“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Computer Languages for Rapid Prototyping

Luqi

Naval Postgraduate School

Luqi, "Computer Languages for Rapid Prototyping', Technical Report NPS
52-89-023, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65229

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

w.““‘ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NPS52-89-023

NAVAL POSTERADUATE SCHOOL

Monterey, California

COMPUTER LANGUAGES FOR RAPID PROTOTYPINGl

LUQI

APRIL 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin H. Shull
Superintendent Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

LUQI
Assistant Professor
of Computer Science

Reviewed by: Released by:

ROBERT B. MCGHEE KNEALE T.
Chairman Dean of Information
Department of Computer Science and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS52-89-023

. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
(If applicable)
Naval Postgraduate School 52

7a. NAME OF MONITORING ORGANIZATION
National Science Foundation &

ONR Sponsored Navy Direct Funding

6c. ADDRESS (City, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, D. C. 20550
8a. NAME OF FUNDING / SPONSORING 8b. OfFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabl . ;
RRlichle) 0&MN, Direct Funding
Naval Postgraduate School NSF _CCR-8710737

8c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

1
COMPUTER LANGUAGES FOR RAPID PROTOTYPING

the entire process.
descriptions or models of proposed software

iterative process of prototype evolution.

of a prototyping language design is used to

U

12. PERSONAL AUTHOR(S)

LUQI
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Progress FROMSept 88 TO Mar 89 1989 March 30
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Rapid prototyping languages form a new category in the computer language family. They are

different from the commonly familiar computer languages because they are used to support
a higher level of automation at early phases of software development as well as throughout
They are used to create mechanically processable and executable

systems. Prototyping languages are also used

to firm up requirements via frequent modifications and demonstrations of the models in an
The benefits of a prototyping language are
fully realized when it is used together with its computer-aided prototyping system (CAPS).
In this paper, we describe the background, requirements, characteristics, computational
features, and general principles for the design of prototyping languages.

An example
illustrate these concepts.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
AuncrassirieounLimiTeD B SAME AS RPT.] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | z2c. OFFICE SYMBOL
LUQI_ 408-646-2735 5219
DD FORM 1473, 8a mAR 83 APR edition may be used until exhausted.

All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

® U.S. Government Printing Office: 1986—606-24.

UNCLASSIFIED

Computer Languages for Rapid Prototyping!
Lugi
Computer Science Deganment
Na\p'al Postgraduate School
Monterey, CA 93943

ABSTRACT

Rapid prototyping languages form a new category in the computer language family. They are dif-
ferent from the commonly familiar computer languages because they are used to support a higher
level of automation at early phases of software development as well as thronghout the entire pro-
cess. They are used to create mechanically processable and executable descriptions or models of
proposed software systems. Prototyping languages are also used to firm up requirements via fre-
uent modifications and demonstrations of the models in an iterative process of prototype evolu-
tion. The benefits of a prototyping language are fully realized when it is used together with its
computer-aided prototyping system (CAPS). In this paper, we describe the background, require-
ments, characteristics, computational features, and general principles for the design of prototyping
languages. An example of a prototyping language design is used to illustrate these concepts.

Submitted to IEEE Computer

1. Introduction

Computer Aided Prototyping Systems(CAPS) should be used to prototype large, parallel, distributed,
real-time, and knowledge-based systems because the requirements for design of such software systems are
difficult to assess, leading to demand for prototyping support in these areas [4,7]. The formal prototyping
languages needed to build CAPS form a special category in the computer language family.

Rapid prototyping languages are used to create software prototypes, which are mechanically process-
able and executable descriptions or simplified models of proposed software systems. They are also used to
modify the models frequently in an iterative prototype evolution process for the purpose of firming up the
requirements. Fig. 1 illustrates the prototyping process, which consists of two stages: prototype construc-
tion and code generation. The prototyping stage firms up software requirements through iterative negotia-
tions between customers and designers via examination of executable prototypes. The designer adjusts the
requirements and modifies the prototype accordingly based on feedback from the customer until the custo-
mer agrees on the requirements. The code generation stage focuses on augmenting the prototype to gen-

erate the production code. Prototypes are built to gain information to guide analysis-and design, and

!This research was supported in part by the National Science Foundation under grant number CCR-8710737.

R L L I LRI

3§

Construct/Modify ~ Execute

Prototype Prototype | Rapid Prototyping

7 Stage :

Translate/Transform : 5

| ¢ | Prototype Code Generation Stage ! '
5 Evolution

Jeoraae mac e one et e sce s tammmictoa o o e e nee @ s ss . smets cms s mseme sameeis = eee ee ma s m s aeh

Fig. 1 Rapid Prototyping Process

support automatic generation of the production code.

A rapid prototyping language intended to apply to a variety of software systems is an ambitious goal
that raises many interesting research problems [2]. Goals for such a language have to include the modeling
of those systems, fundamental mechanism for the integration of the tools in its CAPS, computer-aided
transformations of prototypes into implementations of the production version of the software. Solutions to
these problems are essential for achieving significant improvements in the quality and productivity of the

software development process [8].

It is useful to briefly examine the history of computer languages. The terminology for describing
languages has been changing dramatically with implementation technology. Originally any compiled pro-
gramming language was a very high level language. As systems became more complex, the meaning of
the term shifted towards design languages which can describe system structure without introducing low
level implementation details and generalized components that can be adapted to many different situations.

Technologies improved to the point where programming languages could support abstraction and generali-

zation, e.g. Ada and Smalltalk. Systems became even larger, and the meaning of the term shifted again,
towards languages describing what a system is supposed to do, without specifying how the system is to
accomplish its goals. As technology advances some of the languages are becoming executable. The term
"very high level language" is not precisely defined, since the concept of a very high level language is a
moving target that depends on the current state of compiler technology and the speed, memory capacity,
and cost of available hardware. Currently it refers to languages with abstractions and powerful mathemati-
cal constructs used in the early stages of the traditional software life cycle, such as domain modeling
languages, specification languages, design languages, and prototyping languages.

As compiler and hardware technology improves, the gaps among these high level computer language
categories are getting smaller and may eventually disappear. Programming languages are getting more
expressive and mofe flexible, and are supporting more abstract descriptions of the processes to be carried
out, while specification and design languages are getting to have larger executable subsets. In the near
future these types of languages will remain distinct to more effectively support different classes of tools.
Programming languages will support optimizing compilers whose main objective is to produce efficient
implementations. Specification and design languages will support tools for requirements analysis and
proving the correctness of designs and implementations. Prototyping languages will support tools for pro-

totype construction, demonstration and production code generation.

The theory and technology of computer languages has become sufficient to support exploratory
development of a general purpose rapid prototyping language. In 1985, a special purpose rapid prototyping
language PSDL (Prototype System Description Language) and its CAPS were published in [10] for rapid
prototyping in the development of large and real-time systems [4]. In the past years, the feasibility stndy
for the tools in the CAPS has shown great promise [1]. The design and implementation of a rapid prototyp-
ing language can benefit from past work on specification, design, and programming languages. Many such
languages previously designed for programming, design or specification were used or intended to be used
for prototyping purposes in different degrees. In the 1970’s, the SETL programming language was
designed based on set theory and already had the primitive concepts for integrating high level mathematics
with an execution capability. Other languages that have been used for prototyping at the programming
level include APL, SNOBOL, LISP, and PROLOG. The Gypsy language from UT Austin provides a sim-

ple basis for representing, executing, and proving correctness of communicating processes. Research on
real-time modeling and scheduling provides fundamental support for the design of hard real-time systems
[6]. Work on attribute grammars paved the road to automated approaches for prototyping special purpose
languages. The GIST system at ISI has explored computer-aided requirements modeling with the aid of
symbolic evaluation and English paraphrasing. The Argus project at MIT has explored implementation of
atomic transactions in distributed systems. The wide spectrum language Refine from Reasoning systems,
the DRACO system from UC Irvine, and the CIP project from Munich have explored the feasibility of

using transformations to realize specifications.

Thé strength of a specification language is its simplicity, abstraction, clarity of expression, and means
for rigorous logical reasoning. The strengths of a design language is its expressiveness and support for
recording goals and justifications. A common weakness of specification and design languages is lack of
efficient facilities for execution or lack of any effective means for execution. The strength of most pro-
gramming languages is supporting efficient execution, while common weaknesses are the need for specify-
ing many details and lack of facilities for recording goals and justifications in a formal way. A prototyping
language should integrate the strengths and functions of specification and design languages with the capa-
bility for execution. Because of the wide range of goals for prototyping languages, design decisions for
those languages are difficult to make. It is helpful to examine the functions of a prototyping language in

the rapid prototyping process before further discussion of language principles.

2. CAPS and Prototyping Languages

In the rapid prototyping process, software prototypes must be constructed quickly and at low cost to
be practical. The prototyping language and its CAPS are used for
* Rapidly building and modifying prototypes,
* Simplifying the design of complex systems,
* Demonstrating prototype systems to users,
* Evaluating and checking proposed design, and
* Efficiently and reliably transforming prototypes into production code.

A prototyping language has no obligation to give detailed algorithms for all components of the sys-
tem as long as it is descriptive and executable. Its CAPS should automatically supply algorithmic details
needed for execution, help the designer manipulate, analyze, demonstrate, and explain the prototype, and
help the development team transform the prototype into a production version of the system. The design of

the prototyping language is subject to the need of supporting the software tools in a CAPS system.

2.1. Tools in a Computer Aided Prototyping System

Prototyping with computer-aided tools makes a rapid process possible. A CAPS designed for sup-
porting a special prototyping language should make it easy to specify, construct, demonstrate, understand,
explain, and modify a software prototype. The language provides the basic communication and representa-
tion medium for all the tools in a CAPS system. In the CAPS proposed in [4], guidelines for decomposing
software modules, reusable components, a prototyping interface, a design database, and a software base

management system with inference capabilities make the process possible.

The tool set should provide facilities for analyzing the consistency of a prototype design. Some of

the properties that should be checked include:

* Type consistency,

* Feasibility of timing constraints,

* Consistency between the levels of a hierarchical description,

* Preconditions on input parameters and generic parameters,

* Constraints on relative rates of producer and consumer processes,

* Absence of deadlocks in distributed and parallel systems,

* Absence of unhandled exceptions.

In addition to providing facilities for constructing and checking the internal consistency of a proto-
type, the tool set should provide facilities for generating input data, debugging, displaying output, and
evaluating the results of prototype execution in terms of the same semantic model used for the design of the
prototype.

To support user validation and system evolution, a prototyping language should interface to a facility

for maintaining the correspondence between requirements and design decisions. Tools are needed for

determining which parts of a prototype are affected by a requirements change, and which requirements are

affected by a proposed change to the behavior of a prototype.

The tool set should also provide a design database for maintaining the design history, to capture
dependencies between different versions of the system and to rccord alternative designs that were con-
sidered. This database should be capable of recording and maintaining constraints between the com-
ponents of a prototype. An issue in the design of such a database is the relation between the prototyping
language used for representing the design objects in the database, and representations for the attributes,
relationships, and constraints used by the CAPS tools. The information in the designer’s view of the
language is a subset of the information in the tool views, since tools often add additional attributes to the
entities defined by the language for recording the results of analysis and synthesis procedures. Since the
tool set is likely to grow, the representation of design objects should be extendible without affecting the

interfaces to existing tools.

2.2. The Purpose of a Prototyping Language

A prototyping language is used by both people and software tools. To support the human users, a
prototyping language should be easy to write, understand, and modify. To support the tools, the language
should be easy to analyze and transform mechanically. The requircments for a prototyping language are:

* A prototyping language should be clear and simple. This implics uniform structure, a small number of
orthogonal constructs, and general interpretations without special cases or restrictions. To support
automated tools, the language should have a simple abstract syntax and a precisely defined meaning. The
underlying model should have a mathematical basis to support execution, rigorous reasoning, and transfor-
mations. The model should also support tools for communication with untrained people. Such tools should
provide graphical summary views, English paraphrasing, and explanation facilities.

* A prototyping language should be powerful and concise. It should enable brief prototype definitions for
a wide variety of software systems, including the tools in the CAPS. The language and the tools should
support abstractions, incomplete descriptions, and automated design completion. The language should sup-
port abstractions for concurrency, synchronization, and timing constraints in addition to traditional func-
tional, data, and control abstractions. The constructs of the language should match decisions made by the

designer more closely than than the operations performed by the processor, to make prototype descriptions

easy to understand and change. The designer should be able to specify only the essential attributes of a
proposed system, and the tools should supply default values for all attributes needed for execution of a
software prototype. To avoid complicating the language, high level abstractions should be expressed as
standard pre-defined components in a knowledge base whenever it is possible to do so without extending
the language.

* A prototyping language should localize design decisions and interactions between system components or
pieces of knowledge in the knowledge base. These features allow independently désigned subsystems of
complex systexhs to cooperate without unexpected interference, simplify concurrency issues, and aid in
scheduling.

* A prototyping language should be able to represent black-box specifications. - Specifications are needed
for documenting prototypes, retrieving reusable software components, and verifying implementations via
automated testing and proofs. Such descriptions also form the basis for automated synthesis capabilities,
inheritance of common properties and constraints, and consistency checking. This part of the language may
contain non-computable constructs such as unbounded logical quantifiers to gain expressive power.

* The language should be able to represent clear-box design information such as interconnections of sub-
components, dependencies between component.é, design goals such as invariant constraints, and criteria for
choosing between alternative designs. The language should have facilities for adapting components to new
uses and making small perturbations on their behavior without examining the details of the internal imple-
mentation of the components, to make it easier to reuse components,

* The language should have an expressive executable subset which is easily recognizable both by people
and automated tools. It should be possible to transform or augment expressions of the language outside the
executable subset to make them recognizably executable.

* To save designer time, the language should support the construction of efficient implementations by aug-
menting the prototype description with annotations describing additional constraints or lower level design
decisions. This enables developers to treat optimization as a refinement step where additional information
is added to the original descriptions, rather than a complete redefinition of the system. This avoids
repeated description of the same information in different ways, and reduces opportunities for making
emors.

* Efficiency does not have the highest priority in a prototyping language, but it must be possible to run test

cases and gather data in a practical amount of time. Thus execution mechanisms based on exhaustive
enumeration are insufficient for a prototyping language, although they may be supplied as a default to
allow running small test cases in the absence of information about more efficient execution strategies. The
language should therefore support relatively efficient execution mechanisms, tools for locating perfor-
mance bottlenecks, and incremental optimization transformations to improve prototypes that are impracti-
cally slow.

* Real-time constraints require execution times to be predictable, although not necessarily very fast. Pro-
totypes of real-time systems may operate in simulated time or linearly scaled real time, but the actual exe-

cution times for the production version must be predictable within accurate bounds.

3. Example of a Prototyping Language

The rapid prototyping language PSDL [4,5, 10] and its CAPS were designed to support prototyping
of large, parallel, and real-time systems. The CAPS provides a designer interface for constructing, analyz-
ing, and modifying a prototype, along with execution facilities which realize timing constraints with
respect to either actual or linearly scaled real-time.

PSDL encourages localized descriptions and software structures, to aid the designer in constructing
and modifying understandable models of complex systems. The language has a simple and expressive
computational model based on modified dataflow augmented with non-procedural constraints. The éle-
ments of the model are operators and data streams. Every operator is a state machine and some operators
are functions, i.e. machines with an empty set of state variables and a single intemnal state. Every data

stream carries values of an abstract type, and some streams carry exception values.

A PSDL prototype consists of a hierarchically structured sct of definitions for operators and types.
Each definition has a specification part for black-box descriptions and an implementation part for clear-box
descriptions. The specifications are used both for documentation of the prototype and for retrieval of reus-
able software components. A specification is executable without further information from the designer if
the CAPS can automatically retrieve, adapt, and combine the reusable software components in its software
base to match the specification. In cases where this is not possible, the designer must develop an imple-

mentation part decomposing the specified system into more primitive subsystems and provide black-box

specifications for each of the subsystems. The decomposition is done in terms of the PSDL computational

model, using augmented data flow diagrams.

An augmented data flow diagram is a directed graph, annotated with control constraints and timing
constraints. The nodes in an augmented data flow diagram represcnt operators, the edges represent data
streams, and the numbers associated with the nodes represent maximum execution times. The diagram has
a graphical representation and the constraints have a text representation, as illustrated in Fig. 2. The exam-
ple shows a simple control system illustrating some typical features of embedded software. The filter per-
forms a smoothing operation to reduce the noise in the sensor data, and the contréller uses the filtered sen-

sor data to determine how to respond to commands from a human operator, which are transmitted to the

OPERATOR control_system
SPECIFICATION
INPUT operator_switch: boolean, sensor_data: real
OUTPUT control_signal: real
STATES state_variable: real INITIALLY 0.0
DESCRIPTION { top level of a simple embedded system }
END

IMPLEMENTATION
GRAPH

"*. input_switch' ﬂ control_signal:

: switch 3 : ’Qﬂ’y ™" actuator :

OPERATOR filter PERIOD 100 ms
OPERATOR controller TRIGGERED BY ALL input_switch
MAXIMUM RESPONSE TIME 200 ms
MINIMUM CALLING PERIOD 200 ms
END

Fig.2 Example of an Augmented Data Flow Diagram in PSDL

embedded system via a switch on the operator’s control panel. A simple smoothing filter might take the
form
new state_variable = w * old state_variable + (1.0 - w) * sensor_data

where the weight w is a real number between 0 and 1 that must be chosen to provide the best trade-off
between response time and sensitivity to noise. The example has a minimal speciﬁcation part with an
informal description. The implementation part contains a graph showing the decomposition of the system
into two subsystems, and the control constraints give control and timing information. The control con-
straints and the timing constraints determine both the conditions under which the operators are triggered
and the buffering disciplines for the data streams. In general, control constraints can express conditional
execution or output, and can control exceptions and timers. PSDL timers are used to control durations of

states, and can be thought of as software stopwatches.

Timing constraints can be added to operators to define hard real-time deadlines for time-critical
operators. Timing constraints can express sporadic data-driven execution as well as periodic execution. In
Fig. 2 both operators are time-critical. The filter operator must be fired periodically, every 100 mil-
liseconds. The controller operator is fired sporadically, whenever a new value for the input_switch arrives,

and must complete execution within 200 milliseconds of the arrival of the new value.

There are two possible buffering disciplines for a data stream: dataflow and sampled. Dataflow
streams act as first-in-first-out buffers, and are used for synchronizing data-driven computations. Sampled
streams act as continuously available sources of data which can be read or updated on demand, and are
used for connecting unsynchronized operators which can fire at different or unpredictable rates. Data
streams have dataflow buffers if and only if they appear in a TRIGGERED BY ALL control constraint. In
Fig. 2, the streams input_switch and control_signal are dataflow streams, while sensor_data and
state_variable are sampled streams. The triggering conditions express requirements for the controller and
the actuator to respond exactly once to every new value in the streams input_switch and control_signal.
The other streams must be sampled because the filter operator must operate at fixed times and values may

be written into the sensor_data stream or read from the state_variable stream at unpredictable times.

The PSDL translator[1] generates Ada code for interconnecting operators appearing in an augmented
dataflow diagram. Fig. 3 shows the Ada code that would be generated for the example in Fig. 2 if the

10

operators filter and controller are realized by reusable components from the software base. In the example
we assume these components are Ada procedures with the same names as the corresponding PSDL opera-
tors. There are three different kinds of code generated: buffer declarations, initialization code, and driver
code. Buffers are instances of two pre-defined generic packages corresponding to the two buffering discip-
lines for PSDL data streams. The initialization code is executed just once prior to the activation of the
static schedule tasks. The driver procedures controller_driver and filter_driver realize the control con-
straints and perform the data stream operations. These procedures are called from the static schedule tasks

(a) generated buffer declarations

input_switch_buffer is new fifo_buffer(boolean);
sensor_data_buffer is new sampled_buffer(real);
state_variable_buffer is new sampled_buffer(real);

(b) generated initialization code
state_variable_buffer.write(0.0);
(c) generated driver code

procedure controller_driver is
input_switch: boolean;
state_variable, control_signal: real;
begin
if input_switch_buffer.new_data then
input_switch_buffer.read(input_switch);
state_variable_buffer.read(state_variable);
controller(input_switch, state_variable, control_signal);
control_signal_buffer.write(control_signal);
endif;
end controller_driver;

procedure filter_driver is
sensor_data, state_variable: real;
begin
if sensor_data_buffer.new_data then
sensor_data_buffer.read(sensor_data);
state_ variable_buffer.read(state_variable);
filter(sensor_data, state_variable);
state_variable_buffer.write(state_variable);
end if;
end filter_driver;

Fig. 3 Generated Ada Code for the Control_system

1

at times determined by a pre-computed static schedule.

The timing constraints associated with time-critical operators are realized by the static scheduler in
CAPS. A static schedule for the operators in Fig. 2 is shown in Fig. 4. This schedule repeats every 400
milliseconds. Since there is no explicit deadline given for the filter operator, the deadline defaults to the
maximum execution time, and the operator is scheduled at intervals exactly 100 milliseconds apart. The
initial firing of the filter is scheduled before the initial firing of the controller because of the precedence
relation created by the data stream state_variable. The controller is scheduled so that a response to any
request can be completed within 200 milliseconds of the request, regardless of when the request occurs.
Each instance of the controller in the schedule is responsible for handling only those requests that arrive
after the previous instance of the controller has started execution. The instance of the controller that starts
at time 275 is interleaved with an execution of the filter. This is permissible because operators do not
interact except via data streams. These interruptions are realized in Ada by making the calls to filter_driver
and controller_driver from two tasks with different priorities. There are short periods of time at the begin-
ning and at the end of each execution of an operator when such interruptions cannot be scheduled, because

of atomic read and write operations on the data streams.

PSDL was designed so that operators can interact only via data streams. This locality property
simplifies the design and modification of prototypes by ensuring that operators can be executed in parallel
without interference and can interact only via the documented interfaces, and also makes it easier to con-
struct schedules. The locality property is realized by the absence of a mechanism for transmitting objects

with internal states along data streams and scoping rules that do not allow direct non-local data references.

F IC E C F CIlF IC
0 25 75 100 125 150 200 225 275 300 325 350 400

F =filter, C = controller

Fig. 4 Static Schedule for the Control_system

4. Designing a Prototyping Language

A prototyping language should simplify the designer’s view of the system and support automated
means for bridging the gap between this simplified view and the detailed algorithmic descriptions currently
needed for efficient execution. The CAPS system should provide mechanisms for execution, static
analysis, preparation of test cases, display and analysis of results, and debugging to allow the prototype
designers to work entirely within the simplified view.

4.1, Static and Dynamic Properties

Static properties of a computer language must be fixed before a system is executed, while dynamic
properties can be changed as the system runs. Prototyping languages should support dynamic treatment of
objects such as data types, operators, and timing constraints to support flexible demonstrations and proto-
typing of adaptive systems. For example, programs that can manipulate data types, programs, and

schedules at run-time can adapt to unanticipated circumstances more readily than those that cannot.

This goal is hard to meet, because static declarations allow tools to provide more information about a
proposed system and enable more efficient execution techniques. A prototyping language with many _
dynamic features requires type checking, interpreter calls or compilation, loading, and linking, and
scheduling to be done as the system runs. These facilities are difficult to implement efficiently, and are not
supported by the class of languages usually used for production versions. Uniform guarantees of type
carrectness, clean termination, or meeting hard real-time constraints may not be possible without static res-
trictions on these properties. Thus a prototyping language should be able to represent optional static res-
trictions, and CAPS should support transformations adding explicit static restrictions to improve efficiency.

or predictability.

4.2. Computational Model

The models underlying the language provide the common ground for the associated set of tools. The
semantic model for the language provides the basis for automated analysis, while the computational model
provides the basis for execution. One of the main challenges in developing a prototyping language is
finding models that can coherently span the range of applications required.

There is no common model of expert systems available for rapid prototyping. First order logic is one
of the most familiar models for reasoning, but it has been criticized for its weaknesses, such as difficulties
in handling uncertain information, representing heuristic methods for speeding up conclusions, and per-
forming non-monotonic reasoning. Many other kinds of logic have been proposed, but there has been no
consensus on whether there is a single logic suitable for constructing all types of expert systems, or which
variety of logic is the most promising. Some approaches to expert systems use models other than logic,
such as semantic networks, Bayesian statistics, and production systems. It is not clear which approach will

yield the best results in the long run.

There is also no commonly accepted model for representing real-time constraints. Some approaches
that have been explored include temporal logic, state machines, mode charts, augmented data flow
diagrams, Petri nets, and I/O automata. The model for a prototyping language should be chosen to enhance
the application of recent results in logic, graph theory, and combinatorics to provide an effective execution
mechanism. Other unexplored areas include effective models for real-time databases and real-time com-
munications networks. Since different models appear to be best for different purposes, practical prototyp-
ing languages should seek a unified way to support multiple models. This requires careful attention to the
interactions between the language and the set of pre-defined components that can be supplied by the CAPS.

4.3. Execution Support

A knowledge-based approach is needed to provide adequate execution support for a prototyping
language without requiring excessive algorithmic detail. CAPS should provide knowledge base support for
the following functions:

Design - The CAPS system should contain models of common design activities and common classes of
design decisions, to allow prototypes to be expressed in the conceptual framework of the designer rather
than that of the machine. If the system is aware of the choices faced by a designer at each point in the
design, it can present compact representations of the choices using menus. Such alternatives should have
corresponding representations in the prototyping language. |

Managing reusable components - The environment should contain a large software base with reusable
components. This software base should be coupled with a set of rules for tailoring and combining available

components to fulfill queries that do not exactly match any of the components explicitly stored in the

14

software base. This allows the system to find algorithms and data structures without imposing all of the
details on the designer.

High level debugging - Errors and failures during prototype execution should be mapped from the pro-
gramming language level to level of the prototyping language, to kecp programming details from intruding
when the designer tests and demonstrates the prototype.

Optimization - The transformations for optimizing a prototype version of a system to produce ; production
version should be performed with minimum interaction with the designer. CAPS should keep track of
optimization decisions made for previous versions of the system, determine which of those decisions are
valid for later versions, and automatically apply the ones that are still valid. While it is not currently feasi-
ble to produce highly optimized implementations without human help, it is possible to automate routine
decisions and rely on the designer for only the difficult decisions.

Explanations - Justifications for decisions made by CAPS should be available to provide feedback to the
designer in cases where automated design completion procedures fail. Such a facility is needed to support
systematic computer-aided design in situations where complete automation is not possible. This requires

an expert sys{em with a substantial knowledge base.

It is natural to consider the execution aspect of a prototyping language in terms of compiler technol-
ogy. Unfortunately, ordinary compiler technology is insufficient for execution of a rapid prototyping
language. The reasons are:

* The need for flexibility and run-time handling of newly created types and procedures to support expert
systems provides challenges for efficient implementation techniques.

* Conventional translation techniques must be coupled with facilities for scheduling to meet hard real-time
constraints, transformations to allow the execution of incompletely specified processes, and access to an
interpreter or an incremental compiler at run-time.

* Some of the issues that must be faced by an execution support system for a prototyping language are
providing missing details and ensuring that real-time constraints are met. One of the goals of a rapid proto-
typing system is to execute prototype descriptions that do not contain details of algorithms and data struc-
tures [9]. This has to be handled by combining program transformations and specialized schedulers with a

knowledge base containing programming and problem domain knowledge.

Transformations are needed to execute incompletely specificd components. Such transformations
should supply reasonable default values for attributes necessary for execution if the designer does not
explicitly specify them. Different choices for these attributes can be explicitly specified to produce a more
accurate model of the system or to improve its performance. In particular, default algorithms for
unspecified or partially specified components should be supplied. Key problems are finding systematic
ways of developing such transformations and determining reasonable default values based on models of the
application domain. It is essential to automatically generate stubs for components that are unavailable in
the software base and have not yet been designed to allow testing and demonstrating partially completed
systems. Such stubs can be created by simple or increasingly sophisticated techniques, such as asking the
user to supply values, using random selections from a fixed set of responses, using logic programming to
simulate black-box specifications, or using transformation techniques to generate efficient implementations
from the black-box descriptions. Other examples include assignment of tasks to physical processors and

choosing display formats for outputs and error messages.

5. Semantics of a Prototyping Language

The key to computer-aided prototyping is finding simple formal models that can express the range of

expected applications and effectively support automated processing.

5.1. Supporting Real-Time Systems

The language and the CAPS knowledge base should support representations for timing constraints
and overload resolution policies. Scheduling is a difficult issue for real-time systems. High level represen-
tations of timing constraints and overload resolution policies are essential to allow the prototype to express
the necessary constraints on the scheduling of different tasks at a levcl matching the problem rather than at
the level of the underlying run-time support system. Timing constraints on communications primitives are

needed to handle distributed real-time systems.

5.2. Modeling Parallel Systems

High-level mechanisms for coordinating independent activities [3] and primitives for defining
independent activities that are guaranteed not to interfere with each other are needed to simplify and speed

16

up the construction of parallel systems. Localized modules with limited data access are essential for this
purpose. Message passing, dataflow, and object-oriented ideas have been proposed to address this prob-
lem. Another consideration is avoidance of deadlock. It is useful to have a syntactically recognizable sub-
set of the language that is capable of describing concurrent computations and carries a uniform guarantee
of freedom from deadlock. Such a guarantee is possible if a suitable computational model is chosen. This
kind of restricted subset is sufficient for many applications, and it can be augmented with facilities for
adding additional constraints on global orderings of events, which are known to be potentially unsafe and
are designed together with tools for checking safety of particular designs. For example, atomic transac-
tions can simplify the design of distributed systems, although they introduce the potential for deadlocks.

5.3. Designing Distributed Systems
A prototyping language should provide a high level means for describing
(1) constraints on communication time,
(2) the granularity of atomic transactions,
(3) standard protocols for achieving reliability despite processing and communications failures, and
(4) - constraints on the assignment of software tasks to physical processors.

This information should be optional, and the default should be the safest option rather than the most

efficient one.

5.4. Prototyping Knowledge-Based Systems

CAPS can provide generic predefined software components to realize many of the common building
blocks for knowledge-based systems. These include facts, rules, patterns, frames, contexts, constraints,
demons, instance generators, pattern matchers, unification mechanisms, constraint propagation mechan-
isms, and inference engines. Standardization requires careful analysis of these components and
specification of their required properties. An open issue is whether current mechanisms for defining gen-
eric components are flexible enough to adequately capture the range of behavior required for these kinds of

components, and if not, what extensions are required.

17

To support rapid construction of expert systems a prototyping language should provide:

(1) ameans for conveniently defining external representations and input facilities for the knowledge in
the knowledge base,

(2) unrestricted higher order objects such as types, functions, tasks, and generators, and

(3) control mechanisms such as state-triggered demons, backtracking, run-time control over task prior-

ities, and temporal events.
Several of these features are needed to support flexible prototypes for other kinds of systems as well.

The presence of real-time constraints severely restricts the kinds of computations a system may per-
form, and in the case of expert systems, limits the amount of logical inference that can be performed. The
design of expert systems that operate within real-time constraints is a largely unexplored area, and

significant research progress is needed in this area to fully realize the goals of a rapid prototyping language.

6. Conclusions

Prototyping languages are designed based on knowledge and cxperience from all levels of the com-
puter language hierarchy since they address functions from all of the levels. Studying the relevant aspects
of specification, design, and programming languages is helpful in the design of prototyping languages.

The purpose of a prototyping language is to define an executable model of a system. The language is
used to create specifications, express designs, and execute prototypes. Prototyping languages are used in
requirements analysis for the purpose of requirements validation via carly demonstrations to the customer.
They are also useful for evaluating competing design alternatives, validating system structures, and explor-
ing feasibility. In contrast, specification languages are used for defining external interfaces in the func-
tional specification stage and for defining internal interfaces during architectural design at the highest levels
of abstraction. They are also used for verifying the correctness and completeness of a design or implemen-
tation. Design languages are used for recording conventions and interconnections during architectural

design and module design.

The difference between specification and design languages is the difference between interface and
mechanism: a specification says what is to be done, and a design says how to do it. The main evaluation

criterion for both specification and design languages is the ability to express simple, concise, and humanly

18

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Office of Naval Research

Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street

Arlington, Virginia 22217-5000

Space and Naval Warfare Systems Command
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

Ada Joint Program Office
OUSDRE(R&AT)
Pentagon

Washington, D.C. 20301

Naval Sea Systems Command
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense
Attn. CDR Barber

STARS Program Office
Washington, D.C. 20301

Office of the Secretary of Defense
Attn. Mr. Joel Trimble

STARS Program Office
Washington, D.C. 20301

Commanding Officer

Naval Research Laboratory
Code 5150

Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

National Science Foundation

Division of Computer and Computation Research
Attn, Dr. Peter Freeman

Washington, D.C. 20550

National Science Foundation
Director, PYI Program

Attn, Dr. C. Tan
Washington, D.C. 20550

Office of Naval Research

Computer Science Division, Code 1133
Attn. Dr. Van Tilborg

800 N. Quincy Street

Arlington, Virginia 22217-5000

Office of Naval Research

Applied Mathematics and Computer Science, Code 1211

Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng

Newark, New Jersey 07102

Southern Methodist University
Computer Science Department
Attn, Dr. Murat Tanik

Dallas, Texas 75275

Editor-in-Chief, IEEE Software
Attn. Dr. Ted Lewis

Oregon State University
Computer Science Department
Corvallis, Oregon 97331

University of Texas at Austin
Computer Science Department
Attn, Dr. Al Mok

Austin, Texas 78712

38.

39,

40.

41.

42.

43.

44,

45.

46.

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn. Dr. Squires

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn. MAJ Mark Pullen, USAF

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

MCC AI Laboratory

Attn. Dr. Michael Gray

3500 West Balcones Center Drive
Austin, Texas 78759

COL C. Cox, USAF

JCS (J-8)

Nuclear Force Analysis Division
Pentagon

Washington, D.C. 20318-8000

LTCOL Kirk Lewis, USA

JCS (J-8)

Nuclear Force Analysis Division
Pentagon

Washington, D.C. 20318-8000

47.

48.

49,

50.

51,

52,

33,

54.

55.

University of California at San Diego
Department of Computer Science
Attn. Dr. William Howden

La Jolla, California 92093

University of California at Irvine

Department of Computer and Information Science
Attn. Dr. Nancy Levenson

Irvine, California 92717

University of California at Irvine

Department of Computer and Information Science
Attn. Dr. L. Osterweil

Irvine, California 92717

University of Colorado at Boulder
Department of Computer Science
Attn. Dr. Lloyd Fosdick

Boulder, Colorado 80309-0430

Santa Clara University

Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi

Santa Clara, California 95053

Oregon Graduate Center
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

Dr. Wolfgang Halang

Bayer AG

Ingenieurbereich Progessleittechnik
D-4047

Dormagen, West Germany

Dr. Bernd Kraemer
GMD Postfach 1240

Schloss Birlinghaven

D-5205

Sankt Augustin 1, West Germany

Dr. Aimram Yuhudai

Tel Aviv University

School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

understandable descriptions of complex behavior. It is useful for specification and design languages to be
executable, but simplicity and ease of expression takes precedence when the considerations conflict. Com-
puter aid is desirable for determining the properties of a specification and certifying that a design realizes a
specification. An execution capability can contribute to these goals, but other types of mechanical analysis

may turn out to be more useful for this purpose.

The difference between a design and a program is the difference between a plan and a finished pro-
duct: a design records the early decisions that determine an implementation strategy, while a program con-
tains all the details necessary to get an efficiently executable system. The primary goal of a design is docu-

mentation rather than execution, while the primary goal of a program is usually efficient execution.

A prototyping language aims at validating specifications and designs mainly via an execution facil-
ity. Prototyping languages can benefit from mechanisms developcd to increase the expressiveness of
specification and design languages, but must accept some restrictions to support execution. The execution
mechanisms of a prototyping language should draw on programming language technology, but must accept
some inefficiencies to support flexibility and ease of expression. The constructs of a prototyping language
should be chosen to allow generation of efficient implementations by smoothly adding additional informa-

tion and constraints.

Since completely automatic and totally correct implementation of powerful specification languages is
an algorithmically unsolvable problem, research on rapid prototyping should explore human interactions
for effectively guiding computer-aided implementation tools. A promising approach is augmenting abstract
specifications with annotations or pragmas giving advice about implementation strategies. An important
problem is finding concepts and notations that can naturally express such advice in an abstract and orthogo-
nal way. It is desirable to keep the abstract specification separate. or casily mechanically separable from the
annotations to provide simplified views of large system models.

Providing execution capability for high level prototype descriptions requires a knowledge based
approach. The required knowledge bases grows with the problem domain the langnage addresses. A sub-
stantial part of the knowledge in the knowledge base consists of reusable software components augmented
with descriptions of their properties. Other kinds of relevant knowlcdge include methods for adapting and

combining the components in the software base, properties of application domains, and the CAPS tools.

19

Progress on rapid prototyping languages depends on solutions to open research problems in areas including

semantic modeling, real-time scheduling, program transformations, version control in prototype databases,

and retrieval of reusable software components.

REFERENCES

1. C. Altizer, ‘‘Implementation of a Language Translator for a Computer Aided Prototyping System’’,
M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, Dec. 1988.

2. R. Gabriel, ed., Draft Report on Requirements for a Common Prototyping System, DARPA
Information Science and Technology Office, Arlington, VA, Nov. 1988.

3. B. Kraemer, ‘“SEGRAS - a Formal Language Combining Pctri Nets and Abstract Data Types for
Specifying Distributed Systems’’, in Proceedings of 9th International Conference on Software
Engineering, March 1987, 116-125.

4. Luqi, “Rapid Prototyping for Large Software System Design’’, Ph. D. Thesis, University of
Minnesota, 1986.

5. Lugqi, V. Berzins and R. Yeh, ‘“A Prototyping Language for Real-Time Software’’, IEEE Trans. on
Software Eng., October, 1988, 1409-1423.

6. A. Mok, ““A Systematic Approach to the Design of Hard Real-Time Systems’’, in Proceedings of the
ONR Workshop on the Foundations of Real-Time Computing, Office of Naval Research, Falls
Church, VA, Nov. 1988, 47-51.

7. J. Schwartz, ‘‘Broad Agency Announcement for New Language in Rapid Construction of Software
Prototypes’’, Commerce Business Daily, Arlington, VA, Feb. 1989.

8. M. Tanik and R. Yeh, ‘‘The Role of Rapid Prototyping in Software Development’’, in Proceedings
of the 22nd Hawaii International Conference on System Science, Kona, Hawaii, Jan. 1989, 337-338.

9. J. Tsai, M. Aoyama and Y. Chang, ‘‘Rapid Prototyping Using FRORL Language’’, in Proc.
COMPSAC 88, Oct. 1988, 410-417.

10. R. Yeh, N. Roussopoulos, Luqi and etc., ‘‘Research in Software Reusability’’, Final Report, Tech.

Rep.-p106/83/0004-3, Ballistic Missile Defense Advanced Technology Center, Huntsville, Alabama,
July 1985.

20

20.

21,

22,

23.

24.

25.

26.

27,

28.

University of Maryland

College of Business Management
Tydings Hall, Room 0137

Attn. Dr. Alan Hevner

College Park, Maryland 20742

University of California at Berkeley

Department of Electrical Engineering and Computer Science
Computer Science Division

Attn. Dr. C.V. Ramamoorthy

Berkeley, California 94720

University of California at Los Angeles
School of Engineering and Applied Science
Computer Science Department

Attn. Dr. Daniel Berry

Los Angeles, California 90024

University of Maryland
Computer Science Department
Attn. Dr. Y. H. Chu

College Park, Maryland 20742

University of Maryland
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 20742

Kestrel Institute

Attn. Dr. C. Green

1801 Page Mill Road

Palo Alto, California 94304

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Attn. Dr. B. Liskov

Cambridge, Massachusetts 02139

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Attn. Dr. J. Guttag

Cambridge, Massachusetts 02139

University of Minnesota
Computer Science Department
136 Lind Hall

207 Church Street SE

Attn. Dr. J. Ben Rosen
Minneapolis, Minnesota 55455

29.

30.

31.

32,

33.

34.

35.

36.

37.

International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh

Austin, Texas 78759

Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha

Pittsburgh, Pennsylvania 15260

IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko

P.O. Box 704

Yorktown Heights, New York 10598

The Ohio State University

Department of Computer and Information Science
Attn. Dr. Ming Liu

2036 Neil Ave Mall

Columbus, Ohio 43210-1277

University of Illinois

Department of Computer Science
Attn. Dr. Jane W. S. Liu

Urbana Champaign, Illinois 61801

University of Massachusetts

Department of Computer and Information Science
Attn. Dr. John A. Stankovic

Ambherst, Massachusetts 01003

University of Pittsburgh
Department of Computer Science
Attn, Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn. Dr. Jacob Schwartz

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

56.

57,

58.

59

60.

Dr. Robert M. Balzer

USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001

Marina del Ray, California 90292-6695

U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE

Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

U.S. Air Force Systems Command

Rome Air Development Center

RADC/COE

Attn. Mr. William E. Rzepka

Griffis Air Force Base, New York 13441-5700

LuQi

Code 52Lq

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Research Administration
Code: 012

Naval Postgraduate School
Monterey, CA. 93943

50

