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Computer Languages for Rapid Prototyping1 

Luqi 

Computer Scien~ De])artlnent 
Naval Postgraduate School 
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\' 

ABSTRACT 
'-• 

' : ~ 
\ ' ~ ' 

' ,,1, 

Rapid prototyping languages form a new category in·~the computer language family. They are dif­
ferent from the commonly familiar computer·languages because tHey are·used to support a higher 
level of automation at early phases of software dev~opment as well as thrquihout the entire pro­
cess. They are used to create mechanically -processable and executable desptptions or models 1of 
proposed software systems. Prototyping-languages -are also used to finn up,. requirements via fre­
quent modifications and demonstrations of the models in an, iterative process, of prototype evolu­
tion. The benefits of a prototyping language are fully realized ·when it is· used ·together with its 
computer-aided prototyping system (GAPS): In this ·,paper, rwe descn'be Ute backgrognd, req~ 
ments, characteristics, computational features, and general principles for the design of prototyping 
languages. An example of a protQtyping language design is uscil to illustrate these ~ncepts. . 

Submitted to IEEE Computer "-. 

1. Introduction • ~• .... ~I• • I ,• ~I "J, ~ • ,.; f 

Computer Aided Prototyping Systems(CAPS) should be used to prototype large, parallel, distributed, 

real-time, and knowledge.;based systems beca~e the requiremeiits fot design of 1such software· systems· are I "! -' 

difficult· to asse'ss~1 leading ·to demand" for-1prbtotyping support in these areas [4, 7]. ;rite fonnal •pro~ing 

languages ·ii~ed · to build CAPS form a-special category. in the computer language fampy. 

J .. ', J , , ·~ • • ~ r' l 1 , , i ,. · , "' ..., Y! ..., 1 
1 

, ~ 

Rapid prototyping languages are used tb create software prototypes, which are mechanically process-
'-• ' · q1,' I 1 \ · • 

able and exQCutable descriptions or simplified models of proposed soft'Ware 'systems~· They are-also used to 

modify' th~ models· frequently in:.ail iterative prototype evolution process for ihe piirpose bf firming _up the 

requirements. Fig. 1 illustrates the protoiyping process, which consists of two stages: prototype construe~ r 

tion arid -code generation. Tile piototyping:·stage finns 'Up software requirements through iterative negotia­

tions between customers and designers via examination of executable prototypes. 1be designer adjusts ihe: 

requirements and modifies the prototype accordingly based oli feedback from the customer until the cusio­

mer agrees Oil ·the 'requirenients. The code' generation stage focuses on augmenting the prototype to gen­

erate the production code. ·Prototypes ate tiuilt to gain infonnation ·ta guide analysis•,, and design, and 

1This'J'ele!UCh wu lilppolledui·~ bydlBNational-Sc:imc:e Fouiiiladon ander&nmlnmiiberCQl-8710737. " • ~-: -;-1 ·•i, 
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Fig. 1 Rapid Prototyping Process 

support automatic generation of the production code. 

A rapid prototyping language intended to apply to a variety of software systems is an ambitious goal 

that raises many interesting research problems [2]. Goals for such a language have to include the modeling 

of those systems, fundamental mec~ for the integration of the tools in its CAPS, computer-aided 

transfonnatiom of°prototypes into implementations of the production version of the software. Solutions to 

these problems are essential for achieving significant improvements in the quality and productivity of the 

software deve~opment process [8]. 

It is useful to briefly examine the history of computer languages. The tenninology for describing 

languages has been changing dramatically with implementatiQn teclmology. Originally any compiled pro­

gramming language was a very high level language. As systems became more complex, the meaning of 

the term shifted towuds design languages which can describe system structure without introducing low 

level implementation details and generalized components that can be adapted to many differed situations. 

Technologies improved to the point where programming languages could support abstraction and generali-

2 



zation, e.g. Ada and Smalltallc. SysJems became even larger, ~d the meaning of the term shifted again, 
. . . 

towards languages descnl>ing what J syste~ is supposed to do, without specifying how the system is to 
) ,' ~ • ~ . f - ae= • • ' 

accomplish its goals. As technology advances some of the languages are becoming executable. The term 
'l 

"very high level language" is not precisely defined, since the concept of a very high level language is a 
'I 

moving target that depends on the current state of compiler technology and the speed, memory capacity, 
~ 

and cost of available W;U'(iwa{e. Cmrendy it refers to languages with abstractions and powerful matbemati-. . 

I 

cal constructs used in the early stages of the traditional software life cycle, such as domain modeling 

languages, specification languages, design languages, and prototyping languages. 

. . 
As QOmpiler and haidware technology improves, the gaps among these high level computer language 

' ! ' 
categorie~ are getting smaller and may eventually disappear. Programming languages are getting more 

• 1.. • I 

expressivo, M4 more flexible, and are supporting more abstract descriptions of the processes to be carried 

out, whil.Q ~itication and design languages are getting to have larger executable subsets. In the near 

future th~~ types Qf languages will remain distinct to more effectively support different classes of tools. 
'I -:: ~ 

•,I '11, •1 { ~ ~ tf I, " I 

Programrnmg languages will support optimizing compilers whose main objective is to produce efficient 
'• • \ 't. • .. ... 

, I ' I I I .. 
, implell\.e~qati,oqs, Specification and desi$fi languages will support tools for requirements analysis and 

' 1. 

, proving me ~tn.ess of designs and implementations. Prototyping languages will support fO<)ls for PfO-

totype CQnstrncdon, demonstration and production code generation. 
' ~ ,, 

Ttle theory and technology of computer languages has become su~cient to SUPP<>rt eiploratory 

developroent of a general purpose rapid prototyping language. In 1985, a special ·purpose mpid prototyping 

·1anguage· PSDL (Prototype Sys~' Description I:.angu.ag~) and its GAPS were ·pub~ed in, (10] for rapid 

prototyping in the development of large and real~tim~ systems,[4]. ln_the past-years,, the f~~ility study 

for the too~ in the ~APS has shown ~t prQmi~ [1]. The desjgn and implementation-of a fllpij prototyp­

ing language can benefit from past wo~ on ~ification, design, and programming languaps. ~y such 

languages previously designed for pro~J, d~gn or specification -were used or intended to be used 

for prototyping purposes in different de~- In the 1970's, -the SE1L programming language •was 

designed based on set theory and already h@.d lbe primitive concepts for integrating high' level mathematics 

~th an execution capability. Other Janpges that ha:ve been used for prototyping at the programmins 

level include APL, SNOBOL, LISP, and PROLOG. The Gypsy language from UT Austin provides a sim-

3 
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pie basis for representing, executing, and l>roving correctness of communicating processes. Research on 

real-time modeling and scheduling provides fundamental support for the design of hard real-time systems 

[6]. Work on attribute grammars paved the road to automated approaches for prototyping special pmpose 

languages. The GIST system at ISi has explored computer-aided requirements modeling with the aid of 

symbolic evaluation and English paraphrasing. The Argus project at MIT has explored implementation of 

atomic transactions in distributed systems. The wide spectrum language Refine from Reasoning systems, 

the DRACO system from UC Irvine, and the CIP project from Munich have explored the feasibility of 

using transformations to realize specifications. 

The strength of a specification language is its simplicity, abstraction, clarity of expression, and means 

for rigorous logical reasoning. The strengths of a design language is its expressiveness and support for . 

recording goals and justifications. A common weakness of specification and design languages is lack of 

efficient facilities for execution or lack of any effective means for execution. The strength of most pro­

gramming languages is supporting efficient execution, while common weaknesses are the need for specify­

ing many details and lack of facilities for recording goals and justifications in a formal way. A prototyping 

language should integrate the strengths and functions of specification and design languages with the capa­

bility for execution. Because of the wide range of goals for prototyping languages, design decisions for 

those languages are difficult to make. It is helpful to examine the functions of a prototyping language in 

the rapid prototyping process before further discussion of language principles. 

2. CAPS and Prototyping Languages 

In the rapid prototyping process, software prototypes must be constructed quickly and at low cost to 

be practical. The prototyping language and its CAPS are used for 

* Rapidly building and modifying prototypes, 

* Simplifying the design of complex systems, 

* Demonstrating prototype systems to users, 

• Evaluating and checking proposed design, and 

* Efficiently and reliably transforming prototypes into production code. 

4 



A prototypiii~ Jangujge has no obligation to give detailed 'algorithms for all components" of the sys­

tem as long as it is descriptive and executable. Its CAPS sfiould1 automatically supply algoriduilic,details 

needed for execution~ help die designer-manipuJate, analyze, demoristra~. aQd e~plain ~e prototype, ~d. ,: 

help the development team transform the prototype into a production version of the systerp. The desiP: of 

· the-prototyping language is sul>ject to the,need of suppolting the software tools in a CAPS systemf , 

',, . \ r • r. • 
' • 'J t \ ' f 

2.1. Too~ in a Computer Aided Prototyping System 
1 i,1 I 

... 

I f t: 

Prc;:,.totyP.ing_ with compu~-aided topls m~es a rapid process possible. !-a, CAPS designed for sup-
F 1 \ ., 1

,, I I l" ,:'.. , -

porting a .. ~ -prototyping languag~ ~Jipulq µtake it easy to specify, C';_>nstruct,, de~onstrate, understand, 
. • • . .. l • l ... • • '..-. • ·=· \ 

explain, ~d modify ,a sof\Ware proto~. The language J?r0vides ~he basi~ com~unication and representa- .. 
• ... ' "' • , ~ • I ~ l 

tion m~um-for all the tools in ~CAPS.system. In the CAPS proposed in [4], guidelines for decomposing 
l' •',/ •• I J ' 11 • ~ .; ~ ... " ,1. / ' ' ',"' J 

, software modules, reusable components; a prototyping interface, a design database, and a software ~ 

management system with inference capabilities make the process possible. 

The tool set should provide facilities for analyzing the consistency of 'a 'prototype design.~ Soine 'of" 
,. 1. + • • -~ t 

the properties .diat showd'be' checked include: · · '· .i> j '· • '~ 

* T~ consi~te~cy, l ,:. 
.·.).' , ·1..• ; • ,,, :,r_i .. 

* Feasibility of timilig constraints, · 
. r j -~~ 

• Consistency between the levels' of a hierarchi~ description, ' . • . : • •.~.. I 

, .. J. # 

• · ~o~ditions o~· input parameters and,genenc parameters~ . ~ , . , , . , . \ · <1 · 
.. , 1 ·, t • r , 

* Constraints dn relative rates' of producer and consumer processes, " ,~· ' • 'I. ,, 

• · Absence of deadldclcs ·in distributed and parallel systems, ,~ } 
J ~ t4 , • I,... . 
* Absence of unhindled exceptions. ..'"1' ~ ,I • .. • ., 

I i I ~ I I • J • , ,,":l o"" 

In addition to providing facilities for constructing and checking the internal consistency of a proto-
1. ', ~ I -4 ~ I I 

type, the tool set should p~vide f~ilities for generatiQg input data, debhgging~ dispjjying outi,uL and r 

I J$ , > • ' o , 

ewluating the results of prototype execution in tenns of the same semantic model used for the design of the · · ·. 1 

prototype. 
,. ,' ,.J, •• • ,.," 1 ',1 

.. , •• I I .. 4.l ·\ ,. 

•• :"f ·'. ., t ' 

r. 
• I 'f 

To SUPPQl'l user validation and system evolution, a prototyping.language should interface to a facility 
.. • • I ~ ,; I I ", t "1 f • • I "' j • I '4, • • ., . '1 

for majn~g the correspondence between requirements and design decisions. Tools are needed for 
l J lo"!), ~ \11 ~ t • ,;ti l -4 • • 1 J I r/ I • ' "I' •· 
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determining which parts _of a ~totype ~ affec~ by a requirements change, and which requirements are 

affected by a proposed change to the behavior of a prototype. 

The tool set should also provide a · design database for maintaining the design history, to capture , 

dependencies between different versions of the system and to record alternative designs that were. con­

sidered. This database should be capable of recording and maintaining constraints between the com­

ponents of a prototype. An issue in the design of such a database is the relation between the prototyping 

language used for representing the design objects in the database, and' representations for the attributes, 

relationships, and constraints used by the CAPS tools. The infonnation in the designer's view of the 

language is a subset of the information in the tool views, since tools often add additional attributes to the 

entities defined by the language for recording the results of analysis and synthesis procedures. Since the 

tool set is likely to grow, the representation of design objects should be extendible without affecting the 

interfaces to existing tools. 

2.2. The Purpose of a Prototyping Language 

A prototyping language is used by both people and software tools. To support the human users, a 

prototyping language should be easy to write, understand, and modify. To support the tools, the language 

should be easy to analyze and transform mechanically. The requirements for a prototyping language are: 

* A prototyping language should be clear and simple. This implies uniform structure, a small number of 

orthogonal constructs, and general interpretations without special cases or resttictions. To support 

automated tools, the language should have a simple abstract syntax and a precisely defined meaning. The 

underlying model should have a mathematical basis to support execution, rigorous reasoning, and transfor­

mations. The model should also support tools for communication with untrained people. Such tools should 

provide graphical summary views, English paraphrasing, and explanation facilities. 

* A prototyping language should be powerful and concise. It should enable brief prototype definitions for 

a wide variety of software systems, including the tools in the CAPS. The language and the tools should 

support abstractions, incomplete descriptions, and automated design completion. The language should sup­

port abstractions for concurrency, synchronization, and timing constraints in addition to traditional func­

tional, data, and control abstractions. The constructs of the language should match decisions made by the 

designer more closely than than the operations performed by the processor, to make prototype descriptions 

6 



_t t,J ' •:· »-l .., ~ Ii • ·r • 

easy to understand and change. The designer should be able to specify only the essential attnl>utes of a 
. ' 

t ., .... • I J ' ',! I... . I I • ) ~. ~. - I ' , I I 

proposed sys.tern, and the tools sh~uld sufu,ly default values for all aitrib~tes ~ceded ·fot ex~~tion of a 
:I I ' •, • '. [ • i' ' ; I i' 

software prototype. To avoid complicating the language, high level abstractions should be expressed as 
# J • l ,. 14•• • j ~., t • ~' ·'"' J ·i ,. :.I : j • • 

standard pre-defined components in a knowledge base 'Vhenever it is possible to do so without ext.ending 
~- "'t" t 

the language~ ' 
J . ~ ' •j ': f, I•• f, •' ' • • 

* A prototyping language should l~e design decisions and interactions between system ~mponents or 
. "'" , t •' I 1.i', ~ i : ~ ,l 'I j ..,. • 1 

pieces of knowledge in the knowledge base. These f~ allow independently designed subsystems of 
: .. If I I ' ' • " ~ '.-. ! \ ' /,t. • I C ' I 

complex systems to cooperate without uneXJ)CCt.ed interference, simplify concurrency issues, and aid in 
.\..~ .v-, . ;. •• t x.: ~ -

scheduling. 
1,.i;.,, 

* A prototyping language should be able to represent black-box specific~0'1S. S~µi?'i<>llS. are n~. 

for documenting ~totypes, i:etrieving reusable software components, ~d. verifying impleme~<;>ns via 
d .J ,-. ' ! I ' ' "' ,,., ;. ,,·; .. . , .... \i. .. . ~\ ;, r ~ 'rJ·,r.' ;- I • I,, ... #- I /' ~ 

autom~~~ tes~gl .ane F-fs. _sue~ 4~cripti~~s~ ~ fo~, th~. ba~_is,~ fp~ au~~~ sri~~ .. ~~~ties, •' 
1 

• 

inheril:a1'ce o( common pipperties and constraints, and consistency checking. This part of the lanpge may 
r \., f.t~?:J, • 'i"i~,4!l.,., ,l"1~•, '',_ 1 •;to,, ~,-1 ... ~• ~,• .. l: \,,, i ? j") ~' .- ~ 

contain non-computable constructs such as unbounded logical quantifiers to gpin expressive power. 
I ' •i 1,,., L .. .,._'j. i I ,, .. ~ ,, 

* The language should be able to represent clear-box design infonnation such as interconnections of sub-
.... y·. ,J' ,,.:rl,.. .,.·£r .._ ', ,' ... ! ·; '

1 
1 ·;~... I·,. '-, ,.,,~' .:: ., f • ~r" ,, 

components, dependencies between components, design goals such as invariant cons,traints, and criteria for 
,;: 

.,, ~ ., I , { l J ,J,. ,· 1, ~· ..... i t ~ ,·-

choosing between alternative designs. The language should have facilities for adapting components to new . . 
• , • ~ I ,t \ k, ~ ~ .. It 

uses and making small perturbations on their behavior without examining the details of the internal imple-
• ,11 j 

' (, 
, , ... ,J I 

mentation of the components, to make it easier to reuse components. 
. •··· ,·· ... 

* 'l'he language should have an expressive executable subset which is easily recognizable both by people 
.,. ~ ,1,•-, ,. 1 ~ •' ' .·,, 

) 

and automated tools. It should be posSil>le to transform or augment expressions of the language outside the 
I I "": I ., ·~ ' I • 

executable subset to make them recogni7.ably executable. 
. . ,~ . ' ~ fl'/ .. ! & p 11'" -,l 

• "I! ' (I f I I ' 'J 'I' r- \ • ~ r ..._ t ' L 

• To save designer time, the language should support the construction of efficient impl~entations by aug-
., •• , • c>-, ' l• ' ' " • ~ \ , t ,, r: 

menting the prototype description' ~ith annotations describmg additional 'oonstraints or lower level design' 

decisions. This ~nables deveiopers ~ ' treat optimization as a refineme~t '~tep 1~h~ additional inf6tniatio~ · · 

is added to th~ original descriptio~s: •~ than a ~~pl~ ~~finiiion of lhe' system. This avoids 

repeated. ·~ri~tio~ of ~e I ~e information fu diff~nt ways, and ~uc'es opportunities for mdhig \ ' , . 
. > 

e1TOrs. 
4 } ·~ ' 

1 ·i._ .. 

• Efficiency does not have the highest priority in a prototyping language, but it must be possible to run test 
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cases and gather data in a practical amount of time. Thus execution mechanisms hued on exhaustive 
' ' 

enumeration are insufficient for a prototyping language, although they may be supplied as a default to 
,, ' 

allow running small test cases in the absence of information about more efficient execution strategies. The 

language s~ould therefore support relatively efficient execution mechanisms, tools for locating perfor­

mance bottlenecks, and incremental optimu.ation ttansfonnations to improve prototypes that are impracti­

cally slow. 

• Real-time constraints require execution times to be predictable, although not necessarily very fasL Pro­

totypes of real-time systems may operate in simulated time or linearly scaled real time, but the actual exe­

cution times for the production version must be predictable within accurate bounds. 

3. Example or a· Prototyping Language 

The rapid prototyping language PSDL [4, 5, 10] and its CAPS were designed to support prototyping 

of large, parallel, and real-time systems. The CAPS provides a designer interface for constructing, analyz­

ing, and modifying a prototype, along with execution facilities which realize timing constraints with 

respect to either actual or linearly scaled real-time. 

PSDL encourages localized descriptions and software structures, to aid the designer in constructing 

and modifying understandable models of complex systems. The language has a simple and expressive 

computational model based on ~edified dataflow augmented with non-procedural constraints. The ele­

ments of the model are operators and data streams. Every operator is a state machine and some operators 

are functions, i.e. machines with an empty set of state variables and a single internal state. Every data 

stream carries values of an abstract type, and some streams carry exception values. 

A PSDL prototype consists of a hierarchically structured set of definitions for operators and types. 

Each definition has a specification part for black-box descriptions and an implementation part for clear-box 

descriptions. The specifications are used ~th for documentation of the prototype and for retrieval of reus­

able software componen'8. A specification is executable without further information from the designer if 

the CAPS can automatically retrieve, adapt, and combine the reusable software components in its software 
.-

base to match the specification. In cases where this is not possible, the designer must develop an imple­

mentation part decomposing the specified system into more primitive subsystems and provide black-box 

8 



. . 

specifications for each of the subsystems. The decomposition is done in terms of the PSDL computational 

model, using augmented data flow diagrams. 

An ~~e~ted data flow .~ ~ a directed ~h, anno~ted with control constraints and timing 

constraints1 • The n~ ~ ~ augmented data flow diagram repre~nt operators, the edges represent data 

streams, and the numbers associated with the nodes represent maximum execution times. The diagram has 
.J.. -,1 " ' •,1 .,I ' • ;' .. '.,. t'. 

a graphical. rep~ntatipn and the constraints have a text representation, as illustrated in Fig. 2. The exam-
• I, I • • ' 

pie shows a ~~pie con~I sy~tem Ulustrating some typical features of ~bedded software. The filter per-
.. \ + ' ' I ' • •• I ,• 

I ,I 

forms a smoo~g openJ,tion to reduce the noise in the sensor data, and the controller uses the filtered sen-
• J t I ' ' i • . ' ~ .. I 

sor data to d~ine how to resi>QDd to commands from a human operator, which are transmitted to the 
' 'T ' \ ~ ' -

OPERATOR control_system 
SPECIFICATION ·, .. I 

INPUT gperator_switch: boolean, sensor_data: real 
OUTPUT control_signah real 1' 

STATES state_variable: real INITIALLY 0.0 
DESCRIP'fldN ( top level of a simple embedded system } 

END 
•· . I' • , 

IMPLEMENTATION 
GRAPH :············ -' ····· :·.~··--so ········-~-····1 

·• • · · · ·. UJP~-~_tch :_. .. control_signal~ 
switch ·. . -· 

( I 

state 
variable 

··· .... "· ... sensor data . . . -
: sensor. - ,------aM 

...... . : 
I \ i ~• • •• ••• • • •• • • ••• •• • •••• •••• • •• • " •••• -• •• .• •• • •• • • • 

CON1ROL CONSTRAINTS 
OPERATOR filter PERIOD 100 ms 
OPERATOR controller TRIGGERED BY ALL input_switch 
MAXIMUM RESPONSE.TIME 200 ms 
MINIMUM CALLING PERIOD 200 ms 

END . 

' [ , .•,. 

:'actuator·: 

...... · 
., 

•'-' I 

1• It 

~lg. 2 Example of an Au~en~ Data Flow o ·iagram in PSDL , 
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embedded system via a switch on the operator's control panel A simple smoothing filter might take the 

form 

new state_variable = w • old state_variable + (1.0-w) • sensor_data 

where the weight w is a real number between O and I that must be chosen ·to provide the best bade-off 

between response time and sensitivity to noise. The example has a minimal specification part with an 

infonnal description. The implementation part contains a graph showing the decomposition of the system 

into two subsystems, and the control consttaints give control and timing infonnation. The control con­

straints and the timing constraints detennine both the conditions under which the operators are triggezed 

and the buffering disciplines for the data streams. In general, control constraints can express ~nal 

execution or output, and can control exceptions and timers. PSDL timers are used to control durations of 

states, and can be thought of as software stopwatches. 

Timing constraints can be added to operators to define hard real-time deadlines for time-critical 

operators. Timing consttaints can express sporadic data-driven execution as well as periodic execution. In 

Fig. 2 both operators are time-critical. The filter operator must be fired periodically, every 100 mil­

liseconds. The controller operator is fired sporadically, whenever a new value for the input_switch arrives, 

and must complete execution within 200 milliseconds of the arrival of the new value. 

There are two possible buffering disciplines for a data stream: datajlow and sampled. Dataftow 

streams act as first-in-first-out buffers, and are used for synchronizing data-driven computations. Sampled 

streams act as continuously available sources of data which can be read or updated on demand, and are 

used for connecting unsynchronized operators which can fire at different or unpredictable rates. Dara 

streams have dataflow buffers if and only if they appear in a 1RIGGERED BY ALL control constraint In 

Fig. 2, the streams input_ swi.tch and control _signal are dataflow streams, while sensor_ data and 

state_variable are sampled streams. The triggering conditions express requirements for the controller and 

the actuator to respond exactly once to every new value in the streams input_ switch and control_signal. 

The other streams must be sampled because the filter operator must operate at fixed times and values may 

be written into the sensor_ data stream or read from the state_ variable stream at unpredictable times. 

The PSDL ttanslator[l] generates Ada code for interconnecting operators appearing in an augmented 

dataflow diagram. Fig. 3 shows the Ada code that would be generated for the example in Fig. 2 if the 
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J 

operators filter and controller are realized by reusable components froin the software base~· In the 'example i 1, 

,., I , •. • - 1 

1 ' "· • • , 

we assum~ these'componerfts are·Ada procedures~with_the sanie na~es as•the ~aesponding PSDL opem-_ 

_ tors. There·~ three° diffei'ent 
1

lands. of ~ generated: buffer declarations, •initialization code, and tm~er" 
code. Buffers'~ ~tfuceloi two' pre-defined generic· packages' corresponding 'to the: two bufferiqg djscw-, t• ' 

lines for PSl>L data s~s. The initiali7.8don' code' is executed just once•prioi to the activatiop-Qf th~ ' 

static sched~e tasks. The° dniet pl'Otedures controller 1driveri ,·and,filter driver mw.e ·the control- con~· 
• - - I 

' ' • ' ..1 ~ I -1 . 'l •t , .. - f 

straints and perfonn the "data stream operations. These prqce<lures ·ate called 'from the static sched~,.~ 
' . .- . ' ,; . • -, ..... r . : ' . . ~ ~- ; 

~,-~ r ~ -~ 1 
J • 'Y1 ·• ..,,,. •, , •l ._.. 

(a) generated buffer d~Jarations _ ' · 
(~ ~~ --,~ If 1,, i o \.; I t ; I ' 1 ~ It. J ,I J I 

input_switch_buffer is new fifo_buffer(boolean); 
sensor_~~~l?uff~ .t§ q~".V ~pJecJ_bpffer(real); . 
state_ variable_binf'er is' new siunpled.:_buffer(real); 

r, • • ., 1 / ,., \ l~ h.. '
1 

.. ! l.. • f"JI, I •· , • r ~ r,. 

•) ' 

I t ' ' • ~ • ~ I I' • \ • I •-

' '' I .... ,;,,. 

'/' 

• .. ·.•" , .... : l l 

·,,• t, 

., . 

(b) generated ifiit.iali7.atiorf code . ,, ,t'. . , : • !,'-. ,I: ~ ~ "'.., l ,. • .,. I,. 
) .,, ;. •' .. , 

I ! j I f ..:. f. "'")•~t',j. I 1 ,I, p ,. ' 

state_ variable_buffer. write(0.0); · · · 

(c) ~enerated driver C~ I, ~, ,• 
1 

,, 

procedure controller_driver is 

l t• ' ' I 

input_switch: boolean; 
state_ varialiie, ~ ntrdi_sipal! real; • : . · 

begin \ ' 
if input_switch~&uft:erdlew!.dara then 1. , • • l 

• ,1• I•" 

,, 
. t' ·: :_ 

l-

input_switch_buff~ .read(input_switch); 
statiLvaiiable.:..bmfer'.:reall(sfate.:_variabl<'); ,_ "i • I ·~ I 

contrpll~input_s,wiJeh, ~tare_ variable, control_signal); 
corifrol_signaf ,:.buffer!:\viite(conttol_sigruil); . ~ · 

end if; 
end conttoller~dHver,·· ,.: .'II;. ; ' • : . : ·•. . ' ' . I 

procedure filter_driver is 
sensor_data,-state.:.. variable: real; . -. 

begin 
if sensor_data_buffer.ne'Y~~ , th~n_ 

sensor_~_buffer~(s~or_~ia); 
sta~~ v~le~buff~r:fe8(1(s~te~tariab~); 
filter(S'eDSOr_data, state_ variable); , ·· 
state~variable_buffer.write(state_ variable); 

end if; 
end filter_driver; 

.... 

.... ·, 

Til '" l f " .., 

:, r,, • 

Fig. 3 Generated A• Cqd~ for ~e Co~troljystem 
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11 

;1 t I .J.. o t • ....... J It •~ / ., I I 

I!!, .f, 

\ j.,_, • ,,·; '1r 

.'•I • 

, • • I-.... ~ I• 

,• ,' . 

·,:• j Wt•.•: I 

I!! 



at times detennined by a pre-computed static sched¥1,e. 

The timing constraints associated with time-critical operators are realized by the static scheduler in 

CAPS. A static schedule for the operators in Fig. 2 is shown in Fig. 4. This schedule repeats ~very.400 

milliseconds. Since there is no explicit deadline gi~en for the filter operator, the deadline defaults to the 

maximum execution time, and the operator is sched\tled at intervals exactly 100 milliseconds apart. The 

initial firing of the filter is· scheduled before the initial firing of the controller because of the precedence 

relation created by the data stream .state_variable. The controller is scheduled so that a response to any 

request can be completed within 200 milliseconds of the request, regardless of when the request occurs. 

. Each instance of the controller in the schedule is responsible for handling only those requests that arrive 

after the previous instance of the controller has started execution. The instance of the controller that starts 

at time 275 is interleaved with an execution of the filter. This is permissible because operators do not 

interact except via data streams. These interruptions are realized in Ada by making the calls to fil!er _ driver 

and controller_ driver from two tasks with different priorities. There are short periods of time at the begin­

ning and at the end of each execution of an operator when such interruptions cannot be scheduled, because 

of atomic read and write operations on the data streams. 

PSDL was designed so that operators can interact only via data streams. This locality property 

simplifies the design and modification of prototypes by ~nsuring that operators can be ~xecuted in parallel 

without interference and can interact only via the documented interfaces, and also makes it easier to con­

struct schedules. The locality property is realized by the absence of a mechanism for transmitting objects· 

with internal states along data streams and scoping rules that do not allow direct non-local data references. 

GJ. le 
0 25 75 100 125 150 200 225 275 300 325 350 400 

F = filter, C = controller 

Fig. 4 Static ~hedule for the Control_system 
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4. Desipbag ~~ ~tqtypi!Jg ~?9guage 

J .. \•, • .,, -., .- .. 

1:": .. . : 
A prototyping· laligQage ~0~$1. mmplify lJ!C ~gner's vi~w of the system and support_ auto~ted ;, 

. . -
means for bridging the gap. ~tw~!\.-1~ ~plifi~ vi~w ~d the detailed algorithmic desciiptiohs currently 

- f I • l : ~ r • 

needed for efficient execqtion. . Th~ f ~ : 
1
rys~m sho~d provide mechan~s for execution, static 

. " , ' . 
analysisr prepamtion of tt;st cases, .display and analysis of results, and debugging to allow the prototype 

., Ii,, --i • ~ :' ('~ ,l • . 

)' ; • ,. •• ft , I 

designers· to work eptirely,;wi_tN,n. ~ tS,lllJP~~ vie~. 
.:1 t.' 

) . 

1 •• . .. .. i 
'I 

4.1. Static and Dynamic Properties 
'' . 

I -',o •, ' J • .. •., • : : I •' 1 -' .f ~. • i I 

-~~c ~operties of a computer language · must &e fixed before ·a system is execu~ )Yhile d~~~ 
l { I '/ t,. ' • l .... Ir,, .. •• 

properties can be changed as the system ruris. Prototyping languages should supP,Ort.d~c treatment of 
• f' (; t " t'._, ' I ,. '-·•• ,~ ' rl-

objec~ ~ch as data~' ~~tors: and tiifiing·constrairits'm support flexible,4efflqnstratiqns and proto-
, ! t,•., ' )l / ' 1• .., ' • I • ' • ~ ) 

A..'·,~,,,,. ... ~ • 

typing of a~ptive systems. For example', ptogi'am\s I that 1can manipulate data types, ,P!Ograms, and 
• ' ' : \'.. _, . . "'JI 

,f:i ,; ,··)• .f", • ,I r' , l.1 . -;, • , 

schedules at run-time can adapt to unanticipated circum~tallces more .readily than .those that cannoL 
I I f, ,. ( \..- .. r J • -· I , ,1'- r ~~ I • • ••,.,: I , ., 

~ ( , , ,~1.' l' •' f. ' - ' ~. 

, T¥s g~ ~ ,h3nt ~ m~~ ~~ static' dec~tions""'allow tools to provide· more infqpgatl9..n about a 
~ ,A} 'j, ✓ f~ "r 'I 

propo~ ,Y.s~ .. ~ d enable more efficient exec~tion iechruqiles. A protatyping· ia.t~ge · ~th qiany 
"" I -,..,_ • • • "' ,;,• " ,- ..1 "I',. r 

dynamic features req~ type ch~khlg~ ., ~.ter. calls or compilation, '1()3ding,~an4 , linking~.~ ~~ 

scheduling to be done as the system runs. These facilities are difficult to implement efficiently, and are not 
• 'II I I 

supported by Jhe class -"1~ !{m~g~ ~~.Y ~ for ~roduction versions. Unifonn pmlltees' of type 

conecliiess. clean leD!!inaliOIJ, pr,~~-:~ .rel!i-tim; constrahlts may nol 'tie' p>SSl1,1e·witoout'static res-
" J ' • ~, • ~ ~ ' 

trictions on these properties. Thus a prototyping language should be 'able to repn;~nt optional ~tatic res':' 

tri~tions, and CAPS. ·sho.ulc\:~upl)011, transf9~ations adding explicit static restrictions Id imp~ve efficiency. 
... f ' I ~If I I r 

& I ~ '- I ~I • .. 

or ~'4•ctability~ · · · · · ' 
}'A'l,IU& • (1, • [ /1, • ' I) / 

• '• \.; ,ii ;I , .: I 

J l\ ..,• 
' •, • d 

• •• I• /'' 

i , ,, 

4.2. Computational Mod~i · 
,.' .J~ • • ., . , ,I ' 

l : ....... ; I,-:,. 

:- ,, . ~ , "' . ~··, ,. :.. 
.. ,.,.-... " ' 

I • 

·~ . . . 
"1• ; : ,.. ' .. 

. , .. \ ' 
The models llllderlying the language provide the common ground for the mociated set of tools. The 

se~ti~ mqc;tel {9£ the language provides the ~ °r~~-a~tomated anaiysis,i while· the cornpqtatiQDal ~odel 
• • °1 ~ 1 ' 7 'I ) •, ~ •' 

' J ( •' I 'l ,•1~ t • . • 

povi~ f:119 basis. for execution. One of the main challenges in :aeveloping a .protoJ;y,pjng langupge js 
- • • ·. .. ' i • ' ,, • '·' ' .- ' J ' ' ~ ' f •• •. • } 

finding models, ,ai,~,~ coherently span .the range of ~licauons required. . :, ';·. '·. ' ;:, . . l ': 

1 ;--,,,.; .• t i' ·••,.{,,l, • ~ I 

c"\ , 
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There is no common model of expert systems available for mpid prototyping. First order logic is one 

of the most familiar models for reasoning, but it has been criticized for its weaknesses, such as difficulties 

in handling uncertain. information, representing heuristic methods for speeding up conclusions. ·and per­

forming no~-monotonic reasoning. Many other kinds of logic have bee1i proposed, but there bas been no 

consensus on -whether there is a single logic suitable for constructing all types of expert systems, or which 

variety of logic is the most promising. Some approaches to ~xpert systems use· models other than logic, · 

such as semantic networks, Bayesian statistics, and production systems. It is not clear which approach ~ill 

yield the best results in the long run. 

I 

There is also no commonly accepted model for representing real-time constraints. Some approaches 

that have been explored include tempoml logic, state machines, mode charts, augmented data flow 

diagrams, Petri nets, and 1/0" automata. The model for a Pll?totyping language sh~uld be chosen to enhance 

the application of recent results in logic, graph theory, and combinatorics to provide an effective execution 

mechanism. Other unexplored areas include effective models for real-time databases and real-time com­

munications networks. Since different models appear to be .best for different purposes, practical prototyp­

ing languages should seek a unifiecj way to support J!lultiple models. This requires careful attention to the 

intemctions between the language and the set of pre-defined components that can be supplied by the CAPS: · 

4.3. Execution Support 

A knowledge-based approach is needed to provide adequate execution support for a prototyping 

language without requµing excessive algorithmic detail CAPS should provide knowledge base support for 

the following functions: 

Design - The CAPS system should contain models of common design activities and common classes ~( 

design decisions, to allow prototypes to be expressed in the conceptual framewodc of the designer mther 

than that of the machine. If the system is aware of the choices faced by a designer at each point in the 

design, it can present compact representations of the choices using m~nus. Such alternatives should have 

corresponding representations in th~ prototyping language. 

Managing reusable components - The environment should contain a large software base with reusable 

components. This software base should be coupled with a set of rules for tailoring and combining available 

components to fulfill queries that do not exactly match any of the components explicidy stored in the 
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·software .b~.- This ~~ows the system to find algorithms and data structures without .imposing all ~f the 

details onJhe design~. 
, I • 

High level debugging - Errors and failures during prototype execution should be mapped from the pro-
., I ' • 

gramming ~guage le~el to level of the prototyping Iangriage, to keep programming details from intruding 
• 1 . ' I 

when the tlesignei: tests ,and ~Cf!lODStrates the prototype. 
,: 

Optimization - The transf Q~tions for optimizing a pro~type version 1of.a system to produce a production 
,, ' 

version·Jshoqld be performed~~ m~um interaction with the designer. CAPS should keep track of 
~ . 

optimization .decisions made for previous version; of the system, determine which of thQSe decisions are 
,. ..,.1 ' • 

valid for later ve~ions, and automatically apply the ones that are still valid. While it is.not currently feasi-
~ • J I • 

hie to. produce highly optimized implementations without human help, it· is po$Sible to automate routine 

decisions ancJ ;rely on th,~ ,;lesigner for only the difficult decisions. 
' ,, ' ' 

Explanations - Justifications for decisions made by CAPS should be available to pro~ feedback to the 

designer in cases where automated design completion procedures fail. . Such a t.cfilty is needed .to support 
. .. ·• . . 

systematic computer-aided desi~ in situations where· complete automation i~ not ~Sl"ble. This requires 

an expert sy~tem with a subsqntial ~owledge base. . 

It is natural to consider the execution aspect of a prototyping language in terms of coqipiler technol-
• · ... 

ogy. Unfortunately, ordinary compiler technology is insufficient for execution · of a mpid prototyping 

langµage. The reasons are: 
.,. I') . 

* 111~. p~ for flexibility and.
0

ruri-time handling of newly ~ lypes and proced~ to support expert 

systems provides challenges for efficient implementation techniq1;1~. . . 

• Cony~~onal
1 
translation techniques· must be coupled with facilities for scheduling to meet ~ real-time 

' I l , I .-

constraints, transfonnations to allow die _execution of incompleiely ~ecified processes, and access .to an 

inteipreter or an incremental compiler at· run-time. 

• Some of the issues that must be faced by an execution ~upport ~ystem for a prototyping language are 

providing missing details and ensuring that real-time consttaints are met. One of the goals of _a rapid proto­

typing, system,is. to ex~ute prototype descriptions that do not contain details of algorithms and data ~c­

tures [9]. ~ bu to be handled by combining program transformations and specialized schedulers with a 
' .r- , 

knowledge base containing programming and problem domain knowledge. 
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Transfonnations are needed to execute incompletely specified components. Such tnmsfonnations 

should supply reasonable default values for attributes neceaary for execution if the designer does not 

explicitly specify them. Different choices for these attributes can be explicitly specified to produce a more 

accurate model of the system or to improve its performance. In particular, default algorithms for 

unspecified or partially specified components should be supplied. Key problems are finding systematic 

ways of developing such ~formations and detennining reasonable default values based on models of the 

application domain. It is essential to automatically generate stubs for components that are unavailable in 

the software base and have not yet been designed to allow testing and demonstrating partially completed 

systems. Such stubs can be created by simple or increasingly sophisticated techniques, such as asking the 

user to supply values, using random selections from a fixed set of responses, using logic programming to 

simulate black-box specifications, or using transformation techniques to generate efficient implementations 

from the black-box descriptions. Other examples include assignment of tasks to physical ~rs and 

choosing display formats for outputs and error messages. 

5. Semantics of a Prototyping Language 

The key to computer-aided prototyping is finding simple formal models that can express the range of 

expected applications and effectively support automated processing. 

5.1. Supporting Real-Time Systems 

The language and the CAPS knowledge base should support representations for timing constraints 

and overload resolution policies. Scheduling is a difficult issue for real-time systems. High level represen­

tations of timing constraints and overload resolution policies are ~sential to allow the prototype to express 

the necessary constraints on the scheduling of different tasks at a level matching the problem rather than at 

the level of the underlying run-time support system. Timing constraints on communications primitives are 

needed to handle disttibuted real-time systems. 

5.2. Modeling Parallel Systems 

· High-level mechanisms for coordinating independent activities [3] and primitives for defining 

independent activities that are guaranteed not to interfere with each olher are needed to simplify and speed 
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:~ I i • ! ) •• / I , "' 

up the construction·-ofj ~el ~systems. LocaJi:r.ed modules with limited cklta access are ~iltial fm diis 
• I•. 

- . 
purpose. Mes.uge passing, dataflow, and object-oriented ideas have been proposed to address this prob:- -

lem. Another consideration is avoidance of deadlock. It is useful ·to have a syntactically reccfgni7.able, sul>:, 
•'" .. /. I 

set of the lan~e that is capable of ~bing concuirent' computations and carries a ~onn ~ 
of freedom from deadlock. Such a gwirimiee is pds.,ible 'if a suitable compugm~ m~l is_ cJiosen. ~ 

kind of restricted subset is suffici~t for many applications, and it can be auggiented with facilities for 
ft • 

l , • ' 

adding additional constraints ori global··orderirigs of events,,iwhich, are ~Qwn to _be p<>tentially unsafe and 
• ' ,,. ! ' fl ,-

are designed together with idols for checking safety of par.ticular designs. For example, atomic· transac-
,1 ·-, •• t , 

tions can s~plify the design of distribu~ $ystems, althou~~ the~ intr~uce the ~tenthd 
1

for·~. 
( r • • 
•,I ·, • ' . ,, . ··~ ;, f ,, "',, 

5.3. Desi~~- Q~ibuted. ~,s~ms 
' ' , I 

A prototyping language should provide a high level means .... for describing 

(1) constraints on communication time, 

(2) 

(3) 

. . 
tjle granularity of atomic'•~sacti~ns, 

•I . , 
•I 1 

• • j r ~ ., -~1". 

j -,~ ,. 

,· .. •• ,,, ,1 il ,. 

,•·,).'. 

.I • 

s~dard l>fP~Ols fo~ achie~~-re~ility desi,iri processing arid ·communie3tiqn~ f,il~. aq~· _ 
... .,l t ' 

(4), · col}Straints on the ~~ent of software tasks to physical processors. 
. ,. ' " 

This · fufonnation shollld ~ op,tional, and the default ~ould be, the' siilesi option· ratlier than tho most 
' ' ' '- •, 

, • ,•. 

efficient one., ' 
V '.; ( 

l"t/1, : ._ !•, r. 
,I.• 

. -

5.4 • . ~ot~~ing Knowledge-Based Systems ·,: • .,,, ''. : . 
. ' ' 'J,oo . ' . . . 

)'' CAPS can provide generic predefined software components to rea1i7.e ~~y Qf the cpmmon building 

bl~ks ,{ot knowledge~based. sy;~s. Th~ include facts, 'rules, ,patterns, frames~ con~~~. ~nstraints, 
I ' .. , ( t I 

. I ~ ; - t i - . . I L 

denions, instance generators, pattern mai'chers~ unifipation me.chanisms, cQnstraint propagation mechan-
, ~ ') '1 •' •,1 ~ , i• I , J r 

isms, and inference engines. standardil.ation requir& careful analysis. Qf tti~ components and 
. , 't .. '. 

~ification of their required properties. An open issue is whether current mechanisms for defining gen-
, , ' " ',.) ~ . ' . . 

I ', 1 I , . • 

eric components are fledlle enough to adequately capture the ~ge o(: ~havi~ required for these kinds of 
) l I ' • ~ , 

I components, ~d if no~ w~t extensions are requimt . ! .' , • • 

..... 
~' 1, 

.. '!;oi..t -.I _( l•'; 
I .- • .,f 
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To support rapid construction of expert systems a prototyping language should provide: 

(1) a means for conveniently defining external representations and input facilities for the knowledge in 

the knowledge base, 

(2) unrestricted higher order objec~ such as types, functions, tasks, and generators, and 

(3) control mechanisms such as state-triggered demons, backttacking, run-time control over task prior­

ities, and temporal events. 

Several of these features are needed to support flexible prototypes for other kinds of systems as well. 

The presence o_f real-time consttaints severely restricts the kinds of computations a system may per­

form, and in the case of expert systems, limits the amount of logical inference that can be performed. The 

design of expert systems that operate within real-time constraints is a largely unexplored area, and 

significant research progress is needed in this area to fully realize the goals of a rapid prototyping language. 

6. Conclusions 

Prototyping languages are designed based on knowledge and experience from all levels of the com­

puter language hierarchy since they address functions from all of the levels. Studying the relevant aspects 

of specification, design, and programming languages is helpful in the design of prototyping languages. 

The purpose of a prototyping language is to define an executable model of a system. The language is 

used to create specifications, express designs, and execute prototypes. Prototyping languages are used in 

requirements analysis for the purpose of requirements validation via early demonstrations to the customer. 

They are also useful for evaluating competing design alternatives, validating system structures, and explor­

ing feasibility. In contrast, specification languages are used for defining external interfaces in the func­

tional specification stage and for defining internal interfaces during architectural design at the highest levels 

of abstraction. They are also used for verifying the correctness and completeness of a design or implemen­

tation. Design languages are used for recording conventions and interconnections during architectural 

design and module design. 

The difference between specification and design languages is the difference between interface and 

mechanism: a specification says what is to be done, and a design says how to do iL The main evaluation 

criterion for both specification and design languages is the ability to express simple, concise, and humanly 
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undersUp\dable -d~pti~~ (?f compl~~ behavi,or. l~ i~ useful f~ SJX:Cification and design languages to be 
I • ',:t 

executable,, but .~implicity,~d ~ pf ~xpression takes precedence when the considerations conflicL Com-
. ~ r , • t 1 r , ~ l ! .. " 

- • ,. tJ ! ,I 

puter ai«:i is desirable for determining the properties of a specification and certifying that a design realizes a 
I ., •• • 

specification. An execution capability can contribute to these goals, but other types of mechanical analysis 

may tum out to be more useful for this pmpose. .. .. ' 

Th~ dif,ference ~tw~~-a-~igi;i .. d a popam !S the ~erence between a plan and a finished pro-
.. ;1 t ' t j I• •"" ',... :• -, •• r 1.• • ,I • t• 

duce a design records the ~ly decisions that.detennine mt implementation strategy~ while a program con-
~ J I .L , ~ ·, ' ' i 

tains all ~e details necessary to get an efficiently execuqml~ sy-~ The pri~ g~ of ~~gn is ·4oc1': 
, .. i' 11 • . . \ lii J lt , , . . r , t • ,,.. .. 

mentation rather than execution, wl}il~ ~e primary goal ofsf pro~· is usuAi:tf efficierit'execg~oru l, 

,, I , ; ; i 

'Ji:· prototyping language aims at validating .~iJi~ons, and designs ~Y ~ ~ execuµpn ' facli-
• ":' ·• 1 I l.11 t • 

ity. P{QtQtyping·, langua~ can benefit from . mechanism~ developed to increase the expressiveness of 
' I . • I I •. f I ' t J ' ,i (.' l'I' I , ' 

specification and design languages, but must ~pt some ,restrictiqns to ~support execution. The execution 
, ~· ~:,.~i";_.1- ! ./ r _, .. ' - ~ ' . 

mechan'isms of a :prototyping language should draw ~ pro~ing l~g~ge,~futology, )~u~ m~t ~ ~pt 
I I ; 

some inefficiencies to sqpP9rt fl~xt'bility apd ease of expressiop. The constructs of a prototyping lailguage 
. • , ·: ~• • . ,.. , , , '. ', " ~I, , . ,r ; , 

shoul~. ~ , chq~ to all~~ generati~n o( efficient implementations by smoothly adding· additional informa-
~ • ~ ' ,:, l-1 • _. l • ~ • • ",. l ' • 1 I , ' ' ~ 

'/ ·,t·· • I tion and constraints. . ( , • • • ' ' I • • ,• i • 

I .. ,: j I I •·• • ' •• • ' '•"\ 

•.! ! , r 

~ince completely. automatic and totally correct implementation of powerful speciq~on Jan~ges is . 
I • 1 't r 

an algorithmically unsolvable probl~, ~h ;~n mpi(l ,prot9typi_ng sho~d explore hugi..,an iritemctions 
' - • 1 I" ~ 

for effectively guiding computer-aided implementation tools. A promising approach is augmenting abstract 

specifications with annotations or pragmas giving advice about implementation strategies. An important 

problem is finding concepts and notations that can natura11y,express such advice in an abstract and orthogo­

nal way. It is desirable to keep the abstract specification separate.or easily -mechanically separable from the · 

annotations to provide simplified views of large system models. 

Providing execution capability· for high level prototype descriptions requires a knowledge based 

approach. The required knowledge bases grows with the problem domain the language addresses. A sub­

stantial part of the knowledge in the knowledge base consists of reusable software components augmented 

with descriptions of their properties. Other kinds of relevant knowledge include methods for adapting and 

combining the components in the software base, propertie.1 of application domains, and the CAPS tools. 
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Progress on rapid prototyping languages depends on solutions to open research problems iii areas including 

semantic modeling, real-time scheduling, program ttansformations, version control in prototype databases, 

and retrieval of reusable software components. 
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