
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Interactive Control of Prototyping Process

Luqi; Lee, Yuh-Jeng
Naval Postgraduate School

Luqi and Y. Lee, "Interactive Control of Prototyping Process", Technical Report NPS
52-89-025, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65232

Downloaded from NPS Archive: Calhoun

1 2
r,

NAVA°C POSTGRADUATE SCHOOl
Monterey, California

INTERACTIVE CONTROL OF PROTOTYPING PROCESS

LUQI

YUH-JENG LEE

APRIL 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
.Assistant Professor
of Computer Science

Released by:

and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1 b . RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY ~. DISTRl~UTION / AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-89- 025
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &
_,

Naval Post2raduate School ONR Sponsored Navy Direct Funding
·.

52
6c. AQDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Jttonterey, CA 93943 Washimzton, D. c. 20550
Ba. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) O&MN, Direct Funding
Naval Postar!:1rl11!:1f-,p ~l'hnnl N~l4' r.r.11-8710717

Be. ADDRESS (City, State, ~nd ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT.
ELEMENT NO. NO. NO . ACCESSION NO.

Monterey, CA 93943
11. TITLE (Include Security Classification)

INTERACTIVE. CONTROL OF PROTOTYPING PROCESS (U)

12. PERSONAL AUTHOR(S)
LUOI~ LEE. Yuh~ien2

13a. TYPE OF REPORT 113b. TIME COVE~ED. 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
ProRress FROM c +- 00 TO ...MaL-89 1989 March 32

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify ·by block ,number)

FIELD GROUP SUB-GROUP Computer-Aided Prototyping, CAPS, User Interface.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We present the use of CAPS (Computer-aided Prototyping) for the interactive construction,
execution, debugging, modification, and controlling of software prototypes. We discuss
the current version of CAPS, explicate its user interface for monitoring and coordinating
the prototype development pr9cess, and depict the functioning of the integrated software
tools.

"

)'

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJ UNCLASSIFIED/UNLIMITED E:J SAME AS RPT. • DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I Llc. OFFICE SYMB~L
LUOI b.OA-~L.,~-?J':p; . 'i?l.n

- ..
DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. ""U.S. Government Printing Office: 1916-601·24.

UNCLASSIFIED

..

1

,i,J l,. ~

1. INTRODU'CTION
r1

I I
T"' ·.,... ,·

\ I•,.. I -.

.. t '•f .

.,. .,- .. •··
I f,,. o \,I!! • •• \.• • •

. . .' . The go~ ~ Qf rapid .protqtyping js to expedit~ the ,qi~e~-}?~ilding p~es~ f9r the

intem;l~d _sysJ~m an<l tQ ~y;i!uai~ if the res1,1lting prototype ,,Ql~ts _ ~v~n .requjrements. ~, Rapid;.

prototyp~g-,is ,partl~µlarly s_pita~l~ fo.- software'4ev~lopme11:t of it~~tive illl4 .c.ostly,:.na~e ,
1
_ .

[Pres~ll;l,an,ff~].. Wh~P.., tbc;·, J;C41Jirement$ c~pJ be ~~mplet~J,y . det~~~ or .. t#~~ are -1,

proble~1,11or upc~rtainties aboµt tpe proppsed. systC?PlS? pl'Qtouq,qig allovys .. f mqd,el to 1;>e . _
• • 41- '

con~trµcJed 119.d .t~~-te~ . ip an ~~ly . stage •. of th~: d~velOP,qJ~D! , _work. ~~~~ testin~_ ,the i

prot0Jypc;1 mQdjficattpns. can qe ma~e·,t!) ameQd tl}e •origin~ de
1
s{gn, ~cl .. ~ ~~,v, ~PfOVOO: sc;i :, ..

of ~pec,i~ca\i,c;,n, ar~ tl)e~ as~~9tbled to qe0 used ~ the. 1 c.~g ph~e .. ,,~ ~~er , words, th~

testing j~4 .. ~e~~m~nt, f:?,{,:r~µµ-~pient5 are pei:fo~e4 ~fore th~ iPtu'-1 engin~rin~ ii~.ase 9~ ., • t.

a product.
'", ,,.! <.\1 ~ '

('- ' • ! . ' • 1• .I

. ~ -e : C~S . ,y,st~ID; . .(~OlllP\lterr,A.ide4. ljotPtypin; , ~ystep>-), (Lµqi:;Ke~~~-~;8] . ,is

des~gned· 19-d con~truc\ed_ ~?· ~~ase the degre~ of a~t9,;1u~tip~: in ptotptY,p~ de~~l~p~ent. , It.,,~

use~ -~~ e~~utap\e ~Jotype Syst~m D~.scription LanIDJ~ge. (PSDL) [iu9-i-l.3e~s-Y ~h-~8~ ... t ••.

'
an<;l . CQJ.lSi&ts ,Qf ~ integraJed set of' software .t<;>ols ipcludiqg ~~r. in.~erf_q.c,(#,~ ~nt~-;dir~~re4 ..

editor, .graphic editor, execution support system, design database, software base, and design . ,
1, J • ,1,

managemen:t system. In this paper, we discuss the use of CAPS for the interactive

construction, execution, debugging, modification, and controlling of softwa{~. proto~es._.

T
• i, I ' : •,

0
O o • • -1 I ~ ,1'\ ,,.

; • ~ I

,. • .. · The four _ m~jpr ,stage~ .ip tl)e CAJ?~ J?J;OCess, j1ew protot)me,:,Q~~ig~ .. con.strq~tipq, . ·:

ex~µpo~; ,.- ~d d~buggil\g/~Q$i!fi~atio~, supp9rf the ..i~~tiv,~ pi;otptx.P~$.· Jifec)'~le '..EL1'~i- .,

2

Ketabchi-88]. The initial prototype design starts with an analysis of . the problem and a

decision about which parts of the proposed system are to be prototyped Requirements for

the prototype are then generated,· either in English or · some formal notation. These

requirements may be refined by asking the user to verify their completeness and correctness.

After the preliminary requirements analysis and design is completed, the construction of the

prototype may begin. When supplied with the design, CAPS will guide the user to produce a

PSDL prototype representing the specification and design of the intended system using its

user interface [Raum-88]. This prototype is then fed to the execution support system which

translates "the . PSDL specification into Ada code and evaluates its behavior. Lastly,

debugging and modification, which utilize all the tools, are performed over the entire CAPS.

The purpose of CAPS is not to design a system, but rather to test and· validate that design.

The user interface of CAPS · is responsible for sequence control throughout the

prototype development and for the in~urance of continuity of the various levels of refinement

during prototype construction. This interface possesses the knowledge o~ the functions of all

components within CAPS and is able to interpret what the user is doing at any time and to

generate queries to find out what the user wants whenever the system is unsure of the user's

intention.

1.2. Language Issues

A PSDL software prototype consists of operators, data streams, and timing and

control constraints. Operators are the basic building blocks in PSDL and can represent

functions or state machines. They -can be triggered by the arrival of sporadic or periodic

inputs. Sporadic data arrive at random time intervals, while periodic data arrive at fixed time

3

I " (

intervals. When triggered an operator will be fired and prodqce output based on input values

and the value of an internal state_ variable in the case of a state ~achine [Janson-88].
\. ,;•

Operators are called atomic if they can be found in the software base, otherwise they are

called composite and-, must be d~omposed·.~ith ·a da~ fl9w diagqlpL ·. • I

'It,, J • I ~ 1 t ' j 1 1
.a l f, t ,,,.. ~

A data stream represents the . flow of data between two operat~rs. ·· This
' I

,. ' .,

communication can be in the form of either a data flow stream or a sampled stream. A data

"
flow stream can be thought of as a FIFO queue. The data in a data flow stream is never lost

- . ,
and is always acted on in the order of arrival. A sampled stream can be thought of as a

• , I r ; I

single memory cell. This type of data can be used many times or written over before use,
1• .

depending on the rate of its input and use. Data flow str~s must be used when each piece

of data represents a unique transaction.
,,,

r''" , :, ..

\ ~ • • • '._ t f •• • I\••• I .\ 1

Another major aspect of PSDL is timing and control constraints. The real-time·
I •• ., .' • • '• 1 ,1 ' ·,,

natur.e of prototypes necessitates timing and non-pf9Cedural control constraints in PSDL.
I '. A\ '- • ,v... •• 1 ~ ,1 •' I ,.• .. ' ,, ').' ' • ..• : - t I I

Each time critical operator contains a special element called maximum execution time,
.'' I ' I I • r i

indicating the maximum time in which the operator can complete execution after it is fired.

Control constraints· 'sptQify :conditional requirements for.the firing of operators .

•• t ,, rr• ~ .. '-,, .• ·· . .,·; 1 • I
• I

I •
·' .. ·d

2. -IN~ERACTIVE· CONSTRUCTION .OF EXECUTABLE PROTOTYPES
' - f' > 4 1 • .a,, "'- i .• • t I\ . ,._ - -.l - .,

• • t, ,l I l ,; '• • ••-- f I ' I

Given initial requirements, the syntax-directed editor and graphic editor guide th~

- 1
user through the production of a PSDL prototype, the design database stores the elements of

the prototype being constructed, and the software base provides tb~ .papabili~ tq ~trieve

reusable Ada components [cf., Booch-87]. Below· ~e _.descp~ fun~tiqns of ~h of these

4

compon~nts in the CAPS process.

2.1. Accessing the Design Database

The design database is a hierarchical storage ·structure for the development of a

PSDL prototype [Douglas-89]. This structure is initially implemented as a multiway tree

with each node (i.e., a component of the PSDL specification) containing:

• · PSDL Specification part

• PSDL Implementation part (graph or Ada code)

• Graphic Record (if implementation is graphic) .

• PSDL Control Constraints part (if implementation is graphic).

The Specification part can be further divided to obtain the various elements of the

specification. In particular, it can represent an operator name, inputs, outputs, states, or

maximum execution time. The Implementation part consists of the link statements produced

in the graphic editor, or written or retrieved Ada code. The Graphic Record is the data used

only by the graphic editor that is used to redraw a the data flow diagram.

Each level of a tree is produced by the decomposition of the parent operator. The

database is able to recognize the relation of parent and child. This enables queries of the

o/l)e find child andfiiul parent to be performed, as well as a search by operator name. Finally

the design database is able to traverse the entire tree in breadth-first order to produce a PSDL

software prototype.

Inputs to the Design Database are:

• Graphic Record (from graphic editor)

•
•
• ~

•' I

PSDL Implementation (graph or Ada code)

PSDL Control Constraints
I

I• ,

PS,O~ Speciti~a~on
, \ '

I
I.

5

_j

), '

·. ·· ··The·design database butputs·a.re the same as 'the inputs, except that a complete PSDL · •,

prototype is
4

now added. The · following operations ·are designed ·· to enable;· the_ design .·

dat~bas~ to aid"in the construction and modification oFa protoiype. ~ •·

-~·,,' f·• •. ~J !, ' t ,:,.4 1 1
i'' ~ \ .. , 1---~

• Create Root Node: allows· for the creation of a tree of operators in the database.
, " , , • w ., 'r. I , .. • ~ • • C ~, , f

~' ' I I
r • •• 1 1 1

' . -: ~- ..;

• , :. <Jreate <C,hild Node: creat~s a µew nct<le for information storage -and sets ,th~ parent-: , , ,

child relationship between this new node and its parent.
' '

-• , .r. Stare ,R,:operty: . stores a PSDL part · (Specification,. lmpleme9tation or_ -~qntrol

· ConstraitttJ), : s1,1bp~ · (Opel'@.tQf . ,ftf ~e, lJlpui. List, , Ouq>ut List~ .S~te pst , pr ,Max~qm , .

Execution Time), oit Qraphi~ record ii) the n~e,d· node.
. • I I>••,' J>: ~. ,\._:

:·· :'I i ' '; \ ·,,,°,': ; I \' •• ',l,

• Get Property: retrieves the above mentioned prop~rties from the design database.
a t"j I • J •',},

• Get Children: returns the naµies of all ~e children of th_e nameq operator .

• Delete Node: removes the named operator from the design database. Because of the

bierarclnca\' nature of'~the ·design database, ·this operation will effectively 1remove the entire

subtree 'that is rooted at the -named ·operator.

~.
'•

.....
- l

• Trave,:se Tree: performs a breadth-first traversal of the design database that collects
• r \

. l . <, '

the PSDL components into a single program.
. ;

I •\' I •

'
l,.J,,.

,,..

1, ,.. I ~

' , i

6

2.2. Drawing Graphic Diagrams

The graphic editor is a graphics tool for drawing enhanced data flow diagrams in the

PSDL computational model [Luqi-Berzins-Yeh-86). It is the part of CAPS where most of

the input of a prototype description is performed. The decomposition of a PSDL Operator

into lower level operators defines the actual creation of new nodes in a tree structure. The

names of all operators and data streams are entered at this point. The editor insures a valid

decomposition by checking the consistency of inputs, outputs, states and maximum

execution times. The graphic editor can also show the data flow diagram of dte parent

operator to aid the user in retaining the place of a single operator in the prototype

[Thorstenson-88).

Inputs to the graphic editor include the operator name, input, output, and state lists

and the maximum execution time. Outputs from the graphic editor are the PSDL link

statements and the Graphic Record. The operations performed by the graphic editor include

drawing operators data streams, inputs, and outputs showing a parent data flow diagram, and

loading and storing the Graphic Record.

2.3. Generating Text String Part of Prototypes

The syntax-directed editor in CAPS produces a syntactically correct PSDL

specification and performs syntax checks on existing PSDL files [Teitelbaum-Reps-81,

Portor-88). This specification consists of two parts, an enhanced data flow diagram and a .

non-procedural control cons~aint part. The syntax-directed editor reads in and completes

partial PSDL specifications and produces PSDL control constraints.

-..

7

• 11 •:• ' • l .,.. ' • ;. \. '! '\.t- -, ._ I f ," ~..,.; °'I" J • l. ," • ,. • 1 U ✓ }

The ·syntax-directed editor accepts as input the partial PSDL specifications that are
·" 1 ~ i ' • ' · ~ I). ,-,. t 1"'~ • . .: \ °" · ·' , J , -II ... a , r • •

1

produced in the graphic editor via user interface and outputs a syntactically correct PSDL
' • • i -i;L -~ ;, I - 1., i ... ·~ l' 1 , / i ~l;. -.

specification, including. control constraints .
• I • ~ . • .1 ; • ·~ ,,·. ,L '!' • •~ I •, • ~i... l," .' . . j

" • '"- . .,, ·ti r-~ C J,,-.; ... • "i.. , . I • • •

2.4. Retrieving T~inplates~froljl the Software Base I '~ f• ' •·' ":..,,... I
. ,.,

'/', ...
v. • ,. ., .. ',f. I

The software base is a database of reusable Ada components that are indexed and
.,. •• t 'l • .,\. ,, ~?.:,_ 'f' ,, , {~:,) \' ll. t I \,' Ii ' • \ I ' ~ >

searched for based on PSDL specific~tions. It ·has two parts: -a query module and -a
. wr ,- E,~ • .,,;-t·•· ,f.J .. ,:.:}\,."':"\o,:"'l, ~ "~.t· ' ••~,""• _ ,. ·: r • • • =" t _ ... ';. ·1' • J

maintenance module. The query module receives the PSDL specification part. and returns
r. • ' I ft j .. '·1 A' ,r.1 I., .. ••. I' J ~ •-~.. •''!" . ~ • ',.~ -rr1-- ... • ~ ;.

on~. ~{ more ,Ada modules th,t m~t ~os~ sp~ifications, if search is successful. The
' • ' • ~ 1 •i 1 ... i . f 1. , I - f L, • '"

maintenance module is involved with the creation and. upkeep of the database. All records
: ~ I . ' I ~ 1 •.) \ ,~ f ·•• .-- } •

1
'I! J ~ • \.I ~ • •

must be stored by PSDL specification so that they can later be searched· by the same
I ~ f I

specification. ·111e software base schema is constructed based on an object-oriented database

and its management systeni. The feasibility of such l!-fl appmach is illustrated·in [Galik-88]. . .

2.5. The User Interface for Interactive Control

,, (. 't ,' •. 1 ' \ '4i \ ,; ! ', I . ,'4'1 . ·,
J

The user interface has two main functions during the construction of the prototype:
'. " .. /. ~ • .'' •••• ' • • - " ' - , '

sequence control of the construction effort, and the insurance of consistency of the level-to-
. .

level decomposition of the operators. : The s~querice control is perft>rined by utilizing ~e if-
·~ .

then-else logic of the Bourne Shell [Sun-86]. The consi~tency of the decomposition is harder
I ,

to achieve.

In the decompositio11~ of an :operator, · a. number ~f child operators are produced
"'I: '

.• J

through the use of the data flo~ diagram. Altltough this decomposition can produce any
(

'ft

• I

'• I'

8

number of new operators with any number of data streams between them, the inputs and
~- ' ' .

. outputs. of the system of child operators must be e~actly the same as those of the parent. The

graphic editor can insure this by reading in an input and output list. It will not allow any
• ' i

other inputs or outputs and if all these inputs and outputs are not ·utilized the user will be

notified that the decomposition is not valid. .Additionally the graphic editor C8Jl check the

semantic consistency for PSDL specifications at different levels, e.g., ensuring the maximum ·

execution time for any of the children of an operator does not exceed that of the parent and

inheritance constraints for external stream types. Finally, the graphic editor helps to enforce

the correctness of a PSDL specification, i.e., a state variable in a child must also exist in the

data .flow diagram decomposition as a self loop or a internal connection · between two

operators. For example, given the diagram with operator top:

75ms

a- a b

the following is a valid decomposition (since it has the same inputs and outputs as the above

diagram), with 4 lower level operators ape, bee, cat, and dog:

a
•

20ms 10 ms

I

' 9

;•,"' .• ;a_.••,,,~••~ h, I~ J ,.~ _.\ ,' • f ., ... , ... ~ .. ~t .\~ • j\ L l,,\.'i \"; l •, ,• ,~ ·l ...

The graphic editor will also produce the link statements below, for inclusion in the PSDL

imp~emen~tion: •. \~. · ~ · : ~ • :· .. t· .. ; .. ,. · • y: ., ••• ·• 1.

t_ '·, r

: ,~, • t' "' ' ... ~ • '\I •

,: ·• 1 .~: a.~X:tERN,!\l..--~flpe .
: ab.ape:1 Oms-->bee
ac.ape:1 Oms-->cat
bc.bee:20ms-->cat
b.cat:30ms-->EXTERNAL ·
stale.oal!301fJS-->Cal · · , ~
cd.cat:30ms-->dog

• '"'4 ~ • 'I •' ~. (• - .. I' • ~ ·. ·cl~.oog:1.0n1S--->Cat 1
,, •

'
••• •. ,"1 • ,· • •.,,i_ ,:41 • ,.. .. \ \ "" '

... I ~ ~ : ,. : I. f ._ f

~ • • • - J •

. ;, • ,, ' l: ..• ..,,1_,

I •

..::' ./•; . t•.• . .,,

., ~ ~- { . ' ' '· I ~::

.,.

' f\ a 111 ··•t,.t

l_:t ~ \ I
,I I I, ,4. • J

i" I i • • "+ I ' .',

As previo~sly s~ted, the four operators ape, bee, ~at, and dog represent the four child
1, • ') • , • ~ I • .•, ' \ i ;. 1 ' ' • 1t ' I • ' .- l; ' I •

nodes of the node top in the design database. These nodes are created; but the name of these
~ ,d: ~:1 ' t '• • 1,1 I .1,,"' \' • • - ~ ~ - , f ; I : } '' .;, I

operators is not the only• thing known about them. The link statements can be used to

deiertnine ;the' inputs, ouij,iits, 'names of' any .·state 1variables, and maximum execufibn times ·of

• , • ! 1 .. . ' . If'. "' •

these operators. The ·t1ser interface r'eails 1 the lirik 'statements and detemiilies ·all of the1 •

information ·reqwred to produce a partial· 'Specification. 'The sf,ecifidation lias the names blit ·

not the iyp·es of the data~ stream~: Production · of" this ·specification helps to ·ensure 'error ftee •

PSDL prototypes by relieving the user ·or' the need: to remember ~hat 'he has· previously 1"'

entered. It also requires data to be entered only once.
• ' • t t , l < • I, I 1 .J',- ~• (;, , I , I ' . ~ . ., ,I •·•

•':~,.•··if:Th~re is,' one additional place where the User interface 'creates part of 1the PSE>L · .

•.., " - •) '(:._ I • ' • I

prototype. J,The' Implementation part of PSPI..; consists of link statements followed , by a data

stream list This list consists of the internal data. streams ·that have been drawn ·in .. the

enhanced data flow diagram. The user interface appends the ,data str~ list to the end of the
• ~ ~ • l , '- ' (' I.' I ~ ' I ' I

,. t ... ·- • .: ~ ' ' ' • .

link s~te~ents. To complete ~e IJnplemeptation part of the PSP~, operator, the type Qf each
~ r . ,' *: I • ·, t ~ ' ~ ' / .. " • r ' ' ! . . #I , ! ~ I t ' • ·/ I -1 ·.,. • ' '

. of these (Jata str~s i~ added ~utomatic~y using the synt~-directed editor.
f • I I I II' ' ii t I I ,I

1
1 t / I'. ,I \

1
,II t Cr • J,,. I P ~ I

10

3. EXECUTION MANAGEMENT OF PROTOTYPE SYSTEMS

Prototype execution utilizes the translator, static scheduler, '1JldDynamic-Schedule to

produce an executable prototype in Ada, that can test the design and requirements-of the

actual system.

The translator in CAPS translates the PSDL prototype into Ada. This is done by

taking the Ada implementation of the atomic operators and adding the control constraints of

the composite operators to produce a group of loosely coupled Ada modules [Altizer:-88].

The input ·to the trans!ator is the PSDL prototype that was produced in the breadth first

traversal of the design database. The output is the package of Ada modules.

The static scheduler produces a schedule of time critical operators, .if can be done

[Marlowe-88, O'hem-88]. ff it is impossible to produce a valid schedule because of the

timing consttaints set in the construction of the prototype, the user will be notified by the

debugger. We discuss this condition below in the section of debugging and modification.

process will be described in the debugging and modification section.

The dynamic scheduler produces a dynamic schedule which integrates the static

schedul~ with time critical operators, a collection of non-critical operators and an exception

handler in the debugge_r. The dynamic scheduler adds the ability to run non-time critical

operators in conjunction with the static schedule [Wood-88].

The produced dynamic schedule is a Ada program that consists of two major tasks

and the exception handler. The higher priority task is the schedule of time critical operators.

This task will execute until reaching a designated milestone in the schedule. If it is ahead of

11

the schedule, the secondary task_(non-time critical operators) will be executed for.die ainourit·

of excess . time. In the event that the pr~totype falls .~hind its dm~ schedule at any
, .. , . .) i \ . ' ,. . . ,. . ,.

mile~ton~, ap exc~ption will be tpgg~red and cc;>ntrol is passed on .to the debugger. ·
• I, • •• • 't II i j, I t J_-f • ~ !• • , ' ' • •• • ,. • •

To aid in debugging, a trace ~an'd ·a grapliit al"' re~resentation of'the prototype' being

executed are planned. The trace will list the name of the operator and the time when it is
r • - '\ f • • '\ • j I_ ~ L • t 1 I I j I ~ f • • i

entered. This information is critical when evaluating the actual real-time ~rformance of the
. ,~. , : ' ' "' . . ' ' c. .. ,;• r , , .,. ' ! f) • ,.!l • , r • • • ••

prototy,pe1 The rup:-tjme status,!lf.the p~ototype will be displayed by presenting the user with
L ,. ' • ' I ~.; • 1 "· ,.,. ' \ ;' I ' , "7, (t) j 4 t I j ' fi, ~ '· I ~ :.,._ ... ~I • ~ • , ' (« , ' -

. .

a ~~e tQ~f ~epr.e~ept~ pi~ pocJes of ~~ ~esign database. The 1:1<>4es op ~e f):ontie~ of qie tree
• , ~ • , "' • ~ .. • , ,. , r .. • , • • . ·~ .,

that corr~spqnd to the opera~ors CUJTently executing wil! be highlighted. This allows the user
f 'J. • .s • .I' •-. ' J,V '•' o ' I•· I 1 t, I • • .. 'j ! S i ; rt 1 ,.r I f, .!

to· .pioqitor tpe run-tim~ \)ehaviof of ~e prQtotype. . .
i ,_ \~ . l '· :-,t .: .. ~ • . : :l,1 • f • I i '

: ~

. • ' '"'
,• r

4. PROTOTYPE DEBUGGING AND MODIFICATION

In the above sections, ~e discuss the construction apia exectitloil of ·prototypes.

During the, fJecution, ptpsti of th~ ~ffort will ~ _plJc~ on debuJging the the prototype~, with
. i' .. . • 1 ~ •, L ' .. ~~ ,. \ ~ • ~',. , •, ~ I" '• • J J,• . •

.I ~ I

,._ ,I ~ :.~ • . I ' , • ·'· • • •· ,,
•• I '.-.. • 1

4.1. Run-Time Debugging
, I I\ • •" l : J ; r i, t •• ~· • I r • ~ ' ,· ' l

·The ·1debugging~~ of the· prototype takes •plaie during · the . execution of the static

scheduler~ while · the static- schedule "is: being produced; and during 'the execution of the

dynamic schedule of the prototype. The debugger must be broken into two parts because

exceptions caused by static problems arise before compilation, while many of the dynamic

timing problems of a real-time system will not occur until the prototype has been co01piled

12

and is executing. [W ood-88]

The debugger has two basic functions for correcting errors in the proto~. The first

is through direct user interaction with the prototype and the second. is through the syntax

directed editor and the graphic ~ditor in th_e modification mode.

The debugger gives the .user a chance to make small changes to the prototype in the

execution support system. This· allows rapid feedback as to the results of the change. The
. '

problem with this method of modification is that these changes are temporary, although they

will be recorded in the design d~tabase and available for user review during modijication. In

other words, the only way to make a permanent change to the prototype is with the syntax

directed editor or graphic editor through the user interface. This is because the correctness

check can be done only through these tools.

4.2. Modifying the Prototypes

There are many problems involved when modifying a PSDL prototype. These

problems stem from the fact that operators in the hierarchical sttucture of the design

database inherit information both up and down. In addition there are both graphical and

_textual views of an operator. These views actually hold different versions of the · same

information. A change in one view requires a change in the other. A detailed discussion on

the modifications of PSDL in terms of designer's and tool's views can be found in [Luqi-89].

. i
I I

...

13

4.2.1. Modifying an Operator
. ·t• ' ",t •

• "'t\C'A • ~ 1 • ,. - \ ~ J ~ ; f 1 4, .. ,. ' .~ , 'I ., t~ • • rr ! •

If an operator is deleted, a simple solution is to delete the entire subtree that has that

ope~~tor as a rr~t This actio~ ~ -·vefy ~eve~ and' die ·design
4

da~db'ase ., should record 'a f
i,- • f ~ 1

1

• "t .~ ·) • •• ,.. ! \ .• ••
1

1
..... l 't • r • • J ~ ' ' ·: ,: {:.· I ~ I' ~ • 1 •

historical version of the prototype ·at this time. If it is later shown that this deletion was ail' ·
I f ... • ·1 . ,,,. .. t ~ ·~ Ir, ~. , ., .I I i • _.,. , •' ' I I • ' ' f ,I t f ' , . ' ~ ~, ,, ..

improper choice, this version of the prototype can be restored. A deletion also requij'es the
. I ·: I • _t ' : • ,· l ~ i ,: ' \: .. I : ~ •• t • l • 'I • . t t

modification of the data flow diagram and link statements of the parent operator, where the
"\, j• • I " I ,,.. "' /".., 'I ••' ,.;'), 1 r '•.. '

deleted operator is first defined.
l),, , , ; • t

• " l .• ,' ·• _. • .J .. , '1
', .. } '111. •• t

The addition of a new operator requires similar action. The new operator is added to·

the desig~ database ·tree , aitd i the con~ttuctjon mode pf t4e . µ_s~' ,int¢~ j s .ernt~ ,

Construction continues until the new subtree . is completely defined. In both deletion and
't t 'I . ••) .[•1• ' .'• _I:,' • ' ' ' . • • ,., 1,/ •, ' .. • • '• ' . I i • • • •

insertion the data flow diagr~ of the parent operator must be modified to reflect the changes
.

~ 'I J ,4,J"I
4 • f.' jl• a .,

in its ·subtree.
.. . I \ : ~ 1 ,~ f" : ·• ii • If , . - ; ! t "-i'

f : .. ~• t•.-.J k, 'I.~ 11..., • .. 1 •,, t.•.J1-. ~ t f':. ~ •! i I t •,">., ~ t ~ .;.. .'-. ; •

, · \ ;}Qe.mastsig~cant probleJh ~ .,!llodifying an 9p~rat9r ~CUf.$ when srµall~P~~J~S inl

the· . specifications·-:.or control .. constraints~ of at), .Qpetatar ~~ mad~. ; ~ . ch,pige; ~ . i~e
1

specification 1coiJld cause changes "in ~very n~e of its ~ub~ec;. · .~imUarly, a-~ speci@c•tion 1•

change;co.uld,•~ause . .'an atomic opgator,~to becpme a conipl~~ pp~~~orjf the ~b ,of the

softwar:e base ho ilonget ~ields a ,match~ The s~cb :.on.m9<Ufie4.~ifipation~ l\l&Y yie~d J ~

match_ thJt was not pi:eviously. obtainable, ther~fore deleting a sub~ and replacing .. it ,v\~ ., ·

an: atomic operatQr. .? "• .J • .- •• ;, I . I
I ff•~ '(,~ ..

1
. J I . : '.

'} •J'~•.i•"' '1 \ ; "'i.'· \ ,#. l.' . 'i '1, ·"·.

This level-to-level consistency problem can move up the~ as well. · In additio~, ~--
I• r II"' r ,. I j •"' t 1._"' •• t < • •

change at a child node may cause it to be different from the node required for the
• I T o f ii• '. _ .. ., ~. ·., .'. , N

decomposition of the parent.

14

4.2.2. Consistency of Views

A change of a textual component of PSDL may be propagated to the graphic

representation. For example, wh~n the name of a data stream is changed in the

implementation section of a PSDL ope~ator, the name change must also _be reflected in the

link statement and also in the graphic record. The graphical view of a change might be the

best indication of the problems caused by deletions or changes. More effort is required in

the area of prototype modification, if the same assurances of valid PSDL prototypes that are

present in the construction mode are expected during modification.

5. SEQUENCE CONTROL DURING PROTOTYPE DEVELOPMENT .

The construction of PSDL prototype is done by recursively invoking the construct

command of the user interface (detail in section 6). The user interface contro~s a loop of

traversal which continues to search the tree for nodes in the design database without an

implementation part. The first incomplete node found in the design database and its

specification are used to search the software base. H a match is found, that node is

considered atomic and the Ada code is placed in the implementation section of that operator.

lf ther~ is no match the user is asked to either decompose or write the Ada implementation.

lf hand coding is done, · this operator is again atomic and the Ada code becomes the

implementation part. Finally, if the user chooses to decompose the operator, the graphic

editor draws the data flow· diagram and produces the link statements. The user interface

reads these link statements and writes the partial specification for all newly created
. . .

operators. New nodes in the design database are created for each new operator. The

syntax-directed editor is then invoked to complete the PSDL for the original composite

15

operator .
.. : ..

, .. The construct clP9P en~ when all leaf nodes ~f the flesign datapas~ are atomic. ,
;

During the cre,ati.00:-c;,f~a prototype, a rapid growth in tJte mµ,nber
1
Qf nf;xles is expec~ed, ~ the

high level 9pe~~rs. are decomposed. E~entu~y the A~ implementa~qn for the lower level .

operato~ ~ogld ~ ,_fou~d in the software base and the growth of th~ tree stpps.

The construction process deals only with the production of operators. New data

. streams are produc~ in each operator. H these data streams are not atomic they must be
>

defined in PSDL. All user defined data streams (ds) appear outside ·the tr~ of operaiors on a

level in dte design flatab.ase ~qual to the_ root op~rator~ J:!:ttceptions (ex) al~p 1tppear ~t this

level, · which is simil~· to a .. glob~ .type definition jn Pascl\l~ .. 'l'h~ folloWUlg fi~ jJlqstra~e.s ,

this structure. , The, ~e of .. op~ratqrs <;:on,tain, bQtJi, composite . operatQI'$., (co) . and ,atonµc

operators (ao).

~: '

•••

16

During executio_n phase the translator and static scheduler may be invoked in any

order, or simultaneously in a multitasking environment. After the Static Schedule is

produced and a non-time critical operators identified, these operators must be grouped in a

package for use in the Dynamic Scheduler. The translator output is compiled and used in

both the Static Schedule and the non-time critical package. These two packages then

become part of the Dynamic Schedule, whicli must be compiled and linked before it is

executed. -

6. Top Level User Interface Commands

At the top level, CAPS accepts four commands: caps, construct, execute and modi/J.

This section describes these commands and the environment the user will be in when these

commands are executed. The principles of CAPS interface design is ''simplicity.''

6.1. The caps Command

The caps command initiates CAPS and allows the user to issue the three remaining

commands. This command also accepts an optional argument which is the name of a new

prototype that is to be constructed. If the design database is empty, this name will be used to

create a new root node. H the argument is not used and the design database is empty, the

user will be asked to enter· the name of the root node. The response to this query will be used

to create a new root node. When the design database is empty the user will always be placed

in the construction mode as the execution and modification modes do not apply.

17

r .": f ·• ~, ! · · 1 • '· •.r:, ,1 ; -~ • •• ~--" ,. r I ,! 1 r.

6.2. The construct Command
. ' .
' I ~

. \ . }' ~ ._ ! . ~ ,J
, - ' • • ·1

l •. • I\ ,l •.

The construct command is used to construct a prototype. In this mode the user is
• 1• ' - •

directed into the Syntax-Directed Editor and graphic editor to create the· PSDL program.

. • . • I ~

This command will place the user in the location where the PSDL construction can

begin ,or~continue. The ·proeessds monitored by CAPS to insure the .production of.a co~plete

and valid PSDt1specuication~ Othe~ than-the manipulations of the two e.ditors,,the searc~ of,, ..

the ~oftware liiJse, the storage .. and retrieval of .camponents in ~the design databas~, and the. ,

semantic· checking of PSf>L prototypes are all .transparent to·the user~ , 1- :. '.;1._ ,, \ , • ·. , .: •

:.· .,_
.... ,

...

The user is_ adv~sed of the results of the software search and the completion of the
I, • •"" ,.,~ ,..', • 'lo~~ 1"' "' j ~ "t •o I ', 'i •" ' • ·• f '\~

construction ~th the below dia).ogs:
<

• • ~ J . , '

• Software Search Complete - no match found. ;Oris notifies the. use1: that the search 1,

for an Ada implementation for the given specification was unsuccessful. This would be

followed by the question: Do you want to decompose, y or n. Based on ~e response the user

will be pl~ed in the graphic editor or Ada editor.

• Software Search Complete - implementation found. This: indicates,, a successful

retrieval of an Ada implementation. The user is then asked to choose the next operator for

implementation. - \

•~ Sel~ct~ ihe next operator for implementation . . This dialog presents the user with a list

of 'inoofilplete·~. operatom. j The user• then enters the name of tl)e 1desired operator. This

question will follow the completion of any implemen~tion. , t •. A ~• I ,··· • f

•

18

Construction Complete. This message indicates the · completion of the PSDL
I

prototype. The user is then placed in the user interface portion of CAPS where execution or

modification can be 'selected.

6.3. The execute Command

The execute command places the user in the execution support system interactive

where the constructed prototype is executed to test the real-time performance. This

command first checks for the existence of a completed prototype. A warning message No

Completed Prototype Available will be issued if there a PSDL prototype cannot be found.

When a complete prototype is available, the translator, static scheduler and Dynamic

Schedule are ·called in succession. The use of these components, as well as the Ada compiler

and linker, is transparent to the user. The user is informed of the status within the execution

support system with the ·below messages.

• Translation Complete .

• Static Scheduler Complete .

• Dynamic Scheduler Complete .

• Compilation Complete .

• Linking Complete .

• Execution Complete .

In the event of a problem in the scheduling or execution of the prototype, the user

will be notified by the debugger. The user has the option to make temporary cqrrections to

the prototype in an attempt to achieve proper execution. All permanent changes must be

19

1-4 ~ i I 1 r • i , • • ._ , •I I'!

made i~ the appropriate editor through the use of the' modify command.
,

1

• • • 1 ~:r . • . ~ -"

i ; ~' ' ! '

I

, ; r • •

6.4. The ·modify Comniarid i .

~ ,I • :,. l jl _, t' #

I • ~, ..
~ . ' " ' .

l '• t \

I

' " 7.

ill, t I
'J•

~ The ~pdify. c;:ommand is us~ to ~e changes to the proto~. The user .is plac~ in
r I 4 .- , J.,, • ·- l ,, ,' J

1
.-) 11 ', ,, ... _, .. _ l J f f -

the Jll~qation mode . that insur~s th~t llll chang~s .. are made cpnsistently througho~t the
I .4 .., ., (. ' ... , 1 J• "' ., ~ 1, 1 • i , ' -C

. .

vatjo.µs. J~velJ in. ~e. dt;sig,n 4atabtpe. This c;:o~d ~ks the u,er for. the n~e Qf the
~)., r , C .,, I • J • .,. , • "- I , ' ~ 1 1 • .,_ • - '1 , ,J

1

operator to be modified. The user,must then use the syntax-directed editor or graphic editor
I[" ... • • • •• • I f-! " .,__ f . ,,._ \ ~,. IJ ' I I - _; • /J ~ ~ 1 .. .: .. -...

to tp~~-the i:e,q~d chang~s to. the Qperator. The user interface insures that the appropriate
' ; ,. •" .. • f fJ . ' Ji • • l ' ~ ~ t , • ~ • I ·t! _. r 't " . • , ,., : .ir , "' \ I • '!

. .

changes are made. in th~ ·hlgb~r and low~r ,Ie"els of the design database. The u·ser will be
•·-,· t' • I •,\ ••", I ; ' • t \ f 1 I ; - I i t

asked to resolve the conflicts that will arise . as -these ~hanges ~e <;artje4 out. If necessary,
\ '°' ' 1· ., I

1
.. \ • • '"°' ii I ~ -

the user may be required to enter the construction mode to complete the modified prototype.

-':'' . i. j ,, ! '·: \: . r
l ,

1
, ; • l: ·"-t I L.", .

7. CONCLUSIONS AND FUTURE WORK ,,

'"' ~-· I , J I : J -' • i ' r ~ 1 - 1 \,. • ~ ~ f I ' , ~ ? /

We have presented the user interface that supports the interactive construction,

exec~tio~ and ~odificatio~-of ex~utabl~ prototypes. First \Ve defined the requirements Bf a
t . ' .

CAPS interfa~e and then designed the iriterface that meets the'se·· requireme~ts.. All :the
~ 'I 1.,, I • "' 1 r • ' I 1 < "'

important 'fssues related to "the user interface were further tested' via outlilie'd itnplenien~tion.

This' fu~daie · has shJwn' great pr6riii~b ht the' demonstration tif the feasibility> of Ibost 6f the

coril~onents •' or CAPS. This computei-~ded 'prototyping tool is ideat in prototypitlg' the
J, - ~ I , - Ji, 4 • 'I ~ • \•• I ' ' ' • I • ' o

I
I

production of real-time embedded systems, and it is easy to handle · and requires only
..... ~... l t , \. I I , • • 1 ~ • l

Dllliinium user training. I • .. ~- I I

f . . • .. : • J • ,} r •;.• ,- • ., •

CAP~ h~ deqiQ~~tr.ated . th~ P,9tenti~ ·~ ,a ~ignific~t time- and cost~savin,gs tool in
- fo ' I' J. J /";,# J ,I tf 1 1 • .. t • I ~ f to,

20

the development of software systems. The primary benefit of incorporating the user interface

as part of CAPS is that it helps CAPS develop into a more powerful and advanced fonn. The

user interface of CAPS is different from a conventional one in that it is also a tool manager,

task sequencer, and real-time dispatcher. It is designed as an expert system that is capable of

monitoring all phases of prototyping software sy~tems through the inte~tion with -users.

This type of interface may be useful for other software toois to inctease the degree of

automation of such tools [Barstow-84]. One may also employ the prototyping methodol_ogy

to construct a user interface [Lewis-et.al.-89). Another benefit of our approach is that a tool

that uses both graphical· and textual data entry and display can utilize the user interface

control and achieve data consistency between the two views more easily [Chang-86,

Dumas-:88, McDermid-85, Sanders-McCormick-87].

The advanced areas that are expected to substantially improve the capabilities of

CAPS in future research are as follows:

(1) Primary Data Entry. The original design of CAPS called for the majority of data entry

to be done in the syntax-directed editor. In the process of system development, the 1

graphic editor has proven to be the primary tool for the entry of new data. In

developing PSDL prototypes, new Qperators and data streams are first defined in the

enhanced data flow diagram. The information from the graphic editor is used by user

interface to produce the partial specification of the newly constructed operators and the

data stream declarations. The current version of the graphic editor only names data

streams, whose types of must be added using the syntax-directed editor. The inclusion

of types in the graphic editor, and in link statements, would eliminate the need to return

to the syntax-directed editor to complete the specifications and data stream 'lists.

...

21

' . (
(2) ,., Execution Monitoring. The current version of CAPS does not fuclude a m~ails ,o(

monitoring the exe~'1tj,on o.f .a prolptype~ ~ome means of producing h<?th a ~~ace ~d a
I ... ~ ... 11 ·-. · ••

,viefl of the execution of a prototype would gre.atly improv.e ~e ability to debug arid
I ~ • I i '\ i f I , ~ • • l

, ,, ,ij • I I • 4

verify the· prototype's performance. The ability to trace a ,probiem ht 1

the e~ecutfon in
' .. . ' .

_ relaJion-to the original requirements _woul4 aid itt the. v~datio~ or µiodification of these
• I • : • ,'. • ' . (

requirements.
t..... , ; ,!.:

I ~ • ,.; "'(
f, 1

1

(3) Ptototyp'e Modification~ A desirable modification mode ' i~ one that not "only allows
I t ; ~1

. ~hanges to a pro~otype, but provides the same assurances of valid PSDL prototypes as
:I . I ' ~- . t • .. "' • ' s, '' •• ' T .. _

·the construction mode does. To do that, a debugger will have to identify the·p;uts of.the

; I • prototype . that are not performing correctly and pfovide 'fixes so that the, p~to~~·s

behavior will be consi,tent with tl;>.e system requirements. Such-a debugger would be
.. 11... . t·' : ,·_ I L • ' f •• ,I ~ • :· • .. l • J; "'I 1 \. ,t .. I

similar to that discussed in [Dershowitz-Lee-87]. With the addition , ·of such

modification· system· in CAPS, one · will ·be able to per-form rapid · debugging I during

~11 prototype development. ' . I • • ,,

i,
1

•.\t \I I J. ' , ..
I"-• • "•

• ~. ··~ t

l ',, 1

REFERENCESi > ."I', l ,
1 ,.

:,"'-1 I ..
... }1 , •• . . ;.'.(

. .
'':j Ir ,, .., I

Alti~r, C., Implementation of a Language Tra_nslator f~ I! Co~mpuJer Ai<led Prototyping·
Systein, Master's Thesis, Naval Postgraduate School, Monterey, California, December

- · 1988 .. - · ,'" ~ -. 'l' ,

'. r 1

Barstow, D., -et.al., Interactive Programming Environments, McGraw-Hill Book Company,
"i1, 1'984. ' . . '

'' .. • -.

BOQCh, G., Software Engineering with Ada, 2nd ed., Benjamin Cummings .Publishing Co.,
J: '• hie., 1987 o • ' { ~ d. . • I , · , .. _'

- t,.•·i;·J. ;~ . • . • J .. \ i" •• •. ,l'; · 1(•, ',1 ' • •' :· r·

Chang, S.-K., et.al., Visual Languages, pp. 155-157, Plenum Press, 1986. · · • , . • .. ~- · ·

Detshowitz,,,N., ·Lee~ ·y., ,oeductive ,Debugging, ,-,ifi IEEE ~ -ceding~ of. ~e Syq,osi~ on
Logic Programming, San Francisco, California, September 1987: ., ... _ ,, .- .. •

•

22

Douglas, B., Design Database Schema for the Computer Aided Prototyping System, Master's
thesis, March 19'89.

1

Dumas, J., Designing User Interfaces for Softwlµ'e, Prentice-Hall, 1988.

Galik, D., A Conceptual Design of a Software Base Management Systeni for the Computer
Aided Prototypipg System, Master's Thesis, Naval Postgraduate School; Monterey,
California, December 1988.

Janson, D., Luqi, A Static Scheduler for the Computer Aided Prototyping System, in
Proceedings of COMPSAC 88, pp. 92-98, Gaithersburg, MD, June 1988.

Lewis, T. G., et.al., "Prototypes from Standard User Interface Management Systems",
Proceedings of the 22nd Hawaii International Conference on System Science, Kona,
Hawaii, January 1989.

Luqi, Berzins, V., "Rapidly. Prototyping Real-Time Systems," IEEE Software, v. 5, pp. 25-
36, September 1988.

Luqi, Berzins, V., and Yeh, R., "A Prototyping Language for Real-Time Software," IEEE
TSE, October 1988.

Luqi, Ketabchi, M., "A Computer Aided Prototyping System," IEEE Software, v. 5, pp. 66-
72, March 1988.

Luqi, Sofiware Evolution via Rapid Prototyping, IEEE Computer, May 1989.

Marlowe, L., A Scheduler for Critical Timing Constraints, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

McDermid, J., Intergrated Project Support Environments, Peter Peregrinus Ltd., 1985.

O'Hem, T., A Conceptual Level Design for a Static Scheduler for Hard Real- Time Systems,
; Master's Thesis, Naval Postgraduate School, Monterey, California, March 1988.

Porter, S., A Design of a Syntax-Directed Editor for CAPS, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

Pressman, R., Software Engineering: A Beginners Guide, pp. 1-93, McGraw- Hill Book
· Company, 1988.

Raum, H., Design and Implementation of an Expert User Interface for the Computer-Aided
Prototyping System, Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

Sanders, M., and McCormick, E., Human Factors in Engineering and Design, McGraw-Hill
Book Company, 1987.

·•

23

Teitelbaum, T., and Reps, T., "The Cornell Program Synthesizer: · A Syntax-Directed
Programming Environment," CACM, v. 24:9, pp. 563-573, September 1981.

. .

Thorstenson, R., A Graphical Editor for the Computer Aided Prototyping System, Master's
Thesis, Naval Postgraduate School, Monterey, California, December 1988.

Wood, M., Run-Time Support for Rapid Prototyping, Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1988.

,

\ . ! /. ' . '•. / ' ...

'! •. ' ,!

INITIAL DISTRIBUTION LIST
Fr, f (,. ... •

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145 '{ .. ~, j i ~

. 2. Library, Code 0142
· Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research

4.

5.

Office of the Chief of Naval Research
Atm. CDR Michael Gehl, Code 1224
800 .N. Quincy Street
Arlington, Virginia 22217-5000

Space and Naval Warfare Systems Command
Attn. Dr. Knudsen, Code PD 50
Wa~hington, D.C. 20363-5100

Ada Jojnt Program Office
OUSDRE(R&A'I)
Penta'gon·
Washington, D.C. 20301

6. Naval Sea Systems Command
Attn. CAPT Joel Crandall
National Center#2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense
Attn. CDR Barber

8.

STARS Program Office
Washington, D.C. 20301

Office of the SecretB;cy of Defense
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Nav.al Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

,.
{. '

• 11.I •

' 1 • .. : :'-t

.. , ,.

I 'ti• • '. '• f

: ''. , ' . '• I

II 1 -

•. L t, ... l • i I ,I

.... ,''1. :. , -

1 .J . 1 / • • i·'
1.·

' .s • I,

•,._,, ~r: •II '• 1 , •

\' /' '

. ·1 'j .
t ... ' .. ,

..... ,. - ·. i ...
If!_ .

I: ;; · 1·1

", •
1

• < ~ : I •I, • , 1" ,'
• .. • f L ~ • ; ,;, .' ' f -~

I •

,~
)' . . A j : •

I,.
1 ' . ' . ,:

'~- . '

• ''I" ·: ; \ l ! .. t I

. ,. . . ,,. ,\

, • I,

"'· 1,. '.I' • •· . .'
l .

\ ' • • '1 , J. • •

·: , ... ' 'I

'· ., ' ;· . . ~ '
', I ·:.; • ., ,',' I,\ •;: I 'f I I

\,: '''t ,,

.. '· .

10. Navy Ocean System Center 1
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

11. National Science Foundation 1
Attn. Dr. Willia~ Wulf
Washington, D.C. 20550

12. National Science Foundation 1
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation 1
Director, PYI Program
Attn. Dr. C. Tan
Washington, -D.C. 20550

14. Office of Naval Research 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, V4'ginia 22217-5000

15. Office of Naval Research 1
Applied Mathematics and Computer Science, Code 1211
Attn: ·or. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology 1
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist U n.iversity 1
Computer Science Department
Attn. Pr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software 1
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin 1
·Computer Science Department

. Attn. Dr. Al Mok
Austin, Texas 78712

20.

21.

University of Maryland
College of Business Management
Tydings Hall, Room 0137
Attn. Dr. Alan Hevner
College P~k, Maryland 207 42

University of California at Berkeley

i • _,

Deparnnent of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C. V. Ramamoorthy

y ,, ! ..
l I 1 ,

, ..
.1

• I

I •

Berkeley, California 94720 I•

22. University of California at Los Angeles
School of Engineering and Applied Science
Computer Science Department
Atm~ Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 207 42

24. University of Maryland
Computer Scienc~ Department
Attq. Dr. N. · Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

~ I > • ;

26. Massachusetts Institute of Technology .

(.

Deparnnent of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge, Mass~chusetts 02139 1 '1' .·• • ,

27. Massachusetts· Institute of Technology

' ..

J: .,

.,. .. .
,, f

Dep~ent of Electrical Engineering and Computer Science
545 Tech Square , . . • · ~ . . . J • , ; .

AtlO. Dr. J. Guttag .
Cambridge, Massachusetts 02139

28. University of Minnesota
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. J. Ben Rosen
MinQeapolis, Minnesota . 55455

.. 'l'I 4

._, ..

. r

:, 'I

·•·t

'I

' '

If• ..

,,
, •• t

... i.

',.

"'. ' ~

I •·

;, 1

J f •~ .. I I .,

1 '
I,

',1

..
f • .,. •II •'

' ·1
·,

'r . ·'· ' ..

• •~ I

29. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University
Sof~are Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko
P.O. Box 704

. Yorktown Heights, New York 10598

33. The Ohio State University
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois
Department of Computer Science
Attn. Dr. Jane W. S. Liu
{Jrbana Champaign, Illinois 61801

35. University of Massachusetts
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts 01003

36. University of Pittsburgh
Department of Computer Science
Attn. Dr. Alf s Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

1

1

1

1

1

1

1

1

1

• ·ft

' ~ t

38. Defense Advanced Research Projects Agency (DARPA) . ·,. ·_ 1 : ..

Integrated Strategic Technology Office (ISTO) ·· .
Attn. Dr. Sq~ires ,.; •. i'

1400 Wilson Boulevard
Arlington, Virginia 22209-2308

·, f I., .l, , . ,
t) .. - •, • I'' ,.

39. Defense Advanced Research Projects Agency (DARPA) ~ ·
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22~09-2308 . , , 1 •

40. Defense Advanced Research Projects Agency (DARPA)
Director, Naval rechnology Office
1400 Wilson Boulevard

. Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-~30~ ,, . ,. . . '.

42. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory
Attn·. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Peniagon
Washington,. D.C. 20318-8000

46. LTCOL Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

~ ', • I

•. , I tf ,, ,

. ,

r I•• ,.,. _, 1 .

I

... .
'

. ' ,1 t'. .
• I 'I.,_', I \"

r '

• I
'• I

... ' ·1 '
I) -.• .. rr • • .,

:,. '
'' .

'I •

•' I • I

. . .
;;

• 1 • ""·

} .. ; ,-1 .'
' :

'I'

~ L

1 "
1 •1.

'• ', ..

t, I / ~ '

l .r
··-

47. University of California at San Diego 1
Department of Computer Science l ! I

Attn. Dr. William Howden
La Jolla, California 92093

48. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. Nancy Levenson
Irvine, California 92717

49. · University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

50. University of Colorado at Boulder 1
Department of Computer Science
Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University 1
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolfgang Halang 1
Bayer AG
lngenieurbereich Progessleittechnik
D-4047
Donnagen, West Germany

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai 1
Tel Aviv University
School of Mathematical Sciences Ii

Department of Computer Science
Tel Aviv, Israel 69978

56. Dr. Robert M. Balzer 1
USC-Information Sciences Institute
4676 Admiralty Way

. Suite 1001
Marin~ del Ray, California 90292-6695

57. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

58. U.S. Air Force Systems Command 1
Rome Air Development Center
RAOC/CQE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59 LuQi 50
C~de 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

60. Research Administration
Code: 012

1

Naval Postgraduate School
Monterey, CA. 93943

