
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

Knowledge Base Support for Rapid Prototyping

Luqi
Naval Postgraduate School

Luqi, "Knowledge Base Support for Rapid Prototyping", Technical Report NPS
52-88-016, Computer Science Department, Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65222

Downloaded from NPS Archive: Calhoun



I 

NPS52-88-016 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

KNOWLEDGE BASE SUPPORT FOR RAPID PROTOTYPING 

LUQI 

July 1988 
Approved for public release; distribution is unlimited. 
Prepared for: 
Naval Postgraduate School 
Monterey, CA 93943 
National Science Foundation 
Division of Computer and Computation Research 
Washington, D. C. 20550 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral R. C. Austin 
Superintendent 

H.Shull 
Provost 

The work reported herein was supported in part by the National Science Foundation 
and the Naval Postgraduate School. 

Reproduction of all or part of this report is authorized. 

This report was prepared by: 

Reviewed by: 

ROBERT B. MCGHEE 
Chairman 
Department of Computer Science 

LUQI~ 
Assistant Professor 
of Computer Science 

Released by: 

 
Dean of Information 
and Policy Science 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS 

UNCLASSIFIED 
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl~UTION / AVAILABILITY OF REPORT 

Approved for public release; distribution 
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER($) 

NPS52-88-016 

6a~ NAME OF PERFORMING ORGANIZATION 6b . OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION 
Naval Postgraduate School (If applicable) 

52 
Naval Postgraduate School 

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

Monterey, CA 93943 Monterey, CA 93943 

Sa. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 

Naval Postqraduate School 
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

PROGRAM PROJECT TASK WORK UNIT 

Monterey, CA 93943 ELEMENT NO. NO. NO. ACCESSION NO. 

11 TITLE (Include Security Classification) 

KNOWLEDGE BASE SUPPORT FOR RAPID PROTOTYPING (U) 

12. PERSONAL AUTHOR(S) 
LUQI 

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 115 . PAGE COUNT 
Summary FROM 87 Oct TO 88 AEr 1988 June 15 

16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

FIELD GROUP SUB-GROUP 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

The knowledge base for rapid prototyping consists primarily of reusable software compo-
nents. This paper discusses expert systems for retrieving and adapting reusable component~ 
eeting a given specification. Such components can be assembled into an executable proto-
type by a computer-aided prototyping system acting as an assistant to a human prototype 
designer • 

. 

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 

tJl UNCLASSIFIED/UNLIMITED ia SAME AS RPT. 0 DTIC USERS UNCLASSIFIED 
22a. NAME OF RESPONSIBLE INDIVIDUAL 2fl.d§1f 6~~~21/?f~ude Area Code) 122c. o~2~qSYMBOL LuQi 

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE 
All other editions are obsolete 

Q U.S. Government Printing Office: 1986--606•243 

UNCLASSIFIED 





Knowledge Base Support for Rapid Prototyping 

Luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

ABSTRACT 

The knowledge base for rapid prototyping consists primarily of reusable software components. 
This paper discusses expert systems for retrieving and adapting reusable components meeting a 
given specification. Such components can be assembled into an executable prototype by a 
computer-aided prototyping system acting as an assistant to a human prototype designer. 

1. Introduction 

A software prototype is an executable pilot version of a software system. Prototypes are used to 

clarify requirements by demonstrating selected aspects of the proposed system behavior to the customer. 

Since prototypes are used in the initial negotiations leading to a software development project, they must be 

easy to construct and adapt to requirements changes. The prototyping language PSDL [9] and the associ

ated computer-aided prototyping system [8] have been developed to make this possible. PSDL nas been 

designed for prototyping large systems with real-time constraints, and can be used to express both black

box descriptions of systems and decompositions into networks of simpler operators communicating via 

data streams. The associated prototyping methodology relies on reusable software components drawn from 

a software base to speed up prototype construction [7]. In addition to the software base, the computer

aided prototyping system contains a translator for adapting and interconnecting components, schedulers for 

meeting real-time constraints, and interfaces for entering design decisions [5]. In this paper we discuss the 

knowledge base of the computer-aided prototyping system and show how expert system technology can be 

applied to the software base management subsystem, which is responsible for finding reusable software 

components with specified properties. Knowledge-based approaches to the development of software by 

means of transformations are described in [l, 3, 4]. 

We have focused on interactive systems for computer-aided prototyping rather than on completely 

automated application generators. Computer-aided prototyping differs from application generators by 

addressing a open-ended class of problems. Application generators are usually restricted to a fixed set of 

problems in a fixed application domain, and often have constrained problem description languages capable 

1 



of describing only the problems in that fixed set The knowledge base of an application generator contains 

algorithms spanning the fixed set of problems along with rules for combining those algorithms to create 

programs corresponding to sentences in the problem description language. Such approaches can be useful 

in areas where all aspects of the user's problems can be anticipated by the designers of the knowledge base. 

Prototyping is often applied in novel or poorly understood domains, in which it is impossible to anti

cipate all of the customer's problems in advance. An important goal of a prototyping effort is to make 

unanticipated aspects of the customer's problem surface at the early stages, to enable more effective plan

ning and ensure the detailed design and implementation effort will be spent on the most important direc

tions. The construction of completely automated systems for solving open-ended problems requires pro

gress on currently unsolved research problems, making interactive systems attractive for near-term applica

tions. Consequently, the computer-aided prototyping system has been designed to act as an assistant to a 

human expert on software design. 

It is desirable to automate the process of managing the reusable components in the software base 

because this frees the human designer from the burden of remembering what software components are 

currently available. This can be a significant aid to the designer because the number of components in the 

software base can be very large. Expert system technology is appropriate for the problem because the 

number of useful software components is so large that it is impractical to store them all explicitly. A more 

practical approach is to store a representative subset and to provide rules for generating related com

ponents. The retrieval of reusable components from a software base is a difficult search problem in a very 

large space. Exhaustive searching is impractical because the space is much too large. Complete algo

rithmic solutions to the retrieval problem are unlikely because program equivalence and specification 

equivalence are both undecidable problems if the programming and specification languages are strong 

enough to be expressive. These considerations suggest using heuristic search methods, which are a com

mon component of expert systems. 

The designer uses the computer-aided prototyping system as follows. The requirements are obtained 

from the customer as written documents, with extensions and clarifications provided in response to the 

designer's questions and demonstrations of the prototype. The designer proposes a system interface con

sistent with the requirements, or makes an adjustment based on customer feedback, and records the 

2 



resulting specification in PSDL. The specification is submitted to the software base management system, 

which attempts to retrieve or adapt available reusable components to meet the specification. If this is not 

possible, than the designer must decompose the system into a network of simpler components using PSDL, 

until all of the components can be provided by the software base. This is analogous to the interaction 

between a mathematician and an automatic theorem proving program, where the mathematician proposes 

lemmas as intermediate steps if the main theorem is too difficult to be solved by the automatic procedure in 

a reasonable amount of time. 

2. Retrieval Strategies 

The purpose of the software base management system is to retrieve reusable software components 

for meeting a given specification with less effort on the part of the designer than it would take to code the 

components manually. Time delay is an important factor in the effort required to use the system. It is 

valuable to be able to produce answers with little perceptible delay, because this avoids disturbing the flow 

of the designer's thought processes. Since searching a large space can take appreciable amounts of time, a 

practical design should incorporate several search strategies that are ordered by speed. Those that can be 

applied with a small perceptible delay should be applied while the designer waits, and if they succeed, an 

answer should be reported immediately. If the fast methods fail, then the designer should be notified that 

the retrieval has been spooled, indicating an appreciable delay is in order. At that point the designer has 

the option of canceling the request and performing a manual decomposition immediately, or letting it con

tinue and shifting to a different part of the problem. The spooled parts of the retrieval can operate in the 

background, and can be transferred to idle workstations if a network of machines is available. A natural 

working style with such a system is to refine prototypes in a breadth-first order, incorporating the results of 

the fast retrievals immediately and allowing spooled retrievals to run until the next refinement cycle comes 

back to the same part of the prototype. 

The fastest and most superficial search strategy is based on exact matches on the component 

specifications. To facilitate retrievals based on exact matching, the specifications of a component are nor

malized, or transfonned into a standard fonn before being entered into the system [6]. This process 

reduces variations in the representation of equivalent specifications, increasing the effectiveness of syntac

tic matching. Specifications are nonnali2ed for retrieval requests and for each component entered into the 

3 



software base. Components are indexed based on their normalized specifications, so that exact match 

searches can be performed quickly. 

The retrieval strategies based on inexact matches and transformations are much more time consum

ing, so that it is important to apply these strategies to relatively small portions of the software base. For 

this reason, the software base is partitioned based on the values of several categorical properties, which are 

described in more detail in the next section, under the "category" faceL The partition relevant to a given 

retrieval request is identified based on the values of these properties, and the components in the partition 

are subjected to a "best first" heuristic search that attempts to create a match by applying various transfor

mations. This can be done by means of an agenda mechanism similar to the one used in the AM system 

[2]. 

The knowledge in the knowledge base of the computer-aided prototyping system consists of two dif

ferent kinds of information: descriptions of reusable software components, and rules for combining or 

adapting reusable components. This knowledge is described in more detail in the next two sections. 

3. Declarative Knowledge 

The declarative knowledge in the knowledge base consists primarily of reusable software com

ponents. This knowledge is most naturally organized as a frame system [10] where each frame 

corresponds to a software component. This can be compared to other applications of frame systems such 

as natural language understanding, where frames represent stereotypical situations, image analysis, where 

frames represent different viewpoints of a scene, or the exploration of mathematical systems, where frames 

represent mathematical concepts [2]. 

The frames in a frame system have a common set of slots or facets, which have the same interpreta

tion for each frame in the system. A set of facets important for managing a set of reusable software com

ponents is described below. 

Specification 

This facet contains a PSDL specification of the software componenL Retrieval is based on the 

specification, rather than on any attempt to analyze the code in the implementation. 

4 



Implementation 

This facet contains the code for the software component We maintain only one implementation for 

each elementary specification. This is consistent with our principle of specification-based retrieval: 

if there is a significant difference between two modules, then the specifications of the modules 

should describe that difference, so that the retrieval mechanisms can be sensitive to it If there is no 

significant difference, then it is a waste of space to keep both modules. Differences in performance 

are sometimes important, and hence must be reflected by the specifications. The implementation of a 

non-elementary specification is a list of other modules which satisfy the specification (see "generali

zation below). 

Category 

The category facet contains several properties used for partitioning the software base into disjoint 

subspaces. This partitioning is used for improving the performance of the system, by limiting the 

part of the knowledge base that must be searched. The categorical properties include the program

ming language used for the implementation, the operating system it runs under, the component type 

(function, state machine, or data type), and the maximum execution time. The maximum execution 

time is a number that induces an ordering on each partition, and is used to limit retrievals to only 

those modules capable of meeting a given real-time constraint The components in each partition are ,., 

threaded together in a list that is kept sorted with respect to this ordering, to make it efficient to gen

erate subsets of the components meeting a given botmd on the execution time. 

Generalizations 

The generalizations facet contains a set of non-elementary modules whose specifications are satisfied 

by the given module. Generalizations are useful for matching requests that are less specific than the 

specification of a given module. This case arises because there may be many different elementary 

modules meeting a loosely phrased retrieval request. In such a case all of the elementary modules 

meet the retrieval request, and their individual specifications differ in respects that were not con

strained by the original retrieval request. 

Alternatives 

The alternatives facet contains links to similar but incompatible modules, together with rules stating 

5 



when each link should be considered. These rules contain heuristics for directing the search in near

miss situations, where a module has been found that satisfies some parts of the retrieval specification 

but not others. These rules can also contain prescriptions for synthesizing composite modules by 

combining the current module with other modules with specified properties in given ways. 

4. Transformations 

One of the reasons that it has been difficult to re-use software in practice is that two instances of the 

"same" software component are rarely exactly alike. Instead, there are many small variations on a theme. 

The number of small variations can be unboundedly large, and it can be difficult to predict which variation 

will be needed next. A extreme example of this is the set of array sorting routines in standard Pascal. 

Since the type and the bounds of the array must be specified in the procedure header, a different sorting 

procedure is needed for each type and size of array. The standard solution to this problem is generic com

ponents, where the specification has one or more fonnal parameters that must be bound by the matching 

procedure. The retrieval mechanism must include a transfonnation which creates the required instantiation 

of the generic code template. This transfonnation can be almost trivial for programming languages like 

Ada that support generic units, and can involve some computation to expand substitutions inline for pro

gramming languages like Pascal that do not explicitly support generic units. Some care must be taken to 

avoid faults due to name collisions in the inline substitution process in such cases. 

Another kind of transfonnation involves small local rearrangements to the interface of the reusable 

component These include permuting the input and output parameters, ignoring extra output parameters, 

and filling in values for extra input parameters. The last process can be done by means of the unification 

algorithm. In case the body of the specification of a reusable component can be unified with the retrieval 

specification, the unifying substitution contains the values to be used for the extra input parameters. Such a 

transfonnation succeeds only if the values for the extra input parameters are expressible in the implementa

tion language of the reusable component 

Other transformations yield building blocks for a composite component An important function of an 

expert system for retrieving re-usable components is to do a limited amount of bottom-up design. This is 

necessary if we are to insulate the designer from the need to remember all of the reusable components in 

6 



the software base. If this knowledge is to be limited to the expert system, then the expert system must be 

able to steer the decomposition in directions that match available components. One way to achieve this 

goal is by means of composition rules. These are heuristics attached to particular modules in the software 

base, which indicate plausible ways to extend the module. This kind of information fits in the "alterna

tives" facet of a module. Two important categories of composition rules are the guard rules and the filter 

rules. 

Guard rules describe decompositions induced by a case analysis. A guard rule produces a condi

tional statement by matching the specification of a reusable component against part of the retrieval 

specification. If the retrieval specification is "S" and the specification of the reusable component has the 

form "G => S", then the component can be augmented with a PSDL control constraint of the form 

TRIGGERED IF G 

provided that the guard G can be expressed in a form that is executable in PSDL. This provides a partial 

implementation, which can be completed by providing another conditional implementation that applies if G 

is false. A common case in which this pattern may apply is if a reusable component meets the required 

specification for normal inputs, but raises an exception condition in other cases. ff the software base 

management system can return one or more guarded commands providing a partial implementation, the 

designer can often complete the job, or may notice that the specification is not satisfiable in the general 

case, and that some other response is appropriate in the remaining cases. A typical decomposition pro

duced by the guard rule is illustrated in Fig. 1. The "?" represents an unknown operator that must be found 

or constructed to complete the implementation. The PSDL control constraints below the data flow diagram 

give the conditions under which each operator is invoked. 

A filter rule factors a specification to allow it to be met by a two-stage data flow decomposition. For 

example, if a specification has the form 

(x IN s <=> P(x)) & sorted(s) 

a sorting filter rule suggests seeking a module producing an output sequence s such that 

x IN s <=> P(x) 

and connecting that output to a sorting operator for sequences of the appropriate data type. A decomposi-

7 



OPERATOR op 1 TRIGGERED IF G 

OPERATOR? TRIGGERED IF not G 

Fig. 1 A Guard Rule Decomposition 

tion produced by the filter rule for the "sort" operator is illustrated in Fig. 2. As before, the"?" represents 

an unknown operator that must be found or constructed. 

5. Conclusions 

This paper has outlined the structure of an expert system for retrieving reusable software components 

from a knowledge base. Such a system can be more effective and produce more accurate automated 

retrievals than classical information retrieval techniques using keyword searching on closed sets of pro

grams. We believe that rule-based retrieval combined with a limited ability to adapt and combine available 

components is essential for making extensive software re-use practical in prototyping. 

The design and implementation of the system described here is under way. This effort is part of a 

long-range project, because we have to assemble an effective set of reusable software components in order 

to refine and test the effectiveness of the proposed system. Important areas for future research are finding 

more effective sets of transformations and more efficient matching algorithms. 

8 



Fig. 2 A Filter Rule Decomposition 

1. R. Balzer, "A 15 Year Perspective on Automatic Programming", IEEE Trans. on Software Eng., 

Nov. 1985. 

2. R. Davis and D. Lenat, Knowledge-Based Systems in Artificial Intelligence, McGraw HiU, New 

York, 1982. 

3. P. Freeman, "A Conceptual Analysis of the Draco Approach to Constructing Software Systems", 

IEEE Trans. on Software Eng. SE-13, 1 (July 1987), 830-844. 

4. C. Green and S. Westfold, "Knowledge-Based Programming Self-Applied", in Machine 

Intelligence, vol. 10, Wiley, 1982. 

5. Luqi, "Rapid Prototyping for Large Software System Design", Ph. D. Thesis, University of 

Minnesota, 1986. 

6. Luqi, Normalized Specifications for Identifying Reusable Software, Proc. of the ACM-IEEE 1987 

Fall Joint Computer Conference, Dallas, Texas, October 1987. 

7. Luqi and V. Berzins, "Rapid Prototyping of Real-Time Systems", IEEE Software, July 1988. 

9 



8. Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Software, March 1988. 

9. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", to appear in 

IEEE TSE, 1988. 

10. M. Minsky, "A Framework for Representing Knowledge", in Readings in Knowledge 

Representation, R. Brachman and H. Levesque (editor), Morgen Kaufmann, Los Altos, CA, 1985, 

245-262. 

10 



Initial Distribution List 

Defense Technical Information Center 2 
~ . Cameron Station 

Alexandria., VA 22314 

Dudley Knox Library 2 
Code 0142 
Na.val Postgraduate School 
Monterey, CA 93943 

Center for Na.val Analysis 1 
4401 Ford Avenue 
Alexandria., VA 22302-0268 

Office of the Chief of Na.val Operations 2 
Code OP-941 
Washington, D.C. 20350 

Office of the Chief of Na.val Operations 2 
Code OP-945 
Washington, D.C. 20340 

Commander Na.val Telecommunications Command 2 
Nava.I Telecommunications Command Headquarters 
4401 Massachusetts Avenue NW 
Washington, D.C. 20390-5290 

Commander Na.val Data. Automation Command 1 
Washington Navy Ya.rd 
Washington, D.C. 20374-1662 

Office of Naval Research 1 
Office of the Chief of Na.val Research 
Attn. CDR Micha.el Gehl, Code 1224 
Arlington, VA 22217-5000 

Director, Nava.I Telecommunications System Integration Center 1 
NAVCOM1v:IUNIT Washington 
Washington, D.C. 20363-5100 

Space and Na.val Warfare Systems Command 1 
Attn: Dr. Knudsen, Code PD50 
Washington, D.C. 20363-5100 



Ada Joint Program Office 1 
OUSDRE(R&AT) 
The Pentagon 
Washington, D.C. 230301 

Nava.I Sea. Systems Command 1 
Attn: CAPT Joel Crandall . . 
National Center #2, Suite 7N06 
Washington, D. C. 22202 

Office of the Secretary of Defense 1 
Attn: CDR Barber 
The Star Program 
Washington, D.C. 20301 

Naval Ocean Systems Center 1 
Attn: Linwood Sutton, Code 423 
San Diego, CA 92152-5000 

National Science Foundation 1 
Division of Computer and Computation Research 
Washington, D.C. 20550 

Director of Research Administration 1 
Code 012 
Naval Postgraduate School 
Monterey, CA 93943 

Chairman, Code 52 1 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943-5100 

LuQi 150 
Code 52Lq 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943-5100 



--, 






