
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

September 1988

A Dynamic Scheduler for a Computer Aided
Prototyping System

Eaton, Susan L.; Luqi
Naval Postgraduate School

S. Eaton and Luqi, "A Dynamic Scheduler for a Computer Aided Prototyping
System", Technical Report NPS 52-88-019, Computer Science Department, Naval
Postgraduate School, 1988.
https://hdl.handle.net/10945/65223

Downloaded from NPS Archive: Calhoun

-r

•.;

< •

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A DYNAMIC SCHEDULER FOR A COMPUTER

AIDED PROTOTYPING SYSTEM

Susan L. Eaton

Thesis Advisor
September 1988

Luqi

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

This report was prepared in conjunction with research conducted for the National
Science Foundation and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

L
Assistant Professor
of Computer Science

Released by:

KNEALE T ,..-_L,.L~""

Dean of Informat10
and Policy Science

"•

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED ... 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER($)

NPS52-88-019
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 National Science Foundation
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, DC 20550
Sa. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School O&MN, Direct Funding
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO . ACCESSION NO.

Monterey, CA 93943
11 . TITLE (Include Security Classification)

A DYNAMIC SCHEDULER FOR A COMPUTER AIDED PROTOTYPING SYSTEM (U)
12. PERSONAL AUTHOR(S)

EATON, Susan L., LUQI
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 115. PAGE COUNT

Annual FROM 87 /09 TO 88/08 1988, Sept 59

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP computer aided software engineering, rapid prototyping,
specification, real-time software, embedded systems,
software design, reusability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Current software development methodologies have proven to be ineffective for meeting
the rising demand for fast production of reliable software for hard real-time computer
systems. A computer-aided, rapid prototyping system (CAPS) based on a Prototype
System Description Language (PSDL) and a set of software tools including an Execution
Support System (ESS), has been proposed by other research and provides a promising and
cost effective alternative to the traditional development life cycle of these systems.

This study proposes a four function design for the dynamic scheduler of the CAPS ESS.
This design includes a method for invoking processed for the ESS static scheduler and

- translator, a scheduling algorithm for the scheduling of the prototype's non-time
critical processes, and a method for error and interrupt handling during prototype exe-
cution.

-

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

~ UNCLASSIFIED/UNLIMITED Ga SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Luqi (408) 646-2735 ~?T n

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 'A' U.S. Government Printing Office: 1986-606•243

UNCLASSIFIED

Author:

Approved for public release; distribution is unlimited.

A Dynamic Scheduler for A Computer Aided Prototyping System

by

Susan L. Eaton
Lieutenant, United States Navy

B.A., Towson State University, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN TELECOMMUNICATIONS SYSTEMS
MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1988

Approved by:

~Barry A. Frew, Second Reader
r"

ii

, hairman,
am.rn· il'S

0

trative Science

..

....

....

....

·~ .

ABSTRACT

Current software development methodologies have proven to be ineffective for

meeting the rising demand for fast production of reliable software for hard real-time

computer systems. A computer-aided, rapid prototyping system (CAPS) based on a

Prototype System Description Language (PSDL) and a set of software tools including

an Execution Support System (ESS), has been proposed by other research and provides

a promising and cost effective alternative to the traditional development life cycle of

these systems.

This study proposes a four function design for the dynamic scheduler of the CAPS

ESS. This design includes a method for invoking processes for the ESS static scheduler

and translator, a scheduling algorithm for the scheduling of the prototype's non-time

critical processes, and a method for error and interrupt handling during prototype exe­

cution.

iii

TABLE OF CONTENTS ,. .
I. INTRODUCTION .. I

A. BACKGROUND .. 1

B. OBJECTIVES ... 7

C. BENEFITS OF THIS STUDY 9

D. OVERVIEW .. 10

II. BACKGROUND AND DEVELOPMENT OF SCHEDULING ALGO-

RITHMS .. 11

A. THE SCHEDULING PROBLEM 11

B. SCHEDULING METHODS · 12

1. DECOMPOSITION STRATEGIES 12

2. THREE PROCESS MODELS 14

3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITHM 17

4. THE RATE MONOTONIC SCHEDULING ALGORITHM 17

5. "NEXT-FIT-M" ... 19

6. A TIME-DRIVEN SCHEDULING MODEL 19

7. DYNAMIC SCHEDULING OF TASK GROUPS 21

8. A RECEIVER-INITITATED SCHEDULING STRATEGY 22

9. APPLICATIONS OF THESE METHODS FOR THE CAPS SCHED-

ULERS ... 22

III. THE CAPS DYNAMIC SCHEDULER 23

A. SCHEDULING FUNCTIONS 23

I. THE RUN-TIME EXECUTIVE FUNCTION 23

2. THE CREATE NON-TIME CRITICAL OPERATOR SCHEDULE

FUNCTION ... 25

3. THE TERMINATE PROTOTYPE FUNCTION 28

4. THE HANDLE INTERRUPTS FUNCTION 28

B. THE USE OF ADA ... 29

IV. SUMMARY .. 31

iv

A. THE QUESTIONS ANSWERED 31

B. THE PROBLEMS THAT REMAIN 31

C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE 32

D. CONCLUSION .. 33

APPENDIX A. A PSDL PROTOTYPE 34

APPENDIX B. PSDL GRAMMAR SUMMARY 38

APPENDIX C. DYNAMIC SCHEDULER FUNCTIONS 41

APPENDIX D. PSEUDO-CODE FOR AN ADA PROGRAM 43

LIST OF REFERENCES ... 49

INITIAL DISTRIBUTION LIST 52

V

LIST OF FIGURES

Figure 1. PROCESS OF REQUIREMENTS DETERMINATION 3

Figure 2. CAPS Archltecture .. 6 -..
Figure 3. COMPONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM . 8

Figure 4. DYNAMIC SCHEDULER FUNCTIONS 24

Figure 5. STATIC SCHEDULER BLOCKING METHOD 26

Figure 6. CREATION AND EXECUTION OF THE DYNAMIC SCHEDULE 27

. ··"

vi

.. -

"l_ .

I. INTRODUCTION

A. BACKGROUND

Increasing demand for rapid development of high quality software has risen to the

point that significant improvements must be made to current software development

methodologies. This is because these methods do not produce software fast enough, nor

do they result in software products of sufficient quality. This is particularly true for

development of software for hard real-time systems. A hard real-time system is one in

which tasks have deadlines that must be met, otherwise severe consequences may result.

Many Command, Control and Communications (C3) Systems are examples of such

systems.

Production of hard real-time systems that support communications requirements

within the area of C3 are particularly challenging to software developers. One reason

for this is that communications systems are usually subject to very stringent real-time

requirements. For example, receiving and processing data from remote sensors may

need to occur in the micro or millisecond timeframe. Another reason, often inherent to

defense systems, is that communications software (as well as other types of software)

must be interoperable across a wide variety of hardware and software environments.

This is exemplified by the fact that equipment from multiple vendors (utilizing proprie­

tary or incompatible protocols), and obsolete, poorly documented systems must function

together in support of various operational requirements. Furthermore, maintenance

considerations across these diverse environments introduce an additional level of diffi­

culty for software developers because the interoperability of these systems must be

maintained when inconsistencies are reconciled or when upgrades are applied.

One method for meeting these challenges, and the increased demand for rapid sys­

tem development, is rapid prototyping. A prototype is an executable model or pilot

version of the intended system which is used as an aid in analysis and design rather than

as production software to be delivered to the user. Rapid prototyping is the con­

struction activity which creates this executable model. This technique has been found

to be effective for clarifying user requirements and eliminating the large amount of

wasted effort currently spent on developing software to meet incorrect or inappropriate

requirements in traditional software life cycles. [Ref. 1: p. 1]

1

Rapid construction of executable prototypes for hard real-time systems would be

greatly enhanced through the use of a computer-aided design system. One such system

proposed by [Ref. 2] and [Ref. 3] is the Computer Aided Prototyping System (CAPS).

CAPS presents an alternative to the traditional software development life-cycle and is

based on a Prototype System Description Language (PSDL) and a prototyping meth­

odology.

The CAPS prototyping methodology, as illustrated by Figure 1 on page 3 is an it­

erative process. The software developer constructs a prototype based on user require­

ments, then the developer and user examine the executable prototype together. During

this examination, adjustments are made and the prototype is modified until both the user

and developer agree that the user's requirements will be met.

Prototype System Description Language (PSD L) was developed in conjunction with

this methodology because a language for supporting rapid prototyping oflarge real-time

systems has different requirements from general purpose programming or specification

languages. PSDL contains several unique features which meet these requirements. For

example:

PSD L is based on a simple computational model which limits and exposes the inter­
action between system modules thus promoting effective modularization of the pro­
totype.

PSD L contains basic data, control, and function abstractions which allow specifica­
tion and representation of the intended system most important for creation and exe­
cution of the prototype.

Appendix A is an example of a PSDL prototype as it appears in [Ref. 4: pp. 27-40]

and Appendix B is a summary of PSD L grammar and language conventions from [Ref

1: pp. 54-56], provided as additional clarification for this example. This prototype was·

developed to model a simple system for treating brain tumors using hyperthermia and

was structured to meet the following requirements:

1. Shutdown: Microwave power must drop to zero within 300 milliseconds of turning
off the treatment switch.

2. Temperature Tolerance: After the system stabilizes, the temperature must be kept
between 42.4 degrees C. and 42.6 degrees C.

3. Maximum Temperature: The temperature must never exceed 42.6 degrees C.

4. Startup Time: The system must stabilize within 5 minutes of turning on the treat­
ment switch.

5. Treatment Time: The system must shut down automatically when the temperature
has been above 42.4 degrees C. for 45 minutes.

2

-"'

- -,.

., -

--

~· . !

OECOIIPOSE

SPECIFY
COIIPONElfTS

DECOIIPOSITIOII
REUITIOIISHIPS

COIIBlttE
COIIPOIIEIITS

IIIPLEIIEJITRTIOII
OF PROTOTYPE

HAND
CODE

SPECIFICATIONS

REURITE
SPECIFICATION

FORnUUITE
QUERY

SEARCH SOFT­
IIRRE DRTRBRSE

RESOLVE
atOICES

RETRIEVE
COIIPOIEJIT

Figure 1. PROCESS OF REQUIREMENTS DETERMINATION AND VALI­

DATION BY PROTOTYPING

[Ref. 4: pp. 26-27)

A prototype is created in PSDL using networks of operators communicating via

data streams. A data stream is a communications link connecting exactly two operators,

3

a producer (one which produces a data value), and a consumer (one which consumes

or receives the data value). Data streams also carry data values which represent EX­

CEPT! ON conditions. PSD L exceptions are values of a built in abstract data type called

EXCEPTION. This type has operations for creating an exception with a given name

(e.g. "overflow''), and for detecting whether a value is normal (i.e. belongs to some data

type other than EXCEPTION). [Ref. 4: p. 13}

The other PSDL data types include the unalterable subset of the built-in types of the

Ada® programming language (Ada® is a registered trademark of the United States

Government, Ada Joint Programming Office), user defined abstract types, the special

type TIME (the other special type being EXCEPTION as previously described), and the

types that can be built using the immutable type constructors of PSD L. The PSD L type

constructors were chosen to provide powerful data modeling facilities with a small set

of semantically independent structures. [Ref. 4: p. 15]

Each data type or operator is either composite or atomic. Composite operators are

implemented by decomposing them into networks of more primitive operators (using

PSD L). Atomic operators are created by retrieving an implementation from a software

base containing reusable software components implemented in an underlying program­

ming language.

In in order to meet timing constraints of the prototype under construction, an op­

erator can either be periodic, or sporadic. A PSD L operator is periodic if a period has

been specified for it explicitly, or if it inherits a period from a higher level in the de­

composition of the hierarchical prototype. If neither of these conditions are true, then

the operator is sporadic or data driven. A sporadic operator is executed (triggered by)

the arrival of a new data value, possibly at irregular time intervals, whereas periodic

operators are triggered or executed at regular time intervals (specified periods). A peri­

odic operator must be completed sometime between the beginning of the period and a

deadline (which defaults to the end of the period). Periodic operators have traditionally

been the basis for the design of most real-time systems, but the importance of data

driven operators for this type of system is also beginning to be recognized since event

driven in terms of informal software design methodology, or interrupt driven in terms

of hardware language, can be treated in this category. [Ref. 4: pp. 6-13)

The foregoing features make PSDL particularly appropriate for real-time system

design. I ts structure is highly suitable for multiple modifications during prototyping it­

erations because it consists of basic building blocks that allow descriptions of ab-

4

- ...

-

...
stractions through a top-down design based on data flow. Additionally, the formal

structure of PSDL for specifying the user's real-time constraints provides a basis for

automating the production code to an underlying programming language e.g. Ada®. The

execution of the PSD L prototype also verifies that the design of an embedded system (a

system that is part of a larger system such as a guidance computer on a missile), within

given timing constraints for the prototype components, will interact with its environment

in a way that meets the timing constraints of the entire system. [Ref. 1: p. 3)

The other components of the CAPS are user interfaces, including a syntax directed

editor with graphics capability (for speeding up design entry and preventing syntax er­

rors), an execution support system for demonstrating and measuring prototype behavior

and for performing static analyses of the prototype design, a software design manage­

ment system for retrieving and adapting reusable software components, and a compo­

nent base which functions as a repository for the reusable components [Ref. 2: p. 9].

The reusable software components in the software base can be written in any general

purpose programming language (provided that PSD L specifications for each module are

included). Figure 2 on page 6 illustrates the CAPS architecture.

For purposes of simplification, and because of its required use within the Depart­

ment of Defense as a standard development language, Ada® has been chosen for imple­

menting both the reusable components in the software base and the PSDL execution

support environment. Ada® is a powerful programming language that provides unique

features not found in other languages. These include exception handling, inter-task

communication, (both of which will be demonstrated to be particularly important to the

CAPS execution support environment), and facilities such as generic packages (reusable

software components). Several predefined generic units are already included as part of

the Ada® language definition e.g. CALENDAR which can be used to provide date and

time information. [Ref. 5: pp. 33-34]

An Ada® program is composed of one or more program units, most of which may

be separately compiled. Program units consist of subprograms, tasks, packages, and

generic units. A subprogram is either a procedure or a function. A procedure specifies

a sequence of actions and is invoked by a procedure call statement. A function specifies

a sequence of actions and also returns a value called the result; therefore a function call

is an expression. A task, on the other hand, defines an action that is logically executed

in parallel with other tasks. A task may be implemented on a single processor, a multi-

.. - processor, or a network of computers. A package is a collection of computational re-

5

!· ..

USER INTERFACE
~

--

,,
PROT01YPE SYSTEM
DESCRIPTION LANGUAGE

,,
REWRITE SUBSYSTEM

--

,, ,,
SOFTWARE DESIGN .._ EXECUTION SUPPORT
MANAGEMENT SYSTEM

.. SYSTEM

I
'Y

PROT01YPE
.. DATABASE

SOFT'NARE BASE

Figure 2. CAPS Architecture

sources, which may encapsulate data types, data objects, subprograms, tasks, or even

other packages. Its primary purpose is to express and enforce a user's logical ab-

6

stractions within the language. A generic unit is a "template" or "pattern" for subpro­

grams and packages and serves as the primary mechanism for building reusable software

components. Use of a generic unit within an Ada® program is termed instantiation.

All Ada® program units generally have a similar two-part structure, consisting of a

specification and a body. The specification identifies the information visible to the client

(interface) of that program unit and the body contains the unit implementation details.

[Ref. 5: pp. 55, 554)

Ironically, it is some of these same attractive features of the language that make Ada•

too complex and hence, too impractical, for its direct use in the rapid prototyping envi­

ronment. PSDL however has incorporated many of the desirable features of Ada® while

eliminating the associated complexity. The abstractions of PSDL allow a system de­

signer to express ideas at the specification and design level rather than at the program­

ming language level. This substantially reduces the need for consideration oflower-level

details and flow control that would be required if the prototype was developed using Ada®

directly.

B. OBJECTIVES

The primary focus of this study is the conceptual development of one component

of the execution support system of the CAPS, the dynamic scheduler. As it is currently

proposed, the execution support system will be comprised of three components, a

translator, a static scheduler, and a dynamic scheduler. The translator is developed in

[Ref. 6] and the static scheduler is developed in [Ref. 7] and [Ref. 8]. A secondary, but

equally important focus is the interfacing of the dynamic scheduler with these other two

components.

Within the CAPS execution support environment each of these components will

perform several functions as shown in Figure 3 on page 8. The translator has four main

purposes:

1. To augment the PSDL code

2. To implement PSDL data streams

3. To implement PSDL conditionals (triggering conditions)

4. To implement PSDL timers (accomplished through the use of a standard library
package which communicates with a hardware clock and is included in any proto­
type that uses timers)

7

I

DYNAMIC
ro-EOU.ER

-INVOKE STATIC
SQ;EIXJLER

-INVOKE BUFFER
PRE-LOADING
PAC>a:DLRES .

-HANDLE EXCEPTIONS

-HANDLE H/W &
OPERATOR
INTERUPTS DURING
EXECUTD.J

-SCHEDULE NON-TIME
CRITICAL OPERA TORS

-EXECUTE NON-TIME
CRITICAL OPERA TORS

CAPS
EXECUOON
SUPPORT
ENVIRON~NT

STATIC
SOiEOJl.ER

-ANAL VZES REAL­
TIME CONTRAINTS

-DETERMINE SCHEDULE
FOR TIME CRITICAL
OPERATORS

I

TRANSLATOR

-AUGMENTS PSDL
a:x:.e

-IMPLEMENTS PSDL
DAT A STREAMS

-IMPLEMENTS PSDL
CONDITIONALS

-IMPLEMENTS PSDL
TIMERS

Figure 3. COI\-1PONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM

The static scheduler analyzes the real-time constraints declared in the PSDL prototype

and attempts to find a static schedule meeting the constraints of the time critical opera­

tors of the prototype under construction.

The dynamic scheduler performs four major functions for the CAPS execution sup­

port system. The first function, which is to act as a ''run-time executive#, is of particular

importance to the other two CAPS components. As the run-time executive, the dynamic

8

scheduler will invoke the static scheduler, and it will invoke buffer pre-loading proce­

dures required by the translator for implementation of data streams. Two other func­

tions include exception handling and hardware or operator interrupt handling that may

occur during prototype execution.

The fourth and perhaps most important function of the dynamic scheduler will be

the scheduling and execution of the PSDL operators which are not time critical (i.e. do

not have real-time constraints). This schedule will be constructed and executed during

prototype execution using '' spare processing time" created as a result of early completion

of time critical operators by the static scheduler. Because PSDL assumes that time

constraints of critical operators are absolute when given, the static scheduler allocates

processing resources based on worst case or maximum execution times. On the average,

these worst case processor loads tend to be rare. When a time-critical operator or group

of operators finishes executing before this worst-case time allocation, the static scheduler

can "transfer" control of processor resources to the dynamic scheduler in order to utilize

the resulting spare capacity.

The requirement for explicitly passing control to the dynamic scheduler when the

static scheduler reaches an idle state is necessary because the Ada0 language does not

have features for determining when a task or process with an undefined priority should

be executed [Ref. 5: p. 282]. Once control of processing resources is passed to the dy­

namic scheduler, spare processing capacity can be allocated among the non-time critical

operators based on a scheduling process that is not restricted by the requirement for

meeting real-time constraints.

C. BENEFITS OF THIS STUDY

The benefits to be derived from this study are twofold. The first of these is that

development of a dynamic scheduler for the proposed CAPS aids in meeting the need for

development of a rapid prototyping tool. An effective CAPS would result in significant

improvements and cost savings in the development of hard real-time software systems

which support C3 mission requirements as well as software development for other DOD,

and private industry applications.

The second benefit is the focus placed on more effective processor utilization as a

result of scheduling non-time critical tasks or processes during slack or spare processing

periods. Previous research in the area of real-time system scheduling has greatly em­

phasized, and rightly so, the requirement for meeting the real-time constraints of a sys­

tem or network of systems. This particular emphasis has minimized the importance of

9

processor under-utilization which often occurs as a result of ensuring that real-time

constraints are met. The problem of under-utilization is wasteful and could become

quite costly if it is allowed to occur on a regular basis. Design and interface of a dy­

namic scheduler for use within the rapid prototyping environment may provide a viable

solution to this problem.

D. OVERVIEW

The remainder of this study is described by the following overview:

A survey of the background and development of scheduling problems and algorithms

Development of a dynamic scheduler based on concepts provided by this survey and
the use of Ada® as an implementation language

A summary which describes the questions answered by this study, future questions or
design areas that need to be addressed, and a brief description of a communications
system for demonstrating the feasilibity of the CAPS as a computer-aided design tool.

10

' ..

II. BACKGROUND AND DEVELOPMENT OF SCHEDULING

ALGORITHMS

A. THE SCHEDULING PROBLEM

A scheduling algorithm provides a set of rules that determine a process or group of

processes to be executed at a particular point in time on a process control computer

system or for a network of systems [Ref. 9: p. 194]. Criteria which have historically been

used to generate process schedules include maximizing process flow (i.e. minimizing the

elapsed time for the entire processing sequence), or minimizing the maximum lateness

(lateness is defined to be the difference between the time a process is completed and its

deadline when the deadline is missed) [Ref. 10: p. 112].

Development of an algorithm which focuses on maximizing process flow is applica­

ble to the problem of scheduling PSDL operators without real-time constraints since

optimal use of idle processing time is an objective of the CAPS dynamic scheduler.

However, minimizing lateness is not a consideration for the dynamic scheduler since

operators which are not time critical don't have deadlines to meet. For meeting the re­

quirements of the CAPS static scheduler, neither of these criteria is important partic­

ularly since operators with real-time constraints are by definition not allowed to be late.

The criteria which are important for process scheduling within the CAPS execution

support environment include meeting the deadlines of operators with real-time con­

straints, ensuring that no data loss occurs, and making optimal use of spare processing

resources. Clearly, finding or developing scheduling algorithms which optimize this set

of criteria presents an interesting and difficult problem.

Another previously defined [Ref. 9: pp. 194-199] consideration for generating process

schedules and developing scheduling algorithms is based on precedence or priority of

processes to be executed. Two primary priority classifications are static priority and

dynamic priority. In the first case, priorities and start times of processes are known in

advance and is not expected to change during execution [Ref 9: p. 194). Within the

CAPS, a scheduling algorithm based on a static priority scheme will be used by the static

scheduler to create a schedule that meets the timing and precedence relationship re­

quirements for the time critical operators. In the second case, priorities of processes

change from time to time, depending upon certain execution conditions (e.g. the avail­

ability of idle processing capability) [Ref 9: p. 194]. This priority scheme will be used

11

by the CAPS dynamic scheduler to schedule non-time critical PSDL operators and to

perform other functions during prototype execution such as exception or interrupt han­

dling.

B. SCHEDULING METHODS

The requirement for different types of schedulers and scheduling algorithms has been

examined in a myriad of research. Most of this work has been directed at the problem

of scheduling processes or operations which must meet critical or real-time deadlines,

but these efforts also have relevance to the problem of scheduling processes which don't

have real-time constraints. The primary reason for this is that while an individual

process (e.g. a PSDL operator) may not have a time critical deadline, scheduling of the

process or group of processes should be completed within a predetermined block of idle

processing time in order to make optimal use of this spare capacity. The following ex­

amination and description of scheduling research provides a basis for designing a dy­

namic scheduler to meet this objective.

1. DECOMPOSITION STRATEGIES

A primary consideration in solving the scheduling problem is how to decompose

a set of operations (computations) into a schedule which meets the real-time constraints

of a given system or program. Mok in [Ref. 11 : pp. 125-133) proposes three strategies

for the decomposition of a set of computations based on timing constraint specifications.

Each of these strategies uses a "graph" model to describe the set of computations and a

''process" model to describe the output generated by the translation of the set of com­

putations.

The graph model consists of a communications graph, a task graph, and a set

of timing constraints. Timing constraints are represented by the expression (t, t + d)

where t is the start time for a process, d is its deadline, and t + d the interval or period

in which the process is executed. A task graph defines the precedence relationship

among computational events that must occur in order to satisfy a given timing con­

straint. It is composed of "nodes" and "edges'' which respectively denote corresponding

functional elements and transmission paths for data in the communications graph [Ref.

11: p. 126]. The objective of this structure is to ensure that data flow requirements are

met. This is also one of the objectives of the PSDL structure, (the other objective being

that real-time constraints will be met). PSDL is based on these concepts with an oper­

ator representing a "functional element" of the language, and with data streams repres-

12

·-

-·

enting communications paths which transmit or exchange information between

operators.

The Process Model is generated by the translation of the time-critical compu­

tation requirements of a real-time system. The result of the translation is a set of time­

critical concurrent processes [Ref. 11: p. 125]. The translation that results in the process

model is analogous to the generation of the of the CAPS static schedule since this

schedule provides the means for meeting a system's real-time constraints.

Based on these concepts, the first strategy to be discussed is Decomposition by

Critical Timing Constraints. This strategy works in the following manner. For a partic­

ular program, periodic and sporadic processes are created to meet given timing con­

straints. The period and deadline attributes of a process are set to the corresponding

parameters of the timing constraint (t, t + d). These processes may have functional el­

ements in common so a monitor is created to ensure mutual exclusion on the execution

of any program element called by two or more processes. When a program created in

this manner is executed, each process is executed according to its specified timing con­

straints even though this may result in duplicate execution of certain computational

events. [Ref. 11: p.128]

This strategy works fairly well on single processor with any scheduling discipline

as long as the processor doesn't idle while there is an activated process [Ref. 11: p. 128].

The disadvantages associated with the use of this strategy are the duplication of some

computations within processes that have compatible timing constraints and the com­

munications costs involved for enforcing mutual exclusion.

A second strategy, Decomposition by Centralized Concurrency Control works

in the following way. Periodic timing constraints that are compatible with one another

are grouped together. Two periodic timing constraints are compatible if their deadlines

(d) are equal, (e.g. dl = d2), if their task graphs have some nodes in common, and if the

period (p) of one can divide, or be divided by the period of the other (pl/p2 or p2/pl).

The compatibility relation partitions the periodic timing constraints into a set of equiv­

alence classes. For each equivalence class, a periodic process of compatible periodic

timing constraints is created, and a sporadic process is created for each asynchronous

timing constraint.

In general, this strategy improves efficiency two ways. First, by merging the

computation of compatible timing constraints into a single process, redundant compu­

tation can be eliminated. Second, since concurrency control is being centralized, proc-

13

esses tend to be independent of one another and the interprocess communication

overhead required for concurrency control will be smaller. One disadvantage associated

with this strategy is that attempts to merge compatible timing constraints into a single

program by eliminating as much redundant computation as possible, may not yield the

shortest program possible. A second disadvantage associated with this strategy is its

complexity, which makes it more difficult to understand and to modify when changes

are required. [Ref. 11: pp. 129-130]

The third strategy is Decomposition by Distributing Concurrency Control. In

this strategy, a periodic process will be created for each node (functional element) in the

communication graph. Since a functional element F, may occur in two or more task

graphs, the periodic process created for F will be assigned a period attribute equal to the

smallest period among the periodic timing constraints in which F occurs. When a peri­

odic process PF, is activated, it first synchronizes with an appropriate set of processes

preceded by it. A sporadic process is created for each asynchronous timing constraint

as before. If a functional element occurs in both a periodic timing constraint and an

asynchronous timing constraint, then a monitor is created to enforce mutual exclusion

on the execution of the corresponding program element. [Ref. 11: p. 131]

Use of this strategy results in the following advantages. By assigning a separate

process to each functional element, an attempt is made to maximize the computation

that can be performed in parallel. Redundant computation is reduced since task graphs

of compatible timing constraints that contain the same functional elements are detected

in the construction of the synchronization code for each periodic process. If as many

processors are available as there are processes, then this strategy can accommodate a

wider range of timing constraints than the other two strategies. The primary disadvan­

tage with this approach is again one of complexity and the resultant modification diffi­

culties its use implies. [Ref. 11: p. 132]

2. THREE PROCESS MODELS

Another study by Mok [Ref. 12: pp. 5-17] develops three process models using

various scheduling algorithms and techniques. These models are based on the idea that

there is a need for an off-line scheduler and a run-time scheduler for meeting the periodic

and sporadic timing constraints of most real-time systems. As defined by this work, the

off-line scheduler examines the instance of a process, or system and creates a run-time

scheduler together with a database for making scheduling decisions at run time. The

run-time scheduler is the code for allocating resources in response to requests generated

14

.......

.. -

,,,... .

at run time, e.g. timer or external device interrupts. A run-time scheduler is totally on­

line if its decisions do not depend on prior knowledge of the future request-times of the

processses. A run-time scheduler can also be clairvoyant, which means that it can pre­

dict with absolute certainty, the future request times of all processes. A clairvoyant

scheduler represents the best possible case though and is usually impossible to imple­

ment in practice. And finally, a run-time scheduler is optimal if it always produces a

feasible schedule whenever it is possible for a clairvoyant scheduler to do so.

The first model described by this piece of research is the Independent Process

Model. It was shown that two possible algorithms provided effective scheduling tech­

niques for this model, the earliest deadline algorithm and least slack algorithm. The

earliest deadline algorithm runs any ready process with the nearest deadline and the least

slack algorithm runs any ready process which has the least slack time available before

it will miss its current deadline. In both cases, ties are broken arbitrarily and the as­

sumption is made that the scheduler can choose to preempt a process by any other ready

process at integral time instants.

Although both of these algorithms are effective, the preceding assumption il­

lustrates why neither of them represents an optimal scheduling method. In order for

these techniques to be optimal, the scheduler would have to be clairvoyant. For exam­

ple, the position of an aircraft is updated by a periodic process which computes the X

and Y coordinates from sensor measurements. A sporadic process may read the X value,

be preempted by the tracking process, and then read a new Y value which is inconsistent

with the original X value. Clairvoyancy implies that an exact prediction could be made

as to when the sporadic process which updates the X value will occur, which is unlikely.

A possible means for eliminating this inconsistency is to prevent processes from pre­

empting one another, but enforcement of such a mutual exclusion constraint results in

significant decreases in processing efficiency. [Ref. 12: p. 7]

A feasible, yet still not optimal, alternative to this approach is provided by the

Deterministic Rendezvous Model. This model attempts to alleviate the problems asso­

ciated with the Independent Process Model by using the earliest deadline algorithm with

dynamically assigned (determined during execution) process deadlines, and through the

implementation of an Ada@-like rendezvous primitive (communications instruction).

The rendezvous primitive establishes synchronization and precedence relation­

ships among executing processes. It operates on the same principle that is required for

the establishment of certain data communications links. For example, if Process A

15

wishes to communicate or rendezvous with Process B, A executes a rendezvous primi­

tive. A must then wait for B to execute a rendezvous which indicates that it is ready to

exchange information or rendezvous with A. The precedence relationships among

processes are created by the requirement that all the computation before the rendezvous

primitive in each process must precede all the computation after the corresponding ren­

dezvous primitive in the other process [Ref. 12: p. 9).

At run-time, this model works in the following way. Processes are grouped into

scheduling blocks with each block initialized with a deadline. During execution, the

deadline of a scheduling block can be moved up if the block must precede another block

which has a nearer deadline but which is not yet ready to run. The rendezvous primitive

provides the required synchronization and precedence information which allows this

scheme to work. It should be pointed out though that this primitive does not guarantee

mutual exclusion for a scheduling block. It also cannot be used to establish communi­

cations between a periodic process and a sporadic process since by definition, a periodic

process must be executed regularly while a sporadic process may never be executed.

[Ref. 12: pp. 9-10]

The third model differs only slightly from the Deterministic Rendezvous ap­

proach. This model called the Kernelized Monitor, uses an operating system kernel as

a monitor for enforcing mutual exclusion of processes during execution. Processor time

is allocated only in uninterruptible quantums, say of size q, with q chosen to be bigger

than the largest monitor. For simplicity, the required computation times for process

scheduling is in exact multiples of q so that each process takes an integral number of

quantums to execute. A process to be executed forms a chain of mini-scheduling blocks

each of which requires a quantum (the basic time unit of processor allocation). These

mini-scheduling blocks form a partial order imposed by the (intra and interprocess)

precedence relationships and each is given a request-time and deadline. The mini­

scheduling blocks are executed using the earliest dynamic deadline algorithm as previ­

ously described in the discussion of the Deterministic Rendezvous Model.

One difference between the execution of mini-scheduling blocks and the exe­

cution of blocks created by the Deterministic Rendezvous approach is that preemption

should only be allowed to occur after a mini-block has been allocated an integral number

of time quantums. Another difference is that between each chain of mini-scheduling

blocks an interval called a "forbidden region" is included in in the schedule. The purpose

of this interval is to create idle processing time during which a scheduler should not al-

16

..

·-
. ~ "

.,...

locate a new quantum of processor time to any process so that a future deadline can be

met. [Ref. 12: pp. 10-11)

3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITHM

Another research effort by Mok demonstrates the use of the earliest deadline

algorithm in a slightly different way. This effort was directed at periodic real-time sys­

tems where input data arrives at fixed rates, but otherwise there are no explicit timing

constraints. Its application is also limited to uniprocessor environments.

The Earliest Deadline-Predecessor Priority (ED-PP) scheduling procedure can

be described by these steps. First, a very simple method (as compared to use of the

rendezvous primitive) is used to determine precedence relationships among processes.

Specifically, processes are ranked in a topological order of their corresponding functional

elements in a graph model such that whenever two processes have the same deadline,

higher priority is given to the process which appears earlier in the topological ordering

(hence the name predecessor priority) [Ref. 13: p. 184). Next, a round robin scheduler

is employed in the following way. Assume that a quantum (the previously defined time

unit) is composed of infinitely many slices. A round robin scheduler allocates c/p slices

of each quantum to each process P. Each P will be guaranteed to receive c quantums

of processor time in every period of length p, thus meeting its deadline. The above al­

location can always be done because available processor time U is < = 1. [Ref. 13:

p. 186]

The round robin schedule is then transformed into the desired schedule by

swapping time slices in the following manner. At any quantum, let P be the process with

the nearest deadline as chosen by the ED-PP scheduler. Then, swap as many slices of

P from the next quantums as needed to fill just the quantum under consideration. No

process will miss its deadline since the deadline of p is the nearest. This swapping is re­

peated one quantum at a time from the beginning of the schedule until the valid ED-PP

schedule of desired length is obtained. [Ref. 13: p. 186)

4. THE RATE MONOTONIC SCHEDULING ALGORITHM

This algorithm works in the following way. For a set of periodic tasks, a fixed

priority is assigned to each task, with a higher priority being assigned to tasks with

shorter periods. The rate monotonic algorithm is an optimal static priority algorithm in

a uniprocessor environment with a set of n tasks with total utilization less than or equal

to n(211n - 1). When n becomes large, this bound approaches 1n 2 (approximately 70%).

17

One method for implementing this algorithm incorporates a "time-division

multiplexing" scheme to schedule periodic tasks (processes). This approach is similar to

the round robin scheduler used by the ED-PP algorithm. This is accomplished through

the creation of a set of time division multiplex (TOM) slots and then "hand-packing" all

the important tasks into them. This is typically done in the context of a cyclical execu­

tive (the cyclical executive operates like the round robin scheduler), which generally uses

few frequencies. The fastest cycle is usually called the major cycle and the slower ones

are called minor cycles. The major cycle is assigned the highest priority. Given the

highest priority, a major cycle with period P will be regularly given 1 slot every P units

of time. This in effect creates a virtual processor with processing bandwidth 1/P. The

period of the major cycle is determined by two factors. First period P must be short

enough so that it can accommodate the highest frequency periodic tasks. Second, the

major cycle must also accommodate tasks which have lower frequencies but are critical

to the mission at hand, since the major cycle has the highest priority. A handcrafted

table is then constructed to schedule both the high frequency tasks and the critical tasks

over the virtual processor. The construction of the scheduling table often takes many

iterations, over the adjustment of the period of the major cycle, the modification of the

scheduling table and the optimization of the code of certain tasks. [Ref. 14: pp. 184-185)

Using another approach, this algorithm can be employed to schedule aperiodic

(sporadic) tasks. Aperiodic tasks consist of a stream of jobs arriving at the processor

according to some random process such as the Poisson process. In this case, there is

no d~terministic upper bound on the worst case processor utilization task even though

each job of an aperiodic task has a bounded worst case execution time. Thus, it is im­

possible to guarantee that every job's deadline in an aperiodic task will be met. The

concept behind dealing with aperiodic tasks is to reserve adequate processor time for

each group of tasks so that fast average response time can be ensured.

A simple way to realize this objective is to create a set of periodic tasks, each

of which serves a group of aperiodic tasks. Each of these server periodic tasks will be

run according to the basic principle of the rate monotonic algorithm. Associated with

each server periodic task, there is a ready queue for associated aperiodic jobs. Each of

these aperiodic jobs in the associated ready queue will be treated as if it is a periodic job

of the server periodic task and dispatched accordingly. That is , if a periodic server has

period P and nominal computation time C, then the associated aperiodic job can be ex­

ecuted C time units in every period P at the priority level associated with period P, The

18

......

... "

.,- .

ration C/P represents the processor time allocated for associated aperiodic tasks. [Ref.

14: p. 183]

5. "NEXT-FIT-M11

NEXT-FIT-Mis better classified as a decomposition strategy than a scheduling

algorithm. It was developed for use in conjunction with the rate-monotonic algorithm

in a multi-processing environment. The requirement for this strategy is based on the fact

that the rate-monotonic algorithm behaves poorly in multiprocessor systems if the rule

is followed of not allowing a processor to idle when there is a task ready for execution.

NEXT-FIT-Mis based on the following assumptions:

I. Tasks are time-critical and the requests of each task are periodic, with a constant
interval between tasks.

2. Deadlines consist of runability constraints only, i.e. each request must be com­
pleted before the next request of the of the same task occurs.

3. The tasks are independent in that the requests of a task do not depend on the ini­
tiation or the completion of the requests of other tasks.

4. Computation time for the requests of a task is constant for the task. Computation
time here refers to the time a processor takes to execute the request without inter­
ruption.

5. Task utilization is defined by two numbers, the computation time of the request(c),
and the request period(t). The ratio c/t is called the utilization factor of the task.
[Ref. 9: p.194]

In a multiprocessor environment, this utilization factor provides a means for

decomposing tasks into classes. A class is defined for each available processor in the

system, and tasks belonging to a given class are scheduled on the processor with the

appropriate class designation. Task classes are created based on a range of utilization

factors e.g. class A tasks have utilization factors between .4 and .1, class B tasks range

between .2 and .4, etc.. Actual utilization ranges are established using a logarithmic

scale derived from the formula n(21tn - 1) as described by [Ref. 9: p. 195). When de­

composition and assignment of task classes to processors is complete, execution pro­

ceeds on each processor according to the rate-monotonic algorithm.

6. A TIME-DRIVEN SCHEDULING MODEL

Another approach to scheduling is illustrated by the Time Driven Scheduling

Model and its two associated algorithms, BEValuel and BEValue2. [Ref. 10: pp.

112-122] This model is based on a linear mathematical function. The concept of in­

creasing or decreasing linearity is used to describe the precedence relationship among a

set of processes. The input for the model is a set of preemptible processes P, resident in

19

a computer with a single shared memory and one or more processing elements. Each

process P has a request time R, which is an arbitrary time at which P has been requested

to be executed and a processing or computation time, C. For each P, a value function,

V(t) is created where tis a time for which a value is to be determined and V defines the

value to the system for completing P at time t. The nature of V is determined by which

scheduling algorithm is used, BEValuel or BEValue2.

These two algorithms take advantage of three value function and scheduling

characteristics:

1. Given a set of processes (ignoring deadlines) with known values for completing
them, it can be shown that a schedule in which the process with the highest value
density V /C, (in which V is its value and C is its processing time as previously de­
scribed) is processed first will produce a total value at every point in time at least
as high as any other schedule. (i.e. a Value Density Schedule)

2. Given a set of processes with deadlines which can all be met (based on the sequence
of the deadlines and the computation times of the processes), it can be shown that
a schedule in which the process with the earliest deadline is scheduled first (i.e., an
Earliest Deadline schedule) will always result in meeting all deadlines.

3. Most value functions of interest have their highest value occuring immediately
prior to the critical time.

The BEValuel Algorithm exclusively uses observation 1 above, and is therefore

a simple greedy algorithm, scheduling first the process with the highest expected value

density. It has been shown that this algorithm performs reasonably well in many cases

in which the value function is a step function, or if the function is rapidly decreasing

following the critical time, inspite of the fact it makes no use of critical time itself. The

critical time does, of course, enter the algorithm through the expected value computa­

tion, which uses the value function and the assumed processing time distribution to

compute an expected value. It was also shown by experimental results, that this algo­

rithm fails most notably in step function situations where processor loads are low or at

an average level, and a number of processes with close deadlines are in the request set.

The BEValue2 algorithm attempts to rectify this situation by the implementa­

tion of the following modification. This algorithm starts with a deadline-ordered se­

quence of available processes, which is then sequentially checked for its probability for

overloading the processor. At any point in the sequence in which the overload proba­

bility passes a preset threshold, the process prior to the overload condition with the

lowest value density, will be removed from the sequence. This process is repeated until

the overload probability reaches an acceptable level. Because of this modification, this

algorithm tends to out perform BEValuel since it always meets deadlines as long as no

20

. ---...

..,11-

processing overload occurs. However, when an overload condition occurs and gradually

worsens, performance of this algorithm is similar to BEValuel. [Ref. 10: p.116]

7. DYNAMIC SCHEDULING OF TASK GROUPS

A more complex, yet extremely useful approach to process scheduling is de­

scribed by [Ref. 15: pp. 166-174]. This research examined the problem of dynamic

scheduling for groups of tasks in distributed real-time systems. The scheduling algorithm

developed to meet this requirement is broken down into several smaller algorithms, a

pre-processing algorithm, a distributed scheduling algorithm, and a compression algo­

rithm.

The pre-processing algorithm divides processes into clusters and computes the

required time to execute each cluster. Clusters are ordered into a precedence relationship

based on these computations. This ordering is somewhat arbitrary and can be modified

(through the the use of the compression algorithm) if necessary. Processes within a

cluster are ordered according to real-time constraints by a method similar to that de­

scribed by the earliest deadline approach. Based on this computation, this algorithm

makes the decision whether or not there is enough processing time available to schedule

a cluster of processes. If there is, a "dispatcher module" begins or enables the execution

of the cluster.

Once a cluster begins executing, due to precedence constraints, processes within

the cluster must synchronize in real-time in order to communicate with one another.

When one process finishes executing, it sends an enabling message, as well as output

data, to a successor process (the one which is next in the precedence ordering). A suc­

cessor process can begin execution only after the enabling message from its predecessor

has been received. Another module called the inter-task communication handler, is in­

voked each time a process finishes execution. This module evaluates incoming enabling

messages and updates the number of finished predecessor processes when more than one

is required for the execution of a particular successor task, and it sends enabling mes­

sages to successor tasks.

In the instance of a distributed system, the distributed scheduling algorithm is

invoked when there is not enough processing time available to successfully execute a

cluster. This algorithm attempts to find another location in the system for the cluster

to be executed .

When it appears that a cluster cannot be successfully executed at any location,

the compression algorithm is invoked. Because the computed execution time for a

21

cluster is only an estimation, this algorithm is designed to compress the execution time

for the entire cluster, or for individual processes when possible, within the cluster. [Ref.

15: pp. 167-169, 173].

8. A RECEIVER-INITITATED SCHEDULING STRATEGY

Another scheduling method is described in a comparison-oriented piece of re­

search. Chang and Livny [Ref. 16: pp. 175-180] examined Sender-Initiated and

Receiver-Initiated scheduling strategies in a multiprocessor environment. The

Receiver-Initiated approach is of primary interest and works in the following way. Upon

the completion of a job (process) the load of the processor is examined to determine if

it is underloaded. When the number of jobs left in the queue is smaller than some preset

threshold, the processor is tagged as underloaded. When this condition occurs, the

underloaded processor polls other processors in the system to offer "help" (i.e. processing

resources). This technique was proven to be an effective method for sharing and dis­

tributing resources among processors in a multi-processing environment. The basic idea

appears to be a reasonable approach for sharing resources among processes as well.

9. APPLICATIONS OF THESE METHODS FOR THE CAPS SCHEDULERS

The foregoing scheduling methods were described to provide background infor­

mation on the development of scheduling techniques and also to provide a basis for the

development of the CAPS dynamic scheduler. Some of the techniques are also useful

for describing the operation of the CAPS static scheduler and how the static and dy­

namic schedulers will interact in the execution support environment.

22

. ..

.,, .

~----- -

III. THE CAPS DYNAMIC SCHEDULER

A. SCHEDULING FUNCTIONS

Within the CAPS execution support system, the dynamic scheduler will perform se­

veral functions. First, it will act as the "run-time" executive that invokes, or starts the

static scheduler and buffer preloading procedures for the translater. Second, it will cre­

ate and invoke a schedule for the non-time critical operators of the PSDL prototype,

third it will handle exceptions (both defined and undefined types) for all of the the CAPS

components, and fourth it will handle both hardware and operator interrupts that may

occur during prototype execution. These functions are illustrated by Figure 4 on page

24.

The proposed operation of the dynamic scheduler is outlined by the hierarchal de­

scription included as Appendix C. This design is based in part on Mok's "run-time

scheduler" as described in [Ref. 12: pp. 5-17]. It provides the code for allocating re­

sources in response to requests generated at run time, e.g. hardware or operator inter­

rupts, and its scheduling decisions will not be dependent upon prior knowledge of future

request times for processes to be executed. The specific functions it performs are de­

scribed below.

1. THE RUN-TIME EXECUTIVE FUNCTION

At the start of prototype execution, the run-time executive function will invoke

a procedure called PRELOADER for the translator. PRELOADER is a buffer initial­

ization process required for implementation of PSDL data streams. The translator re­

quires this process because buffers are regarded as ''state machines" and must contain a

certain value or be in a certain '' state'' at the start of prototype execution.

The static scheduler decomposes the prototype into a set of time critical and

non-time critical operators. The result of this decomposition are files or "queues" of

operators which are the input for the static schedule or the dynamic schedule. The

run-time executive function will also invoke (start) the execution of the static schedule

once it's created.

The schedule for time critical operators is based on the precedence relationships

among the operators, and on the prototype's real-time constraints. The static scheduler

creates a schedule that will ensure that both of these requirements are met. One of the

23

Figure 4.

Translator

Static
Schedulez-

Hardware

Opcraaor

non-time
c:riti"l opcra10rl

or machine
dependent facility

DYNAMIC SCHEDULER FUNCTIONS

24

.

.--

scheduling approaches it uses to accomplish this is a blocking strategy similar to the

method employed by Mok' s Kernelized Monitor Model.

In the formulation of the static schedule, the static scheduler assumes worst case

rather than average case processor utilization for meeting a given operator's processing

requirements. The scheduling blocks will also contain periods of time between operators

in which nothing is scheduled in order to ensure that precedence relationships are

maintained (i.e. data flow requirements are met). These two conditions result in idle

processing time that can be used by the dynamic scheduler to schedule and execute the

prototype's non-time critical operators. The resulting spare processing capability will

therefore occur unpredictably as shown by Figure 5 on page 26. It is then up to the

dynamic scheduler to schedule non-time critical processes into these idle areas of the

static schedule. This idea is similar to the "swapping'' methodology employed by the

"ED-PP'' algorithm, and the "time-division multiplexing'' approach within the rate

monotonic algorithm.

2. THE CREATE NON-TIME CRITICAL OPERATOR SCHEDULE

FUNCTION

When idle processing time is available for use by the dynamic scheduler, the

steps illustrated by Figure 6 on page 27 will take place. The static scheduler will attempt

to "rendezvous" with the dynamic scheduler in order to indicate or "send the message"

that processing time (a "time slice") is available. This process is based on the "receiver­

initiated'' (poll-when-idle) strategy, and on the concepts of "inter-task communication"

and "dispatcher" modules as described in the discussion of dynamic scheduling algo­

rithms for distributed systems.

The dynamic scheduler must then determine (i.e. perform a compare operation)

if there is enough time available in the time slice to execute a non-time critical process

before the next scheduled start time of a time-critical scheduling block. This compare

operation is analogous to an operation performed by the BEValue2 algorithm of the

time-driven scheduling model. Recall that this algorithm makes a determination as to

whether or not a given process will overload the processor. Similarly, the dynamic

scheduler should determine whether or not a non-time critical process can be successfully

executed within a given amount of time. If this is not possible, the process won't be

scheduled. When there is enough time available, operators will be scheduled using one

of the basic principles of the rate-monotonic algorithm. That is, an operator with the

25

time critical
operators scheduled
based on worst case

processor requirement

Figure 5. STATIC SCHEDULER BLOCKING METHOD

time

shortest execution time will be considered to have the highest priority and will be

scheduled for execution first.

This "priority" assignment is an arbitrary one since the processes to be executed

are not time critical. The logic of this approach is simply to schedule as many non-time

critical processes as possible into a "block" of idle time and it is based on the following

assumptions:

1. Employment of a more complex scheme such as the creation of a "value density
schedule", is unnecessary and would not effectively contribute to allotment of
processing resources among the non-time critical processes.

2. Processes are independent of one another (i.e. there are no precedence relationships
among the operators).

3. An execution time must be assigned to each of the operators during the specifica­
tion phase of prototype development. The assigned execution time should not be
confused with a "timing constraint'', it is only meant to provide an estimate of the
resources required for the execution of a non-time critical process.

26

-- ..

" . ,.

Swic
Schedula

operator proceaiJI&
lime reqwranmt

Figure 6. CREATION AND EXECUTION OF THE DYNAMIC SCHEDULE

4. Non-time critical processes will be sequenced in the "operator queue" based on a
"shortest first" scheme. This sequencing will be performed by the static scheduler
during the prototype decomposition operation.

For as long as time remains in an unused portion of the static schedule, the

dynamic scheduler can schedule non-time critical processes for execution based on the

preceding assumptions. When there is not enough time available to schedule the oper­

ator at the top of the queue (the operator with the shortest processing requirement), the

dynamic scheduler will go into a "wait,. state and allow the processor to remain idle until

the start of the next static scheduling period. Allowing idle time in this instance is based

on the idea of a ,,,forbidden region" in the Kernelized Monitor Model. This forbidden

region is necessary in order to ensure that a future deadline of the static schedule can

27

be met. Allowing this idle time when using a rate monotonic approach also makes sense

from a performance standpoint since utilization related research has indicated that

processing efficiency tends to decline for processor loads above ln 2 (approximately

70%).

Even though a "compare'' operation is performed to determine whether or not

an operator can be completed within a given amount of time, the case may arise when

a non-time critical process may exceed this amount of time. This cannot be allowed to

occur since it would interfere with the static schedule and in effect, meeting the require­

ments of the system's real-time constraints. Therefore, execution of the non-time critical

process must be preempted by some type of monitor.

The monitoring operation created to do this should track the status of an exe­

cuting process relative to a system clock, and will terminate (preempt) a process in order

for the next scheduling block within the static schedule to begin. When a process is

terminated, it will be returned to the proper sequence position in the operator queue so

that it can be rescheduled at another time. This monitoring process will also perform

status monitoring with regard to completion of an operator i.e. it will "notify" the

compare operation that the execution of a process is complete so that an attempt can

be made to schedule another process. Finally, the monitor will call exception or inter­

rupt handling procedures when the execution of a non-time critical process results in one

of these two conditions.

3. THE TERMINATE PROTOTYPE FUNCTION

When exceptions occur as a result of processing performed by any of the three

CAPS components, the terminate prototype function will be called. This function will

perform the operations necessary to terminate the execution of the entire prototype. e.g.

terminate whatever processes are executing at the time the exception occurs, and notify

the CAPS user that an exception of a certain type has occured.

4. THE HANDLE INTERRUPTS FUNCTION

Two types of interrupts can occur while a prototype is executing, an operator

interrupt and a hardware interrupt. Depending upon the nature of the interrupt, this

function will call the terminate prototype function or it will initiate some other appro­

priate interrupt handling procedure. For example, in the instance of a hardware inter­

rupt, instructions to go to a particular hardware address could be executed.

28

........

. . .

.tJ • •

B. THE USE OF ADA

The dynamic scheduler will be implemented in Ada® as previously described. Ap­

pendix D provides a "skeleton" program based on the Ada® language in order to show

some of the features of the language which are relevant for this implementation. For

example, it demonstrates the use of an Ada® procedure. Recall that an Ada® procedure

is a fundamental programming unit that encapsulates a series of statements.

This program also demonstrates the use of a task. A task in Ada® is based on the

concept of communicating sequential processes. Tasks can be viewed as independent,

concurrent operations that communicate with one another by passing "messages" [Ref.

5: pp. 68, 70]. This feature is particularly important to the CAPS execution support

system as mentioned earlier because it provides the means for communication among

each of the three CAPS components.

Another feature of the language included in this program is the instantiation of the

generic package CALENDAR. CALENDAR has a predefined function, CLOCK that

returns the time of day and exports a data type of time. This package provides· a simple

yet effective means for monitoring the execution time of an operator.

One other aspect of Ada® illustrated in Appendix D is an exception handling pro­

cedure. The Ada® language contains several predefined exceptions, and it also provides

a user with the ability to define exceptions for a given application. For the CAPS, these

user-defined exceptions will be be the predefined PSD L exceptions (e.g.

FULL_BUFFER, EMPTY_BUFFER).

An exception is handled within the program unit where it is created (via a raise

statement), or it can be sent (propagated) to another unit for handling. Since the dy­

namic scheduler is considered to be the run-time executive for the CAPS execution sup­

port system, it makes sense from an efficiency standpoint to handle exceptions at this

'' central" location within the execution environment.

The "centralization of control" logic also makes sense for the the handling of inter­

rupts. Although not shown by the skeleton program, interrupt handling procedures can

include an Ada® representation clause which allows the use of machine-dependent facil­

ities. For example, an Ada® representation clause of the form "for FAIL use at

16# I FE#" as illustrated by [Ref. 5: p. 308] can be used. The hexadecimal number

16# 1 FE# represents some hardware or vector address.

One last language feature which should be mentioned, is a possible "file" structure

for storing the non-time critical operators. Recall that this file (the "operator queue")

29

is one of the results of the prototype decomposition performed by the static scheduler.

Several different structures could be used depending upon which would provide the most

effective means for performing input and output operations on processes during dynamic

scheduling. One structure which is often used in Ada® to hold sorted data is a binary

tree as illustrated by [Ref. 17: p. 150]. Other file structures which could be used include

a linked list or a data stack. Implementation of any of these would allow the dynamic

scheduler to perform the input/output operations required by its design.

30

- ..

. '.

IV. SUMMARY

A. TIIE QUESTIONS ANSWERED

This study attempted to meet two objectives:

1. Conceptual development of a dynamic scheduling component for the computer­
aided design system CAPS

2. Interface of the dynamic scheduling component with the other two components of
the CAPS execution support system

The focus on these objectives has resulted in the conceptual development of a four

function dynamic scheduler. This design as outlined by Appendix C, demonstrates how

the dynamic scheduler will interact with the translator and the static scheduler compo­

nents within the CAPS execution support environment. Further, the scheduling ap­

proach proposed for the scheduling of a prototype's non-time critical provides a viable

alternative for making effective use of idle processing resources that occur as a result of

ensuring that a system's real-time constraints are met.

B. THE PROBLEMS THAT REMAIN

Future research for the CAPS dynamic scheduling problem needs to address several

areas. An area of primary importance is a more detailed development of the conceptual

design, including an examination of its feasibility given the assumptions its based on.

Special attention should be placed on developing a more detailed description of the op­

erations required for the "Create Non-time Critical Operator Schedule" function. Once

this process is complete, the Ada® coding required to implement the dynamic scheduling

functions can proceed.

Another area which needs to be addressed is the development of a "debugger"

function for the dynamic scheduler as proposed by [Ref. 18] and [Ref. 2: p. 9]. The

purpose of the debugger is to collect statistics on prototype behavior and to accept

control of prototype execution when a PSD L exception occurs. (Recall that the initial

dynamic design merely terminates prototype execution). The addition of this function

would enhance, and at the same time, possibly reduce the number of iterative phases

required during prototype development because of the additional control and informa­

tion it provides to the designer.

The debugging function can be fairly conventional. For example, the ability to at­

tach breakpoints to operators, which can be conditional with respect to a PSD L predi-

31

cate (an ''if' condition) could be included. Selected inputs or outputs of an operator

should be traceable, resulting in a display of the values and their associated arrival or

departure times. Commands for inserting and deleting values in data streams should

also be provided.

The facilities for gathering statistics should include commands for monitoring both

frequencies and timing information. Frequency statistics include the number of values

that pass down a data stream, the number of times an exception occurs, etc. Timing

statistics include minimum, average, standard deviation, and maximum times for the

execution, response, or intervals between firings of an operator. These statistics are in­

tended primarily for feasibility and performance studies. [Ref. 19: pp. 10 -13]

C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE

An example of an effort that would derive substantial benefit from the use of CAPS

is the software development required for implementation of the Defense Switched Net­

work (DSN). The implementation strategy that will be employed requires components

and features to be adopted gradually, beginning with an initial capability based on to­

day's voice network [Ref. 20: p. 11].

The DSN is the future Command and Control (C2) telecommunications network for

the U.S. strategic armed forces. It is being designed to provide rapid, endurable, and

economical telecommunications services to both high and low priority users. High pri­

ority users require immediate (i.e. real-time) service under the most difficult mission

stress conditions. Low priority users require service for performing operational support

activities such as logistics and personnel related functions which are not subject to the

same type of real-time constraints. In order to meet these requirements, the network is

planned to include more than 200 U.S. Government-owned communications switches in

Europe and more than 60 U.S. Government-owned switches in the Pacific, as well as

commercially leased switching and transmission services in the Western-Hemisphere and

Hawaii. [Ref. 20: p. 6]

Comprehensive computer support that is highly reliable from both a security and a

survivability standpoint, will be required to maintain control of this vast network. This

computer support will assist in performing these network functions:

1. monitoring and surveillance to detect performance abnormalities automatically

2. implementing real-time controls that prevent switch or network congestion

3. analyzing traffic data to permit continuous optimal operation of the network

32

Computer aids that minimize personnel requirements will also be employed--locally

and from remote locations--in administration, operations, maintenance, and network

management of network elements. [Ref. 20: p. 6]

This diverse set of requirements illustrates why this development effort would be

significantly enhanced by using CAPS, its prototyping methodology, and PSDL. This

is especially true if the computer support systems are developed using Ada® as currently

planned.

D. CONCLUSION

A primary advantage of CAPS for system development is that PSD L use for con­

struction of an executable prototype would be much easier and simpler than direct use

of Ada®. Additionally, executing a prototype (or prototypes) that demonstrates the

functioning and interaction of modules within a complicated embedded system like the

DSN, would significantly increase the confidence that the system can be built as

planned. Using a prototype would also improve cost estimates since the cost of the in­

tended system is generally proportional to the cost of a rapid prototype. [Ref. 19: p. 12]

The conceptual development of the CAPS dynamic scheduler represents a significant

step forward in meeting the demand for rapid development of reliable software for large

real-time computer systems. Additionally, the proposed "shortest first" scheduling al­

gorithm used by the dynamic scheduler could be effective for scheduling non-time critical

processes in other real-time environments as well. This scheduling approach could prove

to be an effective way for utilizing idle processing resources which are often wasted in

large real-time systems.

33

APPENDIX A. A PSDL PROTOTYPE

This is an example of a PSDL prototype as it appears in [Ref. 4: pp. 27-40]. It was

developed to model a simple system for treating brain tumors using hyperthermia.

OPERATOR brain_tumor_treatment_system
SPECIFICATION

INPUT patient_chart: medical_history,
treatment_switch: boolean

OUTPUT treatment_finished: boolean
STATES temperature: real

INITIALLY 37.0
DESCRIPTION
{The brain tumor treatment system kills tumor cells

by means of hyperthermia induced by microwaves.
}

END

IMPLEMENTATION
GRAPH

100

SlftULRTEDJRTIEHT

T£11PERATURE

100

PAT1£NT_cHART HYPERTHERnlfLSYSTEn
TAEATIIENT-SU ITCH-~.__ _________ _.

DATA STREAM treatment_power: real
CONTROL CONSTRAINTS

OPERATOR hyperthermia_system
PERIOD 200 BY REQUIREMENTS shutdown

OPERATOR simulated_patient
PERIOD 200

DESCRIPTION {paraphrased output}
END

TYPE medical_history
SPECIFICATION

OPERATOR get_tumor_diameter
SPECIFICATION

INPUTS patient_chart: medical_history,
tumor_location: string

34

TREATnEftT.J)OUER

TREATftENT ...F I ti I SHED

. ..

OUTPUTS diameter: real
EXCEPTIONS no_tumor
MAXIMUM EXECUTION TIME 5 ms
DESCRIPTION
{Returns the diameter of the tumor at a given location,

produces an exception if no tumor at that location.
}
END

KEYWORDS patient_charts, medical_records, treatment records,
lab records

DESCRIPTION
{The medical history contains all of the disease and

treatment information for one patient. The operations
for adding and retrieving information not needed by
the hyperthermia system are not shown here.

}
END

IMPLEMENTATION
tuple {tumor_desc: map-from: string, to: real{, ... }

OPERATOR get_tumor_diameter
IMPLEMENTATION

GRAPH

I
PAT I on-CHART

TUPI..E. G£T _TUftORJJESC

TD
4

TUftOILLOCATION IIAP.FETCH

DATA STREAM td: tumor_descr
CONTROL CONSTRAINTS

OPERATOR map.fetch

DIAIIETER

EXCEPTION no_tumor IF not(map.has(tumor_location, td))
END

END

OPERATOR hyperthermia_system
SPECIFICATION

INPUT temperature: real, patient_chart: · ·medical_history,
treatment_switch: boolean

OUTPUT treatment_power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 100 ms

BY REQUIREMENTS temperature_tolerance

35

MAXIMUM RESPONSE TIME 300 ms
BY REQUIREMENTS shutdown

KEYWORDS medical_equipment, temperature_control,
hyperthermia, brain_tumors

DESCRIPTION
{After the doctor turns on the treatment switch, the

hyperthermia system reads the patient's medical record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of

}

42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.

END

IMPLEMENTATION
GRAPH

TEIIPERRTURE

PATIENT...cHRRT

TREA"fflEltT-SLIITCH

ffll IIITRI R

START-1JP

10

SRFETY_.CONTROI..

DATA STREAM estimated_power: real
TIMER treatment_time

CONTROL CONSTRAINTS
OPERATOR start_up

TRIGGERED IF temperature< 42.4
BY REQUIREMENTS maximum_temperature

STOP TIMER treatment_time

TREATftEJfT....POUER

RESET TIMER treatment_time IF temperature<= 37.0

OPERATOR maintain
TRIGGERED IF temperature>= 42.4

BY REQUIREMENTS maximum_temperature
START TIMER treatment_time

BY REQUIREMENTS treatment_time, temperature_tolerance
OUTPUT treatment_finished IF treatment_time >= 45 min

BY REQUIREMENTS treatment_time

36

-..

END

OPERATOR start_up
SPECIFICATION

INPUT patient_chart: medical_history, temperature: real
OUTPUT estimated_power: real, treatment_finished: boolean

BY REQUIREMENTS startup_time
MAXIMUM EXECUTION TIME 90 ms

BY REQUIREMENTS temperature_tolerance
DESCRIPTION
{Extracts the tumor diameter from the medical history and

uses it to calculate the maximum safe treatment power.
Estimated power is zero if no tumor is present. The
treatment finished is true only if no tumor is present.

}
END

IMPLEMENTATION Ada start_up
END

OPERATOR maintain
SPECIFICATION

INPUT temperature: real
OUPUT estimated_power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 90 ms

BY REQUIREMENTS temperature_tolerance
DESCRIPTION

}

{ The power is controlled to keep the power between 42.4
and 42.6 degrees C.

END

IMPLEMENTATION Ada maintain
END

OPERATOR safety_control
SPECIFICATION

INPUT treatment_switch, treatment_finished: boolean
estimated_power: real

OUTPUT treatment_power: real
BY REQUIREMENTS shutdown

MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperature_tolerance

DESCRIPTION
{The treatment power is equal to the estimated power

}
END

if the treatment switch is true and treatment finished
is false. Otherwise the treatment power is zero.

IMPLEMENTATION Ada start_up
END

37

APPENDIX B. PSDL GRAMMAR SUMMARY

This is a summary of PSD L grammar and language conventions as initially de­

scribed in [Ref. 1: pp. 54-56] and further refined by [Ref. 6]. Several conventions are

used for symbology in the grammar. [Square Braces] indicate optional items. { Curly

Braces } indicate items which may appear zero or more times. Bold face type indicates

a named terminal symbol which must appear in the program listing the programmer

writes. "Double quotes'' indicate character literals which must appear in the program

listing. The T' vertical bar indicates an exclusive-or selection. In this case the pro­

grammer selects one and only one of the items separated by the vertical bar.

As an example, the token timing_info is one of six mutually exclusive possibilities

which may define the attribute token. The attribute token may appear zero or more

times to define the interface token, which is a required attribute of the operator_spec

token. Timing_info, if selected for attribute, may be empty, or it may contain one or

more of the optional tokens allowed to define timing_info. Each of these tokens may

appear no more than one time for a given instance of timing_info.

psdl = { component }

component = I data_type
I operator

data_type = type id type_spec type_impl

operator = operator id operator_spec operator_impl

type_spec = specification [type_declJ {op_spec_list} [functionality} end

op_spec_list = operator id operator_spec

operator_spec = specification interface [functionality] end

interface = {attribute [reqmts_trace]}

attribute = I generic _param
I input
I output
I states
I exceptions
I timing_ info

generic _param = generic type_ decl

38

r

·• .. "

... ,. -

input = input type_decl

output = output type_ decl

states = states type_decl initially expression_list

exceptions = exception id_list

id_list = id { "," id }

timing_info = [maximum execution time time]
[minimum calling period time]
[maximum response time time]

time = number (unit]

unit = I microsec I ms I sec I min I hours

reqmts_trace = by requirements id_list '

functionality = [keywords] [informal_desc] [formal_desc]

keywords = keywords id_list

informal_ desc = description "{" text "}"

formal_ desc = axioms "{" text "}"

type_impl = I implementation Ada id
I implementation type_name { op_impl_list } end

op_impl_list = operator id operator_impl

operator_impl = I implementation Ada id
I implementation psdl_impl

psdl_impl = data_ flow_ diagram
[streams]
[timers]
[control_ constraints]
[informal_desc]
end

data_ flow_ diagram = graph { link }

link = id "," opid "->" id

opid = id [":" time]

streams = data_stream type_ decl

type_decl = id_list ":" type_name { "," id list "·" type_name}

type_name = I id
I id "[" type_ decl "]"

timers = timer id_list

control_ constraints = control constraints { constraint }

constraint = operator id

39

[triggered [trigger] ["if' predicate] [reqmts_trace]]
[period time [reqmts_trace]]
[finish within time [reqmts_trace] J
{ output id_ list if pre di ca te [reqmts _trace] }
{exception id [if predicate] [reqmts_trace]}
{timer_op id [if predicate] [reqmts_trace]}

timer_ op = I start I stop I read I reset

trigger = I by all id_list
I by some id_ list

predicate = I not predicate
I predicate and predicate
I predicate or predicate
I expression_list
I id ":" id_list

expression_list = expression { "," expression}

expression = I number
I constant
I id
I type_name ''," id"(" expression_Iist ")"

40

(.

('

APPENDIX C. DYNAMIC SCHEDULER FUNCTIONS
1.0 Run-Time Executive

1. 1 Invoke Translator Preloader Procedure
1.2 Invoke Static Scheduler

2.0 Create Non-Time Critical Operator Schedule

2. 1 Compare Time Slice to Operator Queue Time Requirement
2.1.1 Find top of queue (operator with shortest

time requirement)
2. 1.2 Subtract operator time requirement from time slice
2.1.3 When result of subtraction> O, send time

available message to execute operator function
2. 1.4 When result of subtraction< O, let processor

idle until start of next static schedule
requirement

2.2 Schedule Operator
2.2.1 Schedule available operator from operator

queue for execution
2.2.2 Send completion message to monitor
2.2.3 Send exception message to monitor
2.2.4 Send hardware/interrupt message to monitor

2.3 Monitor Process
2.3. 1 Monitor execution time of operators
2.3.2 Terminate operator if available

processing time is exceeded
2.3.3 When operator completes execution,

send message to compare operation
to see if more execution time is
available

2.3.4 When exception occurs during dynamic
schedule processing, call terminate
prototype function

2.3.5 When interrupt occurs during dynamic
schedule processing, call handle
interrupts function

3.0 Terminate Prototype
3. 1 Terminate Translator
3.2 Terminate Static Scheduler
3.3 Terminate Dynamic Scheduler

4.0 Handle Interrupts
4. 1 Send terminate request to terminate prototype
4.2 Send non-terminatable request to appropriate

location

41

-.
C

.· .

42

...

A

APPENDIX D. PSEUDO-CODE FOR AN ADA PROGRAM

This pseudo-code illustrates some useful features of the Ada® programming lan­

guage (Ada® is a registered trademark of the United States Government, Ada Joint

Programming Office). A detailed description of how these features can be implemented

in an Ada® program appears in [Ref. 5)

--Two hyphens indicate the start of a comment in the Ada language.
--Four hyphens within this pseudo-code are used to enhance
--readability and to indicate the absence of formal
--parameters, statements, or other features of the language
--that are required by an actual program

with OPERATOR_QUEUE; --the operator queue of
--non-time critical processes
--will be created by the
--static scheduler

with CALENDAR; --the Ada language definition
--includes the package CALENDAR
--with a predefined function,
--CLOCK that returns the time
--of day and exports a data type
--of time

procedure DYNAMIC_SCHEDULER is

declare

FULL_BUFFER:
EMPTY_BUFFER:
OVER_TIME:
PSDL_EXCEPTION:

exception;
exception;
exception;
exception;

--when an exception is
--raised within an Ada
--program unit, it is
--propagated to a level

43

type READY is text;
type SCHEDULE is text;
type TIME_SLICE is text;

PRELOAD
SCHEDULE
IDLE

READY;
CREATED;
TIME_SLICE;

--where it can be handled

--the text types indicate the
--different messages exchanged
--during a rendezvous

procedure PRELOADER; --PRELOADER will be some actions
--that will invoke buffer
--initialization procedures for the
--translator

procedure START; --START will consist of some actions
--to start the execution of the
--static schedule

procedure CREATE_SCHEDULE is --the procedure that will
--create a schedule for
--the non-time critical
--operators

use CALENDAR;
use OPERATOR_QUEUE;

TIME, OPERATOR_TIME_REQUIREMENT TIME_SLICE;

begin

--COMPARE_OPERATION

44

0

..

...
--find top of OPERATOR_QUEUE (operator with shortest
--time requirement)

--select this operator and compare its execution
--time with TIME_SLICE in order to determine
--if enough time is available to
--execute this non-time critical process

--while enough time is available, in a given
--TIME_SLICE, schedule processes for execution

--else let the processor idle till start
--of next static scheduling block

--MONITOR_PROCESS --implement a process to monitor
--status of executing non-time
--critical operators (time, completion, etc.)
--using the generic package CALENDAR

end CREATE_SCHEDULE;

task RUN_TIME_EXECUTIVE is --an Ada task is an effective
--method for implementing the
--the run-time executive function
--because it provides a means for
--communication among the three
--execution support system commponents

--entry and accept provide the
--means for "two way"
--communications among the three
--execution support system components

entry TRANSLATOR (PRE LOAD : in READY);

--the communications path from
--the dynamic scheduler
--to the translator which will be
--used to invoke the buffer

".. - -pre loader procedure

entry STATIC_SCHEDULER (SCHEDULE : in CREATED);

45

--the communications path between
--the dynamic scheduler and the
--static scheduler which will be
--used to invoke (start) the
--execution of the static schedule

entry IDLE_TIME (IDLE in TIME_SLICE);

--the communications path between
--the dynamic scheduler and the
--static scheduler which will be
--used to indicate to the dynamic
--scheduler when idle time is
--available

end;

task body RUN_TIME_EXECUTIVE is

begin

accept TRANSLATOR (PRELOAD : in READY) do PRELOADER;

--PRELOADER will be some actions that
--will invoke buffer initialization
--instructions

accept STATIC_SCHEDULER (SCHEDULE : in CREATED) do START;

--START will consist of some actions
--to start the execution of the static
--schedule

accept IDLE_TIME (IDLE : in TIME_SLICE) do CREATE_SCHEDULE;

--when idle time is available, the
--dynamic scheduler can schedule
--non-time critical processes for
--execution during a given
--"time slice"

46

..

. ·.

" -

-r .

end RUN_TIME_EXECUTIVE;

begin

RUN_TIME_EXECUTIVE.TRANSLATOR (PRELOADER);

RUN_TIME_EXECUTIVE.STATIC_SCHEDULER (START);

RUN_TIME_EXECUTIVE.IDLE_TIME (CREATE_SCHEDULE);

--when an exception occurs, the generic procedure TEXT_IO
--and an application specific procedure such as PUT_LINE
--can be used indicate to the CAPS user what the nature
--of the exception is

exception
when FULL_BUFFER=>

end;

exception

TEXT_IO.PUT_LINE ("An attempt was made to
update a full buffer");

TERMINATE_PROTOTYPE;

--using the Ada generic package TEXT_IO,
--and a user written procedure PUT_LINE,
--a message as shown will appear on the
--user's screen and prototype execution
--will be terminated when an exception is
--raised.

when EMPTY_BUFFER=>

TEXT_IO.PUT_LINE ("An attempt was made to
read data from an empty
buffer");

TERMINATE_PROTOTYPE;

47

end;

exception
when OVER_TIME=>

end;

exception

TEXT_IO.PUT_LINE ("A PSDL operator has
exceeded maximum
execution time");

TERMINATE_PROTOTYPE;

when PSDL_EXCEPTION=>

end;

TEXT_IO.PUT_LINE ("An undefined PSDL
exception
ha.s occurred");

TERMINATE_PROTOTYPE;

end DYNAMIC_SCHEDULER;

48

•
d.l

- .Q

:. "'

()

,)

,.--

LIST OF REFERENCES

1. Luqi, Rapid Prototyping for Large Software System Design, Ph.d Thesis, University

of Minnesota, Duluth, MN, May 1986.

2. Luqi, and Ketabchi, M., A Computer Aided Prototyping System, Technical Report

NPS52-87-011, Naval Postgraduate School, Monterey, CA, April 1987.

3. Luqi, and Ketabchi, M., "A Computer Aided Prototyping System", IEEE Software,

IEEE Computer Society Press, Washington, D.C., 66-72, March 1988.

4. Luqi, Berzins, V., Yeh, R., A Prototyping Language for Real-Time Software, Tech­

nical Report NPS52-87-010, Naval Postgraduate School, Monterey, CA, April

1987.

5. Booch, G ., Software Engineering with Ada, The Benjamin/Cummings Publishing

Company, Inc., Menlo Park, CA, 1987.

6. Moffitt, C. R., A Language Translator For A Computer Aided Rapid Prototyping

System, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 1988.

7. O'Hern, J. T., A Conceptual Level Design For A Static Scheduler For Hard Rea/­

Time Systems, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March

1988.

8. Janson, D. M., A Static Scheduler For The Computer Aided Prototyping System:

9.

An Implementation Guide, M.S. Thesis, Naval Postgraduate School, Monterey, CA,

March 1988.

Davari, S. and Dhall, S. K., "An On Line Algorithm for Real-Time Tasks Allo­

cation'', IEEE Real-Time Systems: Proceedings of the Symposium in New Orleans,

Lousiana, December 2-4, 1986, IEEE Computer Society Press. Washington, D.C.,

194-199, 1987.

49

10. Jensen, E. D., Locke, C. D., Tokuda, H., "A Time-Driven Scheduling Model for

Real-Time Operating Systems", IEEE Real-Time Systems: Proceedings of the Sym­

posium in San Diego, California, December 3-6, 1985, IEEE Computer Society

Press. Washington, D.C., 112-122, 1986.

11. Mok, A. K., "The Decomposition of Real-Time System Requirements into Process

Models", IEEE Real-Time Systems: Proceedings of the Symposium in Austin, Texas,

December 4-6, 1984, IEEE Computer Society Press. Washington, D.C., 125-133,

1985.

12. Mok, A. K., "The Design of Real-Time Programming Systems Based on Process

Models", IEEE Real-Time Systems: Proceedings of the Symposium in Austin, Texas,

December 4-6, 1984, IEEE Computer Society Press. Washington, D.C., 5-17, 1985.

13. Mok, A. K., and Sutanthavibul, S., "Modeling and Scheduling of Dataflow Real­

Time Systems", IEEE Real-Time Systems: Proceedings of the Symposium in San

Diego, California, December 3-6, 1985, IEEE Computer Society Press.

Washington, D.C., 178-187, 1986.

14. Sha, L., Lehoczky, J. P., Rajkumar, R., "Solutions for Some Practical Problems in

Prioritized Preemptive Scheduling", IEEE Real-Time Systems: Proceedings of the

Symposium in New Orleans, Lousiana, December 2-4, 1986, IEEE Computer Society

Press. Washington, D.C., 181-191, 1987.

15. Cheng, S., Stankovic, J. A., Ramamritham, K., Dynamic "Scheduling of Groups

of Tasks with Precedence Constraints in Distributed Hard Real-Time Systems",

IEEE Real-Time Systems: Proceedings of the Symposium in New Orleans,

Louisiana, December 2-4, 1985, IEEE Computer Society Press. Washington, D.C.,

166-174, 1987.

16. Chang, H., and Livny, M., "Distributed Scheduling under Deadline Constraints:

Comparison of Sender-initiated and Receiver-initiated Approaches", IEEE Real­

Time Systems: Proceedings of the Symposium in New Orleans, Louisiana, December

2-4, 1986, IEEE Computer Society Press. Washington, D.C., 175-180, 1987.

50

n

.. - .

17. Bray, G., and Pokrass, D., Understanding Ada--A Software Engineering Approach.

John Wiley and Sons, Inc., New York, NY, 1985.

18. Luqi, "Execution of Real-Time Prototypes", ACM First International Workshop on

Computer Aided Software Engineering, Cambridge, MA, 870-884, May 1987.

19. Luqi, Execution of Real-Time Prototypes, Technical Report NPS52-87-012, Naval

Postgraduate School, Monterey, CA, April 1987.

20. Defense Communications Agency, Defense Switched Network, The Defense Com­

munications Agency, Washington, D.C., 1987.

SI

. ..,

•"

• 0

.J

.. .

Initial Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations
Code OP-941
Washington, D. C. 20350

Office of the Chief of Naval Operations
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command
Washington Navy Ya.rd
Washington, D.C. 20374-1662

Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center
NAVCO~NIT Washington
Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

2

2

1

2

2

2

1

1

1

1

Ada Joint Program Office 1
OUSDRE(R&AT) ...
The Pentagon
Washington, D.C. 230301 {J

Naval Sea Systems Command 1
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense 1
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center 1
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation 1
Division of Computer and Computation Research
Washington, D.C. 20550

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

p

..
r

