
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Graphical Support for Reducing Information
Overload in Rapid Prototyping

Luqi; Barnes, Patrick D.
Naval Postgraduate School

Luqi and P. Barnes, "Graphical Support for Reducing Information Overload in Rapid
Prototyping", Technical Report NPS 52-89-028, Computer Science Department,
Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65234

Downloaded from NPS Archive: Calhoun

NAVA[POSTGRADUATE SCHOOL

,,

Monterey, California

GRAPHICAL SUPPORT FOR REDUCING
INFORMATION OVERLOAD

IN
RAPID PROTOTYPING

LUQI

PATRICK D. BARNES

MARCH 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H. Shull
Provost

The work reported herein was supported by the National Science Foundation, the
Office of Naval Research and the Naval Postgraduate School Research Council.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

Dean of Information
and Policy Science

..

...

Graphical Support fo~ Red.ucing
Information Overload

• ID

Rapid Prototyping

Luqi

Patrick D. Barnes

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

Abstract

The basic problem in rapid prototypi11g of software is infonnation overload. Graphic
interfaces can help by providing multiple views, where eacl, view is limited to providing
i,rfonnation relevant to a particular task or problem. The graphic editor under development
for the Computer Aided Prototyping System (CAPS) proposes a data flow diagram based
model wit/, multiple views attd automatic program ge11eration to ma11age tire quantity of
information necessary to prototype large, real-time systems.

Keywords

Software Engineering, Rapid Prototyping, Computer Aided Design, Computer Graphics.

1. Introduction
The need to improve software operational reliability and development productivity has

resulted in research aimed at tools for rapidly prototyping large real-time software systems.
The Computer Aided Prototyping System (CAPS) replaces the traditional software life cycle
with a two phase cycle consisting of rapid prototyping and automatic program generation (4).
The rapid prototyping technique provides the designer with a means of writing specifications
and using matching reusable software components to build a prototype of the intended sys­
tem. The prototype can then be used to evaluate both user's needs and system feasibility
(2,5).

Although prototyping generally involves dealing with problems at a high level of ab­
straction, crucial decisions designers must make are still too many to be evaluated at a sin-
gle level. Thus the designer can quickly be inundated with an overload of information-much
the same as a decision maker ip business or management. Prototyping large real-time sys­
tems requires tools for managing this infonnation such that unnecessary detail may be hid­
den, and essentials may be easily assimilated at a glance. Tius paper discusses the impor­
tance of using graphical representations to reduce information overload and describes a
graphical editor in development for CAPS.

2. Reducing Information Overload
An essential function of CAPS is to help the prototype designer focus on subsets of

the decisions in a design needed to evaluate alternatives and further refine or modify the sys­
tem [6] . CAPS initially provided for entering component specifications via a syntax directed
editor accessed through its user interface. It could then try to match the specifications to re­
usable modules in the database. For complex systems, however, if the search was unsuc­
cessful, the . component had to be manually decomposed into increasingly detailed statements
which resulted in the information management problem previously described. What was
needed was a means of entering specifications graphically, such that decomposition would be
cleaner and information hiding could be managed via a multi-layered representation.

Graphics alone cannot provide a magic solution to the problem of software complexi­
ty. In fact, they can sometimes complicate matters even further. TI1us the application of
graphical techniques must be coupled with a strategy for extracting a mewtingful subset of
available information to be effective. Development of a graphic editor, then, requires ad­
dressing the following issues. First, the graphic representation must be automatically pro­
grwnmable. In the case of CAPS, it must map directly to equivalent Prototype System De­
scription Language (PSDL) representations with which CAPS can construct a prototype
[2,5]. Second, the graphic representation must provide multiple system views-reducing the
amount and detail of infonnation which must be assimilated at any one time. Finally, a provi­
sion has to be made for maintaining consistency between the PSDL and graphic representa­
tions, as well as syntactic and semantic correctness of the design.

2.1 Automatic Programming
One of the most promising means of improving progrwnmer productivity is automatic

programming. That is, the automatic generation of code from software specifications rather
than manual generation through several layers of language translation. The context of this
paper is CAPS which is based on the PSDL prototyping language (3). PSDL specifications
may be directly used to produce an executable Ada program from reusable components. PS­
DL provides for specification of both control and data flow and is based on the following
mathematical model:

G = (V, E, T(V), C(V))

where V is the set of vertices

Pagel

..

.. ,

·"

E is the set of edges

T(V) is the maximum execution time (MET) associated with vertex V

C(V) is the set of control constraints associated with vertex V.

In PSDL, vertices represent operators and edges represent data streams. Operators
represent system components and can map to either functions or state machines. Such com­
ponents communicate with one another via data streams carrying values of a fixed abstract
data type or the special PSDL type EXCEPTION. Operators are either data driven or peri­
odic. That is, they execute either in response to the arrival of a data flow, or at a predeter­
mined interval. Operators can also be characterized as being either composite or atomic. If
an operator cannot be further decomposed into data and control flow networks, it is atomic.
Edges or data streams can represent either the traditional flows, in which data is guaranteed
to reach its destination, or sampled streams. Sampled streams represent continuous
streams of information which may be updated and sampled at different rates.

Control constraints are used to limit an operator's behavior by specifying conditions
regarding its firing (execution) or j/o processing. While control constraints specify when an
operator executes, timing constraints detennine its execution time, response time, and peri­
od.

The PSDL model can be mapped directly to the augmented data flow diagram [3]. In
addition to data flows and transformations (operators), the PSDL model requires representa-

75ms
a b

state

10ms
a

20ms 10ms

Figure 2.1 Operator Decomposition [7)

Page3

tion of execution time and constraints associated with each operator. Figure 2.1 shows how
these objects are incorporated info the data flow diagram and decomposed. Note that consis­
tency requires not only that inputs and outputs must match between levels, but timing con­
straints of a decomposition must not allow a path which has a total execution time in excess
of the parent operator's MET.

2.2 Multiple Views
The CAPS database is able to maintain graphical representations such that they may

be retrieved in a manner similar to hypertext[4J. That is, each operator exists as a node of a
multi-way tree with its associated attributes and links to its parent and child nodes. Addi­
tional links are possible representing other types of relationships between nodes. This capa­
bility provides for the following proposed set of graphical system representations: summary
views, navigation structures, andfocused slices.

A summary view serves as an introduction to some aspect of the system under devel­
opment. This lets someone unfamiliar with the system or component to get "the big picture"
such as is necessary in a prototype demonstration or design review. A summary view there­
fore serves to establish a context for further explanation or detailed examination.

An example useful summary view for a PSDL composite operator is the a data flow
diagram of Figure 2.2 showing only the operator's components and their interconnections.
Such a view is valuable precisely because of the details it leaves out (such as data types and
timing and control constraints). Without such additional detail, the relationship between ma­
jor components of the operator can be readily understood by the observer.

From the summary view, more detail regarding a particular aspect of the system can
be detennined via navigation structures. These include both explosion views and amiotatio,i
views. In general, an explosion view of a component shows the structure of its .immediate
sub-components. In the context of a CAPS data flow diagram (see Figure 2.3), an explosion
view shows the next level decomposition of an operator. A graphical interface supporting ex-

cruise r-- control ~ throttle
speed L__ setting

engine

Figure 2.2 Summary View

Page4

..

X

Figure 2.3 Explosion View of Operator A

z

NAME: Y
TYPE: INTEGER
UNITS: MPH
LATENCY: 0

Figure 2.4 Annotation View for Stream Y

y

Page5

plosion views makes it very easy for a designer to repeatedly pick and display subcompo­
nents of an operator until a part relative to the problem at hand is located. This procedure is
similar to an outline processor which allows selection of subheadings and creates views with
the selected subheading as the main heading of the new, more detailed view.

The second type of navigation structure, an annotation view, gives symbolic or textu­
al information regarding the selected component. The example in Figure 2.4 is an annotation
view of a PSDL data stream showing the data type, latency, and units associated with the
selected stream. Annotation views are useful for presenting on demand details that are not
always needed. Annotations need not be represented by text only. A numerical value, for
example, could be presented digitally, as an analog gauge, or as a bar graph. A necessary
annotation view for a PSDL operator would be one which depicts control and timing con­
straints.

Besides the three types of views described above, focused slices can be formed
which are subsets of one or more views formed to highlight specific infonnation or relation­
ships. Examples include slices which show timing, exceptions, critical paths, and rooted
sources and sinks. A timing slice, for instance, would focus only on the timing relationships
between operators, eliminating other unnecessary information such as data stream names.
The timing slice of Figure 2.5 indicates the variety of means which might be used to present
such information. Similar views for maximum response tin1e or minimum calling periods are
also useful for summarizing the timing properties of a system.

Subsets showing just the time-critical operators, periodic operators, or sporadic oper­
ators are useful for analyzing ti.ming problems. The two graphics in Figure 2.5 show a high-

5

FINISH WITHIN: 20
CRITICAL PATH: HIGHLIGHTED
LENGTH OF CP: 17

TOTAL CPU TIME: 21
DEADLINE: 20
POSSIBLE SOLUTIONS:

A

8

C

D

0

1. SPEED UP OPERATOR A, 8, ORD BY 1
2. ADD 1 CPU

5

c:::J

10

time
15

Figure 2.5 Focused Slices Showing Timing and Critical Path

20

Page6

...

lighted critical path slice and a schedule congestion graph. The latter illustrates the intervals
between the earliest and latest time an operator can start executing. Such a display can be
useful for the interactive design of a static schedule for a critical component with particularly
tight constraints. It can also help identify critical nodes which might benefit most from effi-

·' ciency improvements. Clearly automating the representation of such information frees the
designer to make difficult design decisions rather than become immersed in detail.

Another type of focused slice shows only exception streams and the exception han­
dling operators. Exception slices depict responses components must make to unexpected
situations or ill-formed inputs.

2.3 Maintaining Consistency and Correctness
Maintaining consistency in a multi-level, multi-view system provides a considerable

challenge. The Coral [10] developers dealt with this problem by associating constraints with
objects. Thus manipulating an object takes into account its constraints and context in rela­
tion to other objects.

Two types of consistency must be maintained: hierarchical consistency and view con­
sistency. Hierarchical inconsistencies arise since adding objects requires continued top down
modification to lower level views. Deleting operators not only requires deletion of an entire
decomposition, but also requires modifying each object adjacent to the deleted object.

In the augmented DFD used in CAPS, hierarchical consistency of both i/o and timing
must be maintained. As shown in Figure 2.1, the external inputs and outputs of the child
must match those of the parent. In addition, no path through the child graph may exceed the
MET of the parent.

The graphical editor must also take into account view consistency. Any modifica­
tions to the graphic representation will require re-generation of the PSDL link statements
along with other associated slice information to maintain the integrity of all views.

Constraints on graphic objects reveal the relationships necessary to affect appropri­
ate changes to the attributes of related objects when the graphic representation is modified.
Constraints involve both the application specified values such as timing, as well as the syn­
tactic attributes built into the CAPS. These "built in" constraints not only help to ensure
consistency, but also improve correctness.

Constraints on graphic objects can be applied in design of the editor to preclude draw­
ing diagrams with syntactically incorrect internal representations. This prevents the designer
from having to check to be sure the correct PSDL statements are being generated. Ideally,
the prototype designer should not even need to understand the underlying PSDL syntax.

3. Design of the Graphical Editor
The design and development of a prototype graphic editor for the CAPS was undertak­

en by a thesis student at the Naval Postgraduate School and the results of that effort are de­
scribed in this section [11]. First the general requirements are stated. Next considerations

Page7

are presented regarding the user interface and i/o. Finally, the main data structures and pro­
cessing algoritlun are described.

3.1 Requirements for the Graphical Editor
The graphical editor shall meet the following general requirements (11]:

• Run in a windowed environment-control movement between levels, selection of
editing modes, display of help.

• Ensure syntactic correctness--only accept symbols in the graphic language.

• Support semantic checking--a symbol's context must reflect intended meaning.

• Provide view consistency-changes to the specification and graphical editor must
result in comparable updates in the other view.

• Pn;>Vidc hierarchical consistency--changes in one level of decomposition must be
reflected in both higher and lower levels as applicable.

The graphical editor shall provide the following functions:

• Display operator context--the operator's name, inputs, outputs, states, and
maximum execution time taken from the PSDL specification.

• Draw objects-consisting of operators (bubbles), data streams, inputs, outputs,
and self loops (arrows).

• Retrieve and edit--modify existing graphic decompositions.

• Generate PSDL link statements--automatically from the augmented DFD, of the
form: data _stream .source[:met] --> destination.

3.2 Interface Design ·
Four factors influenced the design of the graphical editor's user interface (11]:

1. the choice of machines on which to implement CAPS

2. the choice of interface software support

3. human factors issues

4. user interface design guidelines

3.2.1 Sun Workstation

The Sun Workstation has many features which make it the machine of choice for the
development and implementation of CAPS. The availability of a dedicated CPU in a multi­
tasking environment greatly enhances the design team's ability to code, test and debug their
software. The Sun Workstation also provides a powerful integrated programming environ­
ment based on the unix operating system.

Page8

~-

3.2.2 Sun View

The Sun View window based user environment supports interactive graphics-based
applications with multiple overlapping windows, each of which can run a task independent of
the other windows, as well as a general toolkit for building window-based applications.

3.2.3 Human Factors

The following hwnan factors principles were considered in designing the graphical in-
terface:

1. Functional Principle. Controls which are grouped according to their functionality
are easier to learn and result in fewer errors [8]. The graphical editor's controls fall
into three functional groups:

• session control group

• drawing mode group

• text input group

2. Sequence of Use Principle. Controls which are organized in the same sequence
that they are used eliminates the need to jump around and therefore minimizing the
amount of information the user must remember [8]. The controls of the graphical
editor are organized to be used in a series of top to bottom sequences. The top panel
is used to control the basic system functions of loading and storing decompositions
and quitting the tool. As such, it is used at the beginning and end of an editing
session. The next panel down is the drawing mode panel. It is used to switch from
drawing one type of object to another. After the drawing mode is changed, the user
must enter a name and in the case of an operator, a time constraint. The input panels
for these are therefore located immediately below the drawing mode panel. The
drawing canvas is located immediately below the input panels. This ordering of
controls always allows, but does not force, the user to operate in a top to bottom
circular fashion as follows:

• select mode (optional)

• enter and read name

• enter and read time constraint (if in operator mode)

• draw object

• repeat until done

3. Human Memory Capacity Principle. Studies have shown that humans have the
capacity to remember 7 "!2 things at once [8]. The graphical editor was designed to
meet this criteria. It consists of five basic parts and its longest menu has only five
choices.

3.2.4 User Interface Design Guldellnes

Guidelines which should be applied when designing a user interface include the fol­
lowing [1]:

Page9

• Be intuitive (things should work as you would expect)

• Accommodate experts and novices (provide confinnation override mechanisms)

• Allow customization

• Provide extensibility

• Use lots of feedback (show status; make error messages clear)

• Be predictable (use a consistent, easy to remember set of basic actions in obvious
ways)

• Be deterministic (consider type ahead and mouse ahead effects)

• Avoid modes (if states that persist are necessary, make the feedback and exit
path obvious)

• Do not preempt the user (don't force them to respond)

3.3 Input/Output Considerations

3.3.1 Inputs

The graphical editor accepts inputs from both the mouse and the keyboard. No re­
strictions are placed on the order that any of these inputs must occur except that each type of
object should be drawn with a given name.

An operating mode select event occurs when one of the operating mode buttons is
selected via the mouse. Selectable operating modes include (1) load an existing diagram,
(2) store the current diagram or (3) quit. TI1e default mode is for the editor to be ready to
create a new diagram.

An drawing mode select event is also a mouse input. This input establishes the con­
text in which canvas events will be interpreted.

To draw an object, the mouse is used in a typical rubber-banding point and click
style with the release of the mouse button completing the drawing.

The point and click method is also used to delete an object.

Textual inputs are typed in via the keyboard. First the mouse pointer must be posi­
tioned in a text panel and after typing the text, the corresponding read button is selected to
initiate text processing.

When the graphical editor is used to edit an existing diagram, the system retrieves
the necessary reconstruction information from the design database and. The graphical editor
then reads this information and reconstructs the diagram.

3.3.2 Outputs

TI1e graphical editor has two kinds of outputs: visual and textual. If the user draws an
object, it is displayed on the canvas so that he can see it. If a user generated error occurs, an
error message will immediately be displayed at the top of the canvas. Once the error condi­
tion has been corrected, the error message disappears.

Page 10

When the mouse is in a particular subwindow of the display, visual feedback in the
fonn of a bold sub-window border, is provided.

After a decomposition has been completed and the user has selected store, the editor
will generate two kinds of textual output. The PSDL link statements along with additional
information needed to reconstruct the display will be written to a file. The CAPS user inter­
face will store this information in the design database [7].

3.4 Data Structures

The primary storage structure for the graphical editor is a linked list of operators
[11). A single structure named Operator _list has pointers to the head and tail elements of
this list. Each element in the operator list is a structure of type Operator. The Operator
structure has ten fields.

The name field is a variable length string representing the name of the operator. The
optype field is used to signify whether the structure represents an actual operator or wheth­
er it represents a NULL operator which is used as the source for external inputs. The xstart
and ystart •fields specify the starting (x,y) coordinates of the operator. The xstop and ystop
fields contain the operator's stopping (x,y) coordinates. The met field contains a variable
length string representing the operators maximum execution tin1e. Tite last three fields are
pointers. The head and tail fields point to a linked list of lines which leave this operator.
The next field points to the next operator in the linked list of operators.

As mentioned in the previous paragraph, each operator has an associated Line-list.
This Line-list is a linked list of structures of type Line. Lines originate at the operator to
which they are attached.

The name, xstart, ystart, xstop, ystop and next fields of the Li,ie-list structure
serve the same purpose as in the Operator-list structure. The lntype field is identifies wheth­
er the line is an input, output, data stream or a state. The dest field holds the name of the op­
erator on which the line terminates. For output lines, this field will always point to a name
structure containing the name EXTERNAL.

3.5 Algorithm Description
At a very high level, the algorithm for the graphical editor is simply:

• create the window

• poll for events

Sun View has built-in routines which allow the interface designer to construct an in­
teractive window application. One need only provide the routines for handling the details of
the application. The following is a description of the main routines of the graphical editor
[11].

Page 11

3.5.1 Create the User Interface

111e user interface for the graphical editor is a window comprised of five sub-win­
dows, each of which is one of the Sun View application building blocks. 111e Window is cre­
ated as follows:

I

• Create a frame. This i_s done with the Sun Window routine window create.
Parameters for this routine allow the specification of various attributes for the frame
object. These attributes include its name, icon, size, location, window type, location
on the screen and numerous others.

• Create each of the sub-windows. Again using the routine window _create, the
graphical editor frame is tiled with four panel sub-windows and a drawing canvas sub­
window.

3.5.2 Poll for Events

This function is greatly simplified by the Sun View notification-based system. Rath­
er than maintain a main event polling loop within the application program, Sun View has the
polling loop in a notifier. The notifier reads events and then notifies the appropriate applica­
tion procedure that input has occurred. This scheme requires that each procedure must be
registered with the notifier so that it knows who to call for a particular event. So procedures
which are to be called as a result of a button being pushed are registered with the notifier by
the panel_create_item routine [9]. The events which are accepted by the graphical editor are
described as follows: ·

3.5.2.1 System Control Events

The load existing, store, and quit event buttons are located in the top subwin­
dow of the graphical editor frame. When the graphical editor is started it comes up in a mode
which allows the user to create a new decomposition diagram. The three selectable events
are described as follows:

1. Load Existing.

• The routine load _proc reads the reconstruction data from a file and checks its
type. This data must have been previously retrieved from the design database
by the CAPS user interface [7].

• If the object is an operator, an operator storage element is created, filled in
with its information, and is attached to the list of operators.

• If the object is of type EXTERNAL, an operator element is also created and
is linked to the operator list. EXTERNALs are NULL operator nodes which
serve as the source operator for input lines. The only fields of an EXTERNAL
which get useful values are those pointing at the line list.

• Any object encountered during the load process which is not an operator or
external is some type of line. Therefore, a line storage element is created, its
values are filled in and it is linked to the line list of the last operator which was
read in.

Page 12

• After all of the objects in the file being loaded have been read in, stored and
linked, the diagram is ready to be drawn. Load_yroc's final action is to call the
routine redraw_ diagram which traverses the entire linked storage structure
and draws each object.

2. Store.

• Information for diagram reconstruction is stored by the routine store_ diagram. This
routine does a traversal of the storage structure, writing out the contents of each
operator node immediately followed by the contents of each of its associated line
nodes.

• Creating the PSDL link statements is a similar process. The create _PSDL routine
traverses the entire storage structure, generating a PSDL link statement for each line
node it finds. The link statement is a string of characters which result from the
concatenation of the following six sub-strings:

• the line name (stored in the line node)

• the character "."

• the source operator's name (the name of the operator whose lines are being
processed)

• an optional":" and MET (if the source operator has an MET)

• the character string "-->"

• the destination operator's name (stored in one of the line nodes fields)

• These link statements will be attached to the implementation part of the
PSDL specification file by the sequence control function [7].

• After the diagran1 has been stored, the store_ diagram routine tells the
system that it is safe to exit.

3. Quit.

• The routine quit _yroc will first check to see if the diagram has been stored. If so, it
will destroy the window.

• If the diagram has not been saved, an error message will appear on the drawing
canvas telling the user to store the diagram.

• The user can terminate the session without saving by quitting via the normal Sun
View windowing menu. Selecting "Quit" from this menu will circumvent the storage
check and kill the editor.

3.5.2.2 Mode Select Events

The graphical editor always starts in the draw_ operator mode. This is be­
cause operators must be drawn before data streams. This requirement has the advantage of
making it easy to check the syntax of the diagram. The editor ensures that lines intersect op­
erators in a way appropriate to their type (i.e. input, output, etc.).

Page 13

To switch operating modes, the user clicks on the desired mode. The selector will re­
verse its color indicating that it has been selected. The selection causes the notifier to call
the mode_select routine which sets the global edit_mode variable to the appropriate value.
This establishes the context in which canvas events for the left mouse button will be inter­
preted.

3.5.2.3 Text Panel Events

The graphical editor bas two panels which provide a means of entering textual
information.

1. Name Panel.

• The name panel allows the user to enter a name for an operator or a line.

• The read_ name button must then be selected causing the notifier to inform the
routine input_ name to rea<;t the panel and the routine is_ valid_ ada _id to check the
syntax of the name. ·

• If the name is not a valid Ada identifier (PSDL identifier syntax matches Ada), an
error message is displayed and the name must be edited before drawing events on
the canvas.

2. MET Panel.

• The MET panel works essentially the same as the name panel. The difference is
that the routine is_ valid_ MET is used to check d1at the value is an integer and has
the appropriate units.

• Invalid values result in an error message and a lockout of operator events from the
canvas since only operators have a MET.

3.5.2.4 Canvas Events.

The graphical editor screens the event handler for left mouse down events, left
mouse drag events, left mouse up events and right mouse down events.

1. Left Mouse Down.

• Capture the x and y coordinates of the position where the event occurred. These
values are stored and become the starting position of the object being drawn. Which
object is drawn depends upon the current drawing mode.

2. Left Mouse Drag.

• Rubber-band the object. As the mouse pointer is moved across the screen
process_ canvas_ events repeatedly captures the position of the pointer. For each new
position, the routine rubber-band is called to blank out the previous version of the
object and then redraw it using the most recent starting and stopping coordinates.
The result is that the line is erased and redrawn as fast as the user moves the pointer
across the screen.

3. Left Mouse Up.

Page 14

• Call rubber-band a last time to delete die last rubber-banded version then capture
the final stopping coordinate. The routine process_object then performs syntactic and
semantic checks on the object.

• H the editing mode is draw_ operator, the routine process_ object will verify that a
name and a MEf are available and that the coordinates of the new operator do not
overlap another operator. ;

• When all of these conditions are satisfactory it calls the routine process_ operator.
This routine will cause the following seven steps to take place:

• the object will be drawn

• the MEf will be retrieved

• the name will be retrieved

• the name will be displayed, centered in the operator

• the MET will be displayed, centered over the operator
I

• the operator will be allocated storage and stored

• the stored operator will be appended to the list of operators

• H the drawing mode is draw_ data _stream, draw _input, draw _output, or
draw _se/f_loop, routine process_object will verify availability of a legal Ada identifier
and will ensure the line intersects an operator in the appropriate fashion.

• If the checks tum out satisfactory, the routine process _line is called. This routine
will cause the following aftions:

• draw the appropriate line

• draw the arrowhead on the end of the line

• if the line is an input line, create a NULL operator to act as its source and
link the NULL operator to the operator list

• retrieve the line's name

• display the name, on the line

• create the storage for the line and fills in the values

• append the line to the source operator's list oflines

4. Right Mouse Down.

When a right mouse down event occurs, the routine process_ canvas_ events checks to
see if the mouse's coordinates are within the pick criteria of either a line or an operator. H
so, the object is deleted from the storage structure by routine delete _line or delete_ op as ap­
propriate. After the deletion is complete, routine redraw_ diagram draws the remaining ob­
jects.

Page 15

4. Conclusions and Recommendations
i

This paper discussed the; capability of graphical representations to ease the prototyp­
ing process and reduce the prob~em of information overload. The application of information
hiding and multiple views, coupled with ensuring consistency and automatic programming
promise a significant improvement in user productivity. Development of a graphical editor for
performing hierarchical decom1>9sition of composite PSDL operators for CAPS was also dis­
cussed. Research on the graphical editor, as it relates to PSDL, indicates that a prototype
design can be developed with inuch greater ease than with only the syntax-directed editor.
Graphic editor capabilities will also greatly enhance prototype modification, presentation, and
documentation for further development.

Work is still needed in integrating the graphic editor, syntax-directed editor, and da­
tabase with the user interface. Only the most basic DFD view has been implemented in the
graphic editor and a more sophisticated means of automatically performing consistency up­
dates should be pursued. An expert mode is desperately to increase productivity, and a num­
ber of enhancements could be ma~e to improve user-friendliness in the graphical interface.

Much work needs to be done. Application of graphical representation of information
needed by software engineers for making qualitative design decisions is years behind the ap­
plication of similar technology : in business and industry. It's time decision support came
home to the software community in recognition that software development is requiring an ev­
er greater portion of the available c01porate budget.

Page 16

5. References

1. F. Hopgood and others, Methodology of Window Management, Springer-Verlag,
1986.

2. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software",
IEEE Trans. on Software Eng., October, 1988, 1409-1423.

3. Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems", IEEE Software,
Sep. 1988, 25-36.

4. Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Software
5, 2 (March 1988), 66-72.

5. Luqi, "Software Evolution via Rapid Prototyping", IEEE Computer, May 1989 ..

6. Luqi and Y. Lee, "Interactive Control of Prototyping Process", Technical Report
NPS 52-89-014, Computer Science Department, Naval Postgraduate School, 1989.

7. H. Raum, ''Design and Implementation of an Expert User Interface for the
Computer Aided Prototyping System", M. S. Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, Dec. 1988.

8. M. Sanders and E. McConnick, Human Factors in Engineering and Design, 6th
Edition, McGraw-Hill, 1987.

9. Sunview Programmer's Guide, Revision: A, Sun Microsystems Inc., Oct. 1986.

10. P. Szekely and B. Myers, "A User lnte1face Toolkit Based on Graphical Objects
and Constraints", in Proceedings of ACM OOPSLA Conference, 1988.

11. R. Thorstenson, '' A Graphical Editor for the Computer Aided Prototyping
System", M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey,
CA, Dec. 1988.

Page 17

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research 1
Office of the Chief of Naval Research
Atbl. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&A T)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Atbl. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense 1
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Naval Research Laboratory

1

Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

10. Navy Ocean System Center
Attn. Linwood Sutton, Code 423

1

San Diego, California 92152-500

11. National Science Foundation 1
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation 1
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation 1
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research 1
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research 1
Applied Mathematics and Computer Science, Code 1211
Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology 1
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University
Computer Science Department
Attn. Dr. Murat Tanik

1

Dallas, Texas 75275

18. Editor-in-Chief, IEEE Software 1
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin 1
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

20. University of Maryland 1
College of Business Management
Tydings Hall, Room 0137
Attn. Dr. Alan Hevner
College Park, Maryland 20742

21. University of California at Berkeley 1
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Ramamoorthy
Berkeley, California 94720

22. University of California at Los Angeles 1
School of Engineering and Applied Science
Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland 1
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 20742

24. University of Maryland 1
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 20742

25. Kestrel Institute 1
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

1

545 Tech Square
Attn. Dr. B. Liskov - Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

1

28. University of Minnesota 1
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. J. Ben Rosen
Minneapolis, Minnesota 55455

29. International Software Systems Inc. 1
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard

1

Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University
Software Engineering Institute

1

Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center 1
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University 1
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois 1
Department of Computer Science
Attn. Dr. Jane W . S. Liu
Urbana Champaign, lllinois 61801

35. University of Massachusetts 1
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst. Massachusetts 01003

36. University of Pittsburgh
Department of Computer Science

1

Attn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

1

Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

38. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DARPA) 1
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

40. Defense Advanced Research Projects Agency (DARPA) 1
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA) 1
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA) 1
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office

1

1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. L TCOL Kirk Lewis, USA 1
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

47. University of California at San Diego
Department of Computer Science
Attn. Dr. William Howden

1

La Jolla, California 92093

48. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. Nancy Levenson
Irvine, Calif omia 92717

49. University of California at Irvine 1
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

50. University of Colorado at Boulder
Department of Computer Science

1

Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University 1
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolfgang Halang 1
Bayer AG
lngenieurbereich Progessleittechnik
0-4047
Dormagen, West Germany

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai 1
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

56. Dr. Robert M. Balzer 1
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

57. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

58. U.S. Air Force Systems Command 1
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

59 LuQi 50
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

60. Research Administration 1
Code: 012
Naval Postgraduate School
t-bnterey, CA. 93943

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASS I FICA llON AUTHORITY 3 . DISTRIBUTION I AVAILABILITY OF REPORT

Appr~ved for public release;
2b DECLASSIFICATION I DOWNGRADING SOIEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) s MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-89-028
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &

Naval Postgraduate School 52 ONR Sponsored Navy Direct Funding

6c. ADDRESS (City, St,ue, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterev. CA 93943 Washington, D.C. 20550

Ba. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

tiJ,,..,.,, Poi:;t-o..-adn,.t-P School NSF CCR-8710737 OiMN DirectFundina
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO.

Monterey, CA 93943
11, TITLE (Include Security Classification)

GRAPHICAL SUPPORT FOR REDUCING INFORMATION OVERLOAD IN RAPID PROTOTYPING (U)
12. PERSONAL AUTHOR(S)

LU0T. ~1, • uft ___ . :1<r Zv,da
Ila. TYPE OF REPORT I' 3b TIME COVERED 14 DATE OF REPORT (Year, Month, O.1y) 11 s PAGE COUNT

Prnar,:,~9 FROM C::o.-,t- RR TO Mat: 82 89/03 27
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUD-GROUP Software Engineering, Rapid Prototyping, Computer Aided
Design, Computer Graphics.

19 ABSTRACT (Continue on revNse if necessary and identify by block number)

The basic problem in rapid prototyping of software is information overload. Graphic interfaces
can help by providing multiple views, where each view is limited to providing information
relevant to a particular task or problem. The graphic editor under development for the Com-
puter Aided Prototyping System (CAPS) proposes a data flow diagram based model with multi-
pie views and automatic program generation to manage the quantity of information necessary to
prototype large, real-time systems.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(i UNCLASSIFIED/UNLIMITED KJ SAME AS RPT. D DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I <.le. OFFICE SYMBOL

T.TTnT (408) 646-2735 52Lq
OD FORM 1473, 84 MAR 83 A.PR ed1t1on may be used until exhausted.

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

o v .s. Governn,enl Prlnllnt Oflfu1 I tll-lOS -24 ..

UNCLASSIFIED

•.

