
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

Normalized Specifications for Identifying
Reusable Software

Luqi
Naval Postgraduate School

Luqi, "Normalized Specifications for Identifying Reusable Software", Technical
Report NPS 52-87-007, Computer Science Department, Naval Postgraduate School, 1987.
https://hdl.handle.net/10945/65230

Downloaded from NPS Archive: Calhoun

---r

NPS52-87-007

NAVAL POSTGRADUATE SCHOOL
Monterey, California

NORMALIZED SPECIFICATIONS FOR IDENTIFYING
REUSABLE SOFTWARE

LUQI

MARCH 1987

Approved for public release; distribution unlimited

Prepared for:
Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

This work was prepared for the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Department of Computer Science

Note:

LUQI
Assistant Professor
Department of Computer Science

Released by:

KNEALE T. MARSHALL
Dean of Information and
Policy Science

This project was supported by the NPS Foundation Research Program which was
funded by the Chief of Naval Research, Arlington, VA 22217.

'

I.

•

f

•

LiJ
U'I
z

-w
Q.

X:
I.LI

...
z
I.LI
:E
·z
a::
I.LI

' >
0
l!)

I
~

a
LiJ
u
::>
a
0
a::
Q.
LiJ
a::

t

I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

NPS52-87-007

r- GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Normalized Specifications for Identifying
Reusable Software

7. AUTHOR(.s)

Luai
9. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, CA 93943-5100

11. CONTROLLING OFFICE NAME ANO ADDRESS

Chief of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME & AODRESS(tl dlllerent from Controlllnf Office)

16. DISTRIBUTION STATEMENT (of thl.s Report)

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(•)

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WOAK UNIT NUMBERS

61153N: RR014-01
N0001487WR4E011

12. REPORT DATE

March 1987
13. NUMBER OF PAGES

12
15. SECURITY CLASS. (of thla report)

Unclassified

15a. DECLASSIFICATION/ DOWNGRAOING
SCHEDULE

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the •b•tract entered In Block 20, II different from Report)

18. SUPPL EM ENT ARY NOTES

19. KEY WOROS (Continue on reverae aide JI nee•••.,,, and ldentlly by block number)

Reusable Software, Component Specification, Software Base, Rapid Prototyping

20. ABSTRACT (Continue on reverae aide II nece•••ry and ldentlly by block number)

DD

An approach to retrieving reusable software components by means of module
specifications is described. The approach depends on normalizing
specifications to reduce the variations in the representation of software
concepts. The concept is illustrated in terms of both formal and informal
approaches to component specifications.

FORM
I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S.' N 0102-LF-014-6601
UNCLASSIFIED

SECUMITY CLASSIFICATION OF THIS PAGE (When D•t• Bnt•r•d)

•

,

t

,

•

Normalized Specifications for Identifying Reusable Software

Luqi

Computer Science Department

Na val Postgraduate School

Monterey, CA 93943

ABSTRACT

An approach to retrieving reusable software components by means of

module specifications is described. The approach depends on normalizing

specifications to reduce the variations in the representation of software con

cepts. The concept is illustrated in terms of both formal and informal

approaches to component specifications.

Key Words

Reusable Software, Component Specification, Software Base, Rapid Prototyping

1. Introduction

Reusable software has been identified as a promising means for increasing

software productivity [8, 9). Reusing software is especially effective when used

together with a rapid prototyping approach to software development [3,4). An

effective way to retrieval reusable software components from a software base [2) is

needed for this approach. Two important problems must be addressed to achieve

effective component retrieval:

1

(l) Find all of the components m the software hase performing the function

requested by the designer;

(2) Find adaptable components with similar functions in cases where the

software base does not contain any components corresponding exactly to

the retrieval request. This paper is concerned with the first of these prob

lems. An approach to the second problem can be found in [6, 7].

The effectiveness of a retrieval scheme can be measured by the difference in

effort between finding a reusable component and designing, implementing, and

testing a new one for the same function. A proposed method is using module

specifications as a basis for retrieval [2]. This method should be effective because

the module specifications must be produced anyway in software development pro

jects of appreciable size. The normalization of the specifications for software com

ponents must be developed together with the retrieval techniques based on those

specifications [6]. None of the previously proposed systems for retrieving reusable

software is able to do so based on semantic specifications. Such a facility is crit

ical for the application of reusable software to rapid prototyping, where designer

time is restricted.

The essential problem in component specification is to enable efficient

retrievals based on specifications without eliminating the expressive power needed

for the practical application of black-box specifications in design. The limited

designer effort available in rapid prototyping dictates that the same specification

must be used both as a design tool and as a basis for computer aided retrievals of

reusable components. Different designers think in different ways, and they are

likely to reject any notation that allows a given concept to be expressed in only

one way, because the rigid thinking style imposed by such a notation would be

too cumbersome and unnatural for most of them. However, information retrieval

2

•

f

1s made much more complex by having many different representations for the

same information. Existing methods for information retrieval are based solely on

the syntactic form of the descriptions stored with each component, rather than

the semantics of the descriptions.

We propose to solve this problem by seeking specifications with a normal

form that can be generated mechanically. If many different specifications with

the same meaning can be reduced to the same normal form, then designer can

have freedom of expression while allowing the information retrieval system to

have fewer syntactically distinct forms for each semantically distinct module that

may appear in the software base, since they can be unboundedly many syntactic

forms for the same semantic description, reduction to normal form is a more prac

tical approach than attempting to generate all variations and searching the

software base for each variation. Our approach requires normalized component

specifications to be stored in the software base along with the implementations of

the reusable components. Component specification in queries must also be nor

malized before being submitted to the software base management system. Two

kinds of normalization techniques for specification are discussed respectively in

section 2 and 3.

2. Normalizing Informal Specifications

Informal specifications are easy for people to use, but they are difficult for

machines to process. The normalization transformations that can be applied to

natural language specifications are either shallow or require automated under

standing of natural language. The shallow approaches are not strong enough in

the sense that there are many equivalent descriptions that cannot be reduced to

the same normal form by means of syntactic transformations. Programs for

3

understanding natural languages are very difficult to build. Standardizing termi

nology is one way to normalize informal specifications. This can be done by using

a synonym table and a text substitution tool (e.g. the sed stream editor of Unix).

An example of a fragment of a synonym table is shown below.

+--+
I TERM I ALIASES I
+--+
I update I change, modify, refresh, replace, substitute I
+--+
I read I fetch, obtain, input, get, retrieve I
+--+

The transformation defined by such a table simply replaces all occurrences of the

aliases by the associated basic terms given in the table. For example, the sentence

"Fetch the order from the transaction file and modify the inventory"

would be transformed to

"Read the order from the transaction file and update the inventory"

This kind of approach has the virtue of being easy to implement. It has the

disadvantages of introducing subtle changes of meaning and of still leaving many

syntactically different ways of expressing the same idea, lowering the probability

that a component in the software base will be found based on an independently

constructed description of its function. This kind of transformation changes

names, but preserves the structure of the original statements, so that individual

stylistic differences will result in distinct normalized specifications, even though

they may be paraphrased versions of the same statement. Nevertheless, this sim

ple approach may have some practical usefulness in the early stages of require

ments analysis where the dominant representation is English text.

Another approach uses a natural language parser to produce a frame-based

representation of the objects and relationships described by the informal

4

t

•

r
J

~-

specification. A potential advantage of such an approach is to allow different

styles and sentence structures to be normalized to the same representation. The

disadvantages of this method are that it is expensive, requires specialized skills to

implement, and is difficult to apply unless the subject matter is restricted to a

domain with a small vocabulary. Furthermore, the ambiguities inherent in

natural language remain, resulting in the retrieval of components that are not

relevant to original specification.

A more practical approach is to give up trying to model the precise meaning

on the informal specification, and to rely on keywords to try to capture an

approximate set of relevant components. A problem with this approach is assign

ing keywords to modules. Manual approaches to classification such as (7] are

error prone and may require a relatively large investment for assembling a large

software base. This has been avoided in [1] by using a vector of term frequencies

in the document instead of manually chosen keywords. However, the resulting

uncontrolled vocabulary leads to more false retrievals and requires an interactive

session to adjust weighting factors until a suitable ranking of candidate com

ponents can be obtained. The effort required in both approaches for weeding out

false retrievals makes informal specifications unattractive as a basis for component

retrieval supporting rapid prototyping.

3. Normalizing Formal Specifications

Formalized specifications are subject to stronger transformations, which can

reduce two specifications to the same normal form even in cases where they have

different structures, reflecting different conceptual approaches to describing the

problem. We illustrate these transformations by means of an example. A specific

syntax is needed in order to show the example. We use ordinary mathematical

5

notations here, to make the examples easy to follow, and we do not intend to

imply that the same rt>presentation will be used by the programs for normalizing

specifications. Consider the two specification fragments shown below, both of

which record the requirement that the sequence REPLY must be sorted m

increasing order.

A: 1 <= i < j <= length(REPLY) ==> REPL Y[i] <= REPLY[j]

B: REPLY = a @ [x] @ b @ [y] @ c ==> x <= y

Specification A uses indices in the REPLY sequence to describe the required ord

ering, while specification B describes the same ordering in terms of subsequences

and the concatenation operator "@". Logical implication is denoted by "==>"

and the sequence of length one containing the element x is denoted by "[x] ". The

REPLY keyword is a constant with a special interpretation, representing the out

put value of a software module.

The transformations and simplifications that can be performed on such

specifications depend on knowledge about the the properties of the operations on

the underlying data types. These properties can be expressed as conditional

rewrite rules to make the simplification process easier. For example, the relation

ship between indices and the data value at a given position in a sequence is

described by the following rule.

Rl: s = a @ [x] @ b ==> s[length(a) + 1] --> x

This rule says that the index of x in the sequences is length(a) + 1, which follows

from the convention that the index of the first element of a sequence is one. The

notation "a--> b" means a = b, with the additional directive to substitute b for a

in the simplification process, but not vice versa.

6

•

Rule Rl can be applied to specification A under the substitutions (s:

REPLY, i: length(a) + 1) to give the reduced specification

Al: REPLY = a @ [x] @ b & 1 <= length(a) + 1 < j <= length(REPL Y)
==> X <= REPLY(j]

Rule Rl can be applied again, to Al with the substitutions (s: REPLY, J:

length(c) + 1) to give

A2: REPLY= a@ [x]@ b & REPLY= c@ [y)@ d &
1 <= length(a) + 1 < length(c) + 1 <= length(REPLY) ==> x <= y

At this point, some more rules describing the properties of the "<" operator are

needed.

R2: x < y + x --> 0 < y

,/ R3: x(ly y + x --> 0 < y

R4: 0 j = length(s) --> true

R5: true & p --> p

R6: p & true--> p

R 7: x < = y < z -- > x < = y & y < z

R8: x < y <= z --> x < y & y <= z

Rules R2 and R3 are facts about the standard ordering on integers, while rule R4

is a theorem about lengths of sequences, expressed as rewrite rules. Rules R5 and

R6 are standard absorption laws of boolean algebra. Rules R7 and R8 define

repeated inequalities by the usual conventions. The condition

1 <= length(a) + 1

is reduced to true by rules R2 and R4, and eliminated from A2 using R7 and R5.
~

The rules

7

RlO: REPLY--> c@ [y]@ d.

Rll: length(s @ t) --> length(s) + length(t)

R12: length([x]) --> 1

R13: x + y < = z + y --> x < = z

are relevant at this point. RIO is derived from one of the other equations in the

hypothesis of the implication. RU and R12 are basic facts about lengths of

sequences, and R13 is another standard inequality law. The condition

length(a) + 1 < length(c) + 1

is simplified to

length (a) < length (c)

by R 13. The condition

length(c) + 1 <= length(REPLY)

can be reduced to true by applying rules RIO, RU (twice), R12, and then R3 and

R4. The condition is eliminated from the implication entirely by R6. The result

of these simplifications is the following.

A3: REPLY= a @ [x] @ b & REPLY = c @ [y] @ d & length(a) < length(c)
==> X <= y

Further progress can be made by R14, the common prefix law for sequences.

R14: length(s) < length(u) & s @ t = u@ v ==> u --> s @ w

Under the substitutions (s: a@ [x], t: b, u: c, v: [y] @ d) this leads to

A4: REPLY= a @ [x] @ w @ [y] @ d ==> x <= y

which is the same as specification B, up to renaming of variables. Variable names

can easily be standardized, by picking them from a fixed list in order of

occurrence in the formula. The result of doing that to either A4 or B is shown

8

•

below.

A5: REPLY = xl @ [x2] @ x3 @ [x4] @ x5 ==> x2 <= x4

AS may be less readable to a human than A4, but is quite suitable as a basis for

automated retrieval.

4. Conclusions

Formal specifications appear to be more suitable as a basis for the retrieval of

reusable software components than informal specifications. Formal specifications

are free from the ambiguity inherent in natural language specifications because

formal languages used have been expressly designed to avoid ambiguity. Using

predicate calculus as the formal language has the advantage of bringing to bear a

well studied area of mathematics, namely logic and the theory of term rewriting

systems. These systems bring with them more powerful transformations that

preserve the meaning of a sentence while dramatically affecting its form. Since

many formal specification languages are close to predicate calculus, it is relatively

straight forward to map such a specification into first order logic. The

specification for the reusable components in a software base can either be written

directly in predicate calculus, or they can__b_e_ w_ritten-in some a.the for~al

specification language and mechanically translated into_predicate- calc.ulu_s_.,_ The

latter approach has the advantage of enabling the same software base manage

ment system to accept components with specifications in a variety of formal

languages, allowing more effective use of existing module specification. In such an

approach, each module would have an implementation and two different ------------- -
specifications, one for hm;nan consumption, and a mechanically derived normal- .

ized form that would be used only by the component _retrieval system. --
9

More work is needed to develop simplification rule systems that are strong

enough to standardize many common ways of expressing the same concepts, while

still remaining disciplined enough to allow a uniform guarantee of termination.

Such simplification systems are needed for all of the data types commonly used in

specifications. A uniform approach to constructing such systems is needed to

properly handle user defined data types, since the set of types used in practice is

extensible. Since the general word problem in algebra is undecidable, it is not

reasonable to expect a perfect solution to the problem, which would be a system

that reduces two specifications to the same normal form whenever they have the

same meaning. However, a normalization technique does not have to be perfect to

be useful for component retrieval. It suffices to be able to reduce commonly

occurring variations of a specification to the same normal form most of the time.

Furthermore, many of the data types in common use do have simplification sys

tems that lead to unique normal forms. It is reasonable to expect to be able to

find normalization systems that are strong enough to be useful for specification

based retrieval of reusable software components. This approach is especially use

ful as a practical aid to rapid prototyping [5].

Another subject that deserves further attention is the development of heuris

tics that allow some transformations that expand a term rather than simplify it

under some circumstances, but still guarantee termination of the simplification

process. An example of such a situation is the application of RIO in going from

A2 to A3 in the previous section. Such steps appear to be necessary to enable

reductions of substantially different approaches to specifying a concept to the

same normal form.

1. C. Landauer and C. Mah, "Message Extraction Through Estimated

Relevance", in Proc. of the Second International Con/. on Information

10

ll

()

•

Storage and Retrieval, ACM, Dallas, 1979, 64-70.

2. Luqi, ''Rapid Prototyping for Large Software System Design", Ph.D. Thesis,

University of Minnesota, 1986.

3. Luqi and V. Berzins, "Rapid Prototyping of Real-Time Systems", Revised

for IEEE SOFTWARE, 1987.

4. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time

Software", to appear in IEEE TSE, 1987.

5. Luqi, "Research Aspects of Rapid Prototyping", NPS 52-87-006, Computer

Science Department, Naval Postgraduate School, 1987.

6 . Luqi and V . Berzins, A Knowledge Base for Retrieval Reusable Software, To

be submitted to ACM-IEEE 1987 Fall Joint Computer Conference, October

1987.

7. R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability",

IEEE Software 4, 1 (Jan. 1987), 6-16.

8. R. T . Yeh, R. Mittermeir, N. Roussopoulos and J. Reed, "A Programming

Environment Framework Based on Reusability", Proc. Int. Conj. on Data

Engineering, Apr. 1984.

9. R. T. Yeh, N. Roussopoulos and B. Chu, "Management of Reusable

Software", Proc. COMPCON, Sep. 1984, 311-320.

11

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943-5000

Office of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943-5000

Luqi
Code 52Lq
Computer Science Department
Monterey, CA 93943-5000

Chief of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Chairman, Code 52Lu
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

12

2
0

2 '

1

100

1

1

l

J

