about the prototype system.

5

2.3'. Exception

PSDL supports both normal and EXCEPTION data types. The PSDL EXCEPTION is a built in type.

It can be transmitted on any data stream as a data value. It can be suppressed by the use of input or output

conditionals. It can be handled in PSDL or in Ada. Some possible operations for the PSDL EXCEPTION

are:

{l) to create an exception with a given name

(2) to detect if a value on a data stream is:

a. an exception with a given name
b. nonnal (not an exception)

3. Execution Support System (ESS)

An Execution Support System (ESS) is required to execute the software prototypes in PSDL. An

important aspect of CAPS is the ability to demonstrate a functioning prototype of the system under design.

It is not sufficient to conveniently and abstractly describe a system. Once a system is described, it is

necessary to produce the system in executable fonn. The primary goal in CAPS is to automate as much as

possible the production of the executable code. Next, it is desirable to simulate the behavior of systems

which have hard real-time constraints. The ESS is designed to provide this facility.

The ESS consists of three interrelated parts, one of which is the subject of this paper. Figure 2 illus­

trates the relationship between the components of the ESS. Each element of the system and its' function

will be briefly described.

The Ada implementation of such aspects of real-time systems as PERIOD, MET, MCP, MRT, and

TIMER is not trivial. Ada DELAY by itself has no upper bound but is a lower bound on the delay

implied. The Ada DELAY and SELECT constructs cannot be used to implement these performance con­

straints directly for a system of operators. The use of the type DURATION allows the app~ximation of an

interval in a loop construct but it is not as flexible as needed. The use of TASKS in Ada provides more

capability through the use of conditional entry calls. The problem with these constructs is that they require

a good deal of effort on the part of the programmer to implement, and the program is operating at the

mercy of the Ada run-time system. If the designer is required to invest nearly as much effort into the crea­

tion of the prototype as the development of the system itself, there is no advantage to prototyping.

PSOL SOURCE FI.E

COMPLE,
LINK,
EXPORT

STATIC SCHEDULER
PRE-PROCESSOR

Figure 2. Execution Support System (ESS) structure

Furthennore, the Ada run time system will not guarantee that the prototype design behaves in exactly the

same manner as specified. A Static Scheduler (SS) and a Dynamic Scheduler (DS) are needed to ensure

that the prototype functions within the real-time consttaints applied to the design. These work in conjunc­

tion with the Translator to produce executable Ada programs from PSDL specifications.

3.1. Translator

The Translator (TL) converts PSDL source code into Ada source code. Output from the TL is pro­

vided to the Ada compiler/linker along with some additional infonnation from the Static Scheduler (SS) to

7

pr()duce Ada object code~ The object code is then exported to the opezating system and can be run for test

and demonstration purposes. The TI.. passes real time consttaints through without ttanslation. The TI..

creates code to implement the operators as procedures which will be called by the main

subprogram/schedule created by the SS. The 1L is responsible for instantiating a generic package which

models the data stream buffers between operators. The TI.. also ensures that all operator triggering condi­

tions are encoded correctly, and that the Trigger data type and the Exception data type are properly

encoded for the final model[Moffitt, 1988].

3.2. Static Scheduler

The SS examines the PSDL source file to locate all modules having real-time consttaints, and to

determine if any special precedence relations exist among the modules. The SS then generates the neces­

sary Ada code to implement the timing consttaints and the precedence relationships. The SS also generates

the main subprogram or task. The SS finally generates a schedule of operation for the program which takes

into account the worst case time schedule for all modules that have critical, real-time constraints such as

maximum execution time, minimum calling period, and minimum response time. This information is

encoded into the modules to enforce timing constraints at run time. Figure 3 illustrates the action of the

SS[Janson, 1988, O'Hern, 1988].

3.3. Dynamic Scheduler

The Dynamic Scheduler (OS) operates at runtime along with the prototype model. It is designed to

control the execution of all non-critical operators within the program. A non-critical operator is one which

is not subject to hard real-time constraints. The DS is invoked each time there is spare time within the

static runtime schedule created by the SS. At that time DS commences execution of the next available

module in its set of operators and continues to invoke non-critical modules until the available time is

exhausted. At that point, operation of the DS is interrupted and control is returned to the SS to continue

the time critical operations[Eaton, 1988].

8

V

Figure 3. Static and Dynamic Schedule Schema

4. Translator Generation

Time critical
operators must
be scheduled

Time available
for non-critical
operators

The Translator (TL) is created using an automated translator generator called KODIY AK. KODI­

Y AK was developed by Robert Herndon at the University of Minnesota as a doctoral dissertation [Hern­

don, 1988). It is available as a research tool and is quite effective. The system is based on Knuth's work in

attribute grammars [Knuth, 1968). It utilizes a version of Jalili's algorithm [Jalili, 1983) to evaluate the

semantic tree create the translator[Reps, 1983).

The TL implementation is straightforward. Figure 4 illustrates the process. The steps involved in

producing the translator are:

(1) Describe the source language (PSDL) grammar in AG form.

(2) Create mappings between the grammar of the source language (PSDL) and the target language

(Ada).

9

PSDL GRAMMAR

Figure 4. Translator Implementation Process

EXEOJTABI..E
TRANSLATOR

ATIRIIUTE GRAMMAR
N6J MAPPING BETWEEN
PSOLandAda

(3) Create attribute equations describing the mappings between the two languages.

(4) Combine the source language grammar description with the attribute ~uations into a text file

which can be processed by the AG tool.

(5) Process the text file with the AG tool to produce the executable translator

Once the executable translator is created, it can be given any source program in PSDL and will out­

put a source program in Ada. The essential difficulty is to specify the mapping between PSDL and Ada,

such that the results of translation will be correct, compilable Ada code which will faithfully implement

the system described in PSDL in Ada.

S. Mapping Between PSDL and Ada

It is necessary to consider how various major elements of the PSDL may best be implemented in

Ada. Once a satisfactory implementation strategy is adopted it will be possible to create the attribute equa­

tions required in the Kodiyak translator generator[Hemdon Berzins, 1988]. Thus, a translator can be

10

V

created which will empirically demonstrate the feasibility of the n and the ESS.

5.1. PSDL Operator

The PSDL Operator can be implemented by producing an Ada procedure. This procedure contains

code to implement any PSDL input or output conditional statements. It also contains code to check the

validity and availability of data for NDF control. Before presenting an example of this construction it will

be necessary to describe the implementation of the PSDL data streams.

5.2. PSDL Data Stream

There are two different type data streams in the PSDL schema. One is a FIFO queue while the other

is the sampled stream. Therefore, two different generic queue models are required. One of these receives

and transmits data without condition. This is the sampled stream, and will be referred to as a simple

queue. Each data value in the simple queue may either be read many times or not at all. The second queue

model will have a Boolean flag indicating whether or not it has been written since the last read operation or

whether it has been read since the last write operation. This is the FIFO queue. It is used for Natural

DataFlow Control (NDF) of operators. The Boolean flag is necessary since delivery at least once, but only

once, of each data value sent through the queue is required in natural data flow. If there is a violation of

the FIFO rule, then the Boolean flag will result in the queue raising an exception. There are two possible

exceptions. One will be identified as Underflow, and the other as Overflow. Underflow will be raised if

the consumer operator attempts to read the queue before it has been updated by the producer operator.

Overflow will be raised when the producer attempts to write to the queue before the consumer has read the

previous data value.

The translator must have some basis to select the appropriate queue for a given data stream. If an

operator contains the TRIGGERED BY ALL tokens then FIFO queues will be selected for the streams

listed following the ALL token. If the operator contains the 1RIGGERED BY SOME tokens then simple

queues will be selected for the data streams. A third condition is if the operator contains no 1RIGGERED

BY tokens. In this case simple queues will be selected. For example, in Figure 5, operator T has four

input streams. The specification for Tis, TRIGGERED BY ALL D,F,H. The translator will select FIFO

queues for streams D.F, and H. Stream G will be a simple queue. In the same figure, operator P has four

11

input streams. The specification for P is, TRIGGERED BY SOME R. In this case all data stteams will be

simple. Again in Figure 5, operator FF has two input streams. The specification for FF lacks a 1RIG­

GERED BY token. Therefore, all the streams are simple streams. Thus, if the operator specification

lacks the 1RIGGERED BY token, or contains the SOME token, the streams will be simple. If a stream is

not listed in the ALL specification it will be simple. Only when the operator contains the ALL token will a

FIFO queue be selected Note that it is the triggering conditions for the consumer operator that determine
\

the type data stream(s) that exist between any two operators.

The data streams are modeled as a generic package containing a queue procedure in Ada. This con­

struction is not sufficient. nie SS and DS have generated a schedule for the time critical operators and this

d
by all d,f,h

triggered by some r

(no triggered by token)

Figure 5. Queue selection based on the "1RIGGERED BY"
construct

12

'v

.J

j

I,

schedule is enforced to ensure real-time constraints are met. Some operators do not have time critical con­

sttaints. These operators run when none of the time critical opezators are enabled. It is possible that a time

critical operator is the consumer of data from a non-time critical operator. The time critical operator has

priority and is scheduled to run by the SS on some repetitive cycle. The non-time critical operator is fired,

as convenient for the DS, in the excess time in the main schedule. Suppose a non-time critical operator is

called and is attempting to write to the data stream, when it is interrupted by the DS in order to run a time

critical operator. Also suppose that the time critical operator is the consumer for the data from the non­

time critical operator. When the consumer attempts to read the queue, the results will be uncertain.

This difficulty can be overcome by making the generic queue into an Ada task with a high priority.

This task will be called a buffer task. The task is then enclosed as a generic package which can be generi­

cally instantiated as before. The difference is that the producer and consumer operators will use entry

calls to write to or read from the buffer. In this way, once the buffer task is called, whatever operation is

taking place on the buffer must be allowed to complete before an interrupt can take place. The operation

time for any buffer task should be very short, so there should be little time penalty to the scheduled opera­

tion of the program. On the other hand, buffer operation is protected from interruption and the operators

are unlikely to get uncertain results from reading them.

5.3. Buffer Selection

A problem which arises in buffer selection is illustrated in Figure 6. In this case we have the decom­

position of an operator into three lower level operators. The designer will enter a specification for both the

top level operator A and for the lower level operators BB, CC, and DD. Suppose operator A includes the

tokens TRIGGERED BY ALL A. Also suppose that operator BB does not contain the 1RIGGERED BY

ALL tokens. When the TL selects a buffer task for A, it will instantiate a FIFO buffer task to implement

A. For BB, it would select a sampled stream task to implement A'. Although, A and A'. carry the same

data, and they have not been implemented with the same type buffer. The TL does not check inheritance

rules. In operation data would be placed onto A and would then be passed to A' and into BB. The results

of this ttanslation will be uncertain. It may present no difficulty or may behave erratically. The user must

prevent this type of error by ensuring that operators which result from the decomposition of higher level

operators have the same triggering conditions at the input in order to prevent the buffer mismatch just

13

demonsttated. This .difficulty only arises 'for lower level buffers which mirror the input ibuffers of the

highest level operator of which they are a part. This is ttue because the type of buffer required ,at any point

in the system is determined by the triggering conditions of a consumes operator. Therefore, decomposition

·rules do not affect the specification requirements of operators CC and DD in Figure 6. However, if A is

TRIGGERED BY ALL A, then BB must be TRIGGERED BY ALL A'. It is a rule which the designer

must enforce at this point. A utility similar to lint for the C language could be developed to check for this

type inconsistency and incorporated into the ESS as an automatic part of the prototype translation, compi­

lation, and export facility.

5.4. State Variable Implementation by Burrer

A final issue in data stream implementation is PSDL state variables, designated by the token,

ST A TES INITIALLY. Each state variable will have its own buffer task. An example is seen in Figure 6.

a

A d

~

a' - BB b - oc - -

Figure 6. Buffer Selection Conflicts

14

-

e

C ..._ ..

Top level OPERATOR
as a function

•

[D e'

Second level
decomposition

cc is a STATE MACHINE

I

Operator CC is a state machine. It has a state variable which is transmitted along buffer task D. The value

of the data type traveling along D must have some initial value. That value is found in the ST A TES INI­

TIALLY statement in PSDL. To insure the correct initial value for the state variables in the program,

buffer task D must be loaded with the correct value prior running the prototype. An Ada procedure called

PRELOAD will be produced by the TL for all PSDL prototypes. It will contain a series of statements to

put the correct initial values into the appropriate buffer tasks. If there are no state variables in the pro­

gram, the procedure will simply be empty. The SS will always call PRELOAD before the execution of

any schedule it creates for the prototype. The preloading procedure will not be part of the schedule proper.

It will run one time only to initialize the state buffers and will not be run again unless the prototype pro­

gram is restarted from the beginning.

S.S. Timers

A TIMER module must be implemented. The purpose of TIMER is to measure elapsed time

between two events, the length of time an operator has been in a particular state, or to act as a conditional

guard for operator firing. The four primitive operations for the timer are START, STOP, RESET, and

READ. It will use the Ada standard package CALENDAR to access the system clock. The timer will have

a Boolean run switch, a starting point, and a grand total.

At ST ART, the Boolean run switch will be set to true, the system clock read and the value of the

reading stored as the initial starting point At some time later a READ is performed. The system clock will

be read and the value of the initial reading subtracted from it to calculate the elapsed time. The initial

value will not be changed. Elapsed time is added to the grand total and output At STOP, the system

clock is read and the elapsed time is added to grand total. The nm switch is also set to false. At a subse­

quent ST ART, the system clock will be read and used as the new starting point. The grand total will not

be disturbed. The RESET operation will stop the timer and set the grand total to zero. TIMER is an Ada

generic package, which can be instantiated wherever needed.

6. Generating Translator using the Mapping and the Translator Generator

The translator is generated with an attribute grammar based software tool[Hemdon, 1985], translator

generator, Kodiyak. The translator generated by Kodiyak is capable of scanning an input file written in a

15

specific language, parsing it, locating syntax ermrs, and if no ermrs are present, producing a ttanslation in

an output text file. The text file output can be a source program in another language. In the present case

the input language is PSDL and the output language is Ada. Kodiyak requires a description of the syntax

of PSDL together with attribute equations. The attribute equations map PSDL constructs to the constructs

of target language Ada according to the mappings derived in the previous section. The actual production

of the executable file is largely accomplished by LEX and Yacc in the UNIX. Kodiyak adds the Kodiyalc

language which is used to describe the input language in AG form. Figure 7 illustrates the various portions

of the input file for the PSDL to Ada ttanslator.

The first section of any Kodiyak file is the Lexical Definition section. In this section all the lexical

symbols which make up the input language are defined. The %define line allows the definition of a vari­

able name, DIGIT, which can be used in subsequent lexical definitions. All terminal symbols in the

language are defined in this section. These are the tokens which the ttanslator will expect to detect in the

input file.

The next section of the Kodiyak file is the attribute declarations section. Here the attributes which

non-terminal and terminal symbols may have are identified. In Figure 7 the non-terminal, operator_spec, is

assigned one attribute, tm, which is type string. Kodiyak allows attributes to be either string or integer

types. All attributes of the present translator are of type string since the objective·is to convert a text file of

PSDL into a text file of Ada.

Attributes of terminal symbols are restricted. In Figure 7, the terminal ID has the attribute, %texL

This is a special attribute for terminal symbols, identified in Kodiyak by the % marker. It is a string type

and is initialized to the text matched by the terminal symbol.

The final portion of the Kodiyak input file is the attribute grammar itself. Here the syntax and

semantics of the ttanslation are specified. The BNF rules of the PSDL are defined and each is associated

with an equation defining the attributes and their relation to the target language.

The brief discussion here does not reveal the full power and capabilities of Kodiyak. However, it

should illustrate that Kodiyak provides simple yet effective means to accomplish ttanslator generation.

16

LEXICAL DEFINITION SECTION:

Terminal Symbols

) %define ALPHA :[a_zA_Z]
%define DIGIT :[0-9]
OPERATOR :operatorlOPERA TOR
MAX_EXEC_TIME :maximum execution timelMAXIMUM EXECUTION TIME

A 'ITRIBUTE DECLARATIONS SECTION:

Grammar Symbols AttribUles

(trn: string; } ; operator_spec
max_exec_time
ID

(trn: stting; } ;
(%text string;) ;

ATTRIBUTE GRAMMAR SECTION:

Grammar Symbols Attribute Equations

time
:NUMBER unit

(time.trn = [NUMBER. %text,unit.trn];)

unit
:MICROSEC

(unit.trn = ""; }
IMS

(unit.tm = "000"; }

Figure 7. Sample From the Input File For the Kodiyak

7. Conclusions

Currently the CAPS is under development as a series of separate components. Conceptual work has

been completed for the design of both the Static and Dyn~ic Schedulers. Implementation of the concep­

tual designs must be undertaken. The feasibility of the Translator has been demonsttated empirically. The

Translator requires a rigorous, formal definition of the relationship between PSDL and Ada syntax. This

definition must then be applied to the attribute equations in the Translator to achieve general applicability

17

and the.fullest use of PSDVs and Ada's capabilities.

The present version of Kodiyak used to generate the translator is an excellent tool. It generates an

effective translator. However, some improvement in the ttanslator generator is needed. The error mes­

sages returned to the user when the translator is applied to a syntactically incorrect input file cryptic at best

and need improvement The simple statement "syntax ezror" is not particularly ·helpful in debugging ·the

input PSDL file. Efforts to integrate the various parts of the CAPS are being deferred as development

proceeds on Temaining portions of the system. At present work has commenced on ·the Software Base

Management System at the conceptual and, to a limited degree, the empirical levels. Work is underway to

develop the syntax directed editor for the system and portions of the graphic interface. As the remaining

portions of the system are developed work will be required to integrate all the individual tools into an

integrated prototyping environment.

The automated facility to translate a prototyping language into an underlying implementation

language is feasible. and is a working reality.

18

)

BIBLIOGRAPHY

Luqi, Ketabchi, M. A Computer Aided Prototyping System, IEEE Software, March 1988, pp. 66-72.

Luqi, Berzins, V., Yeh, R. A Prototyping Language/or Real-Time Systems, to appear in IEEE TSE, 1988.

Also Technical Report 86-04, University of Minnesota, 1986.

Eaton, S. An Implementation Design of a Dynamic Scheduler for a Computer Aided Prototyping System,

M.S. Thesis, Naval Postgraduate School, March 1988.

Herndon, R. Automatic Construction of Language Translators, Ph.D. dissertation, University of Min- .

nesota, 1988.

Herndon, R. The Incomplete AG User's Guide and Reference Manual, Technical Report 85-37, University

of Minnesota, 1985.

Herndon, R., and Berzins, V. AG: A Language Based on Attribute Grammars, to appear in IEEE TSE,

1988.

Janson, D. A Static Scheduler for Hard Real-Ti~ Constraints in The Computer Aided Prototyping System,

M.S. Thesis, Naval Postgraduate School, March 1988.

Knuth, D. Semantics of Context-Free Languages, Math. Syst. Theory 2,2, June 1968, pp. 127-145.

Jalili, F. A General Linear-Time Evaluator for Attribute Grammars, SIGPLAN Notices, Vol. 18, No. 9,

September 1983, pp. 35-44.

Luqi. Rapid Prototyping I or Large Software System Design, Ph.D. dissertation, University of Minnesota,

1986.

Luqi. Specification Languages in Computer Aided Software Engineering, to appear in Proceedings of

IEEE Software Design and Network Conference, Santa Clara, CA, April 1988.

Luqi, and Berzins, V. Rapid Prototyping of Real-Time Systems, to appear in IEEE Software, 1988. Also

..., Technical Report NPS 52-87-005.

Moffitt, C. A Language Translator For a Computer Aided Rapid Prototyping System. M.S. Thesis, Naval
~

Postgraduate School, March 1988.

19

O'Hem, J. A Conceptual Design of a Static ScMdukr for Hard Real-Ti~ Systems. M.S. Thesis, Naval

Postgraduate School, March 1988.

Reps, T. Generating Language Based Environments, (ACM doctoral di~on award; 1983). Amherst

University of Massachuset~, 1983.

20

• l,,,_

Initial Distribution List

Defense Technical Information Center 2
Cameron Station

I
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations 2
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations 2
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command 1
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center 1
NAVCOMMUNIT Washington
Washington, D. C. 20363-5100

Space and Naval Warfare Systems Command 1
,I

Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

Naval Sea Systems Command
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

National Science Foundation
ATTN: Dr. Kent Curtis, Director of Computer

and Computation Research
1800 G Street NW
Washington, DC 20550

1

1

1

1

1

1

150

1

..

(/

