
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Issues in Language Support for Rapid Prototyping

Luqi; Berzins, Valdis
Naval Postgraduate School

Luqi and V. Berzins, "Issues in Language Support for Rapid Prototyping'', Technical
Report NPS 5 2-89- 026, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65233

Downloaded from NPS Archive: Calhoun

1 3

NPS52-89-026

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ISSUES IN LANGUAGE SUPPORT FOR RAPID PROTOTYPING

LUQI
VALDIS BERZINS

MARCH 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H. Shull
Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION I b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!3UTION / AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-89-026
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(ff applicable) National Science Foundation &
Naval Post2raduate School 52 ONR Sponsored Navy Direct Funding

6c. ADDRESS (City, Stare, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, D. c. 20550
Ba. NAME OF FUNDING I SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval PostQraduate School N~11 r.r.R-8710737 O&MN, Direct Fundina
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

Monterey, CA 93943
11 . TITLE (Include Security Classification)

ISSUES IN LANGUAGE SUPPORT FOR RAPID PROTOTYPING (U)
12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 115. PAGE COUNT
! Pro2ress FROM c~ ... t- 00 TO ...Max....89 1989 March l 'i

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Darpa/ISTO is seeking to develop designs for a new language for rapid prototyping. The
language is seen as part of longer subsequent efforts to develop a comprehensive proto-
typing system that will provide additional tools realizing a high-productivity software
design and prototyping environment. This report presents the concepts of a prototyping
language and relations to Expert Systems.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJ UNCLASSIFIED/UNLIMITED KJ SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I de. OFFICE SYMBOL

LUOI 40R-f.h.f.-?7l'i 'i?T.n
. .

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted .
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
O' U.S. O0Vlrl\ffllfll Ptlllll-"I Off1C11 llll-t0l•J4 ..

Tll\lf"T ACCTl.'Tli'n

Issues in Language Support for Rapid Prototyping

1. Introduction

Luqi
V aldis Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93953

DARP A/ISTO has made an extremely important decision in developing designs for
a rapid prototyping language. In this paper we discuss the important principles of
language support for rapid prototyping, based on our experience. We have designed a
prototyping language and carried out a feasibility study for its implementation over the
past five years.

The purpose of the new Common Prototyping Language is to aid in the develop
ment of large Ada systems. The language is intended to support a comprehensive set of
tools for computer-aided software design and prototyping. The goals for the language
and tool set are:

(1) Rapid construction and adaptation of software,

(2) Enabling the development of more powerful systems,

(3) Checking if specified systems are acceptable to users,

(4) Checking internal consistency of proposed designs, and

{5) Ensuring that implementations conform to specifications.

The scope of the language is intended to include:

(1) parallel systems,

(2) distributed systems,

(3) real-time systems, and

(4) knowledge-based systems.

This paper contains a discussion of some of the basic issues involved in such a pro
ject.

2. Requirements for the Common Prototyping Language
To meet the goals of the project, the Common Prototyping Language should have

the following properties:

(1) Simplicity. To make it easy to learn, understand, and process, the language must
have a clear and simple structure and semantics. This implies uniform structure,
a small number of orthogonal constructs, and general interpretations without spe
cial cases or restrictions. The language should support a user interface with
graphical summary views and English paraphrasing for communication with
untrained people. The language should have an abstract syntax for mechanical

1

/

processing.

(2) Expressiveness. To make it easy to use in describing systems, the language must
be concise and clear. This implies support for abstractions, timing constraints,
concurrency, synchronization, uniform communication, logical inference, incom
plete descriptions, and automated design completion. The language should be at
a specification and design level rather than at a programming level: the constl'\lcts
of the language should correspond directly to decisions made by the designer,
rather than to operations performed by the processor. This will make prototype
descriptions self-documenting and easy to change.

(3) Formality. To support automated tools, the language must have an unambiguous
and precisely defined meaning. The underlying model should have a mathemati
cal basis to support execution, analysis, verification, and trusted transformations.

(4) Locality. To support system evolution and parallel execution, the language must
have mechanisms for localizing design decisions in the description and localizing
interactions between system components.

(5) Tracing. To support validation by users and system evolution, the language
should support tracing design decisions to requirements.

(6) Specification. The language should include a facility for recording black-box
specifications to document the intent of each component, support verification via
proofs and automated testing, and to form queries for retrieving reusable com
ponents. The specifications should also form the basis for automated synthesis
capabilities, inheritance of common properties and constraints, and consistency
checking.

(7) Design. The language should include facilities for describing interconnections of
available components, dependencies between components, and explanations of
design justifications.

(8) Reuse. The language must support the description and retrieval of reusable
software components. This implies facilities for adapting components to new
uses and making small perturbation on their behavior without examining the
details of the internal implementation of the components.

(9) Refinement. To support high productivity, the language should support the con
struction of efficient implementations by augmenting the prototype description
with annotations describing lower level design decisions rather than requiring a
complete re-formulation of the entire system description.

The rapid construction of software prototypes depends on simplifying the view of
the system through which the specifiers and designers do their work, and providing
automated means for bridging the gap between this simplified view and the detailed pro
gramming level description CUJTCntly needed to make a software system efficiently exe
cutable. This automated support should include mechanisms for execution, preparation
of input data, reporting and analyzing results, and diagnosing ill-formed descriptions and
departures from desired behavior to allow the specifiers and designers to work entirely
within the simplified view. at least during the construction of the initial prototype. This
requires a consistent and simple semantic model rich enough to support all of these func
tions. Finding a suitable underlying model is the key to the project.

2

3. Modeling Issues

The models underlying the language provide the common ground for the associated
set of tools. The semantic model for the language provides the basis for automated
analysis, while the computational model provides the basis for execution. One of the
main challenges in this project is to find a model that can coherently span the range of
applications required.

There is no single commonly accepted model for representing real-time constraints.
Some approaches that have been explored include temporal logic, state machines, ~ode
charts, augmented data flow diagrams, Petri nets, and I/0 automata. The model for the
Common Prototyping Language should be chosen to enhance the application of recent
results in logic, graph theory, and combinatorics to link the semantic model to an effec
tive execution mechanism.

Other unsolved problems include effective models for real-time databases and real
time communications networks. In both of these areas, the problems of providing service
within guaranteed worst-case time bounds are largely unexplored.

4. Language Issues

One tradeoff to be considered is the level of formality in the language. Informal
techniques are generally easy to learn and use, but difficult to automate. Formal tech
niques support higher levels of automation, but are more difficult to learn and apply.

The language should allow the designer to specify attributes he cares about, but
should not force the designer to specify attributes for all components. 'Ibis implies
automatically supplying reasonable default values for all attributes needed for execution.

5. Tool Issues
The connection between the Common Prototyping Language and Ada raises several

issues that must be considered. Ordinary compiler technology is insufficient for execu
tion of the prototyping language. Conventional translation techniques must be coupled
with facilities for scheduling to meet real-time constraints and with transformations to
allow the execution of incompletely specified processes.

Ada provides relatively weak guarantees about the scheduling of tasks, and limits
programmer control over scheduling to statically specified priorities. Since this is some
what removed from the level of support needed for implementing hard real-time systems,
the execution support system for the prototyping language will have to provide higher
level facilities for scheduling real-time operations. Such facilities can be classified as
on-line (done at run-time) and off-line (done prior to execution). There is no universally
accepted approach to real-time scheduling. Optimal scheduling algorithms are very time
consuming, and generally cannot be carried out on-line, while off-line approaches are
inflexible and do not handle overload situations very well. lbcre are many different
scheduling algorithms, and choosing the best one for a given application is a difficult
problem.

Transformations arc needed to execute incompletely specified components. Such
transformations should supply reasonable default values for attributes necessary for exe
cution if the designer docs not explicitly specify them. Such attributes can be explicitly
specified to produce a more accurate model of the system or to improve its performance.

3

One example of such attributes is the assignment of tasks to physical processors. Some
times the assignment of particular critical tasks to particular processors is necessary to
meet tight timing constraints by avoiding the overhead of some interprocessor communi
cation. However, the designer usually does not care about the placement of all tasks, and
would like the system to assign reasonable default locations to all of the tasks that do not
have explicit processor assignments.

The tools should provide facilities for analyzing the consistency of a prototype
design. Some of the checks that should be performed include:

(1) Type consistency.

(2) Feasibility of timing constraints.

(3) Consistency between the levels of a hierarchical description.

(4) Preconditions on input parameters and generic parameters.

(5) Constraints on relative rates of producer and consumer processes.

(6) Absence of deadlocks in distributed and parallel systems.

(7) Absence of unhand.led exceptions.

In addition to providing facilities for constructing and checking the intemal con
sistency of a prototype, the tool set should provide facilities for generating input data and
evaluating the results of prototype execution at the in terms of the same semantic model
used for the design of the prototype.

The tool set must also provide a design database for maintaining the design history
in terms of a set of versions of the system and the alternative designs that were con
sidered. This database should also be capable of recording and maintaining constraints
on the system. A related issue that should be considered in the design of the language is
the relation between the language, which is used for describing the design objects in the
database, and the notations for describing the attributes, relationships, and constraints
among those objects that are used by the tools in the associated environment.

6. Knowledge Base Issues

The supporting environment for the language should provide knowledge base sup
port for the following:

(1) Managing reusable components. 1be environment should contain a large
software base with reusable components. This software base should be coupled
with a set of rules for tailoring and combining available components to fulfill
queries that do not exactly match any of the components explicitly stored in the
software base.

(2) High level debugging. Errors and failures during prototype execution should be
mapped from the programming language level to level of the prototyping
language, to allow the designer to work entirely in terms of the semantic model
associated with the prototyping language.

(3) Optimization. 1be transformations for optimizing a prototype version of a sys
tem to produce a production version should be performed with minimum interac
tion with the designer. This implies keeping track of the decisions made by the
designer in optimizing previous versions of the system, dctennining which of

'

those decisions are still valid for later versions, and automatically applying the
ones that are found to be still valid.

(4) Explanations. Justifications for decisions made automatically should be available
to provide feedback to the designer in cases where automated design completion
procedures fail. This requires an expert system with a substantial knowledge
base.

7. Conclusions
The Common Prototyping Language project has an ambitious set of goals that raises

many interesting research problems. The language is a key component of a larger project
for creating a comprehensive tool set for prototyping because it must tie everything
together. Solutions to these problems are essential for achieving significant improve
ments in the quality and productivity of the software development process.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria. Virginia 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

2

3. Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&A 1)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command
Attn. CAPT Joel Crandall

1

National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense 1
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer 1
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

70

10. Navy Ocean System Center 1
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

11. National Science Foundation 1
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation 1
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation 1
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211

1

Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology 1
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17 . Southern Methodist University 1
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software 1
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin 1
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

71

20. University of Maryland 1
College of Business Management
Tydings Hall, Room 0137
Attn. Dr. Alan Hevner
College Park, Maryland 20742

21. University of California at Berkeley 1
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 94720

22. University of California at Los Angeles
School of Engineering and Applied Science

1

Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland 1
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 207 42

24. University of Maryland 1
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute 1
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov

1

Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square

1

Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

28. University of Minnesota 1
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. J. Ben Rosen
Minneapolis, Minnesota 55455

72

29. International Software Systems Inc. 1
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard

1

Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University 1
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center 1
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University 1
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois 1
Department of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign, Illinois 61801

35. University of Massachusetts 1
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts 01003

36. University of Pittsburgh 1
Department of Computer Science
Attn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

1

Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

73

38. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

40. Defense Advanced Research Projects Agency (DARPA) 1
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA) 1
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA) 1
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA) 1
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. L TCOL Kirk Lewis, USA l
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

74

47. University of California at San Diego 1
Department of Computer Science
Attn. Dr. William Howden
La Jolla, California 92093

48. University of California at Irvine 1
Department of Computer and lnfonnation Science
Attn. Dr. Nancy Levenson
Irvine, California 92717

49. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, Calif omia 92717

50. University of Colorado at Boulder
Department of Computer Science

1

Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University 1
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolfgang Halang
Bayer AG

1

lngenieurbereich Progessleittechnik
D-4047
Dormagen, West Germany

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sanlct Augustin 1, West Germany

55. Dr. Aimram Yuhudai 1
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

75

56. Dr. Robert M. Balzer 1
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

57. U.S. Air Force Systems Command
Rome Air Development Center

1

RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

58. U.S. Air Force Systems Command l
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59 LuQi 50
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

60. Research Administration 1
Code: 012
Naval Postgraduate School
Monterey, CA. 93943

76 ·

