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ABSTRACT 

While the cost of computing hardware has decreased steadily, the cost of software 

design, development and, maintenance has increased. One approach to reduce the cost 

of software development is rapid prototyping. Further, it has been proposed to combine 

the design strategy of rapid prototyping with a computer aided software prototyping 

system. Such a system would allow the software designer to employ a software base of 

reusable program modules. It would assist in prototyping and would automate a large 

part of the development effort. An important component of the automation would be 

a language translator facility. This translator would allow the designer to develop a 

software prototype in a high level specification language which would be simple and 

convenient to use and would translate the specification statements into an executable 

software language. 

This thesis demonstrates the feasibility of using a language translator by developing 

a prototype translator for a computer aided software prototyping system. The translator 

is written in Attribute Grammar (AG) language and translates software specifications 

stated in the Prototype System Description Language (PSDL) into computer executable 

code in the Ada language. 
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I. INTRODUCTION 

A. COMPUTER AIDED PROTOTYPING SYSTEM 

A computer aided prototyping system (CAPS) has been proposed which would im­

plement many ideas for improving software productivity [Ref. 1: p. 68]. Figure 1 on 

page 2 illustrates the proposed architecture of such a system. This architecture is de­

signed to be implemented in an automated environment, the rapid prototyping schema. 

The automated environment will make it practical to develop, test, and quickly modify 

prototypes of a proposed system. It will make possible the demonstration of a working 

system (or perhaps several) to the customer in order to firm up requirements and func­

tional specifications. 

l. Major CAPS Components 

The CAPS architecture consists of six major subsystems. The central objective 

of the system is to optimize the use of the programmer's time in prototype development. 

The objective of prototype development is to: 

• provide a firm set of requirements and functional specifications which will guide 
development of the production software. 

• ensure agreement between customer and developer as to the requirements and ex­
pected performance characteristics of the system 

• generate a modular, skeletal structure of the software system which will serve to 
guide further implementation 

• shorten prototype development time and thus accelerate production system delivery 

• assist in estimating the ultimate development costs of the finished system 

The CAPS allows the designer to enter a specification-based description of the 

proposed system in a high level language constructed especially for prototype develop­

ment. These specifications are acted upon by a rewrite subsystem and an execution 

support subsystem. The rewrite subsystem converts the specification statements into a 

normalized form. The normalized statements are used to search a software database of 

reusable components which are then provided to the execution support subsystem for 

instantiation in the prototype. The specifications are also acted upon by the execution 

support subsystem to produce executable code into which the reusable software modules 

1 
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figure 1. Computer Aided Prototyping System Architecture (CAPS) 

are instantiated. The resulting prototype can then be tested for conformance to specifi­

cations and proper operation. New versions or redesigned versions can be quickly con­

structed and tested as the need arises. 

2. A Prototype Language 

The core of the CAPS is the Prototype System Description Language (PSDL). 

It is optimized for use at the specification and design level of programming. Special 

structures exist for describing real-time systems. A PSDL description represents a system 
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as operators communicating via data streams. The structure of the language encourages 

modular design of the prototype and by extension the eventual production version. A 

more detailed examination of PSD L will be undertaken in Chapter 3 of this paper. 

3. Rewrite System 

The rewrite system examines the PSD L file and produces a normalized version 

of the specifications which is used to search the software base for appropriate compo­

nents. If no component is found, the designer may examine the module to see if it can 

be decomposed into more primitive modules. If it can be, then the new modules are 

specified in PSDL, the specifications are normalized, and the search is repeated. If 

no modules are found and the modules cannot be decomposed then they must be hand 

coded in the executable language. When modules are found in the software base, they 

are provided to the execution support subsystem for instantiation in the prototype pro­

gram. The functions of managing the database, searching it for appropriate modules, 

and calling forth those that are found is the province of the Software Design Manage­

ment System. Currently a special Object-Oriented DBMS is being developed to meet the 

special requirements of the SDMS [Ref. 2]. For present testing it may be necessary to 

employ a commercially available database, though none currently meets the special re­

quirements of this system. [Ref. 1: p. 70) 

4. Execution Support System 

The Execution Support System (ESS) consists of three interrelated parts, one 

of which is the subject of this paper. Figure 2 on page 4 illustrates the relationship be­

tween the components of the ESS. Each element of the system and its function will be 

briefly described. The Translator design will be developed in Chapter 3 and 4. 

a. Translator 

The Translator {TL) converts PSDL source code into Ada®I source code. 

Output from the TL is provided to the Ada compiler/linker along with some additional 

information from the Static Scheduler (SS) to produce Ada object code. The object code 

is then exported to the operating system and can be run for test and demonstration 

purposes. The TL passes real time constraints through without translation. The TL 

I Ada is a registered trademark of the United States Government, Ada Joint Program Office. 
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COMPILE, 
LINK, 
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STATIC SCHEDULER 
PRE-PROCESSOR 

PAOGRAMRUN ..,_ ______ _ 

Figure 2. Execution Support System (ESS) structure 

creates code to implement the operators as procedures which will be called by the main 

subprogram/schedule created by the SS. The TL is responsible for instantiating a ge­

neric package which models the data stream buffers between operators. The TL also 

ensures that all operator triggering conditions are encoded correctly, and that the Trig­

ger data type and the Exception data type are properly encoded for the final model. 
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b. Static Sclzeduler 

The SS examines the PSDL source file to locate all modules having real­

time constraints, and to determine if any special precedence relations exist among the 

modules. The SS then generates the necessary Ada code to implement the timing con­

straints and the precedence relationships. The SS also generates the main subprogram 

or task. The SS finally generates a schedule of operation for the program which takes 

into account the worst case time schedule for all modules that have critical, real-time 

constraints such as maximum execution time, minimum calling period, and minimum 

response time. This information is encoded into the modules to enforce timing con­

straints at run time. Figure 3 illustrates the action of the SS. Janson [Ref. 3) and 

O'Hcm [Ref. 4] have studied the conceptual and initial empirical investigations into the 

design and implementation of the SS. 

Begin 
harmonic 
block 

operators 

Figure 3. Static and Dynamic Schedule Schema 
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c. Dynamic Scheduler 

The Dynamic Scheduler (DS) operates at runtime along with the prototype 

model. It is designed to control the execution of all non-critical operators within the 

program. A non-critical operator is one which is not subject to hard real-time con­

straints. The DS is invoked each time there is spare time within the static runtime 

schedule created by the SS. At that time DS commences execution of the next available 

module in its set of operators and continues to invoke non-critical modules until the 

available time is exhausted. At that point, operation of the DS is interrupted and con­

trol is returned to the SS to continue the time critical operations. Figure 3 on page 5 

shows the relationship between the DS operation and the SS operation. Eaton [Ref. 5] 

has examined the conceptual and fundamental design issues for the DS. 

B. CENTRAL AIM OF THIS PAPER 

In order to approach the development of the proposed CAPS architecture on a 

sound basis, it is necessary to consider the important theoretical ideas on which the ef­

fort will be based. The key literature which made possible the effort to produce this 

prototype translator will be reviewed. The reader may also wish to consult additional 

references cited in the bibliography. Many of the materials therein provide insight into 

the difficult problems of improving productivity in software engineering through auto­

mated means, and of configuring software systems to address real-time constraints on 

system performance. 

The purpose of this paper is to demonstrate the feasibility and functionality of an 

automated language translation facility which can be coupled into a larger, integrated 

system for automated software prototyping. This translator will receive as input a 

source file in PSD L which specifies the system to be prototyped. It will produce as 

output, source code in the Ada language which will be compiled and exported to the 

operating system. Discussion of the rationale for choosing PSDL and Ada for use in a 

prototyping environment will be presented in Chapter 3. Architecture and design of the 

translator will be developed in Chapter 3. This study will be limited to producing a 

translator capable of recognizing the full PSD L syntax and producing, at most, rudi­

mentary Ada output. This limitation is imposed because a rigorous, formal definition 
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of the relationship between Ada and PSDL has not yet been accomplished. Once such 

a definition is achieved, the results must be applied to the elementary translator created 

in the present effort. The resulting translator, combining a formally established re­

lationship between the source and target languages with a translator which recognizes 

PSDL syntax, will meet the requirements of the CAPS architecture for a translator ap­

plicable to general cases. 

The present work is arranged as follows: 

Chapter 2 discusses the theoretical basis for the CAPS system and surveys previous 
research which lays the foundation for the present work. 

Chapter 3 presents the basic implementation approach to the translator construction. 

Chapter 4 presents some possible applications of CAPS research to the field of tele­
communications. 

Chapter 5 presents conclusions and possible future avenues for research. 

7 



II. THEORETICAL UNDERPINNINGS OF CAPS 

A. HARDWARE AND SOFTWARE: A PROBLEM 

Several trends have become apparent in the computing industry. These trends have 

a significant impact on the field of software engineering. The first of these trends is the 

expansion of computer usage into an ever widening arena of applications. Early digital 

computers were largely confined to military, governmental, and research applications. 

A relatively small population of users was affected by the computer. Today the com­

puter is a significant feature of everyday life for almost the entire industrialized world. 

Few governments or businesses function without the aid of computer systems. Com­

puter systems route our telephone calls and record our bank transactions. Military 

forces worldwide employ computers for handling record traffic and a variety of com­

mand and control functions, as well as many tactical applications. 

One study estimated that forty percent of the U.S. labor force relied on computers 

in performance of their daily work during 1985. Another barometer of the growth in 

demand for computing is the percentage of the Gross National Product (GNP) that it 

represents. It has been estimated that the total amount spent on all aspects of com­

puting in 1980 was approximately 5 percent of GNP or about $130 billion. It is expected 

that this will rise to as much as 12.5 percent of GNP by 1990 [Ref. 6: p. 124]. 

Another trend, is the increasing power of each new generation of computing ma­

chines and the corresponding decrease in relative cost for a machine of that power. The 

cause of this trend is found in improved engineering and production methods for tran­

sistors and integrated circuits. The advent of Large Scale and Very Large Scale Inte­

gration (LSI, VLSI) have made possible great improvements in computing hardware 

architecture and lower costs of production. Each new generation of computing ma­

chines has benefited from engineering and production knowledge gained in previous 

generations. Today's machines are more reliable and robust in performance than their 

predecessors. 
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The decrease in hardware costs and increasing demand for computing services has 

generated a third trend in the industry. There is an increasing cost of software devel­

opment and maintenance as compared to the costs of hardware, and there is an in­

creasing cost of software as a total fraction of computing costs. Figure 4 on page 9 

shows the changing ratio of expenditures for hardware and software over time [Ref. 7]. 

The figure should not be interpreted as applying to any specific system. Instead, it re­

presents the general trend within the industry, that software development and especially 

maintenance represents an increasingly large portion of the cost of computing. The shift 

in resources to software maintenance arises from several considerations. There is more 

and more software to be maintained so a correspondingly larger number of persons are 

required to perform maintenance functions. 

100 

-en 
0 
0 

80 

0 60 
E 
Q) 

e 
Q) 
a. 

40 

20 

Hardware 

Software development 

Software maintenance 

1955 1978 

Figure 4. Changing hardware/ software cost ratio 
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Mills [Ref. 8: p. 267) points out that in only 25 years of software development his­

tory, some 75 percent of data processing personnel are taken up with maintenance, not 

development. He states two reasons for this. One is logistic and the other a technical 

reason. The logistic reason is that systems are maintained indefinitely after a definite 

period of development. Each time a development is completed some fraction of the 

work force must be diverted to maintenance. Mills [Ref. 8: p. 267) demonstrates that, 

for a constant work force working for a long period of time, the 75 percent fraction 

devoted to maintenance can be predicted. He states that only the purging or replace­

ment of older applications keeps the figure below 100 percent. The technical reason is 

that it has proven more difficult to develop correct and capable systems in the first place. 

The ability to integrate and debug systems has been consistently underestimated. Time 

after time software systems are late in delivery and do not do the things the users ex­

pected them to do. Also, there have consistently been underestimations of the uncer­

tainty and change facing software applications. For both these reasons, a large work 

force is required to do both corrective and adaptive maintenance to keep the application 

software functioning [Ref. 8: p. 267). 

Another aspect of maintenance is what we mean by that term in the software in­

dustry. Maintenance of software systems does not simply mean corrective maintenance 

in the strictest sense. Carrio [Ref. 9: p. 19) lists many other activities which are often 

encompassed by the term, including: 

• Enhancing the system ("gold-plating") in ways that do not alter the core require­
ments of the system 

• Adding new or substituting other requirements for performance relative to those 
implemented ( often the result of a poorly defined requirements set at the beginning 
of development) 

• Changing the baseline performance level to expand the performance envelope or 
due to expected changes in doctrine-optimization 

• Changing baseline requirements due to a planned evolutionary development of the 
system 

Mills [Ref. 8: p. 267] humorously describes the terms "debugging" and "mainte­

nance" as euphemisms in the software engineering world. Debugging is the correction 

of errors in the program which were originally put there by the programmers. 

10 
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Maintenance is the restoral of the program to a correct state of operation; but the 

program was never correct in the first place. The point he aims at is that proper soft­

ware design and engineering techniques are required to achieve maximum productivity 

and quality software systems. 

Beohm [Ref. 10] estimates that in 1980, the cost of software for computer man­

ufacturers, user organizations, and software firms was $40.2 billion dollars. This 

amount represented 84 percent of the total budget spent on computing hardware and 

software. As seen in Figure 5, software may account for 90 percent of the amount 

spent on computing systems by the 1990' s [Ref. 11: p. 49]. 
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The rising costs of software have been well documented in DOD. In 1973, software 

costs represented over 46 percent of the total DOD software budget [Ref. 12: p. 14]. 

It has been noted that DOD experienced a 51 percent increase in the direct costs of its 

computing systems, in spite of dramatic declines in the cost of hardware 

[Ref. 13: p. 3}. 

Unfortunately, productivity in software engineering has not kept pace with the 

growth in demand for computing systems and software applications. This is graphically 

illustrated in Figure 6 [Ref 14]. 
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Figure 6. Software supply and demand trends 

1988 1990 

The figure shows that growth in demand for qualified software personnel is growing at 

a rate which outstrips their availability. Furthermore, the growth µi productivity among 

software personnel also lags demand. It has been estimated that the average 
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programmer, in the absence of modern programming methods, can produce six to ten 

lines of debugged code per day. This is influenced by a variety of factors ranging from 

programmer competence to the number of persons working on a project and the purpose 

for which the program is written. Fairley [Ref. 15: p. 17] states as a rule of thumb, 

that typical productivity levels for a programmer on a per day basis as a function of task 

complexity are: 

• less than one line per day for systems programming 

• 5 to 10 lines per day for utility programs 

• 25 to 100 lines per day for application programs 

It is a truism that, in general, a computing system is only as capable and reliable 

as the software employed in the system. In an age of incredible advances in hardware 

technology, the computing industry is hampered by slow gains in productivity in soft­

ware engineering. Various sources of this situation have been cited. One element is the 

relative youth of the software engineering discipline in comparison to other engineering 

fields. Only three decades of experience and study support software engineering. These 

have been three decades of momentous change. The early leaders of the computing 

revolution were not native to the field. There has been a great deal of learning "on the 

job" for most software engineers. Until barely ten years ago there was a lack of rigor 

associated with program development and software engineering. As time has passed 

software engineers have recognized the need to develop a more rigorous approach to 

programming [Ref. 8: p. 268-269]. Even the relatively young field of electronics engi­

neering is founded in the rigor and discipline of centuries of physical science and 

mathematics. 

Another problem has been the failure to recognize the importance of human com­

munication to the discipline of software engineering. Computing is a human endeavor, 

in support of human needs. Humans must be able to communicate those needs to the 

system developer, who in turn must express an answer to those needs in the computing 

system. If there is any failure of communication by either party the result will be a 

system that fails in one degree or another to meet the requirements of the human user. 

13 



These trends lead us to conclude that some effort must be made to achieve greater pro­

ductivity and effectiveness in software engineering. 

B. THE TRADITIONAL "WATERFALL LIFE CYCLE'' 

I. Characteristics 

The traditional method of software engineering is the "waterfall life cycle." 

Figure 7 on page 15 shows a graphic representation of this approach. Under this 

schema, the customer perceives a need for a computing application for his operation 

or organization. He approaches a software developer and describes his problem. After 

some negotiation, the software developer determines what he believes the user's needs 

are and an agreement is reached to produce a computing package to meet the need. 

Contracts are let and the developer converts the customer's statements of need into 

precise (hopefully) functional specifications which can be implemented by the program­

mers. An architectural design is established based on some method of data flow or 

control flow. The system is then parceled out to programmers in manageable modules 

which each programmer is free to implement. As modules are developed they are as­

sembled. When the system is complete then full scale testing and debugging of the sys­

tem begins. If the system tests satisfactorily, the job is done and the system delivered 

to the customer for acceptance. Then begins the cycle of system maintenance. If the 

system fails or has numerous bugs (as is invariably the case with large systems) or if the 

system does not meet the functional specifications, or, worse, does not function as the 

customer expected, then the system must be restructured in various ways to correct the 

problem. This can be very costly, especially since tremendous amounts of manpower 

will have been already been invested at this point. 

2. Difficulties With The Traditional Approach 

Carrio [ Ref. 9: p. 17] describes this life cycle as a three phase event consisting 

of: 

• conceptual and definition phase ( the requirements analysis phase) 

• development phase (from functional specifications through test system) 

• deployment and operational phase (maintenance and support) 
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Figure 7. Traditional nwaterfall" approach to the software Iifecycle 

He points out that the problem with this approach is the lack of interaction 

between the keepers of doctrine ( the customers) and the developers in the early stages 

of the life cycle. Phase one is the province of the users. Phase two belongs to the de­

velopers and their supporting programmers and subcontractors. Then in phase three the 

two groups begin to interact in earnest. The key difficulty with this life cycle is 
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communications -- the ability of the user and developer to communicate, understand and 

insure the integrity of the initial set or requirements. The question of whether the "as 

specified,'' the ,, as designed," the ,, as tested," and the ,, as built" systems are all the same 

must be asked again and again. Under this life cycle the answer is no [Ref. 9: p. 18]. 

Frequently this life cycle approach has led to cost overrun, late product delivery, and 

failure of the "as delivered" system to meet the needs of the customer. It may be con­

cluded that the traditional life cycle is one source of difficulty in the struggle to achieve 

greater effectiveness and productivity in software engineering. 

Several techniques have been proposed to improve upon the traditional life cy­

cle. First of all, a rigorous design phase, in which customer requirements are exhaus­

tively examined to produce a firm set of functional specifications which accurately reflect 

what the customer wants. These are used throughout the remaining life cycle as the 

standard for system development. Second, the use of prototyping in an automated en­

vironment to provide guideline models for the entire life cycle. Use of automated tools, 

AI/knowledge based systems, and various application support environments to aid the 

software engineer in developing, documenting, and maintaining the system 

[Ref. 9: p. 20]. This would be coupled with top down development and a structured 

approach to design to enhance system maintainability and reliability 

[Ref. 8: pp. 269-271]. 

C. RAPID PROTOTYPING 

I. Description of Rapid Prototyping 

An alternative to the traditional approach is rapid prototyping. Under the rapid 

prototyping paradigm, an effort is made to ensure that the customer and the developer 

both understand what the customer's requirements for a software system are. This 

schema is graphically illustrated in Figure 8 on page 17. In this approach, there is 

again a period of discussion with the customer to determine his requirements. The re­

quirements are used to generate functional specifications. With the functional specifi­

cations, a prototype of the intended system is constructed and demonstrated for the 

customer. At this point the customer can decide if the prototype reflects the type system 

he had in mind; and the developer can see whether his perception of the customer's 
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Figure 8. Rapid prototyping approach to software engineering 

requirements was correct. Any adjustment needed in the functional specifications are 

made, the prototype system is recoded to reflect the adjustments, and the system is 

once again demonstrated. This process is repeated until the prototype behaves as the 

customer and the developer expect. Full scale development of the system is commenced 

once prototyping is completed. [Ref. 16) 
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2. 0 bjectives of Rapid Prototyping 

The iterative, rapid prototyping approach accomplishes several goals. First, 

it insures accurate communication between the customer and the developer. Due re­

cognition to the difficulties of human interaction is given. The customer certainly knows 

his profession and has a clear mental picture of what he wants to accomplish with a 

computing system, but may not understand computing systems themselves. The soft­

ware engineer understands computing systems but may not understand the world of the 

customer. They are both speaking English but may have no idea what each other is 

saying. Rapid prototyping seeks to cut through the communication difficulty by pro­

viding an executable model of the intended system which the customer can see. The 

customer will usually be able to recognize whether a working software system performs 

as he expects. This will ensure a stable set of requirements is achieved early in system 

development. [Ref. 1: p. 71] 

Prototype construction aims to make efficient use of the designer's time. As 

such it differs from production software in which the goal may be driven by the need to 

optimize speed, or memory usage, or accuracy and ease of use. Production software 

is designed to be fault tolerant and capable of handling a wide range of error conditions. 

The prototype may not be fault tolerant at all. In all probability, it will not be opti­

mized in performance. Prototyping the system generates a skeletal design framework 

which may serve as the initial design structure of the production version [Ref. 1: p. 71]. 

The early prototypes provide a traceable link between requirements, design, imple­

mentation and maintenance [Ref. 9: p. 20]. The use of prototypes aids in feasibility 

studies. Various methods of implementing portions of the system can be tested and the 

more promising methods can then be selected for implementation in the production 

system. Finally the prototyping approach aids in cost estimation. The cost of the final 

system will often be proportional to the final cost of the production version. 

[Ref. 1: p. 71] 
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D. IDEAS FOR INTEGRATED, AUTOMATED PROGRAMMING 

ENVIRONMENTS 

In his ACM award winning dissertation, Generating Language Based Environments, 

Thomas W. Reps [Ref. 17: pp. 1-2] raises many salient issues regarding software engi­

neering and software productivity. He observes that much of software development re­

quires exhaustive attention to organizational detail. By this he means many things. 

Among them are: 

• the need to constantly be concerned with details of language syntax and semantics 

• the accurracy of program entry 

• the details of operating a series of software tools such as editors, 
compilers, linkers, debuggers, and library managers ( all in the proper order) 

• maintaining an audit trail of documentation for the system 
under development 

• the necessity to communicate with others in the development process 

All the while the system developer or programmer also hopes to perform creative 

intellectual work, yet it comprises a small part of his daily effort. The remainder of his 

time is eroded away by the mundane details of the job. A similar observation has been 

made by Fairley [Ref. 15: p. 12-13] and Brooks [Ref. 18: p. 16-18]. Reps goes on to 

point out that much effort has been expended to make the programmer's life easier; to 

shield him from the details and allow him to do creative work. The form of this help 

has characteristically been a series of automated tools such as editors, debuggers, parser 

generators and the like. These tools have provided some relief, and have aided pro­

ductivity. However, they have generated problems of their own such as: 

• learning to operate each of these independent tools 

• employing the tools in the correct sequence when needed 

Worse, the individual tools are not normally integrated with each other to take full 

advantage of computing power now available, and to automate away the maximum 

amount of detail, leaving the programmer completely free to pursue productive creative 

endeavor. Reps argues that to make true breakthroughs in this area it will be necessary 

to create an automated design environment incorporating all necessary tools under one 
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coherent interface. He contends that such a system would be optimized to the particular 

language for which it is designed. This would be achieved by designing an integrated 

environment which 11understands11 semantics of the programming language being used 

in it. 

Reps then presents the development of a Synthesizer Generator whose purpose is to 

generate language-based edtiors for different programming languages. The tool uses a 

specification of the display format, syntax, and static semantics of the language to be 

edited. The objective is to create an editing environment which will prevent entry of 

incorrect syntax while the programmer is editing the program. The primary concern of 

the Reps dissertation is developing a framework for the semantic component of the 

language based editor. He discusses various methods to generate a programming envi­

ronment from an attribute-grammar description of a language. Reps also discusses what 

attribute grammars are and discusses several algorithms for attribute evaluation. He 

then shows how the semantic component of a language-based editor can be developed 

from an attribute grammar description and discusses some of the problems created by 

using attribute grammar based development systems, chief of which is the extravagant 

use of storage resources. [Ref. 17: p. 4] 

Several ideas in Reps work have impact on the design features envisioned for the 

CAPS. These include: 

• incorporation of an ''intelligent" editor environment which will aid the program 
designer in entering the prototype description correctly 

• integration of all the tools necessary for program prototyping under one coherent 
interface. 

• use of attribute grammar based approaches to language description. 

There are similarities and differences in what Reps does and in what is aimed for in 

the CAPS generally and in the Translator in particular. Reps is specifically concerned 

with development of editing environments based on attribute-grammar descriptions of 

a language. CAPS is concerned with incorporating an intelligent editor along with nu­

merous other tools in order to remove a great deal of the mundane drudgery from soft­

ware development. Reps uses attribute-grammar approaches to develop editing 
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environments. In this thesis, an attribute grammar based tool is used to develop a 

translator which can convert PSDL into Ada. 

Reps' work sets a direction for future programming development environments. It 

helps reveal a promising application for the concept of attribute-grammars. It demon­

strates the practical application of important theoretical concepts to the problems of 

productivity in software engineering. 

E. DESCRIPTIONS OF A COMPUTER AIDED PROTOTYPING SYSTEM 

A general description of a CAPS is provided in two papers. First is the technical 

report, A Computer Aided Prototyping System, by Luqi and Ketabchi [Ref. l]. Second 

is the technical report, Research aspects of Rapid Prototyping, by Luqi [Ref. 16]. These 

papers describe the overall concept of a CAPS. They lay out an architectural design for 

such a system and provide a starting point for the research in this thesis. 

The CAPS would provide an integrated environment for the development and test­

ing of prototypes of software systems. It would be specifically designed to address sys­

tems which were large, embedded, and had hard, real-time constraints. It would make 

use of the Ada language, and would employ a database system to store and recall both 

reuseable software components in the Ada language, and previously designed proto­

types in the PSDL language. A system to automatically translate the PSDL descriptions 

of a system into Ada code and compile them so that they could be executed to demon­

strate the prototype would be provided. The CAPS would be based on two ideas which 

would establish the fundamental character of the system. One is the methodology of 

rapid prototyping, the other is a language (PSDL) specifically designed for writing 

prototype designs of systems with hard, real-time constraints. PSDL would give ex­

pression to the methodology of rapid prototyping and form the core of the CAPS. 

F. THE PSDL LANGUAGE AND RAPID PROTOTYPING 

The central paper on the PSD L language and the application of the rapid proto­

typing methodology is Luqi's Ph.D. dissertation, Rapid Prototyping For Large Software 

System Design [Ref. 19]. Four related papers have been published which provide similar 

detail on the nature of PSD L and rapid prototyping. These are: 

• A Prototyping Language for Real Time Software [Ref. 20] 
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• Rapid Prototyping of Real-time Systems [Ref. 21] 

• Languages for Specification. Design, and Prototyping [Ref. 22] 

• Execution of Real-Time Prototypes [Ref. 23] 

The Execution of Real-Time Prototypes paper is a short technical report prepared for 

the Naval Postgraduate School. It very briefly summarizes the concept of CAPS and the 

rapid prototyping methodology. The remaining papers are closely related in content and 

purpose to one another, and are separated by the depth to which they examine the 

subject from the technical report. 

The seminal paper among the remaining papers is the Luqi Ph.D. dissertation. The 

paper begins by introducing the PSDL language. An extensive discussion of the CAPS 

system is set forth. The various components of the PSD L language are presented. The 

application of rapid prototyping to a system developed using PSD L is discussed in some 

detail. There is a brief discussion of the implementation of various PSDL language 

components within the ESS, and a discussion of the functions of the SS, DS, and TL. 

An example of a PSD L prototype is presented. Fina11y, a summary of PSD L syntax in 

BNF form is provided. 

The BNF summary of PSD L syntax is included as Appendix A of this thesis. From 

the standpoint of translator design, the most important sections of the dissertation, are 

section 2, on PSD L language elements and the discussion, in section 4, on how certain 

PSDL elements might be implemented by the Translator. Since the objective of this 

paper is to develop a Translator, section 4 of the Luqi dissertation provides the foun­

dation for chapter 3 and 4 of this thesis. 

Two of the papers are available in published journals. The paper, A Protoyping 

Language for Real-Time Software [Ref. 20], is essentially a reprise of the information 

presented in the Luqi thesis, without the BNF diagrams for PSDL. The paper presents 

a detailed description of PSD L and its employment under a rapid prototyping paradigm. 

Rapid Prototyping of Real-Time Systems [Ref. 21] presents an abbreviated discussion 

of PSDL and its use in a rapid prototyping setting. Less emphasis is placed on the 

specifics of PSD L syntax and language elements, and more on the general model and 

concepts involved in employing PSDL under the rapid prototyping methodology. The 
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paper serves as an excellent introduction to the fundamentals of PSD L and rapid pro­

totyping in the CAPS environment. 

Languages for Specification, Design, and Prototyping [Ref. 22], is an extensive 

presentation of the current state of language development in the three separate areas of 

specification, design, and prototyping. The authors distinguish between the three goals 

and discuss the characteristics of a languages aimed at satisfying the demands of each 

of the particular areas. Discussions and illustrations of various currently available lan­

guages are presented. The paper is an excellent general discussion of issues involved in 

selecting a language for a particular purpose. The paper points up the different prob­

lems associated with each approach to software production and demonstrates possible 

solutions. PSD L is presented as a good general purpose language for specification, 

design, and prototyping. PSD L has many features which make it convenient for use 

with Ada including: 

• is an executable language construction unlike many specification or design lan-
guages which are not 

• supports a modular approach to program design. 

• supports data, control, and operator abstraction 

• supports exception handling, separate compilation of generic units, and use of 
reuseable components. 

G. ATTRIBUTE GRAMMARS AND TOOLS 

The objective of this thesis is to generate a translator which will read a PSDL source 

file and produce and Ada source file. This might prove a daunting task were it not for 

the availability of an automated translator generator tool called Kodiyak [Ref. 24]. The 

Kodiyak system requires as input, an attribute grammar (AG) description of the source 

language. It is proper to consider some literature which addresses AG's in general, and 

the Kodiyak in particular. 

1. Attribute Grammars: What Are They? 

The classic work on AG's, is Semantics of Context-Free Languages 

[Ref. 25: pp. 127-145]. The paper sets forth " ... a technique for specifying the 

"meaning" oflanguages defined by context-free grammars .... " [Ref. 25: p. 127] It is 

assumed that the language is "context-free", That is, the "meaning" of any string or 
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element in the language is independent of the context in which it is used. This is usually 

not the case for natural languages (e.g., English, et al.}, but often is the case for pro­

gramming languages. It is asserted that the "meaning" of any string in a context-free 

language can be determined " ... by defining "attributes" of the symbols in a derivation 

tree for that string." [Ref. 25: p. 127] If the production rules for a given language are 

known, it is possible to assign functions to each of the production rules which define 

the ''attributes" of a given symbol or combination of symbols. The attributes may be 

developed in one or both of two ways. They may be "synthesized", defined in terms of 

their descendants; or they may be "inherited", defined in terms of their ancestors 

[Ref. 25: p. 128]. Colloquially, synthesized attributes are developed from the bottom 

up in the derivation tree, while inherited attributes are developed from the top down. 

Once all the attributes of all the symbols in the string are known, the "meaning" of the 

string is known. These simple but powerful concepts form the foundation of AG ap­

proaches. Knuth presents an applicative example of these principles as the first part of 

his paper [Ref. 25 pp. 128-130). The remainder of the paper is devoted to the math­

ematic and formal properties of the technique, and another example of how the method 

can be applied to programming languages. Finally, Knuth compares his method with 

other known methods of semantic definition. 

For the purposes of this paper it is possible to summarize Knuth's work. First, 

suppose there is a language for which there are a set of production rules. PSD L is such 

a language, with a context-free grammar and a set of production rules in the form of 

BNF diagrams for the language. Then to determine the "meaning'' of any string con­

structed according to those rules, it is necessary to: 

1. parse the string into its component parts and create a derivation tree of the string 

2. create a set of functions (equations) which assign meaning to each of the compo­
nents of the string 

3. reduce ( determine the meaning of) the string based on the BNF rules and the 
meaning of each of the components 

The Kodiyak system allows the application of the technique in a practical and 

convenient fashion to real problems. Detailed discussion of the AG approach will be 

deferred to chapter four of this thesis. Suffice it to say, that AG's have been used for 

24 

• 



. . 

II 

a variety of purposes, among them, the construction of compilers, pretty-printers, and 

translators. Knuth's short paper is at once the cornerstone and keystone of a whole area 

of software engineering research. 

2. An AG Based Tool For Translator Generation 

The effort required to produce a translator of the type desired for the CAPS is 

considerable. Fortunately, a tool has been developed which makes possible the auto­

matic generation of translators. That tool is the Kodiyak system. Kodiyak is an AG 

based tool developed by Robert M. Herndon as a Ph.D. dissertation at the University 

of Minnesota [Ref. 24]. The Ph.D. dissertation provides exhaustive details on the tech­

nical aspects of translator generation, the operation of AG based systems, and the de­

sign and construction of Kodiyak. Another work on the Kodiyak is AG: A Useful 

Attribute Grammar Translator Generator [Ref. 26]. Although it refers to an earlier ver­

sion of the Kodiyak (then known as AG), it provides a useful description of the Kodiyak 

system. The most useful work is The Kodiyak Reference Manual, which is an appendix 

to the dissertation [Ref. 24: app. 1]. This is a detailed reference manual describing how 

to employ the Kodiyak to generate a translator. 

Kodiyak itself is ''. . .a language designed for constructing translators 

[Ref. 24: p. 1, app l]" It is AG based. "The Kodiyak translator accepts a context-free 

grammar along '"'.'ith such attribute declarations and equations, a scanner specification, 

and output declarations, and generates the described translator 

[Ref. 24: p. I, app 1]." Kodiyak works on many Unix®2 based systems. It requires the 

use of various resident utilities. A C library and compiler, the LEX (lexical analyzer) 

[Ref. 27) and the Yacc (yet another compiler compiler) [Ref. 28] must be present in or­

der to use Kodiyak. The system is very effective and is presently in use at this institution 

to develop a pretty printer, as well as the translator presented in this thesis. It is pres­

ently in operation on a Vax®3 11/785 and a Sun®4 3/ 50 diskless workstation. The pres­

ent translator is being developed on the Sun station. 

2 Unix is a registered trademark of Bell Laboratories. 

3 VAX is a registered trademark of the Digital Equipment Corporation. 

4 SUN is a registered trademark of Sun Microsystems Incorporated. 
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There are only a few significant difficulties with the present Kodiyak. First, the 

system requires a great deal of storage, and a great deal of cpu time. The translator 

listing for the CAPS, presented in appendix C, requires about five minutes to compile 

on the Sun station. This is a station dedicated to the translator work and is otherwise 

idle. On the Vax 11/785, with normal user loads, the same listing requires about 10 

minutes to compile. The five minute figure on the Sun station represents actual cpu 

time. Second, the error messages and error handling in the system is not always as 

helpful as it could be. Error messages often refer to temporary files created by LEX or 

Yacc and not to the original source file. Also, when Kodiyak scans the input file, it 

may allow certain error conditions to pass through which will later be fatal during Lex 

or Yacc scans. Typical of this type error is a mispelled variable name. So long as 

K odiyak finds correct syntax in the input file it will allow the file to be presented to Lex 

and Yacc for processing. A mispelled variable name will result in a fatal crash of the 

Yacc scan and may be fatal to the Lex scan. Ideally Kodiyak should trap any errors of 

this type and exit immediately so that the user can correct the problem before the time 

consuming LEX and Yacc scans begin. Nevertheless, Kodiyak is powerful and signif­

icantly eases the effort required to construct the translator. 

The Kodiyak operates by taking an input file which is an AG description of the 

input language and the attribute equations which relate the input language to the output 

language. After scanning the file to insure it is in correct Kodiyak syntax, the file is 

passed to Lex and Yacc for processing. The end result is an executable translator, 

compiled in the C language. This translator can accept textfile input and will produce 

textfile output. 
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III. IMPLEMENTATION AND DESIGN CHOICES 

A. CAPS 

Prototype System Description Language (PSDL) provides the backbone of the 

CAPS for ·design and specification, while Ada was chosen as the language for imple­

mentation. The basis for this choice is found in the characteristics of the languages 

chosen. Each offers advantages and disadvantages for the design, specification, and 

implementation of hard real-time, large, and embedded systems. Alone, each presents 

difficulties in use. Used together in CAPS, the two languages experience a symbiosis, 

which results in flexibility, power, and ease of use for the system developer. The same 

power, convenience, and ease of use are available for the development of CAPS itself. 

1. Implementation Questions for CAPS 

CAPS is under development and not yet fully implemented. This paper aims to 

demonstrate a working prototype for the CAPS translator. Several other papers are in 

progress which specifically address other aspects of the system. The capabilities envi­

sioned for CAPS are extensive. 

• How can it achieve them? 

• What is the foundation of the system? 

• Why is that choice of foundations better than others? 

• Why is Ada not sufficient in itself to achieve hard, real-time system design and 
implementation? 

• What are the general properties of real-time systems that demand a tool like CAPS? 

These questions and others form the basis of this chapter. 

B. FOUNDATIONS FOR CAPS 

l. Prototype System Description Language (PSD L) 

PSD L is the foundation on which CAPS is being built. It is a language designed 

to support construction of large and embedded systems and those with hard, real-time 

constraints. 
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a. Embedded and Real-Time System Properties 

Embedded and hard real-time systems have several general properties which 

place special demands on the designer and his language tools. These properties are: 

1. Often large, running to millions of lines of code and thousands of modules 

2. Often operated in a multiprocessor environment 

3. Under the DOD concept, their primary function is often not computing but con­
trolling or monitoring the operation of complex or safety critical systems 

4. Generally have requirements for high reliability, and penalize the user severely 
upon failure (loss of aircraft and crew, loss of control of critical manufacturing or 
industrial process, etc.) 

5. Expect to be employed over an extended lifetime, with periodic updates and mod­
ification to maintain currency 

6. Are too large for a single individual to understand or program alone but require the 
efforts of teams of programmers and maintenance personnel 

7. Often require hard, real-time constraints in operation (i.e., operational schedules 
and deadlines within the program in response to real world conditions) 
[Ref. 12: p. 15-16) 

These characteristics demand several features of a prototyping language . 

which are summarized as follows: 

1. Should have a simple computational model which limits and exposes the inter-
actions between modules and is consistent with the prototyping methodology 

2. Should produce executable prototypes 

3. Should be simple and easy to use 

4. Should support hierarchical design to simplify construction of large, complex sys­
tems 

5. Should apply at both specification and design phase, thereby providing a unified 
notation to the user 

6. Should provide specifications suitable for retrieval of reuseable modules from a 
software base 

7. Should support data abstraction, control abstraction, and function abstraction 

8. Should contain abstractions which can be used to construct real-time systems 
[Ref. 19: p. 1 O] 
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b. Why Use PSDL? 

PSD L and Ada both approach the design of software in the same manner. 

There are several advantages to employing PSDL in the CAPS over using Ada directly. 

First, PSDL is a much simpler language. Its grammar (see Appendix A) is very small, 

compared to the Ada grammar which is very large. The compactness of PSD L allows 

its use as a tool with which to search a software base by automated means for previously 

written modules which will implement the designer's objectives. The designer does not 

need to know what units are available. The CAPS will search for Ada components in 

the software base for him, and will incorporate them into the prototype as long as they 

match the PSD L description. Second, CAPS will use the PSD L description to produce 

a graphic representation of the prototype program's hierarchical structure. PSDL is a 

distillation of the Ada language's constructs. Third, the CAPS translator will automat­

ically generate interconnections for Ada procedures to implement PSD L operators. 

c. PSDL Computational Model 

PSDL supports the specification and design of hard, real-time and embed­

ded systems with a simple and executable computational model. PSDL models software 

systems as a set of OPERATORS communicating via DATA STREAMS. The formal 

computational model is an augmented graph: 

G = (V,E,T(v),C(v)) 

where: 

• V is the set of vertices 

• E is the set of edges 

• T(v) is the maximum execution time for each vertex 

• C(v) is the set of control constraints for each vertex v 

Each vertex represents an operator while each edge represents a data 

stream. Components V, E, and T{v) are called the ENHANCED DATA FLOW 

DIAGRAM. [Ref. 19: p. 11) 
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2. Major PSDL Language Structures 

a. Operators 

In PSD L, Operators may be either atomic or composite. Composite oper­

ators can be decomposed into two or more operators, each of which may be composite 

or atomic. Atomic operators cannot be decomposed into simpler components. This is 

a colloquial rather than formal distinction. It envisions a hierarchical breakdown of the 

system into logical components which are as simple as possible without becoming trivial. 

No special rules for decomposition are imposed. This distinction allows the modeling 

of hierarchically structured programs as sets of operators. Operators at higher levels in 

the program structure are composite while those at the lowest level of the program 

structure become the atomic operators. PSDL can therefore be used to support top 

down design strategies. 

A second classification considers that operators may be data driven or pe­

riodic. Under this schema, the firing of a data driven operator is accomplished due to 

the presence of data in its input data stream(s), while the firing of a periodic operator is 

dependent upon timing constraints which must be met during program operation. The 

data driven operator allows the modeling of systems which utilize data flow as a means 

of control instead of the more traditional timing control in real-time systems. In either 

case, when an operator fires, it reads one data object from each of its input streams and 

writes, at most, on object to each of its output streams. 

A third classification of operators is allowed. An operator may be either a 

function or a state machine. This description relates to the values output from the op­

erator. The output value of the function type operator is dependent solely on the cur­

rent set of values present on the input streams to the operator. The output of the state 

machine type depends, not only upon the current set of input values, but also on the 

values of a finite number of state variables internal to the operator. Figure 9 on page 

31 illustrates several aspects of the PSD L operator concept. 

Each of the preceding operator classifications can be directly related to ex­

isting concepts in Ada. Ada supports both top down and bottom up design strategies 

in a hierarchical, modular program structure. PSD L allows the description of each 

module as an operator. In Figure 9 on page 31 A is an operator with one input stream, 
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a, and one output stream, e. In this case A is a function since no state variables are seen. 

A is also a composite operator which can be decomposed into three operators, BB, CC, 

and DD which are atomic operators (they are not or cannot be decomposed further). 

In this representation, CC is a state machine, since it has state variable, found on data 

stream d, which is combined with the value on its input stream, b, to generate the output 

value on data stream c. 

At the lower level of decomposition, A still exists, but is represented in 

greater detail by the three atomic operators and their associated data streams. The input 
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data stream to BB is a'. The data type and value found on a' will be the same data type 

and value found on a, and similarly for e and e'. This structure is analogous to an Ada 

program being composed of one or more subprograms. For example, we might use an 

Ada procedure to represent A. This procedure might contain three Ada subprograms 

(functions or procedures) which are called within it to implement A. Procedure DD 

would produce value which would be passed to A on an output parameter of DD. This 

would be passed out of A as a value on an output parameter of A. In Ada, each of the 

operators could be separately compiled. BB, CC, and DD could be written first, then A 

written and compiled (bottom up), or the specification of A could be written and com­

piled, then the specifications of BB, CC, and DD, and finally the implementation code 

for each of the operators could be written ( a combination of top down and bottom up). 

In the model shown in Figure 9 on page 31, the arrows represent data 

streams. Each of these is labeled with a lower case letter. The label is a name for the 

data stream. PSD L data streams can carry two types of data values. The first type may 

considered the normal type. Normal type data can be any abstract data type. It is 

characterized by being immutable and no global representations are allowed. This fea­

ture prevents coupling problems within the prototype where operators communicate via 

shared data. State variables for an operator are specifically local to the operator and can 

only be changed internal to their own operator. This also prevents coupling problems 

in the prototype design. PSDL uses the immutable subset of built in Ada types, plus 

user defined types, and the special types TIMER and EXCEPTION. 

The second type of data which can be transmitted are tokens representing 

exception conditions. This is the PSDL type EXCEPTION and corresponds to the Ada 

exception construct. Thus, PSDL uses the Ada approach of representation hiding and 

data abstraction in program design. It is much simpler to use PSDL than to use Ada 

directly. For the translator, all variables, including user defined types, will be placed into 

an Ada package. The resulting Ada program will employ the with/use construct from 

Ada to make these variables available to the program. 
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b. Data Streams 

In PSD L, data streams represent a communication link between exactly two 

operators. One operator is the producer of the data while the other is the consumer of 

the data. There are two types of PSDL data streams. One is the DATA FLOW 

STREAM the other is the SAMPLED STREAM. The DATA FLOW STREAM can 

be thought of as a first in first out (Fl FO) queue capable of holding, at most, one data 

value. This data value may be used one time by the consumer operator. It may not be 

overwritten by the producer. In effect, this stream guarantees deliver of the data value, 

and guarantees that each individual data value will be read once and only once. The 

second type queue can also be thought of as a queue of length one. In this case, (the 

sampled stream), delivery of an individual data value is not guaranteed. The data value 

may be overwritten by the producer before the consumer reads it, or may be read mul­

tiple times by the consumer, or not at all. The choice of data stream is dependent upon 

the control conditions specified for the operator. 

c. Operator Control Techniques 

Two types of control are allowed in PSDL. The first is periodic. This is a 

common form of operator control in which operators are fired by some regular schedule. 

This form of control is supported in PSD L by several constructs. The primary construct 

is PERIOD followed by a time value. The SS in the ESS will recognize the PERIOD 

token and will utilize the time value supplied to generate an Ada schedule program 

which will invoke the Ada procedure representing the PSDL operator. The periodic 

operator must fire sometime between the beginning of the period and some deadline 

which defaults to the end of the period [Ref. 19: p. 17]. Thus, PERIOD is an upper 

bound on the length of time allowed between any two firings of a given operator. This 

is an explicit period. 

It is possible to arrive at an implicit period. Such an implicit period would 

be known as an equivalent firing period. An operator for which an equivalent firing 

period would be calculated by the SS would not contain the PERIOD token. It might 

inherit a period from a higher level of decomposition in a hierarchical prototype or it 

might contain PSDL tokens for MAXIMUM EXECUTION TIME (MET), MAXI­

MUM RESPONSE TIME (MRT), or MINIMUM CALLING PERIOD (MCP) which 
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would result in the SS calculating an equivalent firing period for the operator. MET is 

an upper bound on the length of time which may elapse from the beginning of execution 

of a module to the end of the execution of that module [Ref. 19: p. 20). MET may be 

applied to all operator types. 

MR T has two different interpretations. The first applies to periodic opera­

tors. In this case, MRT is an upper bound on the time from the beginning of a period 

and the time when the last data has been output onto the output stream of the operator 

[Ref. 19: p. 20). The second case for MRT applies to a class of operators known as 

Sporadic operators. Sporadic operators lack an explicit PERIOD. Sporadic operators 

are triggered by the arrival of data on the input streams of an operator ( or set of data 

streams for the NATURAL DATA FLOW (NDF)) [Ref. 19: p. 20). NDF is a form 

of control dependent on the flow of data through the prototype to cause the firing of 

operators. For the Sporadic operator, MRT is an upper bound on the elapsed time from 

the arrival of new data on the input streams to the operator and the time when the last 

data value is placed on the output stream of the operator in response to the arrival of 

the new data values. M CP is a lower bound on the elapsed time allowed between the 

arrival of one set of values on the input streams of an operator and the arrival of the 

next set of values on the input streams. For SPORADIC operators, if MRT is used, 

then MCP must also be used [Ref. 19: p. 20]. 

For sporadic operator control PERIOD is not specified. The SS calculates 

an equivalent firing period if the operators have the MET token. It uses the information 

calculated to generate a calling schedule for program operation just as SS would if the 

program used the PERIOD token and were therefore periodically controlled. If the 

operator is sporadic and does not contain MET then the SS will conduct a topological 

sort of the operators to determine a calling schedule In Figure 10 on page 35 we see the 

application of the topological sort to a set of operators. The information required for 

the sort is found in the link construct of PSD L which is part of the GRAPH token. 

The acyclic digraph is generated from the link information. In the case of Figure 10 

on page 35 no MET information is supplied in the link construct. In Figure 11 on page 

36 MET information is supplied within the link construct. The resulting schedule for 

each set of operators is the same. 
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link statement corresponding to 
above acyclic digraph - no MET are 
included for the operators 

a.1 •> 2 

b.2 ·> 3 

c.3 •> 4 

d.1 ·> 4 
\.._ ,J 

r " 
possible schedule resulting from a topological sort 

1,2,3,4 
\.. 

Figure 10. Acyclic Digraph 

ND F control of sporadic operators is signified by the PSD L token TRIG­

GERED BY. This token will be qualified by either the additional token ALL or SOME. 

TRIGGERED BY ALL indicates that an operator is to be fired when new data values 

have arrived on all the input streams to the operator. TRIGGERED BY SOME implies 

that the operator will be fired by the arrival of a new data value on any one of the input 

streams to the operator. Figure 12 on page 37 illustrates these two different con­

structions. Note that the designer must specify which input streams the TRIGGERED 
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a.1 :5 •> 2 

b.2:4 ·> 3 

c.3:5 •> 4 

d.1 :5 ·> 4 

possible schedule for abov e AUGMENTED ACYCLIC DIGRAPH 

1,2,3,4 

Figure 11. Augmented Acyclic Digraph 

BY ALL/SOME construction refers to. He may specify a proper subset of the input 

streams in either case. In this way, if an operator has multiple input streams, but only 

a few of them are critical to the firing of the operator, the designer may so specify. NDF 

is not normally combined with periodic control. The application of timing control to a 

model using NDF is allowed. The MRT and the MCP tokens may be used with the 

NDF form of control among SPORADIC operators. 
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by all d,f,h 

r 

by some r 

(no triggered by token) 

Figure 12. "Triggered By'' construction in PSDL 

Figure 13 on page 38 illustrates the combination of Sporadic and Periodic 

control. In this case, a conflict develops between the two schedules developed on the 

basis of: 

1. Topological sort 

2. Periodicity constraints 
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schedule fails - A and B must fire before C due precedences 
established by the topological sort but periodicity constraints 
cannot be acheived 

Figure 13. Combination of Periodic and Sporadic Operators 

The SS would develop a schedule based on the periods specified. It would 

also develop a topological sort. It would compare the two schedules and would recog­

nize that they do not match and might fail. It would nevertheless allow the program to 

be compiled and run on the basis of the periodic schedule which would fail when C at­

tempts to fire a second time before B has fired a second time. This indicates a flaw in 

the design of the prototype and would require the designer to intervene to correct the 

problem. 
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It is not the purpose of this paper to discuss in detail the development of 

schedules from the PSDL specification. The aim is to demonstrate that PSDL has a 

powerful set of language constructions to deal with real-time constraints in software 

systems. PSDL offers a variety of means to control the operation of a real-time systems. 

It is necessary to discuss the forms of control available so that certain implementation 

aspects for the translator can be introduced. It is also important to recognize that Ada 

is not nearly so flexible in describing real-time constraints as is PSDL. 

Conditional firing of operators can be accomplished by the addition of input 

or output predicates in the PSDL specification. Referring to Figure 9 on page 31, the 

designer might specify one of the following: 

• OPERATOR A TRIGGERED BY ALL a IF a:critical 

• OPERATOR CC TRIGGERED BY ALL b IF b:NORMAL AND d:critical 

This illustrates the use of an input predicate. The triggering condition acts 

as a guard for the operator. The conditional can be applied to both Sporadic and Peri­

odic operators. A Periodic operator would fire only if the input predicate were true. If 

it were not true, the Periodic operator would read the inputs without firing. The input 

conditional can depend only on the input values to the operator and any TIMER values. 

An example of an output control would be: 

OPERA TOR DD OUTPUT x IF x > 100 

This functions as if we had an explicit, conditionally executed filter operator 

following it [Ref. 19: p. 19). The output guard provides a convenience to the designer 

but could be simulated by adding another operator to the prototype with an input con­

dition on its firing. 

d. Timer 

TIMER is a PSDL construct which is useful in the development ofreal-time 

systems. A timer is an abstract state machine. In PSD L it is somewhat like a stopwatch. 

It has the primitive operations of START, STOP, RUN, and RESET. It is used for such 

things as measuring the length of time between two events, or the length of time the 
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system or an operator has remained in a particular state. TIMER does not function in 

the same way as a clock construct for an operating system. It does not provide direct 

control of operator firing, but can be used as a value for a PSD L input or output con­

ditional to act as a guard to the firing of an operator. It is primarily provided to collect 

statistics about the prototype system. 

e. Exception 

It was noted above that PSDL supports both normal and EXCEPTION 

data types. The PSDL EXCEPTION is a built in type. It can be transmitted on any 

data stream as a data value. It can be suppressed by the use of input or output condi­

tionals. It can be handled in PSDL or in Ada. Some possible operations for the PSDL 

EXCEPTION are 

• to create an exception with a given name 

• to detect if a value on a data stream is 

an exception with a given name 

normal (not an exception) [Ref. 19: p. 14) 

Although the PSDL exception is a data type and the Ada EXCEPTION is 

not, the Ada EXCEPTION can be used to implement and handle PSDL EXCEPTION 

types very conveniently. The major benefit from treating EXCEPTION as a data type 

in PSD L is abstraction. By this abstract construction, a unified means of handling all 

exceptions throughout the prototyping process is created [Ref. 19: p. 14]. Since all ex­

ceptions are handled the same way, there is no need for special constructions to handle 

each specific case. Thus construction of prototypes is simplified, and another step is 

taken toward automation of the prototyping process. This also simplifies translation of 

the exception condition into Ada. A generic exception handler can be created in Ada 

and instantiated by the translator as needed during translation. The abstraction eases 

the job of the prototype designer, which is the whole point of a computered aided pro­

totyping system. 
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C. ADA AND PSDL 

1. Ada and Real-Time Systems Constraints 

a. Difficult Direct Implementation of Real-Time Constraints in Ada 

The Ada implementation of such aspects of real-time systems as PERIOD, 

MET, MCP, MRT, and TIMER is not trivial. Ada DELAY by itself has no upper 

bound but is a lower bound on the delay implied. The Ada DELAY and SELECT 

constructs cannot be used to implement these performance constraints directly for a 

system of operators. The use of the type DURATION allows the approximation of an 

interval in a loop construct but it is not as flexible as needed. The use of TASKS in Ada 

provides more capability through the use of conditional entry calls. The problem with 

these constructs is that they require a good deal of effort on the part of the programmer 

to implement, and the program is operating at the mercy of the Ada run-time system. 

The degree of effort required to implement these constructs directly in Ada is out of 

proportion with the aims of the rapid prototyping methodology. A more abstract and 

direct syntax is required to specify hard, real-time constraints which will make con­

struction and demonstration of prototypes possible. If the designer is required to invest 

nearly as much effort into the creation of the prototype as the development of the sys­

tem itself, there is no advantage to prototyping. Furthermore, the Ada run-time system 

will not guarantee that the prototype design behaves in exactly the same manner as 

specified. The purpose of the SS and the DS in CAPS, is to ensure that the prototype 

functions within the real-time constraints applied to the design. Barring errors in design, 

the feasibility of such aspects of the system as control flow, order of firing of program 

modules, time behavior, and I/0 formats can be demonstrated with CAPS. The ESS, 

frees the designer from the implementation effort required in Ada by automatically 

generating executable code in Ada, and by automatically generating control code in the 

form of Static and Dynamic schedules which enforce control and timing behavior. 

Therefore, PSD L supports develpopment of large and embedded Ada programs directly 

and easily. 
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b. Ada in Support of The CAPS Environment 

Ada is most suitable for the development of CAPS for several reasons: 

• Ada is the language mandated for development of embedded and real-time systems 
forDOD 

• Ada provides constructs which can be used to implement more abstract timing be-
havior. 

• Ada constructs can be used in a multiprocessor environment 

• Ada provides simple exception handling facilities 

• the GENERIC feature in Ada provides a simple means to implement automated 
prototype construction 

2. Implementation of The PSD L Model in Ada 

At this point several design implementation aspects of the Translator (TL) por­

tion of ESS will be presented. 

a. Operator 

The OPERATOR construction of PSDL can be implemented by producing 

an Ada procedure. This procedure would contain code to implement any PSD L input 

or output conditional statements. It would also contain code to check the validity and 

availability of data for NDF control. Before presenting an example of this construction 

it will be necessary to develop the implementation of the PSD L data streams. 

b. Data Streams 

A PSDL data stream may be thought of as a simple queue of length one. 

Appendix C, part A, illustrates the construction of a simple queue in Ada. It is a pro­

cedure. With some minor modification, the queue can be made generic. This is ac­

complished by enclosing the procedure in a package and adding the Ada GENERIC 

part. An Ada private type is declared in the generic part. This private type allows the 

passing of any data type into the queue simply by declaring the type description at the 

point of generic instantiation. Thus, a generic queue is created which can be used at any 

point where a data stream is needed, by the simple use of the Ada generic instantiation. 

This technique is illustrated in Appendix C, part A. 

( 1) Generic Buffer Task. Recall that there are two different type data 

streams in the PSDL schema. One is a FIFO queue while the other is the sampled 

stream. Therefore, two different generic queue models are required. One of these 
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receives and transmits data without condition. This is the sampled stream, and will be 

referred to as a simple queue. Each data value in the simple queue may either be read 

many times or not at all. The second queue model will have a Boolean flag indicating 

whether or not it has been written since the last read operation or whether it has been 

read since the last write operation. This is the FIFO queue used for NDF control. The 

Boolean flag is necessary since delivery at least once, but only once, of each data value 

sent through the queue is required in natural data flow. If there is a violation of the 

FIFO rule, then the Boolean flag will result in the queue raising an exception. There 

are two possible exceptions. One will be identified as Underflow, and the other as 

Overflow. Underflow will be raised if the consumer operator attempts to read the queue 

before it has been updated by the producer operator. Overflow will be raised when the 

producer attempts to write to the queue before the consumer has read the previous data 

value. 

The translator must have some basis to select the appropriate queue 

for a given data stream. Ifan operator contains the TRIGGERED BY ALL tokens then 

FIFO queues will be selected for the streams listed following the ALL token. If the 

operator contains the TRIGGERED BY SOME tokens then simple queues will be se­

lected for the data streams. A third condition is if the operator contains no TRIG­

GERED BY tokens. In this case simple queues will be selected. For example, in 

Figure 12 on page 37, operator T has four input streams. The specification for T is, 

TRIGGERED BY ALL d,f,h. The translator will select FIFO queues for streams d,f, and 

h. Stream g will be a simple queue. In the same figure, operator P has four input 

streams. The specification for P is, TRIGGERED BY SOME r. In this case all data 

streams will be simple. Again in Figure 12 on page 37, operator FF has two input 

streams. The specification for FF lacks a TRIGGERED BY token. Therefore, all the 

streams are simple streams. Thus, if the operator specification lacks the TRIGGERED 

BY token, or contains the SOME token, the streams will be simple. If a stream is not 

listed in the ALL specification it will be simple. Only when the operator contains the 

- • ALL token will a FIFO queue be selected. Note that it is the triggering conditions for 

the consumer operator that determine the type data stream(s) that exist between any two 

operators. 
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Thus far, the data streams are modeled as a generic package con­

taining a queue procedure in Ada. This construction is not sufficient. The SS and DS 

have generated a schedule for the time critical operators and this schedule is enforced to 

ensure real-time constraints are met. Some operators do not have time critical con­

straints. These operators are called into the empty or excess time in the worst case 

schedule for the time critical operators. It is possible that a time critical operator is the 

consumer of data from a non-time critical operator. The time critical operator has pri­

ority and is scheduled to run by the SS on some repetitive cycle. The non-time critical 

operator is fired, as convenient for the DS, in the excess time in the main schedule. 

Suppose a non-time critical operator is called and is attempting to write to the data 

stream, when it is interrupted by the DS in order to run a time critical operator. Also 

suppose that the time critical operator is the consumer for the data from the non-time 

critical operator. When the consumer attempts to read the queue, the results will be 

uncertain. 

This difficulty can be overcome by making the generic queue into an 

Ada task. This task will be called a buff er task. The task is then enclosed as a generic 

package which can be generically instantiated as before. The difference is that the pro­

ducer and consumer operators will use entry calls to write to or read from the buffer. 

In this way, once the buffer task is called, whatever operation is taking place on the 

buff er must be allowed to complete before an interrupt can take place. The operation 

time for any buffer task should be very short, so there should be little time penalty to 

the scheduled operation of the program. On the other hand, buffer operation is pro­

tected from interruption and the operators are unlikely to get uncertain results from 

reading them. Appendix C, part B, contains a listing for the Ada code to implement the 

two types of buffer tasks, SAMPLED STREAM and FIFO. 

(2) Buffer Task Selection. How does a data driven operator know that 

the data stream (buffer) has new data, and that it should therefore fire? The buffer al­

ready contains a Boolean flag to indicate that it has been updated ( either written to or 

read from). However, now that it is a task, an entry call must be made to access the 

Boolean flag. After finding the state of the flag, the consumer operator would then need 

to execute a task entry to access the actual data in the buffer. This would be 
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inconvenient. A simpler method would be to apply a similar Boolean flag to each pro­

ducer operator of a ND F data stream. This would be an Ada in/ out parameter to the 

producer procedure. The consumer procedure would incorporate a conditional guard to 

test the state of the Boolean in/out parameter of the producer. If the condition of the 

flag indicated that the producer has executed a write operation to the buffer since last 

read, the consumer would reset the variable to the state indicating that the data has not 

been updated and would then execute an entry call to the buffer(s) in order to fire itself. 

( 3) Buffer Length Selection. It may be asked why a buffer length of size 

one has been chosen to implement all buffers. The choice of buff er length is arbitrary 

in any case. Figure 13 on page 38 illustrates the source of the problem. Suppose a de­

signer builds a system which contains both periodicity constraints and data flow control 

as in the figure. As previously discussed, the SS will generate a schedule based on 

periodicity and will also conduct a topological sort for control based on NDF. If the 

two schedules happen to match then the system will operate. If they do not, then the 

system is likely to fail. The SS will still allow the compilation and operation of the 

program based on the periodicity constraints. This -will allow the designer to see the 

failure and decide on necessary changes and design alterations to make the program 

work. Figure 13 on page 38 shows the failure of the program will occur on the second 

time C attempts to fire. In this case buffer length has no effect on the operation or 

failure of the program. However, it is possible that a combination of various buffer 

lengths, periodicity constraints, and ND F constraints might operate correctly for some 

length of time before failing. 

Figure 14 on page 46 shows a case where operation of the buffer is 

uncertain in the presence of both periodicity and NDF constraints. In this case, the fact 

that we have chosen a buffer oflength one ensures that very little runtime will be re­

quired to reveal the instability of this design. Since one objective of the CAPS archi­

tecture is to save development time, it is important to reveal errors in design quickly in 

testing. By selecting buffers of length one throughout the prototype, we ensure that 

flawed designs, such as the one in Figure 13 on page 38 and Figure 14 on page 46 are 

revealed after a very short amount of run time. In general, a flawed design will fail 

eventually no matter what length buffer is chosen. Since the buffer length is an arbitrary 
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choice, it is better in the CAPS to ensure rapid failure of poor designs. A buffer length 

of one will ensure this selection. 

( 4) Buffer Selection Conflicts. Another problem which arises in buffer 

selection is illustrated in Figure 9 on page 31. In this case we have the decomposition 

of an operator into three lower level operators. The designer will enter a specification 

for both the top level operator A and for the lower level operators BB, CC, and DD. 

Suppose operator A includes the tokens TRIGGERED BY ALL a. Also suppose that 

operator BB does not contain the TRIGGERED BY ALL tokens. When the TL selects 
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a buffer task for A, it will instantiate a FIFO buffer task to implement a. For BB, it 

would select a sampled stream task to implement a'. Although, a and a' carry the same 

data, and they have not been implemented with the same type buffer. The TL does not 

check inheritance rules. In operation data would be placed onto a and would then be 

passed to a' and into BB. The results of this translation will be uncertain. It may 

present no difficulty or may behave erratically. The user must prevent this type error 

by ensuring that operators which result from the decomposition of higher level operators 

have the same triggering conditions at the input in order to prevent the buffer mismatch 

just demonstrated. This difficulty only arises for lower level buffers which mirror the 

input buffers of the highest level operator of which they are a part. This is true because 

the type buffer required at any point in the system is determined by the triggering con­

ditions of a consumer operator. Therefore, decomposition rules do not affect the spec­

ification requirements of operators CC and DD in Figure 9 on page 31. However, if A 

is TRIGGERED BY ALL a, then BB must be TRIGGERED BY ALL a'. It is a rule 

which the designer must enforce at this point. A utility similar to the C language lint, 

could be developed to check for this type inconsistency and incorporated into the ESS 

as an automatic part of the prototype translation, compilation, and export facility. 

( 5) The State Buffer. A final difficulty in data stream implementation is 

that of PSDL state variables, designated by the token STATES INITIALLY. Each state 

variable will have its own buff er task. An example is seen in Figure 9 on page 31. 

Operator CC is a state machine. It has a state variable which is transmitted along buffer 

task d. The value of the data type traveling along d must have some initial value. That 

value is found in the STATES INITIALLY statement in PSDL. To insure the correct 

initial value for the state variables in the program, buffer task d must be loaded with the 

correct value prior running the prototype. An Ada procedure called PRELOAD will be 

produced by the TL for all PSD L prototypes. It will contain a series of statements to 

put the correct initial values into the appropriate buffer tasks. If there are no state 

variables in the program, the procedure will simply be empty. The SS will always call 

PRELOAD before the execution of any schedule it creates for the prototype. The pre­

loading procedure will not be part of the schedule proper. 
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It will run one time only to initialize the state buffers and will not be run again unless 

the prototype program is restarted from the beginning. 

c. User Declared Data Abstractions 

Already mentioned is the fact that all user declared types will be placed in 

an Ada package which will be used throughout the program. The listing for such a 

package is found in Appendix B, part C. This method allows the use of private types in 

the generic buffer task. At instantiation, the particular type variable to be sent through 

the buffer is declared. The actual description of the type is in the variable package. This 

package requires only an Ada specification part since it does not implement anything 

itself. In addition to user declared types, all other variables which would appear in the 

specification part of the Ada implementation will be placed in this same package. This 

technique is a useful Ada design tactic. It is especially useful in programs where ranges, 

intervals, delta values, or constants need to be assigned to variables, types, or subtypes. 

It insures that when variables need to be changed in a program, they can be found 

quickly and changed. There is no need to worry that a particular instance of the variable 

was overlooked somewhere in the program. In real-time systems such assignments of 

ranges, delta values, and constants may be seen to be quite common. For example, in 

an engineering plant control system, fixed point numbers might be employed to describe 

temperature measurements. These would have a particular delta value, perhaps .1 de­

gree centigrade. The accuracy required might result from engineering considerations 

such as available sensor accuracy or the criticality of the system. If the program were 

written to accept data from a sensor of. l degree centigrade and a sensor was needed and 

eventually developed which was accurate to .01 degree centigrade, the program would 

have to be modified to reflect the new delta value of .01. If the package technique had 

been used in program development, the effort required for the change would be minimal. 

A single point in the program would be adjusted and the modification would be com­

plete. Lacking the package technique, the entire program listing would have to be ex­

amined to ensure a correct change. CAPS is thus developing Ada code which is easily 

maintained and modified. 
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d. Timer 

The TIMER module must be implemented. The purpose of TIMER is to 

measure elapsed time between two events, the length of time an operator has been in a 

particular state, or to act as a conditional guard for operator firing. The four primitive 

operations for the timer are START, STOP, RESET, and READ. It will use the Ada 

standard package CALENDAR to access the system clock. The timer will have a 

Boolean run switch. 

At START, the Boolean run switch will be set to true, the system clock read 

and the value of the reading stored as the initial starting point. At some time later a 

READ is performed. The system clock will be read and the value of the initial reading 

subtracted from it to calculate the elapsed time. The initial value will not be changed. 

Actual clock time is not output. Elapsed time is output. At STOP, the system clock is 

read and the value stored in a simple array. The initial actual clock time is not output. 

Elapsed time is output. At STOP, the system clock is read and the initial reading is 

subtracted from the reading at STOP and the value output as the TIMER value. The 

reading thus obtained is stored as the grand total time elapsed. At a subsequent 

START, the system clock will be read and written over the old value. The grand total 

will not be disturbed. At another STOP, the new elapsed time will be added to the grand 

total and the will be output as the elapsed time. The RESET operation will stop the 

timer and return all timer values to the zero state. TIMER will be an Ada generic 

package. It can be instantiated wherever needed in the prototype very easily. An ex­

ample of an Ada package to implement TIMER is found in Appendix C, part C. 

3. Advantages of The Ada Implementation of PSD L Constructs 

The CAPS utilizes the relatively simple PSD L design and specification language 

to describe prototypes. It creates Ada source code for an operational prototype which 

can be compiled and run tested. It utilizes an automated translation facility to produce 

this code. It takes advantage of the powerful generic construct in Ada to simplify 

translation. The resulting code uses packaging of data types to simplify translation and 

program maintenance. Use of private types supports representation hiding. Since PSDL 

data types are immutable, it is necessary to utilize a strictly typed language to implement 

them. Otherwise the protection against unpredictable side effecting afforded by the 
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immutable PSDL data types might be lost in translation. Ada provides the strong type 

checking required. A similar observation can be made regarding the PSDL prohibition 

against global variables. CAPS combines the powerful features of Ada and PSDL to 

provide an effective tool to support the rapid prototyping methodology. 

D. TRANSLATOR DESIGN AND CONSTRUCTION 

1. The KODIY AK System 

A few words should be said regarding the design and construction of the trans­

la tor itself. The translator is created using an automated translator generator called 

KODIYAK. KODIYAK was developed by Robert Herndon at the University of 

Minnesota as a doctoral dissertation. [Ref. 24] It is available as a research tool and is 

quite effective. The system is based on Knuth's work in attribute grammars. It utilizes 

a version of Jalili's algorithm to evaluate the semantic tree it creates when generating the 

translator. The tool incorporates a file called K as a pre-processor to the LEX 

[Ref. 27] and Yacc [Ref. 28] tools in the UNIX operating system. 

The process of translator production and usage is illustrated in Figure 15 on 

page 51. To produce a translator with KODIYAK, the user must create a source file. 

This file contains a listing of the terminal and non-terminal tokens of the source lan­

guage to be translated. It also contains a listing of the valid attributes which each token 

may take on, as well as any precedence relationships which may be required to properly 

evaluate ambiguous cases in the grammar. Finally, the file contains a listing of attribute 

equations. These equations describe the relationship between the source language (in 

this case PSDL) and the target language (in this case Ada). The translator generator 

system, KODIYAK, utilizes these equations to produce a translator in executable C 

code. The translator thus created is an executable program. By running this program 

with a text file in the source language as input, an output file is created which contains 

the equivalent code in the target language. A complete listing of the translator generator 

source file for the PSDL to Ada translator is found in Appendix D. 
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1. PSOLGRAMMAR IN 
KO0IYAK 

2. MAPPING BETWEEN 
PSDL&AdalN 
ATTRIBUTE EQUATIONS 

N3TOOL 

1. PRE-PROCESSOR 

2. LEX 

3. Yacc 

TRANSLATOR 

Figure 15. Translator construction and usage 

51 



IV. GENERAL APPLICABILITY TO TELECOMMUNICATIONS 

SOFTWARE SYSTEMS 

What is the relationship of this research to Naval telecommunications systems and 

software? Current DOD policy indicates that software for embedded computing systems 

will be written in Ada or converted to Ada, although the application of this policy is left 

to the individual services [Ref. 29 p. 71-72; Ref. 30]. Embedded systems are those 

computers which form an integral part of a larger system, such as a communications 

switching processor, a missile guidance system, or a manufacturing process control 

computer [Ref. 12 p. 3]. Naval telecommunications systems are embedded systems and 

therefore are subject to this policy. No current Naval telecommunication system is 

written in Ada. Naval Data Automation Command (NA VDAC) has expressed an in­

terest in the development of software tools and techniques to improve productivity in the 

maintenance and production of Navy software systems [Ref. 31]. This thesis addresses 

the creation of a software tool designed to improve the productivity level and efficiency 

with which Ada software can be produced. It also demonstrates, coincidentally, the 

application of several existing software engineering tools and techniques which can be 

used to address the conversion to Ada or the development of software components for 

future systems. 

A. SOME CURRENT NAVAL TELECOMMUNICATIONS SYSTEMS 

Table 1 on page 53 [Ref. 32] summarizes some information regarding several cur­

rent Navy telecommunications systems. These are the Common User Digital Informa­

tion Exchange System (CUDIXS) and the Naval Modular Automated Communications 

System (NAVMACS). The annual maintenance cost figure cited is for the software 

system in each case. No hardware maintenance costs are included. The maintenance 

costs for NAVMACS V5 and V5a is unknown as the systems are still undergoing de­

velopment. Not listed in the table, is the development costs for the systems. Numerous 

government and private laboratories and corporations participated in the development 

of these systems over an extended period so that the development costs are not easily 
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Table 1. A SUMMARY OF SOME CHARACTERISTICS OF CURRENT NAVY 
TELECOMMUNICATIONS SYSTEMS AND THEIR SOFTWARE 

NA VMACS Family 
CUDIXS VI V2 V3 V5/5a 

Annual Maintenance Cost $500K $200K $250K $SOOK unknown 

IOC 1975 NOV79 APR 80 DEC 76 (1) 

Required Memory 64K 64K 64K 128K (2) 

Code Size (Lines) 120K 49K 54K 90K (3) 

Language ULTRA-16, the 16 bit assembler code for the 
AN/UYK-20 computer which is the basic hardware unit 
for these systems 

Operating System 

Constraints 

none none none MOS (4) (5) 

CUD IXS must maintain precise timing to properly 
operate within the receive/transmit windows required 
by link protocols. NAVMACS family, due to heavy 
loading of the system, concentrates on efficient use of 
system resources such as central processor unit and 1/0 
capacity. 

(1) NAVMACS V5 is being developed in two phases IOC for Phase A was JUL 83. 
IOC for Phase B was JUL 86. IOC for V5a is expected to be OCT 88. 

(2) NAVMACS VS is a three computer system. Main computer memory is 256K. 
It can operate in degraded mode in 192K. The remaining computers require 
64K. One will normally have 256K for fallback purposes. 

(3) Code size by lines does not accurately reflect the presence of comments and the 
extensive use of macro instruction statements. Current size is 309,000 (decimal) 
16-bit words. 

(4) MOS = Modular Operating System 

(5) NAVMACS Operating System (IOC). This is a highly modified and enhanced 
version of the MOS used in the V3. 
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determined. An examination of the initial operational capability (IOC) dates for the 

systems makes it clear that Ada was not a feasible choice for the development of the 

software for these systems, since Ada was not standardized until 1983 [Ref. 33). It is 

also clear that there are hardware limitations on the size of code which can be tolerated, 

due to the small memory capacities available in the AN/UYK-20 computer which is the 

central processor for all the systems listed. Note that the code is very large in terms of 

number of instructions ( or line count) albeit very compact, owing to the use of assem­

bler language. NAVMACS V5 and V5a use up to three AN/UYK-20 computers, while 

CUDIXS and NA VMACS Vl, V2, and V3 are single processor units. The various 

versions of the NAVMACS family differ in the variety and quantity of capabilities and 

services provided to users by the system. The VI and V2 are typically found on frigate 

and destroyer size ships, while the V3 is reserved for cruisers, large amphibious ships, 

large supply ships, and flag configured ships. NAVMACS V5 is found only on carriers 

and large command and control ships. 

The software for all systems is written in assembler language (ULTRA-16, the as­

sembler language native to the AN/UYK-20 computer). As many common elements of 

the developed assembler code as possible have been used among all the systems 

[Ref. 32 encl. 3]. The software for the V5 has also been developed to operate on the 

AN/UYK-44 computer [Ref. 32: encl. 3). 

B. SOME PROPOSED NA VMACS FOLLOW ON SYSTEMS 

There is currently no formally accepted follow on to these systems. Initiatives to 

enhance and improve NA VMACS exist. Two approaches to proposals for follow on to 

NA VMACS will be briefly presented which will serve to illustrate possible applications 

for CAPS. Some possible opportunities for the application of tools and techniques on 

which CAPS is built will also be suggested. 

I. NA VMACS Model II 

There is an idea for a follow on system called NAVMACS Model II (afterward 

referred to as Model II) [Ref. 34). Table 2 on page 56 is a listing of typical services 

found in current NA VMACS systems and the proposed additional services for 

NAVMACS Model II [Ref. 34: pp. 15-16). The Model II proposal envisions a single 
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type of computer and software package which could be used in many different applica­

tions by changing the peripheral suites attached to the central processor 

[Ref. 34: pp. 28-34]. The Model II envisions the use of some "smart" peripherals. 

These would include: 

• Programmable Front End processors to interface: 

1. circuit cryptos 

2. system computers 

3. offiine storage devices 

4. operator interface devices 

• remote terminals for message preparation and distribution [Ref. 34 : pp. 17-22] 

The Model II would use data display units at operator terminals vice control 

teletypes. This would speed message entry, screening, and distribution. The terminal 

would provide some means to ensure correct format and entry of information during 

message preparation [Ref. 34: p. 12]. This might take the form of message templates 

or canned message formats. Remote terminals in non-mission critical areas might use 

non-development items (NDI) [Ref. 34 p. 21]. "NDI is usually off-the-shelf or 

commercial-type products, but may also include equipment already developed by or for 

the Department of the Navy, or other military services or foreign military services 

[Ref. 35] .. " IOC for a follow on system might be the mid 1990's [Ref. 32 ]. 

2. Unified Network Teclmology 

Unified Network Technology (UNT) and Communication Support System 

(CSS) are current initiatives to improve and advance the state of the art in Naval com­

munications systems. UNT anticipates the creation of communication packet networks 

which will have flexible topology. These networks would provide most efficient use of 

existing and future communications systems by allowing routing of communications 

through any available communication media in an automated packet network. Present 

systems involve the use of dedicated links and dedicated hardware systems. This can 

result in inefficient use of communications resources as some media remain idle while 

other media is heavily loaded. UNT would use automated means to select the available 

media and use it transmit communications traffic. The CSS comprises the shipboard or 

shorebased network controllers and interface units to establish connectivity between 
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Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED 
NAVMACSMODEL II 

Current Function Description ................................................. V 1 V2 V3 V 4 V 5 

Up to 4 Fleet Broadcast Circuits ............................................ x x 
Up to 4 Full Period Termination Circuits ............................. .. 
IXS Subscriber Capability ...................................................... x x 
f'lexible Circuit Definitions ..................................................... . 
System Control by Displays ................................................... . 
On-line Message Composition ................................................ . 
Long Term Msg Storage/Retrieval... ...................................... . 
Data Base Storage/Retrieval. .................................................. . 
Remote Terminal Sites ............................................................ . 
Data Base For Onboard Organization .................................. .. 
Automatic Onboard Delivery ................................................. . 
Duplicate Message Processing ............................................... .. 
Automatic Circuit Selection and Relay .................................. . 

X 

X 
X 

X 
X 

X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 

Additional Model II Functions ............................................... V2 V3 V 4 VS 

Tactical CUDIXS (Ship-Ship OTO's) .................................... x x x x 
Add System Control by Displays ........................................... x 
On-line Composition With Formats ...................................... x x x x 
Flexible Circuit Definitions ..................................................... x x x x 

(including CUDIXS broadcast, LAB, NATO circuits 
fleet broadcast, FPT, automated nets) 

Remote Sites ............................................. ~ .............................. x x 
Add More Rernote Sites .. .. ... ... .. .. ..... .. .. .. . . .. .. .......... ... .............. x x 
Flexible Configuration of Remote Sites and Circuits ............ x x x x 
Increased On-line Message Storage ....................................... x x x x 
Automated HF Net Subscriber .............................................. x x x x 
Automated HF Net Control.................................................... x x 
Semi-Automatic Distribution ................................................. x x 
Improved Long Term Message Storage and Retrieval.. ........ x x x x 
Improved Duplicate Search..................................................... x x 
Canned Message Compositior1 ............................................... x x 
Decrease Msg Transmission Delays........................................ x 

users by employing the various hardware resources available. These systems approaches 

to communications will be software intensive. Distributed network control, flexible 

network topology, and adaption to changing communications loads will require soft­

ware control. CAPS could be utilized in the development of such software. 
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C. POSSIBLE CONTRIBUTIONS TO TELECOMMUNICATIONS FROM CAPS 

RESEARCH 

Current budgetary uncertainties, changing threat and mission requirements, 

changing technology, and long developmental lead times will certainly impact any future 

systems. As uncertainty is inherent in any discussion of future technology applications, 

it is only possible to suggest several possible research a venues arising from CAPS re­

search, which might be applied to telecommunications software systems problems. 

1. Rapid Prototyping and CAPS 

It is likely that future systems will seek to provide more and faster service to 

users by automating many more functions. Automated functions implies the use of 

computing systems and software. Software requires development and the first step in 

software development is definition of the functional specifications. Rapid prototyping 

methodology directly addresses the early, precise definition of functional specifications 

so that full scale development of the system can proceed. CAPS offers a tool to imple­

ment Ada program prototyping and design in a rapid prototyping environment. Once 

fully implemented CAPS can be applied directly to the development of new telecommu­

nications software systems. 

New guidance under Secretary of the Navy Instruction 5200.37 [Ref. 36] de­

fines acquisition policy for software intensive command and control information sys­

tems. This policy applies to those research and development programs in which software 

cost represent a substantial fraction of the total system development costs (more than 

60 percent) [Ref. 36]. Specifically addressed are the use of software prototypes to sim­

ulate important interfaces and to perform the main functions of an intended system 

without strict adherence to the final standards in hardware, speed, size, or cost con­

straints required of the finished system [Ref. 36). The CAPS system as currently 

planned will provide system simulations of precisely that type. The CAPS system, 

however, aims to provide simulations which do conform closely to any real-time con­

straints required of the proposed software system. Furthermore, CAPS implements the 

rapid prototyping paradigm, offering demonstrations for the customer. This meets the 

requirement to promote " ... effective interaction between the user and the developer 

[Ref. 36]." The policy to promote early delivery of command and control information 
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systems software products through rapid prototyping can be met through the applica­

tion of CAPS. CAPS could also meet the need to reuse as much existing software as 

possible, and the prototypes produced will be written in a high order language (Ada) 

[Ref. 36). 

2. Reuseable Assembler Code 

A generally available feature in Ada compilers is the ability to import assembler 

code to implement sub-program bodies where speed of execution, or compactness of 

code is a concern. CAPS will use retrieval of reuseable software modules to speed pro­

totyping. These reuseable modules are expected to be Ada code, but could be sections 

of assembler code where necessary. So long as Ada compilers are available for the target 

machine, the assembler code already written for that machine could be reused. There­

fore, the question of conversion to Ada is not only, "Should the systems be converted 

to Ada?; "but also, "How much of the existing code needs to be replaced?" Functional 

specifications for existing systems are understood (presumably) empirically since the 

systems exist and are operational. Given the functional specifications, they could be 

expressed conveniently in PSDL and input into CAPS to generate an Ada prototype, 

which could be proofed, then finished out using Ada or assembler to implement the Ada 

subprograms. Several additional questions also arise including: 

• Can the assembler code be appropriately decomposed into modules? 

• Can the assembler code modules be described by normalized specifications within 
the software base? 

• Can the functions of the assembler code be decomposed so that part of the system 
can be implemented in Ada and the current code reused? 

• Does there exist an Ada compiler for the AN/UYK-44 computer and for that 
matter, what will be the next generation communications computer? 

• What costs are associated with such an approach as opposed to implementing the 
system entirely in Ada? 

3. Subordinate Tools And Techniques 

a. Translators 

Subordinate to the overall CAPS is the technique of developing and utilizing 

automated translator generators to produce automated translators. In principle, this 

approach could be applied to the conversion of existing programs in any language into 
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any desired implementation language. Thus it may be possible to translate current as­

sembler code software directly into Ada. It would be necessary to examine the issues 

of cost and feasibility of such an approach. It would also be neccesary to empirically 

demonstrate the concept and to produce a formal definition of the relationship between 

the two languages to ensure correctness in the final product. 

b. Editor Generators 

The Model II envisions the use of templates or preformatted message 

blanks for preparation of messages for transmission on electronic terminals. This facility 

currently exists in some instalations of NA VMACS and CUDIXS. In CAPS, a similar 

capability is envisioned. It takes the form of a syntax directed editor for PSDL. This 

editor would understand the correct syntax and usage for PSD L and would assist the 

operator to enter a syntactically correct PSDL prototype into the system. There exist 

several automated application generator facilities to create such "smart" editors 

[Ref. 17: pp. 12-14]. The approach in CAPS will be to utilize such a generator to create 

the syntax directed editor for CAPS. It may well be feasible to apply such an editor 

generator to generate editor facilities which "understand" the correct format for various 

types of Naval messages. Generation of custom editors for general message or struc­

tured messages (JINTACS, et.al.) might be possible. These techniques are incidental 

to the central thrust of CAPS and this thesis, which is to create an integrated system of 

tools for the generation of Ada applications. 

c. Network Simulations 

CAPS models software systems as systems of operators communicating via 

data streams. Each data stream in the CAPS could be a FIFO queue or a sampled 

stream. Each operator may have time constraints and conditional input or output. 

Thus, a CAPS model closely resembles a petri net, a system of nodes connected by 

communication paths. In principle, the basic elements of CAPS could be utilized to 

model and study the behaviour of networks. The data streams which now have queue 

length one, could be easily modified to provide generic queues with length n. Thus it 

may well be possible to use CAPS as a tool to model various network architectures, to 

provide operations research simulations of any network problem. Statistics collected 

from the run time profiler could provide insight into questions of network stability, 
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throughput, and possible choke points. The graphic user interface would provide a 

pictoral representation of the network. The syntax directed editor and the software base 

management system would simplify construction of network models. 
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V. CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES FOR 

CAPS 

It is feasible to describe a prototype in PSD L and to use an automated facility to 

translate the prototype into Ada. The present translator lays a sound foundation for 

further development. It implements and recognizes the full syntax of PSD L as published 

by Luqi in her Ph.D. dissertation [Ref. 19]. The fundamental conceptual design imple­

mentation of the major PSDL syntactical constructs has been completed and docu­

mented. The translator produces rudimentary Ada code for interconnection of reuseable 

software program modules. Several additional research possibilities exist. First, the 

current translator is an empirical demonstration of the capability. Therefore, it should 

not be expected to function properly in all cases. Work must be undertaken to establish 

a rigorous, formal definition of the relationship between the syntax/semantics of PSDL 

and the syntax/semantics of Ada. Once such a rigorous definition has been produced, 

it must be applied to the translator to produce a facility which works for general cases. 

Second, Ada is a robust language with a large syntax. PSDL is also a robust lan­

guage, but has a very small syntax. Can PSDL effectively describe all ( or most) of the 

constructions possible with Ada? This is similar to the formal definition problem. It 

may be necessary to define certain PSD L constructions and specify the Ada construction 

used to implement it in much the same way as Timer, Operator, and Data Stream have 

been specified in this thesis. It may also be necessary to specify that certain Ada con­

structs cannot be adequately represented in PSDL. This is unlikely; however, imple­

mentation of some Ada constructs may require highly sophisticated versions of the 

translator. 

Third is the issue of code optimization. Some programs may require optimization 

for speed of execution, while others require optimization for code size. Can the trans­

lator be made to generate Ada implementations based on optimization criteria? 

Fourth, the Static Scheduler (SS) uses a pre-processor written in Kodiyak to extract 

information about real-time constraints for various operators. This information is used 
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to generate the static schedule for program operation. Kodiyak provides the facility to 

define. separate sets of lexical definitions and attribute equations which apply in specified 

cases. Thus the pre-processor should be integrated into the Translator. This would 

eliminate the pre-processor as a single entity in the Execution Support System and sim­

plify the integration of the Translator, Static Scheduler, and Dynamic Scheduler. 

Finally, the Translator, Static Scheduler, and Dynamic Scheduler must be integrated 

into a single tool, the Execution Support System, which can be integrated into CAPS. 
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APPENDIX A . . PSDL GRAMMAR SUMMARY 

Several conventions are used for symbology in the grammar. [ Square Braces] in­

dicate optional items. { Curly Braces } indicate items which may appear zero or more 

times. Bold face type indicates a named terminal symbol which must appear in the 

program listing the programmer writes. "Double quotes" indicate character literals 

which must appear in the program listing. The 'T' vertical bar indicates an exclusive-or 

selection. In this case the programmer selects one and only one of the items separated 

by the vertical bar. 

As an example, the token timing_inf o is one of six mutually exclusive possibilities 

which may define the attribute token. The attribute token may appear zero or more 

times to define the interface token, which is a required attribute of the operator_spec 

token. Timing_info, if selected for attribute, may be empty, or it may contain one or 

more of the optional tokens allowed to define timing_info. Each of these tokens may 

appear no more than one time for a given instance of timing_info. 

psdl = { component } 

component = I data_type 
I operator 

data_type = type id type_spec type_impl 

operator = operator id operator_spec operator_impl 

type_spec = specification [type_decl] { op_spec_list} [functionality] end 

op_spec_list = operator id operator_spec 

operator_spec = specification interface [functionality] end 

interface = {attribute [reqmts_trace]} 

attribute = I generic_param 
I input 
I output 
I states 
I exceptions 
I timing_info 
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generic _param = generic type_ decl 

input = input type_ decl 

output = output type_decl 

states = states type_decl initially expression_list 

exceptions = exception id_list 

id_list = id { "," id } 

timing_info = [maximum execution time time] 
[ minimum calling period time] 
[maximum response time time] 

time = number [unit] 

unit = I microsec I ms I sec I min I hours 

reqmts_trace = by requirements id_list 

functionality = [keywords] [informal_desc] [formal_desc] 

keywords = keywords id _list 

informal_ desc = description " {" text "}" 

formal_ desc = axioms "{" text "}" 

type_impl = I implementation Ada id 
I implementation type_name { op_impl_list } end 

op_impl_list = operator id operator_impl 

operator_impl = I implementation Ada id 
I implementation psdl_impl 

psdl_impl = data_flow_diagram 
[streams] 
[timers] 
[ control_ constraints] 
[informal_desc] 
end 

data_flow_diagram = graph {link} 

link = id "." opid "->" id 

opid = id [ ":" time] 

streams = data_stream type_ decl 

type_decl = id_list ":" type_name { "," id_list "·" type_name } 

type_name = I id 
I id "[" type_ decl 'T 

timers = timer id_list 

control_ constraints = control constraints { constraint } 
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. . 
constraint = operator id 

[triggered [trigger] [ "if' predicate] [reqmts_trace]] 
[period time [reqmts_trace] ] 
[finish within time [reqmts_trace] ] 
{output id_list if predicate [reqmts_trace]} 
{exception id [if predicate] [reqmts_trace] } 
{timer_op id [if predicate] [reqmts_trace] } 

timer_ op = I start I stop I read I reset 

trigger = I by all id_ list 
I by some id_list 

predicate = I not predicate 
I predicate and predicate 
I predicate or predicate 
I expression_list 
I id ":" id_list 

expression_list = expression { "," expression} 

expression = I number 
I constant 
I id 
I type_name "." id"(" expression_list ")" 
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APPENDIX B. DIAGRAMATIC REPRESENTATION OF PSDL 

The folowing diagrams present a tree structured breakdown of the PSD Llanguage 

as applied in the translator. Each section is numbered with a large arabic numeral inside 

a circle in the lower left corner. This is a ''key" number. Transitions between "key'" 

sections are marked as lines terminated with a capital letter and one or more "key"' 

numbers. For example, the non-terminal symbol, data_type, is found under "key" 

section 1, as a possible representation of the non-terminal symbol, component. The 

transition to a section with more detail on data_ type is marked as B,3. This means go 

to the line marked B under "key" section 3. Moving to that section leads to the tree 

structured breakdown of the non-terminal symbol, data_ type, iuto the terminal symbol, 

TYPE, followed by the non-terminal symbols, id, type_spec, and type_impl. 
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APPENDIX C. ADA SOURCE CODE IMPLEMENTATION OF VARIOUS 

PSDL CONSTRUCTS 

A. GENERIC QUEUE MODEL 

generic 
type ITEM is private 

package QUEUES is 
type QUEUE (Size: POSITIVE) is limited private; 
procedure CLEAR (TheQueue: in out QUEUE); 
procedure ADD (Theitem: in Item; 

ToTheQueue: in out QUEUE); 
procedure REMOVE (Theitem: out Item; 

FromTheQueue: in out QUEUE); 
OVERFLOW; 
UNDERFLOW: exception; 

private 
type LIST is array (INTEGER range<>) of ITEM; 
type QUEUE (Size: POSITIVE) is 

record 
Theltems: LIST (O .. Size); 
TheBack : NATURAL : = O; 

end record; 
end QUEUES; 

package body QUEUES is 

procedure CLEAR (TheQueue 
out QUEUE) is 
begin 

TheQueue.TheBack := O; 
end CLEAR; 

procedure ADD (Theitem: in ITEM; 
ToTheQueue: in out QUEUE) is 

begin 
ToTheQueue.Theitems(ToTheQueue.TheBack + 1) := Theitem; 
ToTheQueue.TheBack := ToTheQueue.TheBack + 1; 

exception 
when Constraint_Error => 

raise OVERFLOW; 
end ADD; 

procedure REMOVE (Theitem: out ITEM; 
FromTheQueue: in out INTEGER) is 

begin 
if FromTheQueue.TheBack = 0 then 

raise UNDERFLOW; 
else 
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Theitem := FromTheQueue.Theitems(l); 
FromTheQueue.TheBack := FromTheQueue.TheBack - 1; 

end if; 
end REMOVE; 

B. GENERIC PACKAGES CONTAINING FIFO AND SAMPLED STREAM 

BUFFER TASKS 

1. FIFO Queue 

generic type ELEMENT_TYPE is private; 
package FIFO is 

task FIFO_BUFFER is 
entry CHECK (NEW_DATA: out BOOLEAN); 
entry PUT (VALUE in ELEMENT_TYPE); 
entry GET (VALUE out ELEMENT_TYPE); 

end FIFO_BUFFER: 
BUFFER_READ_ERROR, 
BUFFER_WRITE_ERROR exception; 

end FIFO; 

package body FIFO is 
task body FIFO_BUFFER is 

BUFFER: ELEMENT_TYPE; 
VALUE: ELEMENT_TYPE; 
NEW_DATA_VALUE: BOOLEAN:= false; 

begin 
loop 

select 

or 

or 

accept CHECK (NEW_DATA_VALUE: out BOOLEAN) do 
NEW_DATA : = NEW_DATA_VALUE; 

end CHECK; 

accept GET (VALUE: out ELEMENT_TYPE) do 
if NEW_DATA_VALUE then 

VALUE : = BUFFER; 
NEW_DATA_VALUE := false; 

else raise BUFFER_WRITE_ERROR; 
end if; 

end GET; 

accept PUT (VALUE: in ELEMENT_TYPE) do 
if not NEW_DATA_VALUE then 

BUFFER : = VALUE; 
NEW_DATA_VALUE := true; 

else raise BUFFER_READ_ERROR; 
end if; 

end PUT; 
end select; 

end loop; 
end FIFO_BUFFER; 

end FIFO; 
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2. Sampled Stream Queue 

generic type ELEMENT_TYPE is private 
package SAMPLED is 

task SAMPLED_BUFFER is 
entry CHECK (NEW_DATA: out BOOLEAN); 
entry PUT (VALUE: in ELEMENT_TYPE); 
entry GET (VALUE: out ELEMENT_TYPE); 

end SAMPLED_BUFFER: 
end SAMPLED; 

package body SAMPLED is 
task body SAMPLED is 

BUFFER: ELEMENT_TYPE; 
VALUE: ELEMENT_TYPE; 
NEW_DATA_VALUE: BOOLEAN:= false; 

begin 
loop 

select 
accept CHECK (NEW_DATA: out BOOLEAN) do 

NEW_DATA : = NEW_DATA_VALUE: 
end CHECK: 

or 
accept GET (VALUE: out ELEMENT_TYPE) do 

VALUE : = BUFFER; 
NEW_DATA_VALUE := false; 

end GET; 
or 

accept PUT (VALUE: in ELEMENT_TYPE) do 
BUFFER : = VALUE; 
NEW_DATA_VALUE : = true; 

end PUT; 
end select; 

end loop; 
end SAMPLED_BUFFER: 

end SAMPLED: 

C. GENERIC PACKAGE IMPLEMENTING TIMER 

generic 

with CALENDAR; 
use CALENDAR; 

package TIMER is 
StartTime: TIME; 
ReadTime: TIME; 
ElapsedTime: DURATION; 
TotalElapsedTime: DURATION; 
Run : BOOLEAN; 

end TIMER; 

with CALENDAR; 
use CALENDAR; 

package body TIMER is; 
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procedure START (StartTime: out TIME; 
Run : BOOLEAN); 

begin 
if not Run=> 

StartTime := CLOCK; 
Run : = True; 

end if; 
end START; 

procedure STOP (StartTime: in TIME; 

begin 
if Run=> 

ReadTime: out TIME; 
ElapsedTime: out DURATION; 
TotalElapsedTime: out DURATION; 
Run : in out BOOLEAN); 

ReadTime := CLOCK; 
ElapsedTime : = ReadTime "-" StartTime· 
TotalElapsedTime : = TotalElapsedTime 11+" ElapsedTime; 
Run : = False; 

end if; 
end STOP; 

procedure READ (StartTime: in TIME; 

begin 

ReadTime: out TIME; 
ElapsedTime: out DURATION); 
TotalElapsedTime: out DURATION); 

ReadTime := CLOCK; 
ElapsedTime := ReadTime "-" StartTime· 
TotalElapsedTime : = TotalElapsedTime ''+" ElapsedTime; 

end READ; 

procedure RESET (StartTime: out TIME; 
ReadTime: out TIME; 
ElapsedTime: out DURATION; 
TotalElapsedTime: out DURATION; 
Run : out BOOLEAN); 

begin 
StartTime := CLOCK; 
ReadTime := CLOCK; 
ElapsedTime := 0.0; 
TotalElapsedTime := 0.0; 
Run : = False; 

end RESET; 
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APPENDIX D. PROGRAM LISTING FOR THE TRANSLATOR 

The following is a listing of the Kodiyak input file which is compiled create the 

translator. It is composed of three sections delimited by the%% marker. Comments 

are indicated by the ! mark and extend to the end of the line. Backslash followed by t 

or n follows the UNIX convention and stands for "tab" and "newline" respectively. 

The first part of the file is the lexical definition section. The various lexical tokens 

in PSD L are identified. In order to assist this definition, classes oflexical characters can 

be defined. Such definitions are identified by the o/odefme statement. Standard "Kleene"' 

closures are used throughout (i.e., {} + indicates one or more, {}* indicates zero or 

more). The solid vertical bar ( I ) indicates an "or" selection. The circumflex ( shifted 

6) in the definition for Char (character) indicates "all symbols except those immediately 

following" (i.e., all except left and right curly braces). Left and right brackets between 

two words indicates they are to be evaluated together as a lexical token. 

The % % marker begins the second section. Here, the attributes for non-terminal 

and some terminal symbols of the language are defined. Kodiyak allows either string 

or integer type attributes. In this case all attributes are string type. Each non-terminal 

(e.g., start) has one attribute, trn (shorthand for translation), of type string. All 

Kodiyak translators have a start symbol which is used to indicate that the input file has 

been completely reduced and output can begin. Terminal symbols can also have attri­

butes. In this case five terminal symbols have been assigned the special attribute 

%text. This attribute returns the value of the input text which the terminal symbol 

matched. 

Section three of the Kodiyak file begins with the second % % marker. It is a repre­

sentation of the grammatical structure of PSD L. It begins with the start symbol. The 

start symbol cannot appear on the right side of any production rule. If it did, output 

would commence even though the parsing tree of the input file would not have been 

completely reduced. Each producton rule in the grammar is represented and attached 

to each rule is an "attribute equation" surrounded by curly braces. The "attribute 
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equation'' specifies what output is to be created when the corresponding PSDL pro­

duction rule is reduced. Within the "attribute equation," square brackets surrounding 

a series of items indicates the concatenation of the items. The solid vertical bar is used 

to indicate alternate possibilities for a given production rule. This is an exclusive or se­

lection. It is also precedence ordered (i.e., top to bottom, the first rule which matches 

is the rule evaluated). Care must be exercised here as some states are implied and not 

explicit. For example, functionality has but one attribute equation. However, it has 

an implied empty state, since all three of the non-terminal symbols which are part of the 

production rule for functionality can have an empty state. Recursion and optional cases 

are supported. The naming convention used in this translator is as follows: 

• opt_name means the item is optional 

• name_l_list means one or more of the item 

• name_O_list means zero or more of the item 

When compiled, a program of about 230 kilobytes in size is created. The compiled 

program is C object code. Certain features are incorporated in all products created with 

Kodiyak. The executable code recognizes the standard UNIX -h, help, switch and re­

sponds with the correct usage syntax and a listing of optional switches. The three most 

useful are: 

• -o outfile_name, allows the naming of a file to receive the output of the translator 

• -1, causes the translator to display each PSDL token as it is recognized 

• -y, causes the translator to display each PSDL production rule as it is resolved 

The last two switches are especially helpful in debugging an input program. 

!definitions of lexical classes 

%define Digit 
%define Int 
%define Letter 
%define Alpha 
%define Blank 
%define Char 
%define Quote 

: [0-9] 
: {Digit}+ 
: [a-zA-Z_] 
: ( {Letter} I {Digit}) 
: [ \ t\n] 
: [--{}] 
: ["] 

! definitions of white space 

: {Blank}+ 
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! definitions of compound symbols and keywords 

GTE 
LTE 
NEQV 
ARROW 
TYPE 
OPERATOR 
SPECIFICATION 
END 
GENERIC 
INPUT 
OUTPUT 
STATES 
INITIALLY 
EXCEPTIONS 
MAX_EXEC_TIME 
~-X_RESP_TIME 
MIN_CALL_PERIOD 
MICROSEC 
MS 
SEC 
MIN 
HOURS 
BY 
KEYWORDS 
DESCRIPTION 
AXIOMS 
IMPLEMENTATION 
ADA 
GRAPH 
DATA_STREAM 
TIMER 
CONTROL 
TRIGGERED 
ALL 
SOME 
PERIOD 
FINISH 
EXCEPTION 
READ 
RESET 
START 
STOP 
IF 
NOT 
AND 
OR 
TRUE 
FALSE 
ID 
STRING_LITERAL 
INTEGER_LITERAL 
REAL_LITERAL 
TEXT 

: ">=" 
: "<=" 
: "!=" 
: "->" 
: type I TYPE 
:operatorlOPERATOR 
:specificationlSPECIFICATION 
:endlEND 
:genericlGENERIC 
: input I INPUT 
: output I OUTPUT 
:states!STATES 
:initiallylINITIALLY 
:exceptionsjEXCEPTIONS 
:maximum[ ]execution[ ]timelMAXIMUM[ ]EXECUTION[ ]TIME 
: maximum[ ]response[ ]time I MAXIMUM[ ]RESPONSE[ ]TIME 
: minimum[ ]calling[ ]period I MINIMUM[ ]CALLING[ ]PERIOD 
:microseclMICROSEC 
: ms IMS 
:seclSEC 
: mini MIN 
:hours I HOURS 
: by[ ]requirements I BY[ ]REQUIREMENTS 
:keywordslKEYWORDS 
:descriptionlDESCRIPTION 
: axioms I AXIOMS 
:implementationlIMPLEMENTATION 
: adalAdalADA 
: graph I GRAPH 
: data[ ]stream I DATA[ ]STREAM 
: timer I TIMER 
: control[ ]constraints I CONTROL[ ]CONSTRAINTS 
:triggeredlTRIGGERED 
: by[ Jal 11 BY[ ]ALL 
: by[ ]some I BY[ ]SOME 
: period I PERIOD 
: finish[ ]withinlFINISH[ ]WITHIN 
:exceptionlEXCEPTION 
: read I READ 
: reset I RESET 
:startlSTART 
:stoplSTOP 
: ifl IF 
: "?" I "not" I "NOT" 
: "&"I" and" I "AND" 
: "I" I "or" I "OR" 
: true I TRUE 
: false I FALSE 
: {Letter}{Alpha}* 
: {Quote}{Char}*{Quote} 
: {Int} 
: {Int}". "{Int} 
: "{''{Char}*"}" 
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! operator precedences 
J %left means group and evaluate from the left 

OR; 
AND; 
NOT; 

%left 
%left 
%left 
%left '<', '>', '=', GTE, LTE, NEQV; 

%~, 
! attribute declarations for nonterminal symbols 

start { trn: string; }; 
psdl { trn: string; }; 
component { trn: string; }; 
data_type { trn: string; }; 
operator { trn: string; }; 
type_spec { trn: string; }; 
opt_type_decl_l_list { trn: string; }; 
type_decl_l_list { trn: string; }; 
type_decl { trn: string; }; 
op_spec_O_list { trn: string; }; 
operator_spec { trn: string; }; 
interface { trn: string; }; 
attrib_O_list { trn: string; }; 
attribute { trn: string; }; 
generic_param { trn: string; }; 
input { trn: string; }; 
output { trn: string; }; 
states { trn: string; }; 
exceptions { trn: string; }; 
timing_info { trn: string; }; 
maxet { trn: string; }; 
maxrt { trn: string; }; 
mincp { trn: string; }; 
time { trn: string; }; 
unit { trn: string; }; 
id_list { trn: string; }; 
opt_reqmts_trace { trn: string; }; 
reqmts_trace { trn: string; }; 
functionality { trn: string; }; 
opt_keywords { trn: string; }; 
opt_informal_desc { trn: string; }; 
opt_formal_desc { trn: string; }; 
keywords { trn: string; }; 
informal_desc { trn: string; }; 
formal_desc { trn: string; }; 
type_impl { trn: string; }; 
op_impl_O_list { trn: string; }; 
operator_impl { trn: string; }; 
psdl_impl { trn: string; }; 
data_flow_diagram { trn: string; }; 
link_O_list { trn: string; }; 
link { trn: string; }; 
opid { trn: string; }; 
opt_time { trn: string; };· 
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opt_streams { trn: string; }; 
opt_timers { trn: string; }; 
opt_control_constraints { trn: string; }; 
streams { trn: string; }; 
type_name { trn: string; }; 
timers { trn: string; }; 
control_constraints { trn: string; }; 
constraint_O_list { trn: string; }; 
constraint { trn: string; }; 
operator_name { trn: string; }; 
opt_trig { tm: string; }; 
opt_trigger { trn: string; }; 
trigger { trn: string; }; 
opt_per { trn: string; }; 
opt_fin_w { trn: string; }; 
out_O_list { trn: string; }; 
except_O_list { trn: string; }; 
time_O_list { trn: string; }; 
timer_op { trn: string; }; 
opt_if_predicate { trn: string; }; 
predicate_branch { trn: string; }; 
predicate { trn: string; }; 
expression_list { trn: string; }; 
opt_expression { trn: string; }; 
expression_O_list { trn: string; }; 
expression { trn: string; }; 
infix_op { trn: string; }; 
constant { trn: string; }; 

lattrbute declarations for terminal symbols 

ID{ %text: string; }; 
TEXT{ %text: string; }; 
STRING_LITERAL{ %text: string; }; 
INTEGER_LITERAL{ %text: string; }; 
REAL_LITERAL{ % text: string; } ; 

%% 
! psdl grammar 

start 
: psdl 
{ %output(psdl.trn); } 

psdl 
psdl component 
{ psdl[l]. trn = (psdl[2]. trn, component. trn]; } 

{ psdl[l]. trn = '"'; } 
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component 

data_type 

operator 

type_spec 

data_type 
{ component.trn = data_type.trn;} 
operator 
{ component.trn = operator.trn; } 

TYPE ID type spec t~e impl 
{ data_type. trn = [' typ-; ' , ID. %text, "\n", tvoe_spec. trn, 

"\n", type_impl. trn"', ..,,\n"] ; } 

OPERATOR operator_name operator_spec operator_impl 
{ operator.trn = ["procedure ",operator_name.trn,"is;\n", 

operator_spec. trn, "\n" ,operator_impl. trn, "\n"]; } 

SPECIFICATION opt_type_decl_l_list op_spec_O_list functionality END 
{ type_spec.trn = [opt_type_decl_l_list.trn,"\n",op_spec_O_list.trn, 

"\n", functionality. trn," end; \n"]; } 

opt_type_decl_l_list 
type_decl_l_list 
{ opt_type_decl_l_list.trn = type_decl_l_list.trn; } 

{ opt_type_decl_l_list. trn = ""; } 

type_decl_l_list 
type_decl_l_list ',' type_decl 

type_decl 

{ type_decl_l_list[l].trn = [type_dec1_1_1ist[2].trn, 
"\n", type_decl. trn]; } 

type_decl 
{ type_decl_l_list.trn = type_decl.trn; } 

id_list ':' type_name 
{ type_decl. trn = [id_list. trn, ": ", type_name. trn]; } 

op_spec_O_list 
op_spec_O_list OPERATOR operator_name operator_~pec 
{ op_spec_O_list[l]. trn = [op_spec_O_list[2]. trn, \n procedure " 

operator_name.trn," is \n", 
operator_spec.trn]; } 

{ op_spec_O_list.trn = ""; } 
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operator_spec 
SPECIFICATION interface functionality END 
{ operator_spec.trn = [interface.trn,"\n", 

functionality. trn," end; \n"]; } 

interface 
attrib_O_list 
{ interface.trn = attrib_O_list.trn; } 

attrib_O_list 
attrib_O_list attribute opt_reqmts_trace 
{ attrib_O_list[l].trn = (attrib_O_list[2].trn,opt_reqmts_trace.trn]; } 

{ attrib_O_list. trn = ""; } 

attribute 
generic_param 
{ attribute.trn = generic_param.trn; } 
input 
{ attribute.trn = input.trn; } 
output 
{ attribute.trn = output.trn; } 

I states 
{ attribute.trn = states.trn; } 

I exceptions 
{ attribute.trn = exceptions.trn; } 
timing_info 
{ attribute.trn = timing_info.trn; } 

generic_param 

input 

output 

states 

GENERIC type_decl 
{ generic_param. trn = [" generic \n", type_decl. trn]; } 

INPUT type_decl 
{ input. trn = [" 

OUTPUT type_decl 
{ output. trn = [" 

in ", type_decl. trn]; } 

out ", type_decl. trn]; } 

STATES type_decl INITIALLY expression_list 
{ states. trn = ["procedure PRELOAD is; \n PUT (", type_decl. trn, 

"); \n" ,expression_list. trn]; } 



exceptions 

id_list 

EXCEPTIONS id list 
{ exceptions. trn = ["raise exception 11

, id_list. trn, "; \n"]; } 

id_list 1 
, ' ID 

{ id_list[l]. trn = [id_list(2]. trn," ", ID. %text] ; } 
ID 
{ id_list[l].trn = ID.%text; } 

timing_info 
maxet 

maxet 

mincp 

maxrt 

time 

unit 

{ timing_info.trn = maxet.trn; } 
mincp 
{ timing_info.trn = mincp.trn; } 
maxrt 
{ timing_info.trn = maxrt.trn; } 

MAX_EXEC_TIME time 
{ maxet.trn = time.trn; } 

MIN_CALL_PERIOD time 
{ mincp.trn = time.trn; } 

MAX_RESP_TIME time 
{ maxrt.trn = time.trn; } 

INTEGER_LITERAL unit 
{ time.trn = [INTEGER_LITERAL.%text,unit.trn]; } 

MICROSEC 
{ unit.trn = "\n"; } 
MS 
{ unit.trn = "\n"; } 
SEC 
{ unit.trn = "\n"; } 
MIN 
{ unit.trn = "\n"; } 
HOURS 
{ unit.trn = "\n"; } 

{ unit.tm = '"'. } J 



opt_reqmts_trace 
reqmts_trace 
{ opt_reqmts_trace.trn = reqmts_trace.trn; } 

{ opt_reqmts_trace.trn = ""; } 

reqmts_trace 
BY id_list 
{ reqmts_trace.trn = ""; } 

functionality 
opt_keywords opt_informal_desc opt_formal_desc 
{ functionality.trn = [opt_keywords.trn,opt_informal_desc.trn, 

opt_formal_desc.trn]; } 

opt_keywords 
keywords 
{ opt_keywords.trn = keywords.trn; } 

{ opt_keywords.trn = ""; } 

opt_informal_desc 
informal_desc 
{ opt_informal_desc.trn = informal_desc.trn; } 

{ opt_informal_desc. trn = '"'; } 

opt_formal_desc 
formal_desc 
{ opt_formal_desc.trn = formal_desc.trn; } 

{ opt_formal_desc. trn = ""; } 

keywords 
KEYWORDS id_list 
{ keywords. trn = "\n"; } 

informal_desc 
DESCRIPTION TEXT 
{ informal_desc.trn = "\n"; } 

formal_desc 
AXIOMS TEXT 
{ formal_desc.trn = "\n"; } 
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type_impl 
IMPLEMENTATION ADA ID 
{ type_impl. trn = ["procedure ", ID. %text," is; \n"]; } 
IMPLEMENTATION type_name op_impl_O_list END 
{ type_impl. trn = ["\n package DATA_TYPES is \n", type_name. trn, "\n", 

op_impl O_list.trn,"\n", 
"end; \n"]; } 

op_impl_O_list 
op_impl_O_list OPERATOR or,erator_name operator_impl 
{ op_impl_O_list[l]. trn = "'; } 

{ op_impl_O_list[l]. trn = ""; } 

operator_impl 

psdl_impl 

H!PLEMENTATION ADA ID 
{ operator_impl. trn = ["procedure ", ID. %text," is \n"]; } 
IMPLEMENTATION psdl_impl 
{ operator_impl.trn = [psdl_impl.trn]; } 

data_flow_diagram opt_streams opt_timers opt_control_constraints 
opt_informal_desc END 
{ psdl_impl. trn = [data_flow_diagram. trn, "\n" ,opt_streams. trn, "\n", 

opt_timers.trn,"\n",opt_control_constraints.trn, 
"\n", opt_informal_desc. trn," end; \n"]; } 

data_flow_diagram 
GRAPH link_O_list 
{ data_flow_diagra.m.trn = ["\n-- Graphic representation: \n\t", 

link_O_list. trn, "\n"] ; } 

link_O_list 
link_O_list link 
{ link_O_list[l]. trn = [link_O_list[2]. trn," ", link. trn]; } 

{ link_O_list. trn = '"'; } 

link 
ID'.' opid ARROW ID 
{ link. trn = [opid. trn, "-", ID[2]. %text,"-", ID[l]. %text, "\n"] } 

opid 
ID opt_time 
{ opid.trn = [ID.%text,opt_time.trn]; } 
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opt_time 
': ' time 
{ opt_time. trn = [":",time. trn, "\n"]; } 

{ opt_time. trn = "\n"; } 

opt_streams 
streams 
{ opt_streams.trn = streams.trn; } 

{ opt_streams. trn = ""; } 

opt_timers 
timers 
{ opt_timers.trn = timers.trn; } 

{ opt_timers. trn = ""; } 

opt_control_constraints 
control_constraints 

streams 

type_na.me 

timers 

{ opt_control_constraints.trn = control_constraints.trn; } 

{ opt_control_constraints. trn = '"'; } 

DATA_STREAM type_decl 
{ streams. trn = [" task STREAM is new FIFO \n", 

type_decl. trn, "; \n"]; } 

ID '[' type_decl_l_list ']' " 
{ type_name. trn = [ID. %text,"[", type_decl_l_list. trn, ]\n"]; } 
ID 
{ type_name.trn = ID.%text; } 

TIMER id_list 
{ timers. trn = ["package ", id_list. trn," is new TIMER; \n"] } 

control_constraints 
CONTROL constra.int_O_list 
{ control_constraints.trn = constraint_O_list.trn; } 
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constraint_O_list 
constraint O list constraint 
{ constrairrt_:-o_list[l]. trn = (constraint_O_list[2]. trn," " 

constraint.trn]; } 

{ constraint_O_list. trn = '"'; } 

constraint 
OPERATOR operator_name opt_trig opt_per opt_fin_w out_O_list 
except_O_list time_O_list 
{ constraint.trn =["procedure 11

1operator_name.trn,"\n",opt_trig.trn, 
11 \n",opt_per.trn,'\n",or.t_fin_w.trn, 11 \n",out_O_list.trn, 
"\n", except_O_list. trn, '\n", time_O_list. trn, "\n"]; } 

operator_name 
type_name '.' ID 

opt_trig 

{ operator_name. trn = [type_name. trn, ".",ID. %text]; } 
ID 
{ operator_name.trn = ID.%text; } 

TRIGGERED opt_trigger opt_if_predicate opt_reqmts_trace 
{ opt_trig.trn = [opt_trigger.trn,"\n",opt_if_predicate.trn,"\n", 

opt_reqmts_trace.trn,"\n"]; } 

{opt_trig. trn = '"'; } 

opt_trigger 
trigger 

trigger 

opt_per 

{ opt_trigger.trn = trigger.trn; } 

{ opt_trigger. trn = ""; } 

ALL id_list 
{ trigger. trn = [" if ", id_list. trn," and "]; } 
SOME id_list 
{ trigger. trn = ["if ",id_list. trn," or "]; } 

: PERIOD time opt reqmts_trace 
{ opt_per. trn = ,r\n"; } 

I 
{ opt_per. trn = ""; } 
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opt_fin_w 

I 

FINISH time opt_reqmts_trace 
{ opt_fin_w. trn = "\n"; } 

{ opt_fin_w. trn = ""; } 

out_O_list 
: out_O_list OUTPUT id_list opt_if_predicate op,t_reqmts_trace 
{ out_O_list[l]. trn = [out_O_list[2]. trn,;; PUT ', id_list. trn," ", 

opt_if_predicate.trn," ,opt_reqmts_trace.trn]; } 
I 
{ out_O_list. trn = ""; } 

except_O_list 
: except_O_list EXCEPTION ID opt_if_predicate opt_reqmts_trace 
{ except_O_list[l]. trn = [except_O_list[2]. trn," RAISE ", ID. %text," " 

opt_if_predicate.trn," ",opt_reqmts_trace.trn]; } 
I 
{ except_O_list.trn = ""; } 

time_O_list 

timer_op 

: time_O_list timer_op ID opt_if_predicate or.t_reqmts_trace 
{ time_O_list[l]. trn = [time_O_list~2]. trn," ', timer_op. trn," ", 

ID.%text,' )\n ",opt_i~_predicate.trn,"\n 
opt_reqmts_trace.trn]; } 

I 
{ time_O_list. trn = ""; } 

READ 
{ t · t ["READ ( "],· } 1mer_op. rn = 
RESET 
{ timer_op. trn = ["RESET ( "]; } 
START 
{ timer_op. trn = ["START ( "]; } 
STOP 
{ timer_op. trn = ["STOP ( "]; } 

opt_if_predicate 
IF predicate_branch 
{ opt_if_predicate. trn = ["if ",predicate_branch. trn]; } 

{ opt_if_predicate. trn = ""; } 
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predicate_branch 
predicate AND predicate %prec AND 
{ predicate_branch. trn = [predicate[l]. trn," AND ", 

predicate[2]. trn] ; } 

predicate 

predicate OR predicate %prec OR 
{ predicate_branch. trn = [predicate[!]. trn," OR " 

predicate[2]. trn] ; } 
%prec NOT 

= ["NOT" ,predicate. trn] 
NOT predicate 
{ predicate_branch.trn 
predicate 
{ predicate_branch.trn = predicate.trn;} 

expression 
{ predicate.trn = expression.trn; } 
ID ': ' id_list 
{ predicate. trn = [ID. %text,": ", id_list. trn] } 

expression_list 
opt_expression 
{ expression_list.trn = opt_expression.trn; } 

opt_expression 

} 

expression',' expression_O_list 
{ opt_expression. trn = [expression. trn," , ",expression_O_list. trn]; } 

{ opt_expression. trn = ""; } 

expression_O_list 
expression_O_list ',' expression 
{ expression_O_list[l]. trn = [expression_O_list[2]. trn," 

expression. trn]; } 

{expression_O_list. trn = ""; } 
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expression 
operator_name '(' expression_list ')' 

infix_op 

I 

I 

constant 

{ expression.trn = [' ",operator_name.trn, 
" (" ,expression_list. trn, ")\n"]; } 

operator_name '=' constant %prec LTE· 
{ expression. trn = [operator_name. trn," = ",constant. trn, "\n"]; } 
operator_name '<' co~stant %prec LTE 
{ expression. trn = [operator_name. trn," < ", constant. trn, "\n"J; } 
operator_name '>' constant %prec LTE 
{ expression.trn = [operator_name.trn," > ",constant.trn,"\n"]; } 
operator_name infix_op constant 
{ expression.trn = [operator_name.trn1" ",infix_op.trn,"" 

constant. trn, '\n"]; } 
constant 

{ expression.trn = constant.trn; } 
operator_name 
{ expression. trn = [" = ",operator_name. trn, "; \n"]; } 

GTE 
{ inf ix_op. trn = ">="; } 

LTE 
{ infix_op.trn = ">="; } 

NEQV 
{ infix_op.trn = "/="; } 

TRUE 
{ constant.trn = "true"; } 
FALSE 
{ constant. trn = "false"; } 
INTEGER_LITERAL 

%prec GTE 

%prec LTE 

%prec NEQV 

{ constant.trn = INTEGER_LITERAL.%text; } 
REAL_LITERAL 
{ constant.trn = REAL_LITERAL.%text; } 
STRING_LITERAL 
{ constant.trn = STRING_LITERAL.%text;} 
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APPENDIX E. PROGRAM LISTING FOR TEST PROGRAM IN PSDL 

The following test program is taken from the Ph.D. dissertation by Luqi which first 

described PSDL [Ref. 19]. It is representative of most features in the PSDL language. 

It contains descriptions at several levels of decomposition of the proposed system. The 

system envisioned is an embedded computer system for a medical treatment instrument 

known as a hyperthermia system. It implements real-time control constraints (required 

for safety of the patient as well as ensuring correct application of the theraputic tech­

nique). The system described would monitor and control the operation of a microwave 

generator. The microwave generator would be used to generate a hyperthermia condi­

tion for the treatment of tumors in the brain. There is a critical temperature range which 

would provide proper theraputic effect and yet remain safe for the patient. The system 

has stringent shutdown time limits when either treatment is completed or the temper­

ature of the target tissues exceeds a limiting value. Obviously, there could be severe 

penalties should the system fail to function correctly. The time limits on startup and 

shutdown and the precise timing of the treatment period are critical. Maintenance of 

microwave power levels is critical to ensure correct temperature is maintained within a 

narrow range. As such, this program illustrates many of the features of an emb~dded 

system with real-time constraints. Since the program utilizes most of the features of 

PSDL and is a real-time system, it is a convenient one to utilize to test the translator. 

The Ada code produced thus far is elementary at best. As noted in the conclusion for 

this paper, the formal relationship between PSDL and Ada must be established and 

applied to the translator to ensure generality and correctness. Further, there is no li­

brary of reuseable Ada software modules from which to draw implementation code for 

the various parts of the hyperthermia system. The implementation code for this sytem 

would require development. The translator provides (as intended) interconnection code 

for the software. 

OPERATOR brain_tumor_treatment_system 
SPECIFICATION 

INPUT patient_chart: medical_history, 
treatment_switch: boolean 

OUTPUT treatment_finished: boolean 
STATES temperature: real 

INITIALLY 37.0 
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DESCRIPTION 
{ The brain tumor treatment system kills tumor cells 

by means of hyperthermia induced by microwaves. 
} 

END 

IMPLEMENTATION 
GRAPH 

DATA STREAM treatment_power: real 
CONTROL CONSTRAINTS 

OPERATOR hyperthermia_system 
PERIOD 200 BY REQUIREMENTS shutdown 

OPERATOR simulated_patient 
PERIOD 200 

DESCRIPTION { paraphrased output } 
END 

TYPE medical_history 
SPECIFICATION 

OPERATOR get_tumor_diameter 
SPECIFICATION 

INPUT patient_chart: medical_history, 
tumor_location: string 

OUTPUT diameter: real 
EXCEPTIONS no_tumor 
MAXIMUM EXECUTION TIME 5 ms 
DESCRIPTION 
{ Returns the diameter of the tumor at a given location, 

produces an exception if no tumor at that location. 
} 

END 

KEYWORDS patient_charts, medical_records, treatment_records, 
lab records 

DESCRIPTION 
{ The medical history contains all of the disease and 

treatment information for one patient. The operations 
for adding and retrieving information not needed by 
the hyperthermia system are not shown here. 

} 
END 

IMPLEMENTATION 
tuple [tumor_desc: map[from: string, to: real], ... ] 

OPERATOR get_tumor_diameter 
IMPLEMENTATION 

GRAPH 

DATA STREAM td: tumor descr 
CONTROL CONSTRAINTS 

OPERATOR map.fetch 
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EXCEPTIONS no_tumor IF not(map.has(tumor_location, td)) 
END 

END 

OPERATOR hyperthermia_system 
SPECIFICATION 

INPUT temperature: real, patient_chart: medical_history, 
treatment_switch: boolean 

OUTPUT treatment_power: real, treatment_finished: boolean 
MAXIMUM EXECUTION TIME 100 ms 

BY REQUIREMENTS temperature_tolerance 
MAXIMUM RESPONSE TIME 300 ms 

BY REQUIREMENTS shutdown 
KEYWORDS medical_equipment, temperature_control, 

hyperthermia, brain_tumors 
DESCRIPTION 
{ After the doctor turns on the treatment switch, the 

hyperthermia system reads the patient's medical record 
and turns on the microwave generator to heat the tumor 
in the patient's brain. The system controls the power 
level to maintain the hyperthermia temperature of 

} 

42.5 degrees C. for 45 minutes to kill the tumor cells. 
When the treatment is over, the system turns off the 
power and notifies the doctor. 

END 

IMPLEMENTATION 
GRAPH 

DATA STREAM estimated_power: real 
TIMER treatment_time 

CONTROL CONSTRAINTS 

END 

OPERATOR start_up 
TRIGGERED IF temperature< 42.4 

BY REQUIREMENTS maximum_temperature 
STOP TIMER treatment_time 
RESET TIMER treatment_time IF temperature<= 37.0 

OPERATOR maintain 
TRIGGERED IF temperature>= 42.4 

BY REQUIREMENTS maximum_temperature 
START TIMER treatment_time 

BY REQUIREMENTS treatment_time, temperature_tolerance 
OUTPUT treatment_finished IF treatment_time >= 45 min 

BY REQUIREMENTS treatment_time 
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OPERATOR start_up 
SPECIFICATION 

INPUT patient_chart: medical_history, temperature: real 
OUTPUT estimated_power: real, treatment_finished: boolean 

BY REQUIREMENTS startup_time 
MAXIMUM EXECUTION TIME 90 ms 

BY REQUIREMENTS temperature_tolerance 
DESCRIPTION 
{ Extracts the tumor diameter from the medical history and 

uses it to calculate the maximum safe treatment power. 
Estimated power is zero if no tumor is present. The 
treatment finished is true only if no tumor is present. 

} 
END 

IMPLEMENTATION Ada start_up 
END 

OPERATOR maintain 
SPECIFICATION 

INPUT temperature: real 
OUTPUT estimated_power: real, treatment_finished: boolean 
MAXIMUM EXECUTION TIME 90 ms 

BY REQUIREMENTS temperature_tolerance 
DESCRIPTION 
{ The power is controlled to keep the power between 42.4 

and 42.6 degrees C. 
} 

END 

IMPLEMENTATION Ada maintain 
END 

OPERATOR safety_control 
SPECIFICATION 

INPUT treatment_switch, treatment_finished: boolean 
estimated_power: real 

OUTPUT treatment_power: real 
BY REQUIREMENTS shutdown 

MAXIMUM EXECUTION TIME 10 ms 
BY REQUIREMENTS temperature_tolerance 

DESCRIPTION 
{ The treatment power is equal to the estimated power 

} 
END 

if the treatment switch is true and treatment finished 
is false. Otherwise the treatment power is zero. 

IMPLEMENTATION Ada start_up 
END 
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