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Abstract 

We present an extension of the classical Petri net model to formally define func

tional, structural, and dynamic aspects of software engineering processes. In this 

model Petri nets are augmented with logic specifications that serve to specify the 

essential static properties of software objects involved in a process and define global 

constraints to the dynamic behavior of process models. These models have an intuitive, 

causality-based execution semantics which enables process simulation and formal anal

ysis using tools and techniques that have been developed for a related Petri net-based 

specification formalism. Structuring mechanisms are provided to support hierarchical 

decomposition and the systematic combination of separate views of a software engi

neering process. As an example we model selected aspects of a rapid prototyping 

process which supports the reuse of archived software components and guides the use 

of dedicated prototyping tools. 

1 Introduction 

A criticism of traditional life cycle models has been the subject and motivation of many 

recent papers arguing for new approaches to software process modeling, e.g., [l, 3, 4, 8]. 

Rather than paraphrasing their criticism, we restrict ourselves to subsuming evaluation 

criteria we found in the literature and providing a few supplementary remarks to justify 

our own approach of a Petri net-based process model (PNP model) and narrow down the 

range of issues it tackles. 

Typical requirements posed to process models are adequacy of the model, readabil

ity and ease of use, hierarchical decomposability, and amenability to formal analysis and 

reasoning. The arguments supporting these requirements are largely obvious, except for 

the notion of adequacy which is difficult to grasp due to the manifold aspects software 
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engineering processes comprise. They include, for example, management aspects concern

ing the optimal employment of people and use of material resources, contractual matters, 

planning a.nd cost issues, communication and synchronization aspects, or methodological 

concerns aiming at effective development procedures and tool use. 

As we can hardly imagine a homogeneous process model capturing all these different 

aspects in an adequate way, we first discuss in the conceptual framework which the PNP 

model covers. Basic concepts of the PNP model are described in Section 3. We emphasize 

a formal approach to specifying the dynamic behavior of softw~e engineering processes 

and characteristic attributes of software objects and roles of human participants involved. 

An illustrative example is given in Section 4 where we present two partially overlapping 

views of a rapid prototyping process that supports evolutionary software development by 

interactive construction of executable prototypes from reusable software components [12). 

In Section 5 we illustrate constructions that allow consistent combinations and stepwise 

refinements of process model views. In Section 6 the Petri net semantics underlying PNP 

models is sketched and their potential to allow formal analysis and reasoning, verification, 

and symbolic simulation is outlined. 

2 Behavior-Oriented Software Process Models 

Software development is a dynamic and distributed activity in which many cooperating 

participants may a.ct partially independently of ea.ch other to iteratively transform an 

initial set of requirements into a validated object system. Different participants usually 

have different and selective knowledge a.bout an evolving software system. The object 

system is typically characterized by a large set of software components such as requirements 

definitions, design documentation, specification and program modules, test protocols and 

the like which coexist at designated development states. 

In this context model adequacy means to capture the distributedness and combinatorial 

nature of information characterizillg an object system in its various development states and 

the distributedness of changes it undergoes. Speaking in technical terms, a process model 

approach must be able to handle behavioral issues such as concurrency, synchronization, 

and commttnication. It also means to cope with nondeterminism occurring in different 

forms in the course of a development process. For example, resource contention is likely to 

arise due to the boundedness of resources but often cannot be resolved as a process model 

is designed; or it might be necessary to specify the range of alternative possibilities to 

pursue a process execution without being able to provide a deterministic decision procedure 

becaues it depends on information that cannot be anticipated in sufficient detail. 
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The dynamic beha.vior of a. process model strongly depends on the structure of software 

components a.nd.specific roles of huma.n pa.rticipa.nts in that process. Therefore it is crucial 

to provide a.bstraction mecha.nisms that allow the process designer to define functional 

a.nd and structural properties of objects a.nd roles a.t a level of deta.il that is necessa.ry to 

understa.nd and control a development process but still admits developers to ma.ke design 

decisions as needs arise. 

A suitable abstraction of a program module in the context of version control, for ex

a.mple, might describe its structure as consisting of a. name, a.uthor, interface, and body 

attribute. The role of progra.mmers acting as authors of such modules might be sufficiently 

characterized by access rights determining who is allowed to upda.te which program mod

ules. The beha.vior of the version control model then would specify a.t this structural level 

how a.nd under which conditions these attributes ca.n be changed by processes but would 

not refer to details of a module body, for instance. These changes include upda.te rights as 

the tea.m of programmers involved in a. project or their roles may cha.nge and new modules 

are constructed as the system evolves. 

3 Basic Concepts of the PNP Model 

To capture equally well functional, structural, and behavioral aspects of software processes, 

the PNP model extends the classical Petri net model by object-oriented data abstraction 

facilities. The latter allow the process designer to introduce different types of software 

objects and roles of human participants, provide them with distinguishing attributes, a.nd 

describe functional relations between between them. Petri net concepts serve to adequately 

specify the rules governing distributed changes to defined attributes and relationships. The 

combination provides a suitable notion of distributed states and state-dependent actions 

that can dynamically create new software objects, concurrently change their properties, 

and delete objects that are no longer needed. 

3.1 Static Aspects of Objects 

Software objects are treated as typed and uniquely named entities whose structure and 

properties a.re expressed in terms of extensible lists of attributes. Attributes either are 

(references to) objects or are data. Data specifications are supported in the PNP model 

based on typed Horn clause logic similar to the specification approach defined in [10]. 
New object types are introduced by a special form relating a new type name with names 

and types of attributes which all instances of that object type share. For example, the 

form 
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object module: (ext-name,author:name, if:interface, body : impl) 

defines objects of type module to have at least five attributes whose values are of type 

name, interface, and impl respectively. These attributes might capture those properties 

of program module relevant for configuration management. 

Attribute names like ext-name, author, if, and body denote (projection) functions 

mapping the object type into the corresponding attribute type. Further attributes can be 

added to an object as needs arise. But they can only be accessed by pattern matching 

using the following tuple notation for objects: 

< M, [N,A,I,B,nev]> 

where nev is such an add-on attribute value. 

Similarly to objects, immutable data structures which are composed of a specific list 

of component data or have a variant type and value can easily be defined using two forms 

that are inspired by the object-oriented data model introduced in [11] . An example of the 

first kind is the data structure abstracting from module interfaces as consisting of two lists 

of facilities that are exported and imported: 

record interface: (export,import :[facility]) 

where angle brackets denote a list of items of the type the enclose. An example of the 

second kind is the following: 

variant eval-state: (nev,ckd,vd:unit) 

It is a trivial variant data structure which just enumerates a. finite set of distinct constants 

used to denote the evaluation status of a software object. 

3.2 Dynamic Aspects of Objects 

Objects are created dynamically during process execution. Most of the objects created 

persist as system development proceeds and simply change their attribute values. But 

there ma.y also be situations in which it is useful to specify that objects a.re no longer 

needed and are better discarded. For example, patches to certain program modules can 

be deleted once a new system version including the dynamically patched changes has been 

released. 

Dynamic object creation, modification, deletion, and changes to mutable relationships 

among objects and data are captured by variable predicates whose extension is changed 

by occurrences of instances of actions which schematically specify similar rules of change 
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denotes 

the place of all objects <idi,vl> satisfying the 
variable predicate p In the present development 
state 

the change element making object <id,V> begin 
to satisfy p 

the change element making object <id,V> cease 
to satisfy p 

a rule of change which is symbolized by the term r{i,j) 
and consists of several change elements Including the 
creation of an object with identity K and attribute list [a] 
and the deletion of object <j,[b]>; the labeling of arcs 
expresses the idea that the lifeline of object K starts and 
that of object j ends with an application of the given rule 

a scheme of similar rules of change (an action}; an instance 
of an action is obtained by consistently substituting the 
variables l,J,K,X,Y In the scope of the action by constants 
such that the formula constraining the action is satisfied 
according to the specified meaning of functions and predicates 
ii is composed of; note that constants like c express commonal
ities which all instances share 

Notational remarks: Variables are capitalized to distinguish them from function, predicate, 
and relation names, which are written In lower case. 

Figure 1: Expressing dynamic aspects of software engineering processes 
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in distributed processes. As a simple graphical notation for representiug"t\~sc dynamic 

aspects of software processes, we use Petri nets that are annotated as shown ¼g. 1. 

This notation reinterprets basic concepts of high-level Petri nets (see, e.g. [6,7},l,in a 

specific way to reflect concepts of the application domain. Objects are always represe~ted 

as pairs. The first component is a unique identity which is implicitly provided as an object 

is created. It can never_ be changed and allows one to follow the lifeline of an object and all 

changes it underwent. The second component is a list of attribute values given in the order 

determined by the corresponding object definition. Object creation is made explicit by 

append a * to the variable referring to a new object. Object deletion is simply expressed 

by letting the lifeline of an object end in an action. A deleted object is no longer accessible 

in the further course of a software proccess. 

3.3 Example 

Using this notation and the following abbreviations 
~ ~ ~~• ~ 

p 

~ 
a(I) 

p 

<I.V> p •· 11·-············ .... ······0 

a slde•conditlon 

p 

a model of a simple version control system providing only one action to release private 

modules as substitutes for previous versions kept in a public module library can be com

posed as shown in Fig. 2. The side-condition of this action requires that only those authors 

may put their private module into the public library who are assigned the right to update 

library modules of the proper nan1e. 

To keep the example simple, it gives only an incomplete view of our simple version 

control system. This view docs not show how new module names arc inserted in the library, 

how private versions are constructed, aucl how update rights arc modified as module 

names are crcat.ed or author names change. As we shall see from later sections, this 

sort of constructing separate and incomplete views of a process model is supported by 

,: 
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<m1 ,(n1)> 
<m2,(n2)> 

<M,(N,A,l,B)> 
library-modules ~-_.;,::_:__~.:.--

constraining release-module (A,M,P) by N c NL 

<P ,(N,A,1,BJ> 

<p1 ,(n1,a1 ,111,b11)> 
<P2,(n1,a2,112,b12)> 
<P3,(n2,a2,12,b2)> 

prlvale-modules 

Figure 2: A process model controling the release of private modules as public versions 

combination mechanisms that allow one "to merge simple views in a. consistent way to 

larger a.nd more complex ones. 

3.4 Development States and State Transitions 

In a. PNP model as shown in Fig. 2 development states a.re conceived of a.s distributed 

entities. Their elements are derived from the variable predicates of a process model and 

the objects for which those predicates are currently true. In the graphical notation the 

actual marking of a place represents the current extension of a. variable predicate. The 

state given in the example intuitively means that there are currently two public modules 

named nl and n2 whose contents a.re still undefined, and we have two authors al and 

a2 with al being allowed to update module nl and a2 being allowed to overwrite both 

nt and n2; further, there arc three private module versions two of which, pt and p2, 

are intended to become new public versions named nl, whereas p3 might replace public 

modules externally known by name n2. 

Each development state together with the rules of change schematically defined by ac

tions determines the set of possible future states. Transitions between development states 

arc ca.used by occurrences of instances of actions tha.t are concurrently applicable (see {10) 

for a formal definition of these concepts). One of the possible future states of our example is 

shown in Fig. 3. It was ca.used by occurrences of the changes release-module(at ,mt ,pl) 

and release-module(a2,m2,p3). These changes might have happened concurrently ac

cording to the given behavior specification. In contrast to this, two other changes that were 

possible at the initi,tl slate, release-module (al ,m1 ,pl) and release-module(a2 ,ml ,p2), 

mutually exclude ca.ch other a.s they "fight" for the same object named ml. 

The set of possible sta.tes and state transitions is, as usual for Petri nets, defined by 

the initial mctrkiny. 
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i<A,(NL)> 

l 
<P,(N,A,l,Bl> 

<M,(N,A,1,8]> 
library-modules 

private-modules 

Figure 3: A possible future development state of the process model in Fig 2 

4 Formalizing a Rapid Prototyping Process 

In this section we develop a PNP model of a rapid prototyping process that supports evo

lutionary software development by interactive, computer-aided construction of executable 

prototypes from reusable software components. The model makes previous informal de

scriptions of this prototyping approach [12] more precise and concrete in that it provides 

suitable abstractions of software objects and captures causal dependencies and indepen

dencies among the actions of the process model. The PNP model also provides a better 

framework to develop an effective prototyping methodology, improve the functionality of 

the prototyping support environment [13], and control the proper use of its tools. Two 

different views of the process model are presented separately in Fig. 4 and 5 to simplify the 

understanding of the overall process, localize modification, and ease its further elaboration. 

First we define some of the object and data types whose instances are involved in the 

rules of change specified in Fig. 4. These types refer to software concepts presented in 

[12]: 

object req-def: (sysname:name, description:text) 

object operator: (opname:name, spec:specification, state:eval-state) 

record specification: (inputs,outputs,statevars:[name-type]) 

vpredicate system-requirements(req-def) 

action 

released-psdl-designs(operator) 

construct(req-def,specification) 

modify(operator,specification) 

refine(operator,req-def,implementation) 

analyze(operator) 

The process model view presented in Fig. 4 illustrates the principal idea of rapid proto. 

typing to item.lively construct, modify, and refine a. series of prototypes, ca.ch providing 
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modlly(O,S) 

system-requirements 

---------.. 
<R,[N,T,0)> R IN TJ 

....... ~ ... 
<,,> •• •• 

conslrucl(R,S) 

'\ 

\ 
\ 

<O• ,{N,S,new)> i <R,(N,T ._ )> 

\ releaaed-psdl-deslgns 

rellne(O,R,I) ...___.....,.. _____ _.. 
<O,{N,S,new,_ )> <O,(N,S,new,I)> 

<0,(N,S,ckd,_ )> <0,{N,S,new,_ )> 

analyze(O) 

Figure 4: Constructing prototype designs from requirements specifications 

the platform for validating and improving previous requirements definitions and design 

decisions. 

At the given simplified abstraction level we do not want to formalize to what extend, 

for example, the text describing the requirements for a specific system component sym

bolically named N determines the specification of a newly constructed operator realizing 

these requirements. We just wanted to explicate certain relationships concerning names 

and references among objects. Looking more ca.ref ully at the net la.belings, we recognize 

that certain variables denoting attribute values of objects after a change has occurred 

are not bound to attribute values existing before that change happened. An example is 

variable S which appears as argument of action modify and construct. It represents 

information which cannot be derived from the prehistory of the objects involved but has 

to be supplied by user of au action. Herc the variable represents an arbitrary operator 

specification which redefines the spec attribute of the operator object changed by an in

stance of these actions. The infomwlion flow represented by such variables allows us to 

<lea! incomplete knowledge in such a way that at lea.st its typical structure and its effect 

on the the beha.vior of a process model can be defined. 

The process model in Fig. 5 shows another distinguishing aspect of the prototyping 

process model supporting the PSDL avproach [12]. It reveals the role of prototypes to 
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released-psdl-designs 

0 
: 

I cO,(N,S,ckd._ I> 
4-

produce-prototype (O,Ms) 

cP",(N,link(Ms,MC,Ml),O)> 

executable-prototypes 

validate (P,R) 
Improve-requirements (P,R,T) 

system-requirementli 

Figure 5: Constructing and evaluating executable prototypes 

provide executable models of a proposed system which ca.n be demonstrated to users and 

customers to validate and improve requirements specifications and design decisions prior 

producing production code. 

5 Horizontal and Vertical Decomposition of PNP Models 

One of the primary difficulties in modeling software processes is conceptual complexity. 

Conceptual complexity can be reduced when the dynamic behavior and the objects of a 

software process ca.11 be composed from independently constructed parts and can system

atica.lly be refined. Iliera.rchical process descriptions are supported by most of the new 

process models. But horizo11ta.l compositions in the sense of combining the parts of a 

modularized process model a.re still underdeveloped. 

The PN P model a.pproa.ch provides constructions to consistently merge process models 

represc11 ting scpa.ra.te, partially overlapping views of a larger development process. These 

constructions allow the process designer to 

1. synchronize the merged views a.nd connect open i11formatio11 flow lines by identifying 

actions, 

2. combine behavioral a.lternatives covered in separate views by identifying places and 

,n 
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forming the union of their initial marking, and 

3. define new functions operating on objects from different views. 

The context conditions to apply these construction and their formal semantics have been 

developed in the framework of a formal specification language for distributed and concur

rent systems (9, 10] and can easily be adapted to PNP models. 

Using these constructions the two process models shown in Fig. 4 and 5 can be com-

bined by merging their common places labeled system-reqirements and released-psdl-designs. 

The implicit effect of the combination constructions on the behavior of the merged parts 

is graphically depicted below: 

The PNP model also supports stepwise refinements based on substituting actions by 

subnets whose border only consists of actions, substituting places by subnets whose border 

contains only places, and abstract implementations of object and data types. Such refine

ment and implementation concepts have been studied in (14] for the related specification 

formalism with pa.rticular emphasis on defining correctness suitable criteria which provide 

the basis for verification tools. An example of an action refinement is given in Fig. 6. 

It shows that action produce-prototype can be implemented by two actions working 

concurrently on appropriate extracts of the object which is input to the abstract action. 

6 Semantic Issues and Conclusion 

Graphical representations of software concepts have certain advantages in conveying infor

mation to human readers but often lack a sufficiently precise semantics to be amenable to 

formal analysis, verification, and reasoning. One of the strengths of Petri nets is that they 

provide a simple graphical notation which is easy to comprehend even by non-experienced 

readers with a strong mathematical background. 

The PNP model aims at exploits the comprehensible graphical notation of Petri nets 

and their precise causality-based execution semantics. It appears relatively easy and 

straightforward to provide a formal Petri net semantics of the PNP modeling approach 

by adapting the formal definition of the Petri net based specification formalism we have 
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construct
schedule(01,MC) 

! 
! <O,(N,S,ckd,_ ]> 
I 

"= 

translate(O2,MI) produce-prototype (O,Ms) 

lntercon-modules<I• ,[Ml,O]> 

<P• ,(opname(N),llnk(Ms,MC,Ml),O]> 

Figure 6: Refining an action of the process model in Fig. 5 

developed earlier (10] to the new concepts introduced here lo accommodate specific re

quirements of software process modeling. 

The advantage of such a Petri net semantics would be that theorems, calculi, and 

validation methods for Petri nets can be reused to support consistency checking, liveness 

and safeness analysis, verification of the correctness of refinements [14], and invariant 

analysis techniques [5] for PNP models, too. Liveness and safeness analysis techniques, 

for example, would help to ensure the continuity of development activities and to prevent 

overload situations prior to executing a given process model. Or algorithms that generate 

and analyze the reachability structure of Petri nets might be a.dapte<l to support reasoning 

about behavioral possibilities an<l inherent facts of a process model. 

The Petri net semantics also provi<les the basis for process model animation using 

a symbolic simulator for high-level Petri net specifications [2) which redistributes and 

rewrites objects according to the specified rules of change. Symbolic executions might 

help to get insight into the behavior of a the specified process and investigate the effects 

of alternative procedures prior to the actua.l execution. 

... . 
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