
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1990

Petri Net-Based Models of Software
Engineering Processes

Kraemer, B.; Luqi
Naval Postgraduate School

B. Kraemer and Luqi, "Petri Net-Based Models of Software Engineering Processes",
Technical Report NPS 52-90-011, Computer Science Department, Naval
Postgraduate School, 1990.
https://hdl.handle.net/10945/65237

Downloaded from NPS Archive: Calhoun

·t

NPS52-90-0 I I

NAVAL POSTGRADUATE SCHOOL
Monterey, California

PETRI !\'ET-BASED MODELS OF SOFTWARE
ENGINEERING PROCESSES

KRAEMER, BERND and LUQI

August 1989

Approved for public release; distribution is unlimited.

Prepared For:

National Science Foundation
Washington, DC 20550

Rear Admiral R. W. West, Jr.
Su perintcndent

NAVAL POSTGRADUATE SCHOOL
Monterey, California

I Jarrison Shull
Provost

This report was prepared in conjunction with research funded by the National Science Foundation.

Reproduction of all or part of this report is autho1ized.

Reviewed by:

-- - -.
Chainnan
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

KNEALE T. MARSHALL
Dean of Information
and Policy Science

...

...

. "

...

. ..

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1a.

6c. ADDRESS (City, State, and ZIP Coda)

Monterey, CA 93943

8c. ADDRESS (City, Stats, and ZIP Cods)

Washington, DC 20550

REPORT DOCUMENTATION PAGE
UNCLASSIFIED

7b. ADDRESS (City, Stats, and ZIP Cods)

Washington, DC 20550

11 . TITLE (Inc ude Security Classification)
PETRI NET-BASED MODELS OF SOFTWARE ENGINEERING PROCESSES (U)

17. COSATI CODES

TO Dec 89 14. DATE OF REPORT (Ysar, Month, Day)
Au ust 1989

18. SUBJECT TERMS (Continue on ,everss if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
We present an extension of the classical Petri model to formally define functional, structural, and dynamic as-
pects of software engineering processes. In this model Petri nets are augmented with logic specifications that
serve to specify the essential static properties of software objects involved in a process and define global con
straints to the dynamic behavior of process models. These models have an intuitive, causality-based execution
semantics which enables process simulation and formal analysis using tools and techniques that have been de
veloped for a related Petri net-based specification formalism. Structuring mechanisms are provided to support
hierarchical decomposition and the systematic combination of separate views of a software engineering pro
cess. As an example we model selected aspects of a rapid prototyping process which supports the reuse of ar
chived software components and guides the use of dedicated prototyping tools .

(] UNCLASSIFIED/UNLIMITED O SAME AS RPT. 0 DTIC USE

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

..

..

. .

. -

. "

...

..
0

Petri Net-Based Models of Software Engineering Processes

Bernd Kramer and Luqi

Na val Postgraduate School, Code 52

Monterey, CA 93943

kraemer@nps-cs.arpa

July 11, 1989

Abstract

We present an extension of the classical Petri net model to formally define func

tional, structural, and dynamic aspects of software engineering processes. In this

model Petri nets are augmented with logic specifications that serve to specify the

essential static properties of software objects involved in a process and define global

constraints to the dynamic behavior of process models. These models have an intuitive,

causality-based execution semantics which enables process simulation and formal anal

ysis using tools and techniques that have been developed for a related Petri net-based

specification formalism. Structuring mechanisms are provided to support hierarchical

decomposition and the systematic combination of separate views of a software engi

neering process. As an example we model selected aspects of a rapid prototyping

process which supports the reuse of archived software components and guides the use

of dedicated prototyping tools.

1 Introduction

A criticism of traditional life cycle models has been the subject and motivation of many

recent papers arguing for new approaches to software process modeling, e.g., [l, 3, 4, 8].

Rather than paraphrasing their criticism, we restrict ourselves to subsuming evaluation

criteria we found in the literature and providing a few supplementary remarks to justify

our own approach of a Petri net-based process model (PNP model) and narrow down the

range of issues it tackles.

Typical requirements posed to process models are adequacy of the model, readabil

ity and ease of use, hierarchical decomposability, and amenability to formal analysis and

reasoning. The arguments supporting these requirements are largely obvious, except for

the notion of adequacy which is difficult to grasp due to the manifold aspects software

1

engineering processes comprise. They include, for example, management aspects concern

ing the optimal employment of people and use of material resources, contractual matters,

planning a.nd cost issues, communication and synchronization aspects, or methodological

concerns aiming at effective development procedures and tool use.

As we can hardly imagine a homogeneous process model capturing all these different

aspects in an adequate way, we first discuss in the conceptual framework which the PNP

model covers. Basic concepts of the PNP model are described in Section 3. We emphasize

a formal approach to specifying the dynamic behavior of softw~e engineering processes

and characteristic attributes of software objects and roles of human participants involved.

An illustrative example is given in Section 4 where we present two partially overlapping

views of a rapid prototyping process that supports evolutionary software development by

interactive construction of executable prototypes from reusable software components [12).

In Section 5 we illustrate constructions that allow consistent combinations and stepwise

refinements of process model views. In Section 6 the Petri net semantics underlying PNP

models is sketched and their potential to allow formal analysis and reasoning, verification,

and symbolic simulation is outlined.

2 Behavior-Oriented Software Process Models

Software development is a dynamic and distributed activity in which many cooperating

participants may a.ct partially independently of ea.ch other to iteratively transform an

initial set of requirements into a validated object system. Different participants usually

have different and selective knowledge a.bout an evolving software system. The object

system is typically characterized by a large set of software components such as requirements

definitions, design documentation, specification and program modules, test protocols and

the like which coexist at designated development states.

In this context model adequacy means to capture the distributedness and combinatorial

nature of information characterizillg an object system in its various development states and

the distributedness of changes it undergoes. Speaking in technical terms, a process model

approach must be able to handle behavioral issues such as concurrency, synchronization,

and commttnication. It also means to cope with nondeterminism occurring in different

forms in the course of a development process. For example, resource contention is likely to

arise due to the boundedness of resources but often cannot be resolved as a process model

is designed; or it might be necessary to specify the range of alternative possibilities to

pursue a process execution without being able to provide a deterministic decision procedure

becaues it depends on information that cannot be anticipated in sufficient detail.

2

0 .

..

..

..

1 I

'o

The dynamic beha.vior of a. process model strongly depends on the structure of software

components a.nd.specific roles of huma.n pa.rticipa.nts in that process. Therefore it is crucial

to provide a.bstraction mecha.nisms that allow the process designer to define functional

a.nd and structural properties of objects a.nd roles a.t a level of deta.il that is necessa.ry to

understa.nd and control a development process but still admits developers to ma.ke design

decisions as needs arise.

A suitable abstraction of a program module in the context of version control, for ex

a.mple, might describe its structure as consisting of a. name, a.uthor, interface, and body

attribute. The role of progra.mmers acting as authors of such modules might be sufficiently

characterized by access rights determining who is allowed to upda.te which program mod

ules. The beha.vior of the version control model then would specify a.t this structural level

how a.nd under which conditions these attributes ca.n be changed by processes but would

not refer to details of a module body, for instance. These changes include upda.te rights as

the tea.m of programmers involved in a. project or their roles may cha.nge and new modules

are constructed as the system evolves.

3 Basic Concepts of the PNP Model

To capture equally well functional, structural, and behavioral aspects of software processes,

the PNP model extends the classical Petri net model by object-oriented data abstraction

facilities. The latter allow the process designer to introduce different types of software

objects and roles of human participants, provide them with distinguishing attributes, a.nd

describe functional relations between between them. Petri net concepts serve to adequately

specify the rules governing distributed changes to defined attributes and relationships. The

combination provides a suitable notion of distributed states and state-dependent actions

that can dynamically create new software objects, concurrently change their properties,

and delete objects that are no longer needed.

3.1 Static Aspects of Objects

Software objects are treated as typed and uniquely named entities whose structure and

properties a.re expressed in terms of extensible lists of attributes. Attributes either are

(references to) objects or are data. Data specifications are supported in the PNP model

based on typed Horn clause logic similar to the specification approach defined in [10].
New object types are introduced by a special form relating a new type name with names

and types of attributes which all instances of that object type share. For example, the

form

3

object module: (ext-name,author:name, if:interface, body : impl)

defines objects of type module to have at least five attributes whose values are of type

name, interface, and impl respectively. These attributes might capture those properties

of program module relevant for configuration management.

Attribute names like ext-name, author, if, and body denote (projection) functions

mapping the object type into the corresponding attribute type. Further attributes can be

added to an object as needs arise. But they can only be accessed by pattern matching

using the following tuple notation for objects:

< M, [N,A,I,B,nev]>

where nev is such an add-on attribute value.

Similarly to objects, immutable data structures which are composed of a specific list

of component data or have a variant type and value can easily be defined using two forms

that are inspired by the object-oriented data model introduced in [11] . An example of the

first kind is the data structure abstracting from module interfaces as consisting of two lists

of facilities that are exported and imported:

record interface: (export,import :[facility])

where angle brackets denote a list of items of the type the enclose. An example of the

second kind is the following:

variant eval-state: (nev,ckd,vd:unit)

It is a trivial variant data structure which just enumerates a. finite set of distinct constants

used to denote the evaluation status of a software object.

3.2 Dynamic Aspects of Objects

Objects are created dynamically during process execution. Most of the objects created

persist as system development proceeds and simply change their attribute values. But

there ma.y also be situations in which it is useful to specify that objects a.re no longer

needed and are better discarded. For example, patches to certain program modules can

be deleted once a new system version including the dynamically patched changes has been

released.

Dynamic object creation, modification, deletion, and changes to mutable relationships

among objects and data are captured by variable predicates whose extension is changed

by occurrences of instances of actions which schematically specify similar rules of change

4

' r

..

' .

'•

..

The form

p

<id,V>

<id,V>
•
p

q

p

q

p

•o
p

0

constraining r(l,J)

s

s

byX s Y

denotes

the place of all objects <idi,vl> satisfying the
variable predicate p In the present development
state

the change element making object <id,V> begin
to satisfy p

the change element making object <id,V> cease
to satisfy p

a rule of change which is symbolized by the term r{i,j)
and consists of several change elements Including the
creation of an object with identity K and attribute list [a]
and the deletion of object <j,[b]>; the labeling of arcs
expresses the idea that the lifeline of object K starts and
that of object j ends with an application of the given rule

a scheme of similar rules of change (an action}; an instance
of an action is obtained by consistently substituting the
variables l,J,K,X,Y In the scope of the action by constants
such that the formula constraining the action is satisfied
according to the specified meaning of functions and predicates
ii is composed of; note that constants like c express commonal
ities which all instances share

Notational remarks: Variables are capitalized to distinguish them from function, predicate,
and relation names, which are written In lower case.

Figure 1: Expressing dynamic aspects of software engineering processes

r;

. '
in distributed processes. As a simple graphical notation for representiug"t\~sc dynamic

aspects of software processes, we use Petri nets that are annotated as shown ¼g. 1.

This notation reinterprets basic concepts of high-level Petri nets (see, e.g. [6,7},l,in a

specific way to reflect concepts of the application domain. Objects are always represe~ted

as pairs. The first component is a unique identity which is implicitly provided as an object

is created. It can never_ be changed and allows one to follow the lifeline of an object and all

changes it underwent. The second component is a list of attribute values given in the order

determined by the corresponding object definition. Object creation is made explicit by

append a * to the variable referring to a new object. Object deletion is simply expressed

by letting the lifeline of an object end in an action. A deleted object is no longer accessible

in the further course of a software proccess.

3.3 Example

Using this notation and the following abbreviations
~ ~ ~~• ~

p

~
a(I)

p

<I.V> p •· 11·-············ ······0

a slde•conditlon

p

a model of a simple version control system providing only one action to release private

modules as substitutes for previous versions kept in a public module library can be com

posed as shown in Fig. 2. The side-condition of this action requires that only those authors

may put their private module into the public library who are assigned the right to update

library modules of the proper nan1e.

To keep the example simple, it gives only an incomplete view of our simple version

control system. This view docs not show how new module names arc inserted in the library,

how private versions are constructed, aucl how update rights arc modified as module

names are crcat.ed or author names change. As we shall see from later sections, this

sort of constructing separate and incomplete views of a process model is supported by

,:

•'

(. .

••

'J
<m1 ,(n1)>
<m2,(n2)>

<M,(N,A,l,B)>
library-modules ~-_.;,::_:__~.:.--

constraining release-module (A,M,P) by N c NL

<P ,(N,A,1,BJ>

<p1 ,(n1,a1 ,111,b11)>
<P2,(n1,a2,112,b12)>
<P3,(n2,a2,12,b2)>

prlvale-modules

Figure 2: A process model controling the release of private modules as public versions

combination mechanisms that allow one "to merge simple views in a. consistent way to

larger a.nd more complex ones.

3.4 Development States and State Transitions

In a. PNP model as shown in Fig. 2 development states a.re conceived of a.s distributed

entities. Their elements are derived from the variable predicates of a process model and

the objects for which those predicates are currently true. In the graphical notation the

actual marking of a place represents the current extension of a. variable predicate. The

state given in the example intuitively means that there are currently two public modules

named nl and n2 whose contents a.re still undefined, and we have two authors al and

a2 with al being allowed to update module nl and a2 being allowed to overwrite both

nt and n2; further, there arc three private module versions two of which, pt and p2,

are intended to become new public versions named nl, whereas p3 might replace public

modules externally known by name n2.

Each development state together with the rules of change schematically defined by ac

tions determines the set of possible future states. Transitions between development states

arc ca.used by occurrences of instances of actions tha.t are concurrently applicable (see {10)

for a formal definition of these concepts). One of the possible future states of our example is

shown in Fig. 3. It was ca.used by occurrences of the changes release-module(at ,mt ,pl)

and release-module(a2,m2,p3). These changes might have happened concurrently ac

cording to the given behavior specification. In contrast to this, two other changes that were

possible at the initi,tl slate, release-module (al ,m1 ,pl) and release-module(a2 ,ml ,p2),

mutually exclude ca.ch other a.s they "fight" for the same object named ml.

The set of possible sta.tes and state transitions is, as usual for Petri nets, defined by

the initial mctrkiny.

7

i<A,(NL)>

l
<P,(N,A,l,Bl>

<M,(N,A,1,8]>
library-modules

private-modules

Figure 3: A possible future development state of the process model in Fig 2

4 Formalizing a Rapid Prototyping Process

In this section we develop a PNP model of a rapid prototyping process that supports evo

lutionary software development by interactive, computer-aided construction of executable

prototypes from reusable software components. The model makes previous informal de

scriptions of this prototyping approach [12] more precise and concrete in that it provides

suitable abstractions of software objects and captures causal dependencies and indepen

dencies among the actions of the process model. The PNP model also provides a better

framework to develop an effective prototyping methodology, improve the functionality of

the prototyping support environment [13], and control the proper use of its tools. Two

different views of the process model are presented separately in Fig. 4 and 5 to simplify the

understanding of the overall process, localize modification, and ease its further elaboration.

First we define some of the object and data types whose instances are involved in the

rules of change specified in Fig. 4. These types refer to software concepts presented in

[12]:

object req-def: (sysname:name, description:text)

object operator: (opname:name, spec:specification, state:eval-state)

record specification: (inputs,outputs,statevars:[name-type])

vpredicate system-requirements(req-def)

action

released-psdl-designs(operator)

construct(req-def,specification)

modify(operator,specification)

refine(operator,req-def,implementation)

analyze(operator)

The process model view presented in Fig. 4 illustrates the principal idea of rapid proto.

typing to item.lively construct, modify, and refine a. series of prototypes, ca.ch providing

,,

\ .

•.;

. ,

modlly(O,S)

system-requirements

---------..
<R,[N,T,0)> R IN TJ

....... ~ ...
<,,> •• ••

conslrucl(R,S)

'\

\
\

<O• ,{N,S,new)> i <R,(N,T ._)>

\ releaaed-psdl-deslgns

rellne(O,R,I) ...___.....,.. _____ _..
<O,{N,S,new,_)> <O,(N,S,new,I)>

<0,(N,S,ckd,_)> <0,{N,S,new,_)>

analyze(O)

Figure 4: Constructing prototype designs from requirements specifications

the platform for validating and improving previous requirements definitions and design

decisions.

At the given simplified abstraction level we do not want to formalize to what extend,

for example, the text describing the requirements for a specific system component sym

bolically named N determines the specification of a newly constructed operator realizing

these requirements. We just wanted to explicate certain relationships concerning names

and references among objects. Looking more ca.ref ully at the net la.belings, we recognize

that certain variables denoting attribute values of objects after a change has occurred

are not bound to attribute values existing before that change happened. An example is

variable S which appears as argument of action modify and construct. It represents

information which cannot be derived from the prehistory of the objects involved but has

to be supplied by user of au action. Herc the variable represents an arbitrary operator

specification which redefines the spec attribute of the operator object changed by an in

stance of these actions. The infomwlion flow represented by such variables allows us to

<lea! incomplete knowledge in such a way that at lea.st its typical structure and its effect

on the the beha.vior of a process model can be defined.

The process model in Fig. 5 shows another distinguishing aspect of the prototyping

process model supporting the PSDL avproach [12]. It reveals the role of prototypes to

fl

released-psdl-designs

0
:

I cO,(N,S,ckd._ I>
4-

produce-prototype (O,Ms)

cP",(N,link(Ms,MC,Ml),O)>

executable-prototypes

validate (P,R)
Improve-requirements (P,R,T)

system-requirementli

Figure 5: Constructing and evaluating executable prototypes

provide executable models of a proposed system which ca.n be demonstrated to users and

customers to validate and improve requirements specifications and design decisions prior

producing production code.

5 Horizontal and Vertical Decomposition of PNP Models

One of the primary difficulties in modeling software processes is conceptual complexity.

Conceptual complexity can be reduced when the dynamic behavior and the objects of a

software process ca.11 be composed from independently constructed parts and can system

atica.lly be refined. Iliera.rchical process descriptions are supported by most of the new

process models. But horizo11ta.l compositions in the sense of combining the parts of a

modularized process model a.re still underdeveloped.

The PN P model a.pproa.ch provides constructions to consistently merge process models

represc11 ting scpa.ra.te, partially overlapping views of a larger development process. These

constructions allow the process designer to

1. synchronize the merged views a.nd connect open i11formatio11 flow lines by identifying

actions,

2. combine behavioral a.lternatives covered in separate views by identifying places and

,n

.., .

l •

...

·-

forming the union of their initial marking, and

3. define new functions operating on objects from different views.

The context conditions to apply these construction and their formal semantics have been

developed in the framework of a formal specification language for distributed and concur

rent systems (9, 10] and can easily be adapted to PNP models.

Using these constructions the two process models shown in Fig. 4 and 5 can be com-

bined by merging their common places labeled system-reqirements and released-psdl-designs.

The implicit effect of the combination constructions on the behavior of the merged parts

is graphically depicted below:

The PNP model also supports stepwise refinements based on substituting actions by

subnets whose border only consists of actions, substituting places by subnets whose border

contains only places, and abstract implementations of object and data types. Such refine

ment and implementation concepts have been studied in (14] for the related specification

formalism with pa.rticular emphasis on defining correctness suitable criteria which provide

the basis for verification tools. An example of an action refinement is given in Fig. 6.

It shows that action produce-prototype can be implemented by two actions working

concurrently on appropriate extracts of the object which is input to the abstract action.

6 Semantic Issues and Conclusion

Graphical representations of software concepts have certain advantages in conveying infor

mation to human readers but often lack a sufficiently precise semantics to be amenable to

formal analysis, verification, and reasoning. One of the strengths of Petri nets is that they

provide a simple graphical notation which is easy to comprehend even by non-experienced

readers with a strong mathematical background.

The PNP model aims at exploits the comprehensible graphical notation of Petri nets

and their precise causality-based execution semantics. It appears relatively easy and

straightforward to provide a formal Petri net semantics of the PNP modeling approach

by adapting the formal definition of the Petri net based specification formalism we have

11

construct
schedule(01,MC)

!
! <O,(N,S,ckd,_]>
I

"=

translate(O2,MI) produce-prototype (O,Ms)

lntercon-modules<I• ,[Ml,O]>

<P• ,(opname(N),llnk(Ms,MC,Ml),O]>

Figure 6: Refining an action of the process model in Fig. 5

developed earlier (10] to the new concepts introduced here lo accommodate specific re

quirements of software process modeling.

The advantage of such a Petri net semantics would be that theorems, calculi, and

validation methods for Petri nets can be reused to support consistency checking, liveness

and safeness analysis, verification of the correctness of refinements [14], and invariant

analysis techniques [5] for PNP models, too. Liveness and safeness analysis techniques,

for example, would help to ensure the continuity of development activities and to prevent

overload situations prior to executing a given process model. Or algorithms that generate

and analyze the reachability structure of Petri nets might be a.dapte<l to support reasoning

about behavioral possibilities an<l inherent facts of a process model.

The Petri net semantics also provi<les the basis for process model animation using

a symbolic simulator for high-level Petri net specifications [2) which redistributes and

rewrites objects according to the specified rules of change. Symbolic executions might

help to get insight into the behavior of a the specified process and investigate the effects

of alternative procedures prior to the actua.l execution.

... .

...

References

(1) B.W. Boehm. A spiral model of software development and enhancement. IEEE

Computer, pages 61-72, May 1988.

(2) M. Christ-Neumann, B. Kramer, H. H. Nieters, and H. W. Schmidt. The case envi

ronment graspin - user's guide. Technical Report ESPRIT Project GRASPIN 37 /1,
GMO, 1989.

(3) B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design process for

large systems. Communications of the ACM, 31(11):1268-1287, 1988.

(4) A. Finkelstein. "not waving but drowning": Representation schemes for modelling

software development. In Proceedings of the 11th Annual International Conference

on Software Engineering, pages 402-404, Pittsburgh, Pennsylvania, May 1989.

[5) Hartmann Genrich and Kurt Lautenbach. S-invariance in Predicate-Transition nets.

In Anastasia Pagnoni and Grzegorz Rozenberg, editors, Applications and Theory of

Petri Nets, number 66 in lnformatik-Fachberichte, pages 98-111, Berlin, Heidelberg,

New York, Tokyo, 1983. Springer-Verlag.

[6) Hartmann J. Genrich. Net theory and application. In H.-J. Kugler, editor, INFOR

MATION PROCESSING 86, pages 823- 831, Amsterdam, The Netherlands, 1986.

IFIP, Elsevier Science Publishers B.V.

[7) Hartmann J. Genrich. Predicate/Transition nets. In W. Brauer, W. Reisig, and

Rozenberg G., editors, Petri Nets: Central Models and Their Properties, number 254

in Lecture Notes in Computer Science, pages 207- 247, Berlin, Heidelberg, New York,

1987. Springer-Verlag.

[8] W.S. Humphrey and M.I. Kellner. Software process modeling: Principles of entity

process models. In Proceedings of the 11th Annual International Conference on Soft

ware Engineering, pages 331-342, Pittsburgh, Pennsylvania, May 1989.

[9) Bernd Kramer. SWR.AS - a formal language combining Petri nets and Abstract Data

Types for specifying distributed systems. In Proceedings of the 9th Annual Inter

national Conference on Softwm·e Engineering, pages 116- 125, Monterey, California,

March 1987.

[10) Bernd Kramer. Concepts, Syntax and Semantics of SffJRAS - A Specification Language

for Distributed Systems. GMD-Bericht. Oldenbourg Verlag, Miinchen, Wien, 1989.

13

(11] Bernd Kramer and Heinz-Wilhelm Schmidt. Object-oriented development of inte

grated programming environments with ASDL. IEEE Software, January 1989.

(12] Luqi. Software evolution via rapid prototyping. IEEE Computer, pages 13-25, May

1989.

(13] Luqi and Y. Lee. Interactive control of prototyping processes. In Proc. COMPSAC

89, Orlando, September 1989.

(14] Heinz-Wilhelm Schmidt. Specification and Correct Implementation of Non-Sequential

Systems Combining Abstract Data Types and Petri Nets. GMD-Bericht. Oldenbourg

Verlag, Miinchen, Wien, 1989.

14

••

DISTRIBUTION LIST
r

(1) Defense Technical Information Center 2
Cameron Station

,(, Alexandria, Virginia 22304-6145

(2) Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

(3) Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

(4) Director of Research Administration 1
Attn: Prof. Howard
Code 012
Naval Postgraduate School
Monterey, CA 93943

(5) Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

(6) Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217

(7) National Science Foundation 1
Division of Computer and Computation Research
Attn. Tom Keenan
Washington, D.C. 20550

(8) Naval Postgraduate School 100
Code 52Lq
Computer Science Department
Monterey, CA 93943

1

•

v'•

