
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Rapid Prototyping Languages for Expert Systems

Luqi
Naval Postgraduate School

Luqi, "Rapid Prototyping Languages for Expert Systems", Technical Report NPS
52-89-032, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65235

Downloaded from NPS Archive: Calhoun



NAVAL
2

POSTGRADUATE SCHOOL 
Monterey, California 

RAPID PROTOTYPING LANGUAGES FOR EXPERT SYSTEMS 

LUQI 

March 1989 

Approved for public release; distribution is unlimited. 

Prepared for: 

Naval Postgraduate School 
Monterey, CA 93943 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral R. C. Austin 
Superintendent 

H. Shull 
Provost 

The work reported herein was supported by the National Science Foundation, the 
Office of Naval Research and the Naval Postgraduate School Research Council. 

Reproduction of all or part of this report is authorized. 

This report was prepared by: 

Reviewed by: 

ROBERT B. MCGHEE 
Chairman 
Department of Computer Science 

LUQI 
Assistant Professor 
of Computer Science 

Released by: 

and Policy Science 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

I 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS 

UNCLASSIFIED 
•2a SECURITY CLAS SI FICA TION AUTHORITY 3 . DISTRI_BUTION I AVAILABILITY OF REPORT 

Approved for public release; 
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited. 

' 
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 

NPS52-89- 032 
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION 

(If applicable) National Science Foundation & 
Naval Postgraduate School 52 ONR Sponsored Navy Direct Funding 

6c. ADDRESS (City, Seate, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

Monterey, CA 93943 Washington, D. C. 20550 
Ba. NAME OF FUNDING/ SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

ORGANIZATION (If applicable) O&MN, Direct Funding 
Naval Postgraduate School NSF' rrR-87 10717 

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

PROGRAM PROJECT TASK WORK UNIT 
ELEMENT NO. NO. NO. ACCESSION NO. 

Monterey, CA 93943 
11. TITLE (Include Security Classification) 

RAPID PROTOTYPING LANGUAGES FOR EXPERT SYSTEMS (U) 

12. PERSONAL AUTHOR($) 
LUOI 

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 115. PAGE COUNT 
Progress FROM c::M.,,. QQ TO ..Ma.I:. -89 1989 March 14 

16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse i f necessary and idencify by block number) 

FIELD GROUP SUB-GROUP 

19. ABSTRACT (Continue on reverse i f necess.uy and identify by block number) 
Darpa/ISTO is seeking to develop designs for a new language for rapid prototyping. The 
language is seen as part of longer subsequent efforts to develop a comprehensive proto-
typing system that will provide additional tools realizing a high-productivity software 
design and prototyping env i ronment. This report presents the concepts of a prototyping 
language and relations to Expert Systems. 

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION 
CJ UNCLASSIFIED/UNLIMITED ID SAME AS RPT. 0 DTIC USERS UNCLASSIFIED 

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 11.k OFFICE SYMBOL 

LUOI Li.OR-F,Li.F,-2735 'i?T.n 

OD FORM 1473, B4 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE 
All other editions are obsolete 

'O U.S. Gowc,nmcnt ftt lnlf111 Office: lllf-t01•24 





1. Introduction 

Rapid Prototyping Languages for Expert Systems 

luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

Work on rapid prototyping languages is aimed at reducing software development costs via prototyp
ing. A software prototype is an executable initial version of a proposed system. Prototypes are built to 
assess whether a proposed system will be acceptable to its users and whether a proposed design will pro
vide adequate functionality and perfonnance. A prototype is constructed prior to the production version of 
the system for the purposes of 

(1) gaining infonnation to guide analysis and design, and 

(2) supporting the generation of the production version. 

To be useful, the prototype must be constructed quickly and at low cost Thus a prototyping language must 
make it easy to construct, modify, and insb'Ument prototypes, possibly at the expense of efficiency, com
pleteness, capacity, or robustness. Prototyping is especially useful for large systems or novel application 
areas. Expert systems often fall in the latter category. 

Rapid prototyping languages are intended to support a comprehensive set of tools for computer-aided 
software design and prototyping. The goals for such a language and the associated prototyping system are: 

(1) Rapid construction and adaptation of software, 

(2) Enabling the development of more powerful systems, 

(3) Checking if specified systems are acceptable to users, 

(4) Checking internal consistency of proposed designs, and 

(5) Ensuring that implementations confonn to specifications. 

In this paper we discuss the principles of language support for rapid prototyping, based on our 
experience with the design of a prototyping language and the feasibility study for its implementation over 
the past five years. We examine some of the basic issues involved in the design of a rapid prototyping 
language, with attention to issues involving the prototyping of expert systems. 

2. Requirements for a Comprehensive Prototyping Language 
The goal of developing a general purpose prototyping language is very ambitious, and requires solu

tions to some open research problems for complete fulfillment Prototyping has potential benefits for large 
software systems, many of which are concurrent, distributed, and exhibit hard real-time constraints. Expert 
systems are being implemented with concurrent and distributed configurations, and there is a growing 
demand for expert systems capable of meeting hard real-time constraints. In this section we discuss the 
general properties of a comprehensive prototyping language. 

A prototyping language should have a clear and simple structure and semantics to make it easy to 
learn, understand, and process mechanically and rapidly. This implies unifonn structure, a small number 
of orthogonal constructs, and general interpretations without special cases or restrictions. To support 
automated tools, the language should have an abstract syntax and an unambiguous and precisely defined 
meaning. The underlying model should have a mathematical basis to support execution, analysis, 
verification, and trusted transformations. In particular, the semantics of the language should support 
rigorous reasoning about the properties of prototypes described in the language and transfonnations on 
expressions of the language. The language should also support a user interface for communication with 
untrained people, with graphical summary views, English paraphrasing, and explanation facilities. 
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A prototyping language should be expressive. It should be easy to use the language to construct con
cise and clear descriptions for a wide variety of systems. This implies language support for abstractions, 
uniform communication, logical inference, incomplete descriptions, and automated design completion. In 
addition to providing traditional facilities for functional, data, and control abstraction, the language should 
also support abstractions for concurrency, synchronization, and timing constraints. The language should be 
at a specification and design level rather than at a programming level: the constructs of the language should 
correspond directly to decisions made by the designer, rather than to operations performed by the proces
sor. This will make prototype descriptions self-documenting and easy to change. The language should 
allow the designer to specify only selected attributes. This requires automatically supplying default values 
for all attributes needed for execution of a software prototype. The language should be capable of con
structing the software tools in its own prototyping environment 

To support large scale prototypes, system evolution, and parallel execution, a prototyping language 
should have mechanisms for localizing design decisions in the description and localizing interactions 
between system components or pieces of knowledge in the knowledge base. These features allow indepen
dently designed subsystems of complex expert systems to cooperate without unexpected interference. 

To support user validation and system evolution, a prototyping language should support a facility for 
maintaining the correspondence between requirements and design decisions. Tools will be needed for 
determining which parts of a description must be removed or modified when a requirements change 
removes the support for previously made design decisions. The language should provide a harmonious 
interface to such tools. 

Facilities in a prototyping language for recording black-box specifications provides the benefits of a 
specification language. They support prototype component documentation, verification via proofs and 
automated testing, and queries for reusable component retrieval. They also form the basis for automated 
synthesis capabilities, inheritance of common properties and constraints, and consistency checking. For 
expressiveness, this part of the language may contain non-computable constructs such as quantifiers rang
ing over unbounded sets. The language should support facilities for describing clear-box characteristics of 
designs such as interconnections of available components, dependencies between components, design goals 
such as invariant constraints or bounding functions. and design justifications such as criteria for choosing 
between alternative designs. 

The language should have a distinguished executable subset that is easily recognizable, both by 
human users and automated tools. Every expression in this distinguished subset should be executable for 
all possible initial conditions, although some expressions may denote non-terminating computations. The 
distinguished subset need not contain all of the executable expressions, and expressions outside the dis
tinguished subset may be partially executable, in the sense that execution may fail under some conditions. 
It should be possible to either augment or transform expressions of the language outside the executable 
subset to make them executable. 

Besides supporting queries for retrieval of reusable software components, the language should have 
facilities for adapting components to new uses and making small perturbations on their behavior without 
examining the details of the internal implementation of the components. 

To support high productivity, the language should support the construction of efficient implementa
tions by augmenting the prototype description with annotations describing additional constraints or lower 
level design decisions. This enables the designer to view optimization as a refinement step where addi
tional information is added to the original descriptions, rather than a complete refonnulation of the system 
description. Such an approach saves designer time by avoiding repeated treatment of the same issues in 
different ways, and by reducing the opportunities for making transcription or translation errors. 

Efficiency is more of a concern for the production version of the system than for the prototype, but it 
cannot be ignored because it must be possible to run test cases and gather data in a reasonable amount of 
time. This implies that execution mechanisms based on exhaustive enumeration are insufficient to meet the 
requirements of a prototyping language, although they may be supplied as a default to allow running small 
test cases in the absence of information about more efficient execution strategies. The language should 
therefore provide a set of fairly efficient execution mechanisms, tools for locating performance bottlenecks 
in larger systems, and incremental optimization transfonnations to improve prototypes that are impracti
cally slow. 
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Real-time constraints impose a slightly different set of subgoals: execution times must be predict
able, although not necessarily very fast. Prototypes of real-time systems may operate in simulated time or 
linearly scaled real time, but the actual execution times for the production version must be predictable 
within accurate bounds. The presence of real-time constraints severely restricts the kinds of computations 
a system may perform, and in the case of expert systems, limits the amowit of logical inference that can be 
performed. The design of expert systems that operate within real-time constraints is a largely unexplored 
area, and significant research progress is needed in this area to fully realize the goals of a comprehensive 
prototyping language. 

The rapid consttuction of software prototypes depends on simplifying the view of the system through 
which the specifiers and designers do their wOik, and providing automated means for bridging the gap 
between this simplified view and the detailed programming level description currently needed to make a 
software system efficiently executable. This automated support should include mechanisms for execution, 
static analysis of the properties of the proposed system, preparation of test cases, reporting and analyzing 
results, and diagnosing ill-formed descriptions and departures from desired behavior to allow the specifiers 
and designers to work entirely within the simplified view, at least during the consttuction of the initial pro
totype. While the consttuction of the tools is not a required until later phases of the project, supporting the 
construction of such a tool set is a major driving force for the language design. The development of an 
integrated set of tools requires a consistent and simple semantic model rich enough to express and support 
all of these functions. Finding suitable models is the key to the projecL 

3. Modeling I~es 
The models widerlying the language provide the common ground for the associated set of tools. The 

semantic model for the language provides the basis for automated analysis, while the computational model 
provides the basis for execution. One of the main challenges in this project is to find a model that can 
coherently span the range of applications required. This will require a significant advance in the state of 
the art 

There is no single common model of expert systems available for rapid prototyping. Fust order logic 
is one of the most familiar models for reasoning, but it has been criticized for its weaknesses, such as lack 
of facilities for handling uncertain information, representing heuristic methods for speeding up conclusions, 
and non-monotonic reasoning. Many other kinds of logic have been proposed, but the theories of these 
logics are still being explored and there has been no consensus on whether there is a single logic suitable 
for constructing all types of expert systems, or which variety of logic is the most promising. There are also 
approaches to expert systems that are based on models other than logic, such as semantic networks, Baye
sian statistics, and production systems. Since it is not clear which approach will yield the best results in the 
long rwt, a comprehensive prototyping language must find a unified way of treating most of the issues 
raised by this diverse set of models. 

There is also no single commonly accepted model for representing real-time constraints. Some 
approaches that have been explored include temporal logic, state machines, mode charts, augmented data 
flow diagrams, Petri nets, and 1/0 automata. The model for a comprehensive prototyping language should 
be chosen to enhance the application of recent results in logic, graph theory, and combinatorics to link the 
semantic model to an effective execution mechanism. Other unexplored areas include effective models for 
real-time databases and real-time communications networks. In both of these areas, the problems of pro
viding service within guaranteed worst-case time bounds are largely unexplored. 

4. Supporting the Design or Expert Systems 
Several special purpose systems for supporting the design of expert systems have been developed, 

some of which are known as expert system shells. A comprehensive prototyping language should improve 
on available facilities if possible, and integrate them with facilities suitable for producing other kinds of 
software. There are two ways of supporting the prototyping of expert systems: (1) adding special purpose 
f~tmes to the prototyping language, and (2) adding predefined reusable software components that can be 
defined within a general purpose language, such as specialized data types, state machines, and functions. 
The predefined component approach is preferred to the addition of specialized language features because 
of the requirement for simplicity. However, such predefined components should have standardized inter
faces to improve portability. 
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Many of the standard building blocks for expert systems can be provided as generic predefined com
ponents. These include facts, rules, patterns, frames, contexts, constraints, demons, instance generators, 
pattern matchers, unification mechanisms, and forward and backward chaining inference engines. Stan
dardization requires careful analysis of these components and specification of their required properties. An 
open issue is whether current mechanisms for defining generic components are flexible enough to ade-
quately capture the range of behavior required for these kinds of components, and if not, what extensions 
are required. 

Some of the requirements for a prototyping language are dctennined by the need for prototyping 
expert systems. Examples of such requirements are 

(1) a means for conveniently defining external representations and input facilities for the knowledge in 
the knowledge base, 

(2) support for the first class treatment of higher ordec objects such as types, functions, tasks, and gen
erators, and 

(3) support for control mechanisms such as state-triggered demons, backtracking, run-time control 
over task priorities, and scheduling of temporal events. 

It is important to meet these requirements in a prototyping language for expert systems. 

S. Knowledge Base Issues 

Knowledge base management is an important part of the design of expert systems. Rapid prototyp
ing of knowledge based systems brings special requirements for the design of a prototyping language as 
well as its environment. Expert system technology is useful in implementing parts of the supporting 
environment for a prototyping language. For example, such an environment needs knowledge base support 
for the following functions: 

(1) Managing reusable components. The environment should contain a large software base with reus
able components. This software base should be coupled with a set of rules for tailoring and com
bining available components to fulfill queries that do not exactly match any of the components 
explicitly stored in the software base. 

(2) High level debugging. Errors and failures during prototype execution should be mapped from the 
programming language level to level of the prototyping language, to allow lhe designer to worlc 
entirely in tenns of the semantic model associated with the prototyping language. 

(3) Optimization. The transfonnations for optimizing a prototype version of a system to produce a 
production version should be performed with minimwn interaction with the designer. This implies 
keeping track of the decisions made by the designer in optimizing previous versions of the system, 
detennining which of those decisions are still valid for later versions, and automatically applying 
the ones that are found to be still valid. 

(4) Explanations. Justifications for decisions made automatically should be available to provide feed
back to the designer in cases where automated design completion procedures fail. This requires an 
expert system with a substantial knowledge base. 

These needs indicate that the prototyping system associated with a comprehensive prototyping language 
will need expert system technology for realizing some of its major subsystems. 

6. Conclusions 

DARPNISTO has made an important decision to develop designs for a rapid prototyping language 
for software systems, which is intended to apply to a variety of large software systems, including 
knowledge-based systems, parallel systems, distributed systems, and real-time systems. The Common Pro
totyping Language project bas an ambitious set of goals that raises many interesting research problems, 
many of which involve expert systems. Solutions to these problems are essential for achieving significant 
improvements in the quality and productivity of the software development process. 

The proposed connection between the Common Prototyping Language and Ada raises several issues 
that must be considered. Goals for the Common Prototyping Language include computer-aided transfor
mations of prototypes into Ada implementations of the production version of the software, and eventually 
implementing the tools in the prototyping system in Ada to provide portability. This poses a problem 
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because ordinary compiler technology is insufficient for execution of the prototyping language. The need 
for flexibility and run-time handling of newly created types and procedures to support expert systems also 
provides challenges for efficient implementation techniques in terms of Ada. Conventional translation 
techniques must be coupled with facilities for scheduling to meet hard real-time constraints with transfor
mations to allow the execution of incompletely specified processes, and access to an interpreter or an incre
mental compiler at run-time. 

Ada provides a completely static type system, treats types and functions as second class objects, and 
requires task priorities to be known at compilation time. It is clear that the flexibility required for suppon
ing expert systems development can be provided by adding a run-time interpreter on top of the Ada 
language. The difficult problem will be to provide ~ features efficiently, and without introducing 
excessive run-time overheads for portions of the prototype that do not require flexibility beyond that pro
vided directly by Ada. 

Ada provides relatively weak guarantees about the scheduling of tasks, and limits programmer con
trol over scheduling to statically specified priorities. Since this is somewhat removed from the level of sup
port needed for implementing hard real-time systems, the execution support system for the prototyping 
language will have to provide higher level facilities for scheduling real-time operations. Such facilities can 
be classified as on-line (done at run-time) and off-line (done prior to execution). There is no universally 
accepted approach to real-time scheduling. Optimal scheduling algorithms are very time consuming, and 
generally cannot be carried out on-line, while off-line approaches are inflexible and do not handle overload 
situations very well. There are many different scheduling algorithms, and choosing the best one for a given 
application is a difficult problem. 

Transformations are needed to execute incompletely specified components. Such transformations 
should supply reasonable default values for attributes necessary for execution if the designer does not 
explicitly specify them. Such attributes can be explicitly specified to produce a more accurate model of the 
system or to improve its performance. One example of such attributes is the assignment of tasks to physi
cal processors. Sometimes the assignment of particular critical tasks to particular processors is necessary 
to meet tight timing constraints by avoiding the overhead of some interprocessor communication. How
ever, the designer usually does not care about the placement of all tasks, and would like the system to 
assign reasonable default locations to all of the tasks that do not have explicit processor assignments. 
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