
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

A Design Database for Rapid Prototyping

Douglas, B.; Luqi
Naval Postgraduate School

B. Douglas and Luqi, "A Design Database for Rapid Prototyping'', Technical Report
NPS 52-89-022, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65228

Downloaded from NPS Archive: Calhoun

NAVAL
2

POSTGRADUATE SCHOOL
Monterey, California

A DESIGN DATABASE FOR RAPID PROTOTYPING

BRYANT S. DOUGLAS
LUQI

APRIL 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H. Shull
Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1 a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl~UTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER{S)

NPS52-89- 022
6a . NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &

Naval Postgraduate School 52 ONR Sponsored Navy Direct Funding
6c. ADDRESS (City, St,He, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, D. C. 20550
Ba. NAME OF FUNDING/ SPONSORING 8b . OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School N~F r.r.R-8710717 O&MN Direct Fundinq .
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO . NO ACCESSION NO .

Monterey, CA 93943
11. TITLE (Include Security Classification)

A DESIGN FOR RAPID PROTOTYPING (U)

12. PERSONAL AUTHOR(S)
DOUGLAS, Bryant s. , LUQI

13a. TYPE OF REPORT 113b. TIME COVE~ED 114. DATE OF REPORT { Year, Month, Day)
,,s

PAGE COUNT
Progress FROM ~ant- A~ TO __Max.. _89 1989 March 30

16. SUPPLEMENTARY NOTATION

17 . COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SU0-GROUP Design database, proiect database, object-or~ented design
computer-aided proto ypin~, object-oriented atabase
management system, specification, rapid prototyping

19. ABSTRACT (Continue on reverse ,f necessary and identify by block number)
This paper presents a conceptual design and experimentation of a design database (DDB)
for rapid prototyping. The experiments were conducted using an object-oriented database
management system. Formal requirements and specifications are provided for the objects
and interfaces of the design database. The design database contains the Prototype System
Description Language (PSDL) prototype descriptions for each software development project
using the Computer-Aided Prototyping System (CAPS). The DDB is responsible for managing
and retrieving the versions, refinements, and alternatives o"f each prototype.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION
CJiUNCLASSIFIED/UNLIMITED Kl SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

l2a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) t LLC. OFFICE SYMBOL

LUOI ~OR-hah-271S 57T.n ..
UO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
~ U.S. Government Printing Olllce: 198 6-606•24

UNCLASSIFIED

I. INTRODUCTION

The development of hard real-time and embedded software systems is an
extremely complex and expensive process. A software development methodology which
will reduce the development costs, increase the productivity rates, and reduce the
maintenance costs of these systems is long overdue. The prevailing ideas of today
are computer-aided rapid prototyping, software reusability, and the use of an executable
high-level specification language. The goal of the Computer-Aided Prototyping System
(CAPS) is to integrate all of these ideas and more, into one software development tool.
[Ref. 1]

1.1. Hard Real-Time and Embedded Software Systems

The development of hard real-time and embedded software systems creates
additional problems in the software development process. They all generally share a
set of common characteristics:

• Large. Thousands/millions of lines of code.
• Long-lived. 10 to 15 years.
• Continuous Change. Due to changing requirements.
• Physical constraints. In target hardware address space/speed.
• High reliability. Also fault-tolerant. [Ref. 2]

Each of these characteristics makes embedded systems difficult to develop. The effects
of using Ada on embedded software development costs _may not be felt immediately,
but the long term savings of a prototyping language for embedded systems will be
realized [Ref. 2,3 ,9]

1.2. The Computer-Aided Prototyping System

The Computer-Aided Prototyping System is one attempt to improve the
productivity and reliability of software through the use of computer-aided rapid
prototyping via specification and reusable components [Ref. 1]. This approach to rapid
prototyping uses a specification language called Prototype System Development
Language (PSDL) integrated with a set of software tools [Ref. l]. The major
components of CAPS [Ref. 1,22] are a user interface [Ref. 11] consisting of a syntax
directed editor [Ref. 12] and graphical editor [Ref. 10], a design management system
consisting of a software base management system [Ref. 13] and design database [Ref.
14], and an execution support system consisting of a translator [Ref. 15,16], static and
dynamic scheduler [Ref. 17,18,19,20], and debugger [Ref. 21].

1.3. The Design Database

Vast amounts of evolving data are created in the design of hard real-time software
systems. Conventional database management systems (DBMS) were designed for
business applications and as such are insufficient to handle the needs of computer­
aided design (CAD) applications. The data must be managed so that it can be stored
and retrieved according to the needs of design engineers. In CAPS, the Design
Database (DOB) must manage the storage and retrieval of the Prototype System

1

Description Language (PSDL) program. The DOB must be a specialized DBMS which
will store PSDL specifications in a hierarchical format.

2. CONCEPTUAL DESIGN FOR THE DESIGN DAT ABASE

The purpose of the Design Database (DDB) in the Computer-Aided Prototyping
System (CAPS) is to manage the project database so that it can be stored and retrieved
according to the needs of design engineers. The requirements analysis was conducted
using the specification language SPEC [Ref. 4]. SPEC is a language for giving
black-box specifications in the early stages of software design [Ref. 4]. The goal of
requirements analysis is to establish the purpose of the proposed software system and
to establish constraints and boundary conditions on the rest of the software development
process [Ref. 5].

The result of the requirements analysis should include the following:
• A model of the system's environment.
• A description of the goals of the system and the functions it must perform.
• Performance constraints on the system.
• Constraints on the implementation of the system.
• Resource constraints for the development project.
• A specification of the external interfaces of the system. [Ref. 5]

2.1. Environment Model

The environment model must supply the concepts needed for describing the world
in which the proposed system will operate. These concepts consist of the types of
objects in that world, the attributes of those objects, the relations between those objects,
and the laws governing those objects and relations. [Ref. 5]

The environment model for the Design Database is shown below. The model
was formulated in terms of reusable model components. A reusable component is a
definition of a general type or relation [Ref. 5]. The model is expressed in a simple
notation that is explained as it appears. Explanatory comments are preceded by a "­
-" symbol.

type CAPS
a_kind_of(software_system,CAPS)
-- The Computer-Aided Prototyping System (CAPS) is a software_system.

type psdl
a_kind_of(psdl,language)
-- PSDL is a language for expressing specifications.

created_by(every psdl,a user_interface)
-- All specifications are created in the user interface.

type design_ database
a_kind_of(design_database,software_system)
-- The design_database is going to be a software_system.

2

part_of(a design_database,every CAPS)
-- The design_database is part of CAPS

unique(design_database)
-- There will be only one instance of the design_database for each project.

proposed(a design_database)
-- The system to be built is a design_database.

controls(a design_database,node)
-- The design_database controls the design data by
-- managing collections of data called nodes.

type design_ engineer
a_kind_of(design_engineer ,user)
-- The design engineer is a user of the system.

uses(every design_engineer,a user_interface)
-- The model includes only the design engineers that will interact
-- with the design_database via the user_interface.

type user interface
a_kind_of(user_interface, software_system)
-- The user_interface is a software_system.

part_of(a user_interface,every CAPS)
-- The user_interface is a part of CAPS.

created_by(a user_interface,every node)
-- The user_interface is the only source for data.

type data
-- any kind of data that is used by a software system
uses(a software_system, every data)

relation reads(software _ system, data)
-- true if the data is an input for the software system

reads(any software_system, any data) => uses (software_system,data)

relation writes(software system, data)
-- true if the data is an output for the software system

writes(any software_system, any data) => uses (software_system,data)

relation updates (software system, data)
-- true if the data is both ait input and an output for the system

updates(any software_system, any data)
<=> reads(software_system, data) & writes(software_system, data)

type node
a_kind_of(node,data)
-- A node is the basic structure for maintaining the design database.

needed_for(node,every specification)
-- Every specification created in the system will be stored in a node.

3

created_by(every node,a user_interface)
-- All nodes are created via the user interface.
-- The attributes of a node are listed below.

specification(node):psdl
implementation(node):psdl
control_constraints(node):psdl
graphic_record(node):graphic_record
-- A node consists of a specification, a graphic record,
-- an implementation, and control constraints.

text(node):psdl_file

type graphic record
a_kind_of(graphic_record,data)
part_of(node,graphic_record)
-- A graphic record is one input into in a node.

created_by(a user_interface,every graphic_record)

type implementation
a_kind_of(implementation,data)
part_ of(node,implementation)
-- An implementation is one input into a node.

created_by(a user_interface,every implementation)

type control constraints
a_kind_of(control_constraints,data)
part_of(node,control_constraints)
-- Control constraints are part of the data in a node.

created_by(a user_interface,every control_constraints)

type psdl file
a_kind_ of(psdl_file, data)
-- A file containing the PSDL program will be the ultimate output.

2.2. High Level Goals and Constraints

The requirements for the DOB are formalized by writing a description of the
goals of the system and the functions it must perform in terms of the model. A major
part of the requirements analysis is turning the informal problem statement into a
precise, testable, and feasible set of requirements. The high level goals for the Design
Database are shown below.

Gl: The purpose of the system is to store the levels of a PSDL design in a
hierarchical format.
GI.I: The system must allow design engineers to retrieve the levels for review
or editing.
G 1.2: The system must be able to create and insert new levels into the structure.

4

G 1.2.1: The system must interface with the user interface for inputs to the
database.
G2: The system must be able to generate the entire PSDL program.

There are three types of constraints for a software system: implementation,
performance, and resource. The constraints for the Design Database are given below.

Implementation constraints:
Cl: The design database must be implemented with a DBMS which is compatible
with the Sun workstation and Unix operating system.

Performance constraints:
C2: The responses of the design database must be fast enough not to irritate the
design engineers using the system.

Resource constraints:
C3: The Design Database will be developed by thesis students at the Naval
Postgraduate School.

2.3. Conceptual Model of the Design Database

The DDB is a hierarchical storage structure for the PSDL program. This structure
•is a tree consisting of atomic and composite nodes. Figure 1 illustrates this structure.
Both types of nodes contain a node name, a PSDL specification, an implementation,
and parent <-> child relationship information. An atomic node's implementation is
ADA code. A composite node's implementation is graph. A graphic implementation
may contain timing constraints in the form of control constraints. Bach level of the
tree is created by the decomposition of the parent node. The decomposition process
is complete when all leaf nodes are atomic. Figures 2 and 3 present graphical
representations of atomic and composite nodes.

NODE 1.1
(ATOMIC)

NODE1
(COMP)

NODE 1.2
(ATOMIC)

NODE 2.1.1
(ATOMIC)

ROOT
(COMPOSITE)

NODE2
(COMP)

NODE3
(COMP)

NODE2.1
(COMP)

NODE 2.2
(ATOMIC)

NODE 3.1
(COMP)

NODE 2.1.2
(ATOMIC)

NODE 3.1.1
(ATOMIC)

Figure 1. Conceptual DDB Structure

5

NODE 3.2
(ATOMIC)

NODE 3.1.2
(ATOMIC)

NAME

SPECIFICATION

IMPLEMENTATION
(ADA CODE)

PARENT<-> CHILD INFO

Figure 2. Atomic Node

NAME

SPECIFICATION

IMPLEMENTATION
(GRAPH)

CONTROL CONSTRAINTS

GRAPHIC RECORD

PARENT<-> CHILD INFO

Figure 3. Composite Node

2.4. Functional Specifications for the Design Database

A functional specification is a precise black-box model of the proposed software
system. The result of the functional specification phase is an event model of the
system to be built, expressed in a Spec language. In the event model, computations
are described in terms of modules, events, and messages. A module is a black box
that interacts with other modules only by sending and receiving messages. An event

6

occurs when a message is received by a module at a particular instant of time. A
message is a data packet that is sent from one module to another. [Ref. 4]

The Spec language provides a means for specifying the behavior of three different
types of modules: functions, state machines, and abstract data types. Function modules
are immutable, and calculate functions on data types. A machine is a module with an
internal state. An abstract data type consists of a set of instances and a set of
primitive operations involving instances. [Ref. 4]

The functional specifications begin with a skeleton of a specification with places
for each of the missing details to be filled in later. The initial specifications are shown
below.

MACHINE design_database
-- The design database is a machine because it is time sensitive.
INHERIT user_intetface_interface
-- The system will interface with the user interface portion of the
-- CAPS system therefore, inheritance relations exist.
STATE
INVARIANT true
INITIALLY true

END

MACHINE user interface
-- The user_interface is an external system that sends messages to
-- the design database.
STATE
INVARIANT true
INITIALLY true

END
The next step is to make a list of the messages in each interface by consulting

the requirements. The user intetface is the only intetface for the design database.
The following messages are produced corresponding to the goals of the system:

user interface interface - -
create_root_node
create_child_node
delete_node
lookup_node
get_J>arent
get_child
traverse_tree

01, 01.2
01, 01.2
01, 01.2
01.1
01.1
01.1
02

These messages have covered all of the goals in the goal tree with the exception of
01.2.1. This goal is an assumption about the environment. The result of the
user_intetface intetface messages are shown below.

7

MACHINE user interface interface
-- The specification begins-by identifying the interface messages.
STATE (tree:map{node,set{node)))
INVARIANT existing_nodes(node)
INITIALLY node = { }

MESSAGE lookup(node_name) -- 01.1
-- Find the node requested.
WHEN ? -- node found
REPLY node -- return node contents

OTHERWISE REPLY EXCEPTION node does not exist

MESSAGE get_parent(node) -- 01.1
-- Find the parent of the node requested.
WHEN ? -- parent found
REPLY node -- return parent node

OTHERWISE REPLY EXCEPTION node is the root

MESSAGE get_child(node) -- 01.1
-- Find the child or children of the node requested.
REPLY set{node) -- return child node(s)

MESSAGE create_root_node(node) -- Gl.1, Gl.2
-- Create a new node and insert into the top of the hierarchy
WHEN? -- node created

REPLY done
TRANSIDON? -- add root

MESSAGE create child node(node) -- 01.1, 01.2
-- Create a new node and insert into the hierarchy correctly

REPLY done
TRANSffiON? -- add node

MESSAGE delete node(node) -- Gl.l, 01.2
-- Find the node and delete it and all children from the structure.
WHEN? -- node found
REPLY done
TRANSIDON? -- remove node and children

OTHERWISE REPLY EXCEPTION node does not exist

MESSAGE traverse tree(node) -- 02
-- Find the requested-root node and display all children if they all
-- consist of PSDL specifications.
WHEN? -- node found
RBPL Y set {node}

OTHERWISE REPLY EXCEPTION pscll program does not exist
END

8

The goal of functional specification is to construct a model of the proposed
system as it is visible to the users [Ref. 5]. The concepts that the users will be
expected to know and the details of the intetfaces are defined. The functional
specification does not include any information on how the system behavior is to be
realized. The result is a set of definitions for the system concepts and interfaces.
The major functions of the DDB are:
• Store the levels of a PSDL program in a hierarchical format by specification.
• Retrieve the levels of a PSDL program in a hierarchical format by specification fir

review or editing.
• Create and insert new levels of a PSDL program in a hierarchical format by

specification.
• Generate the entire PSDL program.

A brief example to illustrate the expected patterns of use of the methods provided
by the DDB follows. To construct a prototype, the PSDL specification of the root
operator is entered. At this point, the DDB would create a root node. Assuming the
root node is composite, the node would be decomposed into children operators. The
DDB would create child nodes for each decomposition. The decomposition process
would continue until all leaf nodes are atomic. This process will be time consuming
and the prototype will be complex. For this reason, the functions of retrieving nodes,
parent-child relationships, and deleting nodes will be required. The tree will be
traversed and the entire PSDL program produced once all leaf nodes are atomic.

2.5. Architectural Design

The next step in the design process is to develop an architectural design. An
architectural design is a model of the proposed system capturing the aspects of its
behavior and structure relevant to the development team. The behavior of a system
consists of its interactions with other systems, while the structure of a system consists
of its component parts and their interconnections. The functional specification is a
subset of the architectural design. The functional specification is the least detailed
view of the system. [Ref. 5]

The goal of the architectural design is to break up the proposed system into a
set of small modules.A module is defined as a self contained unit of code.
A module is both a self-contained abstraction and a unit of work. Modules have
several different views: black-box specification, parts lists, glass-box specifications,
and programs. Black-box specifications are expressed in terms of the event model at
the architectural design and functional specification stage. The parts lists contains the
set of lower level modules used directly in the implementation. Glass-box
specifications are represented by pseudo-code. Programs are produced in the
implementation phase. [Ref. 5] The black-box specifications will be shown below.
The parts lists and pseudo-code are not contained. Programs will be discussed in
section 3.

9

Black-box specifications

Type Node
Model (specification implementation graphic_record

control_ constraints: string)
-- The following messages are used to replace the current value of
-- a node's property with a new value.

MESSAGE add_graphic_record(node)
TRANSffiON? -- update node graphic record _info

MESSAGE add implementation(node)
TRANSffiON? -- update node implementation info

MESSAGE add specification(node)
TRANSIDON? -- update specification info

MESSAGE add control constraints(node)
TRANSIDON? -- update control constraints

END

The result is a lower level set of definitions for the system concepts and interfaces.
These messages reveal operations on the abstract data type node. The lower level
messages in the user_interface interface are:
add_graphic_record
add_implementation
add_specification
add_control_constraints

The addition of these messages creates an additional function requirement:
• Create and maintain version control.
A new node could be created when a node's properties are significantly changed by
these low level messages. The ability to define a significant change will be required.
The current implementation of the DOB does not address this function. As evidenced
by the functions required of the DOB, a conventional DBMS will not suffice.
Therefore, an object-oriented DBMS will be used to design and implement the DDB.
The object-oriented DBMS that will be used for experimenting the concepts of the
CAPS Design Database is Vbase by Ontologic Incorporation.

3. EXPERIMENT ON DDB USING AN OBJECT-ORIENTED DBMS

There is an increasing interest in developing object-oriented database management
systems to manage the large amount of data involved in computer-aided design (CAD)
applications [Ref. 6]. In the past three years, several object-oriented database
management systems have emerged. The impact of these systems on the software
development process are just beginning to be felt. The object-oriented approach
represents a true paradigm shift [Ref. 7].

10

An object-oriented database management system (OODBMS) must provide
persistence, concurrency, recovery, transaction management, authorization, and security
[Ref. 6]. An OODBMS is an object-oriented system and as such it must also provide
the following capabilities:
• Objects
• Active data
• Abstraction
• Extensibility [Ref. 6]

An OODBMS should provide application-oriented capabilities such as:
• Version and configuration control for CAD applications.
• Dynamic creation of classes.
• Recursive classes, multiple inheritance, and extensive tool interface capabilities.
• Support for multimedia objects, distributed environments, and graphics. [Ref. 6]
An object-oriented DBMS is one that supports persistency, values, an extensible set
of data structures, an extensible set of operations, and abstractions [Ref. 6].

3.1. Vbase

The Vbase object-oriented database management system is a product of Ontologic,
Inc. Vbase is an object database system, providing an integrated software development
platform which combines the latest advances in compiler design and database
management techniques The Vbase Integrated Object System is a database and language
platform for rapidly and inexpensively building sophisticated commercial and
engineering applications. [Ref. 8]

The Vbase system environment consists of the following components:
• Vbase Database. Persistent objects are stored in the Vbase Database.
• Object Language. Type Definition Language (TDL) is the Vbase data definition

language. It is used to defme object types in the database. "C" Object Processor
(COP) is the Vbase data manipulation language. It is an object extension of
Kernighan and Ritchie standard C. It is used to implement the operations of the
object types defmed using TDL.

• System Type Library. The system type library contains many object types which
provide powerful building blocks for the application developer.

• Integrated Tool Set (ITS). A single tool combining the functionality of a source
browser, database browser, and a source debugger.

• Object SQL. The Vbase implementation of the SQL standard query language. [Ref.8]
The steps involved in a typical Vbase database design are listed below:

• Identify the objects.
• Identify their properties as much as possible.
• Identify the frequent operations performed on the objects.
• Define the objects using TDL.
• Compile and debug the TDL definition of the objects.
• Develop COP routines to implement the operations.
• Compile and debug the COP programs.
• Develop C or COP user applications. [Ref. 6]

Vbase is a powerful tool for implementing and maintaining large software
applications. Its integration of compiler technology with database functionality in a

11

strongly-typed system provides both sophisticated modeling and efficient language and
database performance.

3.2. Type Definition for Node Objects in the Design Database

As stated earlier, the first steps in a Vbase design are to identify the objects, their
properties, and the frequent operations performed on the objects. The next step is to
define the objects in TDL. The only object in the Design Database is a Node. The
properties of a node were defined earlier as well. The frequent operations are those
necessary to assist in the accomplishment of the required functions of the design
database. The TDL code below illustrates the definition of a Node.

define Type Node
supertypes = {Entity}
properties = {

name: String;
specification: String;
implementation: optional String;
controlconstraints: optional String;
graphicrecord: optional String;
subNodes: distributed Set[Node] inverse $Node$isChild0f;
isChildOf: optional Node inverse $Node$subNodes;
}

The main points to notice about the above definition are the supertypes, optional,
and inverse keywords. The supertypes declaration is used to show the parent class of
a type. This is used for inheritance purposes. The supertype Entity is the root of all
types in the Vbase system type library [Ref. 8]. Entity specifies basic behavior for all
object types in the system.

The keyword optional specifies that a property need not necessarily have a value.
This indicates that a PSDL specification may or may not have an implementation,
control constraints, or graphic record. The implementation property is optional due to
the process through which PSDL specifications are created. The control constraints and
graphic record are true optional properties in that they may or may not ever exist
depending on whether implementation is graphic or ADA.

The inverse property sets up a system-maintained relationship between the property
defined and its specified inverse. This property is used to maintain the parent-child
relationship between Nodes. The inverse property also illustrates the "$" notation. The
"$" notation is used to provide a mechanism for referring to names relative to their
scope. The symbol "$" acts as a pathname separator.

The next step is to define the frequent operations on the object. The clause
"operations = { ...) ;" defines the set of operations that type Node will implement. The
operations for a Node are buildDisplay, listsubNodes, listsubNodeslntemal, and a
refinement of the delete operation. BuildDisplay is used for output of a Node contents.
ListsubNodes and listsubNodeslntemal are used to retrieve the children of a particular
Node. The refines delete operation means the current definition is refining an operation
already defined in the supertype. The actual refinement is achieved in the COP method

12

which implements the operation and will be described later. The operations for a Node
are defined as:

operations = {
buildDisplay (n:Node,)

returns(Node)
method (NodeBuildDisplay);

listSubnodes (n:Node)
returns (Set[Node])
method (NodeListSubNodes);

listSubnodeslnternal (n:Node, s:Set [Node])
returns (Set[Node]
method (NodeListSubNodeslnt);

refines delete (n:Node)
raises (CannotDelete)
triggers (NodeDeleteTrigger);

};

The definition of a Node includes two procedure definitions:
define Procedure Create . .. end Create;
and
define Procedure Lookup ... end Lookup;
Procedures differ from typed operations in that they are not tied to a type. For
example, the operation $Node$buildDisplay can only be called on instances of type
Node, while the procedure $Node$Lookup can be called with any arguments which
satisfy the argument type specification of the procedure. The procedure Create has
an argument specification of the form:

define Procedure Create
(t:Type,

)

keywords
name: String,
specification: String,
optional implementation: String,
optional controlconstraints: String,
optional graphicrecord: String,
optional isChildOf: Node,
optional where: Entity,
optional hownear: Clustering

returns (Node)
raises (Node Already Exists)
triggers (NodeCreateTrigger)
supertypes = {$Entity$Create};
end Create;

This specification gives more examples of the power of Vbase. Specifically, the
keywords "keywords", "raises", "triggers", and "hownear". The keyword "keywords"

13

specifies that the remaining arguments are passed by keywords, rather than by position
in the argument list.

The statement "raises (NodeAlreadyExists)" specifies that the procedure may raise
the exception NodeAlreadyExists. This exception is to alert the caller that the Node
already exists, rather than creating a new copy of the Node.

The Create procedure also has a triggers clause, "triggers= (NodeCreateTrigger)".
The Vbase system automatically generates a Create Procedure for every type defined.
An explicit definition is required to specify a trigger to the system-defined Create. A
trigger is a method associated with the invocation of a procedure or operation.
Whenever the Create procedure is invoked, the trigger, NodeCreateTrigger, will be
executed first. The trigger checks whether a Node already exists before creating a new
one. An operation can have more than one trigger associated with it. The triggers are
invoked in the order they are listed, and the last trigger must invoke the base method.
The base method is the method which is specified as implementing the operation or
procedure. [Ref. 8]

The optional keywords where and hownear can be used in the Create operation
to optimize disk storage of the object created to improve database performance. The
type Clustering is an enumerated type with three instances: $area, $segment, and
$chunk. Each is a unit of storage on the disk. Segment is the atomic unit of transfer
from disk to the main memory cache. To specify that an object created is to be stored
in the same segment as some other object, the value of the hownear argument is
"$segment" and the value of the where argument is the other object. $Area and $chunk
are not currently supported. [Ref. 8]

The second procedure defined is called Lookup. This procedure is used to look
up a given Node, identified by its Node name, in NodeCatalog which is a global Node
catalog. The specification for procedure Lookup is as follows:

define Procedure Lookup (s:String)
returns (Node)
raises (NodeNotlnCatalog)
method (NodeLookup)
supertypes = {Entity};

end Lookup;

There is one additional TDL definition in the DOB, NodesExceptions.tdl.
NodesExceptions contains the definitions of the exceptions used in the application.

3.3. Operations on Node Objects

The next step is to implement the frequent operations using COP. COP is an
object-based superset of the language C. One method implemented for the object
Node was "NodebuildDisplay". This operation is used to output the contents of a Node
to a file. The COP code below implements the method:

#include <stdio.h> /* include standard C routines */
#include <string.h>

14

. .

#define MAXLINE 81 /* maximum line length is 81 characters */
#define MAXSTRING 4000 /* maximum string length is 4000 */
char opname[MAXLINE]; /* declaration of local variables */
FILE *out;
char spectext[MAXSTRING],

imptext[MAXSTRING],
cctext[MAXSTRING];

import $Type;
import $Class;
enter module $Node;
method
obj $Node
NodeBuildDisplay(aNode)
obj $Node aNode;

{
out = fopen("ddb.out", "a");

/* convert object code to C code */

AM_stringToC(aNode.name,opname,sizeof(opname));
fprintf(out," %s\n" ,opname);
AM_ stringToC(aNode.specitication, spectext, sizeof(spectext));
fprintf (out," %s\n", spectext);

/* determine if optional property has a value */
/* before executing an operation on it. */

if (hasvalue(aNode.implementation))
{
AM _stringToC(aNode.implementation, imptext, sizeof(imptext));
fprintf(out, "%s\n", imptext);
}
if (hasvalue(aNode.controlconstraints))
{
AM_ stringToC(aNode.controlconstraints, cctext, sizeof(cctext));
fprintf(out, "%s\n", cctext);
}
fclose(out);

return(aNode);
}

This example helps to show the ability to interweave the standard C language with
COP. Object code and variables are prefaced by the "$" symbol. This is used to
distinguish object variables from standard C variables.

The declarative statements "import" and "enter module" are used for name
visibility. Making a name visible provides the COP compiler with a reference to what
the name defines. Database names are defined in the Vbase Kernel Database and in

15

TDL code. Naines defined in the Vbase Kernel Database are globally defined in a
default set. N runes not included in the default set must be made visible explicitly
using the "import" and "enter module" statements. An "import" declaration imports the
definitions of a set of database names so they are visible within the current COP
compilation unit. An "enter module" declaration establishes visibility for all names
defined in a module. [Ref. 8)

The functions "hasvalue" and "AM_stringToC" are system supplied. The function
"hasvalue" is used to test whether an optional property has a value before executing
any operations on it. This is necessary because of the strong-typing of Vbase. The
function "AM_stringToC" is used to convert from an object string to a standard C
string for use by systems external to Vbase.

Two other operations defined where "NodeListSubNodes" and
"NodeListSubNodeslntemal". These operations are used to assist in the traversal of
the tree structure. The COP code to implement these operations is shown below:

method
obj $Set[obj $Node]
NodeListSubNodes(aNode)
obj $Node aNode;
{

}

obj $Set[obj $Node] theSubNodes;
theSubNodes = $Set[obj $Node]$[];
$Node$ListSubNodeslnternal(aNode, theSubNodes);
return(theSubNodes);

method
obj $Set[obj $Node]
NodeListSubNodeslnt(aNode, theSubNodes)
obj $Node aNode;
obj $Set[obj $Node] theSubNodes;
{

}

obj $Node currentNode;
iterate(currentNode = aNode.SubNodes)
{
Setlnsert(theSubNodes, currentNode);
$Node$ListSubNodeslnternal(currentNode, theSubNodes);
}
return(theSubNodes);

This code helps to demonstrate other powetful capabilities of Vbase. One is the ability
of one method to invoke another method. This is shown in the method
"NodeListSubNodes". The other capability is the system supplied iterator operation.
This operation is used to control aggregate types. The system defined iterator can be
modified to return the aggregate in any order the user decides.

16

..

3.4. Application Programs

The final step in a Vbase design is to develop C or COP user applications. The
user applications developed correspond to the functional specifications and architectural
design. The user applications developed in response to the functional specifications are:
• CreateRootNode. Used to create a Node which is the root of a tree.
• CreateChildNode. Used to create a Node which is a child of a Node.
• GetParent. Used to retrieve the name of a Node's parent Node.
• GetChildren. Used to retrieve the name(s) of a Node's child Node(s).
• DeleteNode. Used to delete a Node and it's children from the tree.
• TraverseTree. Used to traverse the entire tree structure to generate the PSDL

program.
The user applications developed in response to the architectural design are:
• StoreProperty. Used to update, insert, or change the value of a Node's property.
• GetProperty. Used to retrieve the contents of a Node's property.

The applications were all implemented using COP. The actual code for some of
these applications are quite long, therefore the code for TraverseTree will be shown
here for demonstration purposes. This application takes as input the name of the root
Node of a tree. It then iterates through the entire tree writing the properties of a Node
to the output file "ddb.out".

#include <stdio.h> /* include standard C routines */
#include <string.h>
#define LINELENGTH 80
#define MAXLINE 81 /* maximum linelength is 81 characters */
FILE *in, *out; I* local variable declarations */
char rootname[MAXLINE],

tempname[MAXLINE];
import $Node;
main(argc, argv)
int argc;
char **argv;
{

/* local object variables */
char *dbname;
char *getenv();
obj $Node theNode, currentNode;
obj $Set[obj $Node] theNodes;
obj $String theRoot;
if (argc > 1)

{
. dbname = argv[l];

}
else if (dbname = getenv("DBNAME"))

{
}

else

17

{
printf(" Must specify database name, either as a command line

argument,\nor via the Unix environment variable DBNAME\n");
exit(l);

{

}

}

AM databaseOpen(dbname, O);
in =-fopen(" ddb.in", "r");
out = fopen(" ddb.out", "w");
fclose(out);
fgets(tempname, LINELENGTH, in);
strncpy(rootname, tempname, (strlen(tempname) - 1));
theRoot = rootname;
theNode = $Node$Lookup(theRoot);

(void) $Node$BuildDisplay(theNode);

theNodes = $Node$1istSubnodes(theNode);
iterate(currentNode = theNodes)
{
(void) $Node$BuildDisplay(currentNode);

}

protect
AM_ databaseClose(dbname);

}

The above code illustrates two additional keywords: "void" and "protect". "Void"
is a standard C keyword, indicating that the method does not return a value. The
method simply outputs the information passed to it.

"Protect" ensures execution of a statement when an exception is raised. "Protect
AM_databaseClose(dbname)" ensures the database involved is closed in the event an
exception is raised.

4. CONCLUSIONS

The development of hard, real-time software systems continues to be an expensive
process for the DOD. The Computer-Aided Prototyping System (CAPS) is one tool
under development which will help to decrease the costs of these systems. CAPS is
an attempt to integrate several of the prevailing software development methodologies
into one tool. With a central theme of rapid prototyping, CAPS shows great promise
for the future of software development in the DOD.

This paper concentrated on the development of the Design Database (DOB) for
CAPS. It is a key element of the system as project management has become an issue
of increasing importance in software development. A robust Design Database which
can efficiently and effectively, store and retrieve the Prototype System Description
Language (PSDL) program will significantly contribute to the overall success of CAPS.

18

't

The goal of this paper has been to develop a conceptual level design and initial
implementation of the Design Database for CAPS. The basic design was developed
using the object-oriented approach and the initial implementation was accomplished
with an object-oriented DBMS (Vbase). Object-oriented technology offers several
enhancements to current DBMS technology, and with its maturity it will become as
important to CAD applications as relational database technology has become to business
applications.

1. Luqi and Ketabchi, M., A Computer Aided Prototyping System, Tech. Rep. NPS
52-87-011, Naval Postgraduate School, Monterey, CA, 1987 and in IEEE Software,
pp. 66-72, March 1988.

2. Booch, G., Software Engineering with Ada, Benjamin Cummings Publishing· Co.,
Inc., Menlo Park, CA, 1983.

3. Chitwood, G., "Ada Meets the Challenge of Real-Time Simulation," Defense
Computing, v. 1, no. 4, pp.32-38, July/August 1988.

4. Berzins, V., and Luqi, An Introduction to the Specification Language SPEC, Tech.
Rep. NPS 52-88-031, Naval Postgraduate School, Monterey, CA, 1988 and to
appear in IEEE Software, 1989.

5. Berzins, V. and Luqi, Software Engineering with Abstractions: An Integrated
Approach to Software Development using Ada, Addison-Wesley, 1989.

6. Ketabchi, M., Object Oriented Database Management Systems for Complex Data
and Process Intensive Applications, September 1988.

7. McKenna, J., "Teaching OOP," OOPSLA '88 Conference Proceedings, The
Association for Computing Machinery, New York, NY, 1988.

8. Vbase Integrated Object Database User's Manual, Ontologic Inc., Billerica, M'\
1987.

9. Luqi, Berzins, V., Yeh, R., A Prototyping Language for Real-Time Software, IEEE
TSE, October 1988.

10. Thorstenson, R., A Graphical Editor for the Computer Aided Prototyping System
(CAPS), Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

11. Raum, H., The Design and Implementation of an Expert User Interface for the
Computer Aided Prototyping System, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

19

12. Porter, S., Design of a Syntax Directed Editor for PSDL, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

13. Galik, D., A Conceptual Design of a Software Base Management System for the
Computer Aided Prototyping System, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1988. ·

14. Douglas, B., A Conceptual Level Design of a Design Database for the Computer
Aided Prototyping System, Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1989.

15. Altizer, C., Implementation of a Language Translator for a Computer Aided
Prototyping System, Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

16. Moffitt II, C., A Language Translator for a Computer Aided Prototyping System,
Master's Thesis, Naval Postgraduate School, Monterey, California, March 1988.

17. O'Hern, J., A Conceptual Level Design for a·Static Scheduler for Hard Real-Time
Systems, Master's Thesis, Naval Postgraduate School, Monterey, California, March
1988.

18. Janson, D., A Static Scheduler for the Computer Aided Prototyping System,
Master's Thesis, Naval Postgraduate School, Monterey, California, March 1988.

19. Marlowe, L., A Scheduler for Critical Timing Constraints, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1988.

20. Eaton, S., A Dynamic Scheduler for a Computer Aided Prototyping System,
Master's Thesis, Naval Postgraduate School, Monterey, California, September 1988.

21. Wood, M., Run Time Support for Rapid Prototyping, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

22. Luqi, Rapid Prototyping for Large Software System Design, Ph.D. Dissertation,
University of Minnesota, Duluth, Minnesota, May 1986.

20

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Na val Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research 1
Office of the Chief of Na val Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense 1
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer 1
,.

Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

10. Navy Ocean System Center 1
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

11. National Science Foundation 1
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation 1
Di vision of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation 1
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research 1
Applied Mathematics and Computer Science, Code 1211
Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology 1
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University 1
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software 1
Attn. Dr. Ted Lewis
Oregon Stale University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin 1
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

20. University of Maryland 1
College of Business Management
Tydings Hall, Room 0 137
Attn. Dr. Alan Hevner
College Park, Maryland 207 42

21. University of California at Berkeley 1
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 94720

22. University of California at Los Angeles 1
School of Engineering and Applied Science
Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland 1
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 207 42

24. University of Maryland 1
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute 1
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology 1
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology 1
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

.. ,
28. University of Minnesota 1

Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. J. Ben Rosen
Minneapolis, Minnesota 55455

29. International Software Systems Inc. 1
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC 1
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University 1
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center 1
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University 1
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois 1
Department of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign, Illinois 61801

35. University of Massachusetts 1
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts O 1003

36. University of Pittsburgh 1
Department of Computer Science
Attn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

38. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

40. Defense Advanced Research Projects Agency (DARPA) 1
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA) 1
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA) 1
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA) 1
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. LTCOL Kirk Lewis, USA 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

47. University of California at San Diego 1
Department of Computer Science
Attn. Dr. William Howden
La Jolla, California 92093

48. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. Nancy Levenson
Irvine, California 92717

49. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

50. University of Colorado at Boulder 1
Department of Computer Science
Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University 1
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolfgang Halang 1
Bayer AG
Ingenieurbereich Progessleittechnik
D-4047
Dormagen, West Germany

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai 1
Tel Aviv University

~ School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

56. Dr. Robert M. Balzer 1
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

57. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 1344l-5700

58. U.S. Air Force Systems Command I
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59 LuQi 50
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

60. Research Administration 1
Code: 012
Naval Postgraduate School
Monterey, CA. 93943

,

