
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Rapid Prototyping Languages in
Computer-Aided Software Engineering

Luqi; Berzins, Valdis
Naval Postgraduate School

Luqi and V. Berzins, "Rapid Prototyping Languages in Computer-Aided Software
Engineering'', Technical Report NPS 52-89-021, Computer Science Department,
Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65227

Downloaded from NPS Archive: Calhoun

. "

• I,

NSAVAT POSTGRADUATE SCHOOL
Monterey, California

RAPID PROTOTYPING LANGUAGES IN COMPUTER-AIDED
SOFTWARE ENGINEERING

LUQI & VALDIS BERZINS

APRIL1989

Approved for public release; distribution is unlimited .

Prepared for;

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

and Policy Science

I!

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE

RE
1

PORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASS If ICA TION AUTHORITY 3. DISTRl~UTION / AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-89-021
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &

Naval Post2raduate School 52 ONR Sponsored Navy Direct Funding
6c. ADDRESS (City, Stc1te, and ZIP Code} 7b. ADDRESS (City, State, and ZIP Code}

Monterey, CA, 93943 Washin~ton, D. c. 20550
Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval PostgraduA~o Srhnnl NSF r.rR-8710717 O&MN, Direct Funding
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO . ACCESSION NO.

Monterey, CA 93943
11. TITLE (Include Security Classification)

RAPID PROTOTYPING LANGUAGES IN COMPUTER-AIDED SOFTWARE ENGINEERING (U)
12. PERSONAL AUTHOR(S)

LUO!. BERZINS, Valdis
13a. TYPE OF REPORT 113b. TIME COVE~ED 14. DATE OF REPORT (Year, Month, Day) 11 s PAGE COUNT

Pro2.ress FROM Sent 88_ TO ..Mai: _89 1989 March 40
16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. AB_S_TRACT (Continue on rev~!S!_if ~ecessary and identify by . block number)

The goal of computer aided rapid prototyping is to automate the design effort at the early phases
of software development. The only way to reach this goal is to create mechanically processable
and executable documents at the specification level. Rapid prototyping languages form a new
category in the computer language family which supports rapid prototyping. Prototyping
languages are used to express specification and design of software prototypes in an iterative pro-
cess of prototype evolution. Prototyping languages combine the functions and benefits of
specification, design an~ programming languages. We describe the requirements, language
features, computational models, and general principles for the design of prototyping languages.
We compare specification, design and programming languages, conclude that prototyping
languages differ from the languages used in traditional software development and support a
higher level of automation at the early phases of software development, and indicate the key
issues for further progr~!!_ on prototyping languages.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJ UNCLASSIFIED/UNLIMITED KJ SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a . NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) l de. OFFICE SYMBOL

LUO! 40R-h~h-?71~ ~?T.n

DD FO.RM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

11 U.S. Go11ernmenl Prlnllnt Ofllc1: 1916-606-24.

HNCT.!\SSTFTF.D

Rapid Prototyping Languages in Computer-Aided Software Engineering

Luqi & Valdis Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

The goal of computer aided rapid prototyping is to automate the design effort at the early phases
of software development. The only way to reach this goal is to create mechanically processable
and executable documents at the specification level. Rapid prototyping languages form a new
category in the computer language family which supports rapid prototyping. Prototyping
languages are used to express specification and design of software prototypes m an iterative pro
cess of \)fOtotype evolution. PrototyPing languages combine the functions and benefits of
specification, design, and programmmg languages. We describe the requirements, language
features, computational models, and general principles for the design of prototyping languages.
We compare specification, design and programming languages, conclude that prototyping
languages differ from the languages used in traditional software development and support a higher
level of automation at the early phases of software development, and indicate the key issues for
further progress on prototyping languages.

1. Introduction

The traditional software life cycle consists of a series of phases called requirements analysis, func

tional specification, architectural design, module design, implementation, testing, and evolution. The result

of each phase is a document serving as the starting point for the next phase, or an error report requiring

reconsideration of the earlier phases. Traditionally the phases other than implementation have been carried

out largely by manual processes, and the resulting documents have been expressed in informal notations.

As an alternative, Fig. 1 shows a hierarchy of formal languages which can be used to express these docu

ments in mechanically processable forms. The formal documents from the earlier phases are usually

descriptive and cannot be directly ttanslated into efficient implementations. The implementation phase

produces programs in a programming language. Testing and evolution are usually done at the program

ming language level with limited computer aid.

The goal of computer aided software engineering (CASE) is to automate the effort at the early

phases [35]. The way to achieve automation is to create mechanically checkable and transformable docu

ments [5]. The computer languages for representing such documents differ from programming languages

because of the need to describe things other than algorithms and data structures [3]. These languages

should support new life cycles which integrate the functions of all the phases before and after implementa

tion. Prototyping languages are good examples of languages supporting an alternative life cycle, rapid

1

Traditional Life Cycle Rapid Prototyping

Phases Languages Stages Languages

Requirements Analysis Conceptual Modeling Rapid Rapid
Functional Specification Specification Prototyping Prototyping
Architectural Design Design / Pseudo Code

Implementation & Testing Programming Code Generation Programming

Requirements

Specification

Design

Coding

Testing

Evolution

Fig. 1 Software Language Hierarchy

f -. -• - . -. . • . • -- • - • . .• -. . . • . . • - --.... ,

Construct/Modify
Prototype

Execute
Prototype Rapid Prototyping

Stage

,· .. - - - ---····· ··-- ·-
'

Translate/Transform
Prototype

i
I

Code Generation Stage

:--· - -... - . . . - - . - - -· - . -· -

Evolution

; -·· ······ ·· .. - .. ·-· - ·-··· -··-· -·-···· -.......... -... :.

Fig. 2 Traditional Development vs. Rapid Software Prototyplna

prototyping (4, 22]. These languages combine specification and design with an execution capability to

better support the early phases (Fig. 1).

Rapid software prototyping is for gaining infonnation to guide analysis and design, and supportina

the automatic generation of the production code. It consists of two stages: prototyping and code genera

tion. Fig. 2 illustrates the prototyping process and compares it to traditional softwue development. 1be

prototyping stage firms up software iequirements through iterative negotiations between customers and

2

designers via the examination of executable prototypes [24). A software prototype is a simplified model of

the proposed system. The designer adjusts the requirements and modifies the prototype accordingly based

on feedback from the customer until the customer agrees on the requirements. The code generation stage

focuses on augmenting the prototype to generate the production code.

Prototyping with computer-aided tools makes a rapid prototyping process possible. CAPS (Com

puter Aided Prototyping Systems) [21) are the tool sets or environments designed especially for the pur

pose of rapid prototyping. A special prototyping language with the assistance of a CAPS system should

make it easy to specify, construct, demonstrate, understand, explain, and modify a software prototype. As

the most critical component, the language provides the basic communication and representation medium

for all the tools in a CAPS system. CAPS should be used to prototype large, pamllel, distributed, real-time,

and knowledge-based systems because the requirements for such systems are difficult to assess, leading to

demand for prototyping support in these areas [24). A prototyping language diffeIS from the languages in

the traditional language hierarchy shown in the left half of Fig. 1 since it addresses functions at all of the

levels of the hierarchy. Because of its wide range of functions, a prototyping language may not be as appli

cation specific at a single level of the hierarchy as a special purpose language designed just for that level.

Conventional compiler technology is not sufficient for the execution of a prototyping language,

because one of the goals of a rapid prototyping system is to execute prototype descriptions that do not con

tain details of algorithms and data structures [36). Some of the issues that must be faced by an execution

support system for a prototyping language are providing missing details and ensuring that real-time con

straints are met [13,23), This can be done using by combining program ttansfonnations 2) and specialized

schedulers [11, 18,20,29,31,33,34,39] with a knowledge base containing programming and problem

domain knowledge [25).

Prototyping languages were designed based on knowledge and experience from all levels of the

hierarchy. The relevant aspects of specification, design, and programming languages are discussed in sec

tion 2. Section 3 describes the requirements for a prototyping language, discusses issues in designing a

prototyping language, and gives examples of prototyping languages. Section 4 presents conclusions.

3

2. Formal Languages for Specification, Design, and Programming

A formal language is a notation with a clearly defined syntax and semantics. Fonnal languages are

critical components of a CASE environment because they are needed to achieve significant l~vels of

computer-aided design with cuuently feasible teclmologies. Automated tools are capable of detecting

structure in a notation only if the structure has been formally defined, and responding to its meaning only if

the meaning bas been formally defined. The tools applicable to infonnal notations usually treat them as

uninterpreted text strings, which limits the tools to bookkeeping functions such as version control Nota

tions with a formally defined syntax but an informal semantics can support tools sensitive to the sttucture

of the syntax, such as pretty printers and syntax-directed editors. If both the syntax and semantics of a spe

cial purpose language have been fixed and clearly defined, it becomes possible to create automated tools

for analysis, transformation, or execution for the softw31'.C system captured by the language and its concep

tual model.

Formal languages can be used to apply computer-aided analysis and design from the earliest stages

of software development. The goals and required behavior of a proposed system are negotiated in the con

text of a repeated analysis of the customer's problem. Knowledge-based assistants for each phase of

development starting with requirements analysis are examples of this approach. 1bis computer-aided pro

cess includes completeness and consistency checking, displaying descriptions of the system from various

viewpoints, demonstrations of prototypes, concurrency and configuration conttol for the design data, and

iofonnation retrieval functions. The tools in such an environment depend on each other, and must be

integrated together to effectively support the process. Such integration depends both on fonnal languages

and emerging technologies for managing engineering databases [15].

This section examines the categories of computer languages for specification, design and program

ming. Many of the existing languages for software development have characteristic properties and restric

tions from one or several of these categories. These language categories and the relations among them pro- .

vide the background and technology for the creation of rapid prototyping languages, which are used to

create specifications, express designs, and execute prototypes. We focus on general purpose languages that

can span a range of applications, and exclude application specific "fourth generation" languages.

4

2.1. Specification Languages

A specification is a black-box description of the behavior of a software system, which may interact

directly with users or may be part of a larger system. A black-box description defines the interfaces of a

software system in terms of the data that crosses its boundary, without reference to the mechanism imide.

Such interfaces define the form and meaning of all interactiom between the system and its environment.

Specification languages are fonnal notations for representing specifications. 1be primary benefits of

using a fonnal specification language are precision and the potential for automation, which lead to better

software products [3 7]. Fonnal specifications are used for defining, communicating, analyzing, and realiz

ing system interfaces.

2.1.1. What can Specification Languages do?

A specification language provides a set of concepts and notations which help the designer fonnulate

an interface for a system or component. The language influences the designer's thinking and determines

which things are easy to express, and which are impossible or impractically difficult. A specification

language should help the designer construct simple conceptual models of proposed systems and maintain

their conceptual integrity.

The specification language is a medium for communication between the designers, the development

teams, and the customers. Written specifications are needed for contract agreements and for internal com

munication in development organizatiom. Since people come and go more frequently than large projects

are completed, specifications are needed to record the state of a project in a pennanent fonn. 1be infonna

tion in the specification is also the basis for customer review, although it is usually necessary to paraphrase

the infonnation and to provide summaries and simplified views to effectively communicate with typical

customers.

A fonnal specification language enables analysis of the proposed interface with respect to many dif

ferent kinds of properties. Examples of such properties include type consistency, freedom from deadlock

for multistep protocols, satisfiability of the constraints on the required response for each possible input,

coverage of all possible input values, uniqueness of outputs, and consistency with a proposed design. Nooe

of these semantic properties can be detennined without a precise specification. Software systems can also

5

be realized with the aid of fonnal specifications, which can be used for retrieving and adapting existing

reusable components or as a starting point for a transformation system.

2.1.2. Should Specifications be Executable?

There has been increasing interest in executable specification languages, motivated by automated

prototyping for validating requirements and specifications, and automated implementation of production

quality software. The first of these applications of executable. specifications relaxes performance con

straints while the second does not. Both of these processes are not computable in the general case, if the

specification language is strong enough to be interesting. 1be practical impact of an "executable"

specification language can be judged by considering the expressiveness of the entire language, the expres

siveness of its executable subset, and the relative difficulty of traosfonning simple but non-executable

specifications into executable equivalents.

There is a tradeoff between convenience of expression and a unifonn guarantee of executability for a

specification language. Many specification languages gain their power by including non-effective opera

tors such as unrestricted logical quantifiers, and the presence of such operators is one of the things that dis

tinguishes specification languages from programming languages. Non-effective operators are defined by

infinite processes, and cannot in general be evaluated in a finite amount of time. Such operators enable

simpler descriptions of practical systems than those possible using effective operators, but they also allow

descriptions of processes that are not computable. It is necessary to add restrictions to specification

languages to make them uniformly executable, but such restrictions tend to bring the languages down to the

programming level.

An example of executable specifications is provided by the algebraic approach to specifying data

types, in which a data type is specified by giving axioms for the primitive operations of the type in the fonn

of conditional equations. Algebraic specifications can be made executable by imposing restrictions on the

form of the axioms, such as those shown in Fig. 3. These conditions allow the axioms to be treated as

rewrite rules, and there exist algorithms for checking that the conditions hold for particular sets of axioms.

An example of an algebraic specification with these properties is shown in Fig. 4. This example

defines an abstract data type whose elements are finite sets of values drawn from the type t, where the type

! '

.I "

2.2.1. What Should a Design Language Do?

A design document should provide brief and natural descriptions of implementation strategies,

justifications, assumptions, conventions, module decompositions, module dependencies, algorithms, and

data structures. The design language should support such descriptions with a controlled degree of incom

pleteness to avoid too much detail. Details that must be supplied by an implementation should be locatable

by a mechanical procedure. Designs can be analyzed with respect to correctness, perfonnance, and

development cost. Design tools can produce summary infonnation of design for design review, project

planning, and management

A design language need not be executable, but it should have an executable subset that can be

automatically mapped into the implementation language. 1be non-executable features should be subject to

automatic transfonnations into the implementation language if augmented by pragmas explaining how to

implement them in each case. There should also be an automatic mapping from the specification language

to the design language for generating the interface description part of a design.

The top level strocture of an algorithm can be described in a design language using conventional

control constructs as shown in Fig. 6. Design languages gain expressive power by including non-effective

operatiom in the set of primitives that can be combined with these control constructs. For example, the test

of a conditional can include logical quantifiers, the range of a foreach loop can be an implicidy specified

set, and the actions governed by a conditional or a loop can be described implicitly using a transition predi

cate, as illustrated in Fig. 7. All of these primitives illustrate ways of de.fining parts of algorithms without

going into coding details. The test in (a) might appear in a system for scheduling meeting, the loop range

in (b) might appear in a system for evaluating employee perfonnance, and the transition predicate in (c)

might appear in the design of a search tree. The transition predicate describes a balancing operation on two

(a) if [] then [] else []

(b) foreach [] in [] do []

Fig. 6 A11orithmic Constructs for Desip

(a) Non-effective test
SOME(t: time :: unscheduled(t, t + meeting_length))

(b) Implicit loop range
{ e: employee :: overtime(e) > required_overtime}

(c) Transition predicate
-- balance the sequences x and y

TRANSmON append(x, y) = append(*x, *y) & length(x) <= length(y) <= length(x) + t·
Fig. 7 Examples of Design Language Primitives

sequences which preserves the onler of the elements and makes the two sequences approximately equal in

length. The notation shown in the figure inteiprets variables prefixed with a "•" in the state before the tran

sition and variables without a prefix in the state after the transition. Formal transition predicates such as

this one can be used for computer-aided testing or proving of implementations and for automatically con

structing prototypes to detennine the properties of a proposed design.

2.2.2. Design Justifications

The idea that designs should be accompanied by justifications is motivated by the desire to make

changes easier when the system must evolve to meet changing iequirements. Some justifications are easi

est to record as infonnal comments, but doing so implies checking will be done manually, perhaps at a

design review meeting. Examples of some kinds of justificatiom and conventions that should have formal

representations are data invariants, loop invariants, and bounding functi.ons.

Data invariants are restrictions on data structures that must be respected by all programs creating or

modifying its instances. Data invariants usually apply to the implementation structures for abstract data

types or absttact state machines, serving as hidden internal properties specified in the design of a module.

Many of the well known data structures for efficiently implementing common data types gain their

efficiency from elaborate data invariants that have been crafted to avoid recomputation of various proper

ties of the data structure. The data invariants comtitute the assumptions shared by the implementation., of

all operations of a type. Since they are not local to a single procedure they can be a vehicle for 1mwanted

interactions, especially for types so large that it is not practical for the same person to implement all the

operations. Bugs caused by procedures damaging invariants are common and are difficult to diagnose

10

• The axioms must be orientable so that the right hand side of each equation is strictly less than the left
hand side with respect to some well founded ordering on symbolic tenns.

•
•
•

The oriented axioms must be confluent [12] .

The set of axioms must be sufficiently complete [10] .

Every variable on the right band side of an axiom must also appear on the left band side .

Fig. 3 Restrictions Deftning Executable Algebraic Speciftcations

type set[t]
empty(): set[t]
add(t, set[t]): set[t]
in(t, set[t]): boolean
subset(set[t], set[t]): boolean
equal(set[t], set[t]): boolean

axioms
in(x, empty) = false
in(x, add(y, s)) = equal(x, y) or in(x, s)
subset(empty, s) = ttue
subset(add(x, sl), s2) = in(x, s2) and subset(sl, s2)
equal(sl, s2) = subset(sl, s2) and subset(s2, sl)

end
Fig. 4 An Executable Algebraic Spedftcation

parameter t can be replaced by any data type. The free variables in each equation are implicitly universally

quantified. Equations in this Conn are equivalent to recursive definitions. Consequently, writing

specifications in the restricted fonn is much like programming. Sometimes it is necessary to introduce aux

iliary operations to define the operations we really want. In the restricted fonn shown in the example, it is

difficult to define the equal operation on sets in tenns of the In operation without introducing an auxiliary

operation such as subset.. If the problem does not require a subset operation, then introducing one compli

cates the specification by adding unnecessary details.

To illustrate the simplifications gained by allowing non-effective operators, an example of a Spec 87

[6] fragment defining the equal operation on sets is shown in Fig. 5 (a). This specification says two sets are

equal if they have the same elements. This specification is simpler than the corresponding algebraic

specification, since three axioms have been replaced by one and the auxiliary concept sabset has been

eliminated. 1be specification (a) is not executable in its original form because the bound variable x ranges

7

(a) MESSAGE equal(sl s2: set(t}) REPLY (b: boolean)
WHERE b <=> FOR ALL(x: t :: in(x, s1) <=> in(x, s2))

(b) WHERE b <=> FOR ALL(x: t :: in(x, sl) => in(x, s2))
& FOR ALL(y: t :: in(y, s2) => in(y, s1))

(c) WHERE b <=> FOR ALL(x: t SUCH THAT in(x, s1) :: in(x, s2))
&FOR AIL(y: t SUCHTHATin(y, s2) :: in(y, st))

Fig. 5 Making a Non-effective Speciflcation Executable

over a potentially infinite type t, but it is subject to the meaning-preserving traosfonnations shown in Fig. 5

(b) and (c). The transformed specification (c) is executable by enumeration because the bound variables x

and y have been restricted to finite sets. Infonnally, the transfonned specification says two sets are equal if

all of the elements of the first are contained in the second and vice versa. 1be assertion (c) can be

evaluated with a relatively small number of operations, given a facility for generating all of the elements of

a finite set, so that it is executable in a practical sense as well as a theoretical one. Traosfonnations such as

this one bridge the gap between non-effective operators and executable specifications, thus providing the

best of both worlds. More wolk is needed to characterize the cases where such transfonnations are possi

ble and to develop general methods for constructing them.

2.2. Design Languages

A design is a clear-box description of a software system. A clear-box description gives the decom

position of a component into lower level components and defines their intercomections in tenns of both

data and control.

Design languages are used to record a design, which decomposes a system into a hierarchically

structured set of components. A specification language is used for expressing black-box descriptions and a

design language is used for expressing clear-box descriptions of each component. Design languages can be

used for fonnulation, communication, analysis, and planning in the same way as specification languages.

They are a medium of communication between the designers, the managers of the project, the program

mers, and the design tools. Concise design notations are important for inventing, recording, and communi

cating designs and connecting specifications.

8

based on fault symptoms because they involve interactions between pieces of code that are separated both

in the text and in execution time. This justifies expending a fair amount of effort on documentation and

checking.

Loop invariants are properties of the state variables of a loop that hold both before and after every

execution of the loop body. Many of the more efficient algorithms depend on carefully constructed loop

invariants to avoid recomputing properties that are already known. While loop invariants are local to a sin

gle procedure, they should also be documented to avoid inadvertent damage when the code has to be

modified due to a requirements change. Data and loop invariants are useful for computer-aided synthesis

of detailed code, as well as for explanations and proofs of correctness. Since invariants are often difficult

to reconstruct from the code, they should be recorded as they are introduced in the design process. This is

especially important for implementations of critical functions whose conectness will be subject to correct

ness proofs, because there are automatic procedures for constructing the assertions to be proved which will

operate without designer interaction if the invariants are given along with the desired preconditions and

postconditions.

Bounding functions are justifications for believing that the loops and recursions in the program will

terminate. A bounding function gives an upper bound on the number of loop iterations still left for given

values of the state variables of the loop, or an upper bound on the depth of any remaining recursive calls

for given values of the fonnal parameters of a recursive subprogram. A tenninating program will strictly

reduce the bounding function after each execution of the loop body or upon each recursive call. Checking

the termination of a program becomes easy if the bounding functions are given. The bounding functions

are also useful for performance analysis, because they give worst cue estimates of the running times.

The kinds of justifications described above can be used in the process of fonnally or infonnally veri

fying the correctness of a design with respect to a given specification. Other kinds of justifications include

priorities for different design goals, such as optimize space. Such justifications are useful when a system

must be changed to meet evolving requirements.

11

2.2.3. Should Design Languages be Extensible?

A traditional idea is that design languages should be extensible. Under the CASE concepts, it is

desirable to incorporate powerful data structuring as they come along, since new ideas are rare and it is

easier to extend the design language than it is to convert to a new programming language. However, since

tools depend on the language, it is desirable to limit the frequency of language changes. A CASE design

language should include the currently known types of consttucts for defining program objects, with

emphasis on those that are powerful enough to cover open-ended sets of applications. Examples of such

mechanisms include user-defined absttact data types, user-defined loop sequencing abstractions, generic

modules, multiple inheritance, parallel loops, atomic transactions, nondeterministic wait (for responding to

the first observed instance of a set of ~ynchronous events), and demons (processes activated whenever a

specified predicate becomes true). The mechanisms chosen should be orthogonal or nearly so. Including

many variations on a theme can increase rather than decrease the designer's intellectual bwden. A single

more general mechanism should be sought if a language appears to be sprouting a whole family of similar

mechanisms with small variations.

2.3. Programming Languages

Since programming languages are familiar to most readers they will be discussed briefly. Program

ming languages are fonnal notations used to record programs. 'lbese notations can be processed by a

variety of automated tools, such as compilers, static analyzers, debuggers, execution profilers, etc.

In the traditional waterfall model of software development, the implementation phase produces a

document expressed in a programming language. Most of the computer-aided design in traditional

software development environments is applied in the implementation and later phases, and most of the

automated tools currently in use are based on programming languages rather than specification or design

languages. The programming languages used in most major software development projects have been

designed to emphasize execution efficiency, possibly at the expenses of clarity, flexibility, and expiessive

ness.

12

2.4. Relations Among Language Categories and Implication for Prototyping Languages

Prototyping languages are used in requirements analysis for the pmpose of requirements validation

via early dem&nstrations to the customer. They are also useful for evaluating competing design alterna

tives, validation of system structures, and feasibility studies. Specification languages are used for recant

ing external interfaces in the functional specification stage and for recording internal interfaces during

architectural design at the highest levels of abstraction. They are also used in verifying the correctness and

completeness of a design or implementation. Design languages are used for recording conventions and

interconnections during architectural design and module design.

The difference between specification and design languages is the difference between interface and

mechanism: a specification says what is to be done, and a design says how to do it The evaluation cri

terion for both specification and design languages is the ability to support simple, concise, and humanly

understandable descriptions of complex behavior. It is useful for specification and design languages to be

executable, but simplicity of expression takes precedence when the two considerations conflict. Computer

aid is desirable for detennining the properties of a specification and certifying that a design realizes a

specification. Execution can help attain these goals, but it is not the only way to do so, and it is not neces

sarily the most effective way.

The difference between a design and a program is the difference between a plan and a finished pro

duct: a design records the early decisions that detennine an implementation strategy, while a program con

tains all the details necessary to get an efficiently executable system. The primary goal of a design is docu

mentation rather than execution, while the primary goal of a program is usually efficient execution.

Common strengths of specification languages are simplicity, abstraction, clarity of expression, and

means for rigorous logical reasoning. Common strengths of design languages are expressiveness and sup

port for recording goals and justifications. A common weakness of specification and design languages is

lack of efficient facilities for execution or lack of any effective means for execution. The strength of most

programming languages is supporting efficient execution, while common weaknesses are the need for

specifying many details and lack of facilities for recording goals and justifications in a formal way. 'The

contribution of a prototyping language is to integrate the functions of specification and design languages

with the capability for execution. However, because of the wide range of goals for prototyping languages,

13

they may not be as effective for any of the purposes mentioned above as a language optimized just for that

purpose.

It is useful to briefly examine the history of language development, because the terminology for

describing languages bas been changing dramatically along with implementation technology. Originally

any compiled programming language was a very high level language. As systems became more complex,

the meaning of the tenn shifted towards design languages which can desaibe system structure without

introducing low level implementation details and generalired components that can be adapted to many dif

ferent situations. Technologies improved to the point where programming languages could support

abstraction and generalization (e.g. Ada and Smalltalk). Systems became even larger, and the meaning of

the tenn shifted again, towards languages describing what a system is supposed to do, without specifying

how the system is to accomplish its goals. As technology advances some of the languages are becoming

executable. The concept of a very high level language is a moving target that depends on the current state

of compiler technology and the speed, memory capacity, and cost of available hardware.

As compiler and /rardware teclinology improves, the distinctions between prototyping languages,

specification languages, design languages, and programming languages are getting smaller and may even

tually disappear. Programming languages are getting more expressive and more flexible, and are support

ing more abstract descriptions of the processes to be carried out, while specification and design languages

are getting to have larger executable subsets. In the near future these four kinds of languages will remain

distinct to more effectively support different classes of powerful CASE tools. Programming languages will

support optimizing compilers whose main objective is to produce efficient implementations. Specification

and design languages will support CASE tools for requirements analysis and for proving the correctness of

designs and implementations. Prototyping languages will support tools for prototype demoosttations and

implementation planning.

3. Prototyping Languages and CAPS Systems

The pwpose of a prototyping language is to define an executable model of a system, using both

black-box and clear-box descriptions. A prototyping language bas no obligation to give detailed algorithms

for all components of the system as long as it is descriptive and executable.

14

To be useful, prototypes must be constructed quickly and at low cost. To achieve this, a rapid proto

typing language should be integn1ted with a systematic prototyping method and a comprehensive set of

tools for computer-aided software design and prototyping. The goals for such an integrated prototyping

system are:

(1) Rapid construction and adaptation of software,

(2) Enabling the development of more powerful systems,

(3) Checking if specified systems are acceptable to users,

(4) Checking internal consistency of proposed designs, and

(5) Generating production code and ensuring it conforms to specifications.

Such a system should automatically supply programming level details needed for execution, help the

designer construct, analyze, explain, demomtrate, and modify the prototype, and help the development

team transform the prototype into a production version of the system. Prototyping systems thus span the

entire range of computer-aided software engineering technology. A prototyping system is designed

together with a prototyping language. The design of the prot~typing language is constrained by the need to

support the software tools in the prototyping system.

3.1. Requirements for a Prototyping Language

A prototyping language has two interfaces: one to human users and the other to the software tools in

the prototyping system. To support the human users, a prototyping language should be easy to write,

understand, and modify. To support the tools, the language should be easy to analyze and tramform

mechanically.

A prototyping language should have a simple structure and clear semantics to make it easy to learn,

understand, and process mechanically and rapidly. This implies uoifonn structure, a small number of

orthogonal constructs, and general interpretations without special cases or restriction.,. To support

automated tools, the language should have a simple abstract syntax and an unambiguous and precisely

defined meaning. The underlying model should have a mathematical basis to support execution, analysis,

verification, and trusted transformatioDS. In particular, the semantics of the language should support

rigorous reasoning about the properties of prototypes described in the language and transfonnations on

15

expressions of the language. The language should also support a user interface for communication with

untrained people, with graphical summary views, English paraphrasing, and explanation facilities.

A prototyping language should be expressive, clear, and concise to make the language easy to use

for prototyping a wide variety of systems. This implies language support for abstractions, uoifonn com

munication, logical inference, incomplete descriptions, and automated design completion. In addition to

providing traditional facilities for functional, data, and control abstraction, the language should also support

abstractions for concurrency, synchronization, and timing constraints. 1be constructs of the language

should correspond directly to decisions made by the designer, rather than to operations perfonned by the

processor, to make prototype descriptions self-documenting and easy to change. 1be language should

allow the designer to specify only the essential attributes of a proposed system. This requires automatically

supplying default values for all attributes needed for execution of a software prototype. 1be language

should be capable of constructing the software tools in its own prototyping environment.

To support large scale prototypes, system evolution, and parallel execution, a prototyping language

should have mechanisms for localizing design decisions in the description and localizing interactions

between system components or pieces of knowledge in the knowledge base. 1bese features allow indepen

dently designed subsystems of complex systems to cooperate without unexpected interference.

A prototyping language should have fa<..ilities for recording black-box specifications to support proto

type component documentation, verification via proofs and automated testing, and queries for reusable

component retrieval. ~uch descriptions also fonn the basis for automated synthesis capabilities, inheritance

of common properties and constraints, and consistency checking. For expressiveness, this part of the

language may contain non-computable constmcts such as quantifiem ranging over unbounded sets. 1be

language should also have facilities for describing clear-box characteristics of designs such as interconnec

tions of available components, dependencies between components, design goals such as invariant con

straints or bounding functions, and design justifications such as criteria for choosing between alternative

designs.

The language should have a distinguished executable subset that is easily recognizable, both by

human users and automated tools. Every expression in this distinguished subset should be executable for

all possible initial conditions, although some expressions may denote non-terminating computations. 1be

16

distinguished subset should be as large as possible given the above constraints. In particular, some expres

sions outside the distinguished subset may be executable or partially executable, in the sense that execution

may fail in some cases. It should be possible to either augment or transform expressions of the language

outside the distinguished executable subset to make them recognizably executable.

To avoid complicating the language, particular high level abstractions should be expressed as stan

dard pre-defined components in a software base whenever it is possible to do so without extending the

language. Such components should have black-box descriptions in the language, for both documentation

and retrieval. The language should have facilities for adapting components to new uses and making small

perturbations on their behavior without examining the details of the internal implementation of the com

ponents, to make it easier to reuse components.

To save designer time, the language should support the construction of efficient implementations by

augmenting the prototype description with annotations describing additional constraints or lower level

design decisions. This enables the designer to view optimization as a refinement step where additional

infonnation is added to the original descriptions, rather than a complete reformulation of the system

description. Such an approach saves designer time by avoiding repeated treatment of the same issues in

different ways, and by reducing the opportunities for making tramcription or translation errors.

Efficiency is mostly of concem for the production version of the system, but it cannot be ignored

entirely for the prototype version because it must be possible to run test cases and gather data in a practical

amount of time. 1bis implies that execution mechanisms based on exhaustive enumeration are insufficient

to meet the requirements of a prototyping language, although they may be supplied as a default to allow

running small test cases in the absence of infonnation about more efficient execution strategies. 'The

language should therefore support a set of fairly efficient execution mechanisms, tools for locating perfor

mance bottlenecks in larger systems, and incremental optimization transfonnatiom to improve prototypes

that are impractically slow.

Real-time constraints impose a slightly different set of subgoals: execution times must be predict

able, although not necessarily very fast Prototypes of real-time systems may operate in simulated time or

linearly scaled real time, but the actual execution times for the production version must be predictable

within accurate bounds [26].

17

3.2. Foundations of a Prototyping Language

The rapid construction of software prototypes depends on simplifying the view of the system through

which the specifiers and designers do their work, and providing automated means for bridging the gap

between this simplified view and the detailed programming level description cunendy needed to make a

software system efficiendy executable. This automated support should include mechanisms for execution,

static analysis of the properties of the proposed system, preparation of test cases, reporting and analyzing

results, and diagnosing ill-formed descriptiom and departures from desired behavior to allow the specifiers

and designers to work entirely within the simplified view, at least during the construction of the initial pro

totype.

3.2.1. Static and Dynamic Properties of a Prototyping Language

Static properties of a computer language are those that must be fixed before a system can be exe

cuted, while dynamic properties can be changed as the system runs. To maintain flexibility in demomtra

tions and to allow the description of highly adaptive systems, prototyping languages should support

dynamic treatment of as many properties as possible. This introduces some difficulties, because implemen

tations can be more efficient and analysis tools can give more infonnation about a system if its properties

are fixed

Some areas where this distinction is relevant are data types, code construction, and scheduling. Pro

grams that can manipulate data types, programs, and schedules at nm-time can adapt to unanticipated cir

cumstances more readily than those that cannot. However, introducing these facilities into a prototyping

language requires run-time type checking, run-time interpreter calls or dynamic compilation, loading, and

linking, and run-time scheduling. All of these features are difficult to implement efficiently, and are not

supported by the class of languages usually used for production versions. Also, blanket guarantees of type

correctness, clean tennination, or meeting hard real-time constraints may not be possible without static res

trictiom on these properties. Thus a prototyping language should allow selected properties to have static

restrictions, and should support transfonnations that add static resttictioos for the pwpose of improving

efficiency or predictability.

18

3.2.2. Computational Model for a Prototyping Language

The models underlying the language provide the common ground for the associated set of tools. 1be

semantic model for the language provides the basis for automated analysis, while the computational model

provides the basis for execution. One of the main challenges in developing a prototyping language is

finding a model that can coherently span the range of applications required. This will require a significant

advance in the state of the art.

There is no single common model of expert systems available for rapid prototyping.· First older logic

is one of the most familiar models for reasoning, but it bas been criticized for its weaknesses, such as lack

of facilities for handling uncertain infonnation, representing heuristic methods for speeding up conclusions,

and non-monotonic reasoning. Many other kinds of logic have been proposed, but these logics are still

being explored and there has been no consensus on whether there is a single logic suitable for constructing

all types of expert systems, or which variety of logic is the most promising. 1bere are also approaches to

expert systems that are based on models other than logic, such as semantic netwodcs, Bayesian statistics,

and production systems. Since it is not clear which approach will yield the best results in the long run, a

prototyping language should find a unified way of treating most of the issues raised by this diverse set of

models.

There is also no single commonly accepted model for representing real-time constraints. Some

approaches that have been explored include temporal logic, state machines, mode charts, augmented data

flow diagrams, Petri nets, and 1/0 automata. The model for a prototyping language should be chosen to

enhance the application of rec.ent results in logic, graph theory, and combinato~cs to link the semantic

model to an effective execution mechanism. Other unexplored areas include effective models for real-time

databases and real-time communications netwodcs. In both of these areas, the problems of providing ser

vice within guaranteed worst-case time bounds are largely unexplored.

3.2.3. Execution Support for a Prototyping Language

To provide adequate execution support for a prototyping language without requiring many

programming-level details, it is nec.essary to take a knowledge-based approach. 1be supporting environ

ment for the language should provide knowledge base support for the following functions:

19

Managing reusable components - The environment should contain a large software base with reusable

components. This software base should be coupled with a set of rules for tailoring and combining available

components to fulfill queries that do not exactly match any of the components explicitly stored in the

software base. This insulates the designer from programming details because it allows the system to find

algorithms and data structures for realizing some classes of black-box specifications.

High level debugging - Errors and failures during prototype execution should be mapped from the pro

gramming language level to level of the prototyping language, to allow the designer to work enthely in

terms of the semantic model associated with the prototyping language. This function is necessary to keep

programming details from intruding when the designer tests and demonstrates the prototype.

Optimization - The transformations for optimizing a prototype version of a system to produce a production

version should be perfonned with minimum interaction with the designer. This implies keeping track of

the decisions made by the designer in optimizing previous versions of the system, detenniniog which of

those decisions are still valid for later versions, and automatically applying the ones that are found to be

still valid. While it is not feasible at the current state of the art to produce highly optimized implementa

tions without human help for the major decisions, it should be possible to filter out the routine decisions

and rely on the human designer for only the most difficult decisions involving estimates of load characteris

tics and execution frequencies from informal characterizations of the problem domain.

Explanations - Justifications for decisions made automatically should be available to provide feedback to

the designer in cases where automated design completion procedures fail. Such a facility is needed to sup

port systematic computer-aided design in situations where complete automation is not possible, which

includes many aspects of computer-aided prototyping at the current state of the art. This requires an expert

system with a substantial knowledge base.

3.3. Semantics of a Prototyping Language

The development of an integrated set of prototyping tools requires a consistent and simple semantic

model rich enough to express and support the entire range of expected applications. Fmding suitable

models is the key to computer-aided prototyping.

20

3.3.1. Language Support for Real-Time Systems

The language should include a means of declaring timing constraints and overload resolution poli

cies. Scheduling is a difficult issue for real-time systems. High level representations of timing constraints

and overload resolution policies are essential to allow the prototype to express the necessary constraints on

the scheduling of different tasks at a level matching the problem rather than at the level of the underlying

run-time support system. Timing constraints on data transfers are needed to express timing constraints in

distributed systems.

3.3.2. Language Support for Parallel Systems

To simplify and speed up the construction of parallel systems, it is essential to provide means for

defining independent activities that are guaranteed not to interfere with each other and to provide high-level

means for coordinating independent activities [16]. Localized modules with limited data access are essen

tial for this purpose. Message passing, dataflow, and object-oriented ideas are relevant to this area.

Another consideration is avoidance of deadlock. It is useful to have a syntactically recognizable subset of

the language that is capable of describing concurrent computations and carries a unifonn guarantee of free

dom from deadlock. Such a guarantee is possible if a suitable computational model is chosen. While it

may not be possible to design all concurrent systems using just the deadlock-free subset, this kind of res

tricted subset is sufficient for many applications, and it can be augmented with facilities for adding addi

tional constraints on global onlerings of events, which are known to be potentially unsafe and which are

designed together with tools for checking safety of particular designs. For example, atomic transactions are

essential for simplifying the design of distributed systems, although they inttoduce the potential for

deadlocks.

3.3.3. Language Support for Distributed Systems

The important aspects of distributed systems are communications delays and atomic transactions. A

prototyping language should provide a high level means for describing

(1) constraints on the relation between software tasks and physical processors,

(2) constraints on communication time,

21

(3) standard protocols for achieving reliability despite processing and commuoi'cations failures,

(4) the granularity of atomic ttansactions.

In all of these cases, the information should be optional, and the default values should provide the safest

option, rather than the most efficient one.

3.3.4. Language Support for Knowledge-Based Systems

Many of the standard building blocks for knowledge-based systems or expert systems can be pro

vided as standardized generic predefined components. These include facts, rules, patterns, frames, con

texts, constraints, demons, instance generators, pattern matchers, unification mechanisms, and forward and

backward chaining inference engines. Standardization requires careful analysis of these components and

specification of their required properties. An open issue is whether current mechanisms for defining gen

eric components are flexible enough to adequately capture the range of behavior required for these kinds of

components, and if not, what extensions are required.

Some features that a prototyping language should provide to support rapid construction of expert sys

tems include:

(1) a means for conveniently defining external representations and input facilities for the knowledge in

the knowledge base,

(2) support for the first class treatment of higher order objects such as types, functions, tasks, and gen

erators, and

(3) support for control mechanisms such as state-triggered demons, backttacking, nm-time control

over task priorities,. and scheduling of temporal events.

Several of these features are needed to support flexible prototypes for other kinds of systems as well.

The presence of real-time constraints severely restricts the kinds of computations a system may per

form, and in the case of expert systems, limits the amount of logical inference that can be pcrfonned. 1be

design of expert systems that operate within real-time constraints is a largely unexplored area, and

significant research progress is needed in this area to fully realize the goals of a rapid prototyping language.

22

3.4. Prototyping Methodology and Tool Support

The language and its supporting tools should be designed to support a systematic method for con

structing prototypes. One approach to systematically constructing prototypes and to support software evo

lution via rapid prototyping is described in [24, 27]. The bam for the approach is the combination of a set

of guidelines for decomposing software modules, a set of reusable components, and an automated software

base management system with inference capabilities [25, 28].

Ordinary compiler technology is insufficient for execution of a prototyping language. Conventional

translation techniques must be coupled with facilities for scheduling to meet real-time consttaints [30] and

with transfonnations to allow the execution of incompletely specified processes.

Many programming languages do not support parallel processing, and those that do generally do not

provide sufficient control over the scheduler to guarantee that real-time constraints can be met. For exam

ple, Ada provides support for tasks and allows pragmas (compiler directives) for specifying static priorities,

but does not have any direct means for guaranteeing an upper bound on scheduling delays. Since this is

somewhat removed from the level of support needed for implementing ham real-time systems, the execu

tion support system for a prototyping language will have to provide higher level facilities for scheduling

real-time operations. Such facilities can be classified as on-line (done at run-time) and off-line (done prior

to execution). There is no universally accepted approach to real-time scheduling. Optimal scheduling

algorithms are very time consuming, and generally cannot be carried out on-line, while off-line approaches

are inflexible and do not handle overload situations very well. There are many different scheduling algo

rithms, and choosing the best one for a given application is a difficult problem. Thus the execution support

system for a prototyping language should provide the designer with several choices with respect to

scheduling, and the prototyping language should provide a means for specifying those choices, with rea

sonable defaults.

Transformations are needed to execute incompletely specified components. Such transformations

should supply reasonable default values for attributes necessary for execution if the designer does not

explicitly specify them. Different choices for these attributes can be explicitly specified to produce a more

accurate model of the system or . to improve its perfonnance. In particular, default algorithms for

unspecified or partially specified components should be supplied It is essential to automatically generate

23

stubs for components that are unavailable in the software base and have not yet been addressed by the

designer to allow testing and demonsttating partially completed systems. Such stubs can be created by

simple or increasingly sophisticated techniques, such as asking the user to supply values, using random

selections from a fixed set of responses, using logic programming to simulate black-box specifications, or

using ttansfonnation techniques to generate efficient implementations from the black-box descriptions.

Other examples include assignment of tasks to physical processors and choosing display fonnats for out

puts and error messages.

The tool set should provide facilities for analyzing the consistency of a prototype design. Some of

the checks that should be performed include:

* Type consistency,

* Feasibility of timing constraints,

* Consistency between the levels of a hierarchical description,

* Preconditions on input parameters and generic parameters,

• Constraints on relative rates of producer and consumer processes,

* Absence of deadlocks in distributed and parallel systems,

• Absence of unhandled exceptions.

In addition to providing facilities for constructing and checking the internal consistency of a proto

type, the tool set should provide facilities for generating input data, debugging, displaying output, and

evaluating the results of prototype execution at the in tenns of the same semantic model used for the design

of the prototype.

To support user validation and system evolution, a prototyping language should support a facility for

maintaining the correspondence between requirements and design decisions. Tools will be needed for

detennining which parts of a description must be removed or modified when a requirements change

removes the support for previously made design decisions, and for detennining which requiremelb are

affected by a proposed change to the behavior of a prototype.

The tool set must also provide a design database for maintaining the design history in tenns of a set

of versions of the system and the alternative designs that were considered. 'Ibis database should also be

capable of recording and maintaining consttaints on the system. A related issue is the relation between the

24

"

language, which is used for describing the design objects in the database, and the notations for describing

the attributes, relationships, and constraints among those objects that are used by the tools in the associated

environment. The infonnation in the designer's view of the language is likely to be subset of the informa

tion in the tool views, since tools are likely to add additional attributes to the entities defined by the

language, recording the results of analysis and synthesis procedures.

3.5. Example of a Prototyping Language

The rapid prototyping language PSDL [22] and its CAPS were designed to support prototyping of

large, parallel, and real-time systems. The language has a simple and expressive computational model

based on modified dataflow augmented with non-procedural comttaints. PSDL encourages localized

descriptions and software structures, and provides execution facilities that realize timing consttaints with

respect to either actual or linearly scaled real-time [1].

PSDL prototypes have a specificanon part for black-box descriptions and an implementanon part for

clear-box descriptions. The black-box descriptions are used both for documentation of the prototype and

for retrieval of reusable software components. The black-box specifications are executable without further

infonnation from the designer if the CAPS can automatically retrieve, adapt, and combine the components

in its software base to match the specification. In cases where this is not possible, the designer must pro

vide an implementation part giving a clear-box description decomposing the specified system into more

primitive subsystems along with black-box specifications of the subsystems. The decomposition is done in

terms of the PSDL computational model, using augmented data flow diagrams. The nodes in an augmented

data flow diagram are operators representing functions or abstract state machines, while the edges are data

streams carrying instances of abstract data types or exceptions. An example of an augmented data flow

diagram is shown in Fig. 8, along with a two processor schedule that takes advantage of parallel execution

to meet the timing constraints.

The data flow diagram is augmented with non-procedural con.trol constraints and hard real-time

constraints. The conttol constraints support conditional execution, conditional output, control of excep

tions, and control of timers. 1be real-time constraints support both periodic execution and sporadic, data

driven execution with bounded response times. 1be control constraints and the timing constraints deter-

25

15 30
s1 s7

s2 s8

CONTROL CONSTRAINTS
OPERA TOR A PERIOD 100 FINISH_ WITHIN 50
OPERA TOR B PERIOD 100 FINISH_ WITHIN 50
OPERATOR C PERIOD 100 FINISH_ WITHIN 50 OUTPUT s7 IF s7 > s4
OPERATOR D PERIOD 100 FINISH_ WITHIN 50 TRIGGERED IF s5 + s6 < 10

A B
Pl

0 15 45

B D
P2

0 20 45

Fig. 8 Example of an Augmented Data Flow Diagram in PSDL

mine the conditions under which the operators are triggered and the buffering disciplines for the data

streams. Dataflow streams act as first-in-first-out buffers, and are used for synchronizing data-driven com

putations. Sampled streams act as continuously available sources of data that can be read or updated on

demand, and are used for connecting unsynchronized operators which can fire at different or unpredictable

rates.

Locality is realized in PSDL by the absence of a mechanism for transmitting objects with internal

states along data streams and scoping rules that do not allow direct non-local data references. These

mechanisms ensure that operators can interact only via the documented interfaces, and can be executed in

parallel without danger of interference. This simplifies the design of parallel systems and makes it easier to

modify prototype behavior without damaging the design.

26

. "

..

The mechanisms in PSDL can be used to prototype knowledge-based systems. For example, the con

trol constraints of PSDL can be used to represent rules and demons. To effectively support the construc

tion of knowledge-based systems in PSDL, the software base in the CAPS should be extended to include a

suitable set of reusable software components, such as several types of inference engines and data types for

representing rules, patterns, frames, contexts, etc. The language would be more effective for these pur

poses if it were augmented with a facility for creating concise extemal representations for the knowledge in

a knowledge-based system, and tools providing graphical support for displaying and analyzing that

knowledge.

PSDL requires static definitions of types, operators, and timing properties to support static type

checking and scheduling. Knowledge-based systems are often cunently designed using dynamic con

structs which create new types and operators at run-time, or to control the schedulers based on infom1ation

detennined at run-time. The freedom such constructs provide appears to make design easier, but it is not

clear whether they are inherently necessary for constructing knowledge-based systems. While PSDL can

not directly express such dynamic constructs, it can simulate them. An inference engine is similar to an

inteipreter, and can provide alternative meanings for PSDL objects within its scope. This approach can

simulate capabilities such as higher order types, types whose instances are treated as operators, and expres

sions representing priorities for different activities of the inference engine. Thus the addition of new com

ponents to the software base can extend the semantics of the language in radical ways. While such an

inteipretive approach may impose a perfonnance penalty, it may be the only viable approach to prototyp

ing knowledge-based systems if dynamic treatment of types, operators, and priorities turns out to be

inherently necessary for designing such systems and the production code must be written in a statically

oriented programming language such as Ada.

The addition of bard real-time constraints to knowledge-based systems is a difficult problem, but the

essential difficulty belongs to the problem domain rather than to the prototyping domain. It is possible to

design an inference engine that perfonns a single logical inference in a bounded amount of time if the size

of the assertions and the number of assertions in the knowledge base are bounded. A prototype for such a

design can be described at a reasonable level by a language such as PSDL. The difficult problems in creat

ing knowledge-based systems that respond within hard real-time constraints are dete1D1ining the bounds on

27

the number of logical inferences needed to solve a given problem, the size of the required knowledge base

and the size of the assertions in the knowledge base.

4. Conclusions

The state of the art in computer languages and computer aided software engineering is sufficient to

support exploratory development of a general purpose rapid prototyping language. The first special pur

pose rapid prototyping language PSDL and its tool set were published in 1985 [38] for the geneml use of

rapid prototyping in the development of large and real-time systems. Many languages previously designed

for programming, design or specification were used or intended to be used for prototyping purposes in dif

ferent degrees. In the 1970's, the SB1L programming language was designed based on set theory and

already had the primitive concepts for integrating high level mathematics with an execution capability (17].

Other languages that have been used for prototyping at the programming level include APL, SNOBOL,

LISP, and PROLOG. The Gypsy language from UT Austin provides a simple basis for representing, exe

cuting, and proving correctness of communicating processes. Research on real-time modeling and schedul

ing provides fundamental support for the design of hard real-time systems. Work on atttibute grammars

paved the road to automated approaches for prototyping special purpose languages [32]. 1be GIST system

at ISi has explored computer-aided requirements modeling with the aid of symbolic evaluation and :English

paraphrasing [14]. The Argus project at :MIT has explored implementation of atomic transactions in distri

buted systems (19]. The wide spectrum language Refine from Reasoning systems, the DRACO system

from UC Irvine [8], and the CIP project from Dr. Bauer's group in Munich [2] have explored the feasibility

of using transformations to realize specifications.

DARPA bas decided to develop designs for a rapid prototyping language, which is intended to apply

to a variety of large software systems, including knowledge-based systems, parallel systems, disttibuted

systems, and real-time systems (7). The DARPA Common Prototyping Language project has an ambitious

set of goals that raises many interesting research problems [9]. Solutions to these problems are essential

for achieving significant improvements in the quality and productivity of the software development pro

cess. Goals for this language include computer-aided transfonnations of prototypes into Ada implementa

tions of the production version of the software, and eventually implementing the tools of the prototyping

system in Ada to provide portability. Ordinary compiler technology is insufficient for execution of the

28

prototyping language. The need for flexibility and nm-time handling of newly created types and pro-

• ~ cedures to support expert systems provides challenges for efficient implementation techniques in tenns of

Ada. Conventional translation techniques must be coupled with facilities for scheduling to meet hard real

time constraints, transformations to allow the execution of incompletely specifie.d processes, and access to

an interpreter or an incremental compiler at nm-time.

Ada provides a completely static type system, treats types and functions as second class objects, and

requires task priorities to be known at compilation time. The flexibility required for supporting expert sys

tems development can be provided by adding a nm-time interpreter on top of the Ada language. The prob

lem will be to provide these features efficiently, and without inttoducing excessive nm-time overheads for

prototyping applications that do not require such flexibility. Ada provides relatively weak guarantees about

the scheduling of tasks, and limits programmer control over scheduling to statically specified priorities.

Since this is somewhat removed from the level of support needed for implementing hard real-time systems,

the execution support system for the prototyping language will have to provide higher level facilities for

scheduling real-time operations. There is no universally accepted approach to real-time scheduling.

Optimal scheduling algorithms are very time consuming, and generally cannot be carried out on-line, while

off-line approaches are inflexible and do not handle overload situations very well. Choosing the best algo

rithm for a given application is currently difficult Better practical algorithms and better criteria for choos

ing among them are needed. Maximum impact on software development practice depends on transforma

tions from prototyping languages to Ada. Key problems are finding systematic ways of developing such

transformations and determining reasonable default values based on models of the application domain.

Since the completely automatic and totally correct implementation of powerful specification

languages is an algorithmically unsolvable problem, rese.arch on rapid prototyping should emphasize

human interaction for effectively guiding computer-aide.d implementation tools. A i,romising approach is

augmenting abstract specifications with annotations or pragmas giving advice about implementation stra

tegies. An important problem is finding concepts and notations that can naturally express such advice in an

absttact and orthogonal way. It is desirable to keep the absttact specification separate or easily mechani

cally separable from the annotations to provide simplified views of large system models.

29

Progress on automatically generating prototypes or efficient implementations from abstract

specifications depends on a knowledge-based approach. The size of the required knowledge bases depends

on the range of problems the language attempts to address. The most powerful systems appearing in the

near term will be those with narrow application areas, because such tools can be built with smaller

knowledge bases. For a general purpose system, the knowledge base will have to include a large fraction

of currently available knowledge about classes of efficient algorithms and data structures, along with the

restrictions on their use and measures of their perfonnance. This part of the knowledge is known as the

software base. Other kinds of relevant knowledge include methods for adapting and combining the com

ponents in the software base, properties of application domains and properties of the CAPS environment.

1. C. Altizer, "Implementation of a Language Translator for a Computer Aided Prototyping System",
M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, Dec. 1988.

2. F. Bauer, B. Moller, H. Partsch and P. Pepper, "Formal Program Construction by Transfonnations -
Computer-Aided, Intuition-Guided Programming'', IEEE Trans. on Software Eng.15, 2 (Feb. 1989),
165-180.

3. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software Development", Comm. of the
ACM 29, 5 (May 1986), 402-415.

4. V. Berzins and Luqi, "Semantics of a Real-Time Language", in Proceedings of the Real-Time
Systems Symposium, IEEE Computer Society, Huntsville, AL, Dec. 1988, 106-110.

5. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated Approach to Software
Development using Ada, Addison-Wesley, 1989.

6. V. Berzins and Luqi, "Specifying Large Software Systems in Spec", IEEE Software, to appear
1989. Also NPS 52-87-033, Computer Science Department, Naval Postgraduate School.

7. DARPA Information Science and Technology Office, "Broad Agency Announcement for New
Language in Rapid Construction of Software Prototypes", Commerce Business Daily, Arlington,
VA,Feb. 1989.

8. P. Freeman, "A Conceptual Analysis of the Draco Approach to Constructing Software Systems",
IEEE Trans. on Software Eng. SE-13, 1 (July 1987), 830-844.

9. R. Gabriel, ed., Draft Report on Requirements for a Common Prototyping System, DARPA
Infonnation Science and Technology Office, Arlington, VA, Nov. 1988.

10. J. V. Guttag, "The Specification and Application to Programming of Abstract Data Types", CSRG-
59, Ph.D. Thesis, University of Toronto, 1975.

11. R. Holte, A. Mok and L. R. etc, "The Pinwheel: a Real-Time Scheduling Problem", in Proceedings
of 22nd Hawaii International Conference on System Science, Kona, Hawaii, Jan. 1989.

12. G. Huet, "Confluent Reductions: Abstract Properties and Applications to Tenn Rewriting Systems",
J. ACM 27, 4 (Oct. 1980), 797-821.

13. F. Jahanian and A. Mok, "A Graph-Theoretic Approach for Timing Analysis and Its
Implementation", IEEE Transactions on Computers C-36, 8 (August 1987), 961-975.

14. L. Johnson, "Overview of the Knowledge-Based Specification Assistant", in Proc. Second Annual
RADC Knowledge-based Assistant Conference, RADC(COES), Grifiss AFB, NY, 1987.

15. M. Ketabchi and V. Berzins, "Modeling and Managing CAD Databases", IEEE Computer 20, 2
(Feb. 1987), 93-102.

30

•

•

16. B. Kraemer, "SEGRAS - a Fonnal Language Combining Petti Nets and Abstract Data Types for
Specifying Distributed Systems'', in Proceedings of 9th International Conference on Software
Engineering, March 1987, 116-125.

17. P. Kruchten, E. Schonberg and J. Schwartz, ''Software Prototyping Using the SE1L Programming
Language", IEEE Software 1, 4 (Oct. 1984), 66-75 .

18. K. Lin, S. Natarajan and J. Liu, "Imprecise results: Utilizing partial computations in real-time
systems", in Proceedings of the 8th Real-Time Systems Symposiwn, San Jose, Dec. 1987, 210-217.

19. B. Liskov, "Distributed Programming in Argus", Communications of the ACM 31, 3 (March 1988),
300-312.

20. J. Liu, K. Lin and X. Song, "Scheduling hard real-time transactions", in Proceedings of the 1988
Workshop on Real-Time Operating Systems and Software, Washington, D. C., May 12-13, 1988.

21. Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Software 5, 2 (March
1988), 66-72.

22. Luqi, V. Berzins and R. Yeh, ''A Prototyping Language for Real-Time Software'', IEEE Trans. on
Software Eng., October, 1988, 1409-1423.

23. Luqi and V. Berzins, ''Execution of a High Level Real-Time Language'', in Proceedings of the
Real-Time Systems Symposium, IEEE Computer Society, Huntsville, AL, Dec. 1988, 69-76.

24. Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems",IEEE Software, Sep.1988, 25-36.

25. Luqi, "Knowledge Base Support for Rapid Prototyping", IEEE Expert 3, 4 (Nov. 1988), 9-18.

26. Luqi, "Handling Timing Constraints in Rapid Prototyping", in Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, IEEE Computer Society, Jan. 1989, 417-424.

27. Luqi, "Software Evolution via Rapid Prototyping", IEEE Computer, May 1989.

28. R. Mittermeier and W. Rossak, '' Software Bases and Software Archives Alternatives to Support
Software Reuse", in Proceedings 1987 Fall Joint Conputer Comference, IEEE, Oct 1987, 21-28.

29. A. Moitra, Analysis of Hard Real-Time Systems, Computer Science Department, Cornell University,
1985.

30. A. Mok and S. Sutanthavibul, "Mcxleling and Scheduling of Dataflow Real-Time Systems", in
Proceedings of the Real-Time Systems Symposiwn, IEEE, San Diego, CA, Dec. 1985, 178-187.

31. C. Monma and J. Sidney, ''Optimal Sequencing via Mcxlular Decomposition: Characterization of
Sequencing Functions", Mathematics of Operations Research 12, 1 (Feb. 1987), 22-31.

32. T. Reps, "Generating Language Based Environments", Ph. D. Thesis, University of Massachusetts,
Amherst, 1983.

33. J. Sidney and G. Steiner, "Optimal Sequencing by Modular Decomposition: Polynomial
Algorithms", Operations Research 34, 4 (July 1986), (,()6-612.

34. J. Stankovic, ''Decentralized Decision Making for Task Reallocation in a Hard Real-Time System'',
IEEE Transactions on Computers 38, 3 (March 1989), 341-355.

35. M. Tanik and R. Yeh, "The Role of Rapid Prototyping in Software Development", in Proceedings
of the 22nd Hawaii International Conference on System Science, Kona, Hawaii, Jan. 1989, 337-338.

36. J. Tsai, M. Aoyama and Y. Chang, "Rapid Prototyping Using FRORL Language", in Proc.
COMPSAC 88, Oct 1988, 410-417.

37. S. Tyszberowicz and A. Yehudai, "OBSERV Object-oriented Specification, Execution and Rapid
Verification System", in 3nd Israeli Conference on Computer Systems and Software Engineering,
Tel-Aviv, Israel, June 1988.

38. R. Yeh, N. Roussopoulos, Luqi and etc., "Research in Software Reusability", Final Report, Tech.
Rep.-pl06/83/0004-3, Ballistic Missile Defense Advanced Technology Center, Huntsville, Alabama,
July 1985.

39. W. Zhao, K. Ramamritham and J. Stankovic, "Scheduling Tasks with Resource Requirements in
Hard Real-Time Systems", IEEE Transactions on Software Engineering, May 1987.

31

•

•

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&A 1)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense 1
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer 1
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

D

I

10. Navy Ocean System Center 1
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

11. National Science Foundation 1
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation 1 •
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation 1
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research 1
Applied Mathematics and Computer Science, Code 1211
Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology 1
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University 1
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software 1
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Coivallis, Oregon 97331

19. University of Texas at Austin 1
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

•

20. University of Maryland 1
College of Business Management
Tydings Hall, Room 0137
Attn. Dr. Alan Hevner
College Park, Maryland 207 42

• 21. University of California at Berkeley 1
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 94720

22. University of California at Los Angeles 1
School of Engineering and Applied Science
Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland 1
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 20742

24. University of Maryland 1
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute 1
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology 1
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology 1
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

28. University of Minnesota 1
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. J. Ben Rosen

D Minneapolis, Minnesota 55455

29. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois
Department of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign, Illinois 61801

3 5. University of Massachusetts
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts 01003

36. University of Pittsburgh
Department of Computer Science
Attn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

1

1

•

1

1

1

1

1

1

1

•

38. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)

"~J
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

• 39 . Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF

~
1400· Wilson Boulevard
Arlington, Virginia 22209-2308

40. Defense Advanced Research Projects Agency (DARPA) 1
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA) 1
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA) 1
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA) 1
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. L TCOL Kirk Lewis, USA 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

II

,,. '

47. University of California at San Diego 1
Department of Computer Science
Attn. Dr. William Howden
La Jolla, California 92093

J -

48. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. Nancy Levenson •
Irvine, California 92717

49. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

50. University of Colorado at Boulder 1
Department of Computer Science
Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University 1
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolfgang Halang 1
Bayer AG
lngenieurbereich Progessleittechnik
D-4047
Dormagen, West Germany

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai 1
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

•

56. Dr. Robert M. Balzer 1
USC-Infonnation Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

57. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

58. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59 LuQi 50
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

60. Research Administration 1
Code: 012
Naval Postgraduate School
Monterey, CA . 93943

•

