
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

A Computer Aided Prototyping System

Luqi; Ketabchi, M.
Naval Postgraduate School

Luqi and M. Ketabchi, "A Computer Aided Prototyping System", Technical Report
NPS 52-87-011, Computer Science Department, Naval Postgraduate School, 1987.
https://hdl.handle.net/10945/65239

Downloaded from NPS Archive: Calhoun

'!•

•

NPS52-87-011

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A COMPUTER AIDED PROTOTYPING SYSTEM

Lu Qi

Mohammad Ketabchi

April 1987

Approved for public release; distribution unlimited

Pre pa red for:

Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

This report was prepared for the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

VINCENTY.
Chairman
Department of Computer Science

NOTE:

LUQI
Associate Professor
of Computer Science

Released by:

Dean of Information and
Policy Science

This project was supported by the NPS Foundation Research Program which
was funded by the Chief of Naval Research, Arlington, VA 22217.

..

..

..

..

Ul'H.1LJ-\.).) l r l t.U

SECUAITY CLASSIFICATION OF THIS PAGE (W71en Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NPS52-87-011
4. TITLE (and Subtitle)

A COMPUTER . AIDED PROTOTYPING SYSTEM

7. AU THOR(•)

Lu Qi
Mohammad Ketabchi, Santa Clara University

9. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, CA 93943

11. CONTROLLING OFFICE NAME ANO AOORESS

Chief of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME & ADOR~SS(/1 dlllerent from ControlllnQ Olflce)

16. DISTRIBUTION STATEMENT (ol this Report)

5. TYPE OF REPORT 6 PERIOD COVERED

6, PERFORMING ORG. REPORT NUMBER

I. CONTRACT OR GRANT NUMBER(•)

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WO~K UNIT NUMBERS

61153N: RR014-01
N0001487WR4E011

12. REPORT CATE

April 1987
13. NUMBER OF PAGES

20
15. SECURITY CLASS. (ol thl• reporr)

UNCLASSIFIED

15a. OECLASSI Fl CATION/ OOWNGRAOING
SCHEDULE

Approved for public reJease; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, II dllleren·t from Report)

18. SUPPLEMENTARY NOTES

t9. KEY WORDS (Continue on reveue e/de II nece••ary and Identity by block number)

20. ABSTRACT (Continue on re~eree •Ide II neceu•ry and Identity by block number)

Rapid prototyping is a ~romising approach in software technology. A
Computer Aided Prototyping System (CAPS) makes rapid construction of
software prototypes possible. This paper presents a CAPS based on nor­
malized specifications and reusable software, and describes its inte­
grated prototyping tools.

DD ' ' j~:~3 1473 EDITION OF ' M'OV 65 IS OBSOLETE

-5/N 0102-LF-014-6601
SECURITY CLASSIFICATION OF THIS PAGE (lnl•n Dat• •nteredJ

; .

'.

..

A Computer Aided Prototyping System

Luqi
Computer Science Department

Na val Postgraduate School
Monterey, CA 93943

Mohammad Ketabchi
Computer Science Department

Santa Clara University
Santa Clara, CA 95053

ABSTRACT

Rapid prototyping is a promising approach m software technology. A

Computer Aided Prototyping System (CAPS) makes rapid construction of

software prototypes possible. This paper presents a CAPS based on nor­

malized specifications and reusable software, and describes its integrated

prototyping tools.

Key Words

Rapid Prototyping, Computer-Aided Design, Reusable Software, Software Base

1. Introduction

The rapidly growing demand for software has shifted towards larger systems

and higher quality software, to the point where current software development

methods are inadequate. A significant improvement in software technology is

needed to improve programming productivity and the reliability of the software

products. Computer aided rapid prototyping via specification and reusable com­

ponents [8] is a promising approach which makes this improvement possible. In

this approach the traditional software life cycle used in software design is replaced

by a recently proposed alternative life cycle which consists of two phases: rapid

1

prototyping and automatic program generation [16].

Completely automatic generation of programs from very high level

specifications is not currently practical but automatic generation of prototypes is

feasible. However, current prototyping methods require an impractical amount

of time and effort. To reduce the cost of prototyping and to improve the

efficiency of the process, a Computer Aided Prototyping System (CAPS} must be

developed. Specifying, selecting, retrieving, and composing the reusable com­

ponents into a prototype which meets a given set of requirements are important

research problems which must be addressed before a CAPS becomes available.

This paper outlines a CAPS based on component specification and reusable

software. Section 2 discusses the importance and the role of prototyping in

software development. Section 3 outlines the process of automated prototyping.

Section 4 gives an overview of CAPS architecture and briefly describes its major

components. Section 5 presents concluding remarks.

2. Prototyping

A prototype is an executable model or a pilot version of the intended system.

A prototype is usually a partial representation of the intended system, used as an

aid in analysis and design rather than as production software. The construction

activity leading to such a prototype is called prototyping. The goal in construct­

ing a prototype is different than in constructing a production quality software sys­

tem. Efficient use of designers' time and rapid feedback from the user are more

important than robust operation, efficient use of machine resources, or complete­

ness. Prototyping has been found to be an effective technique for clarifying

requirements and eliminating the large amount of wasted effort currently spent on

developing software to meet incorrect or inappropriate requirements in traditional

software life cycles [2, 14].

2

..

A key issue in the design of large software systems is reaching agreement on

the requirements. Lack of agreement on the requirements as specified by the cus­

tomer and as analyzed by the designer causes inconsistencies between the

delivered system and customer expectations, leading to expensive rebuilding [14].

This problem is especially acute for large systems and systems with real-time con­

straints because the requirements for such systems are complicated to describe

and difficult to understand. Because the user can usually recognize whether or

not a working software system does what is needed, but usually can't describe the

requirements accurately, prototypes are an effective means for achieving stable

and accurate requirements early in the development process.

In prototyping the prototype is used in an iterative process of negotiation.

The user describes the requirements, and the analyst interprets them and builds a

prototype. The analyst then demonstrates the execution of the prototype to the

customer. The requirements are adjusted based· on feedback from the customer,

and the prototype is modified accordingly until both the customer and the analyst

agree on the requirements. This process is illustrated in Figure 1.

A prototype can be used to specify a well modularized skeleton design for the

intended system and to validate its important attributes such as timing con­

straints, input and output formats, or interfaces between modules.

Prototyping is a useful tool in feasibility studies. Prototypes of critical sub­

systems or difficult parts of a complicated system can significantly increase the

confidence that the system can be built before large amounts of effort and expense

are committed to the project.

Prototyping also helps in estimating costs, since the cost of the intended sys­

tem is usually proportional to the cost of the prototype. The experiences gained

in applying rapid prototyping to special applications, e.g. database design,

3

metaprogramming methods and translator design, have substantiated this cost

relationship between the prototype and the completed system [3, 7].

An automated support environment is essential for the rapid construction of

prototypes.

3. Computer Aided Prototyping

Figure 2 illustrates the major steps in the process of computer aided proto­

typing using CAPS. The process begins by entering the specifications of the

intended software system. To abstract away the syntactical differences the

specifications are transformed into a normal form. The normalized specifications

are used to search for desired components. If a unique component which meets

the specification is found it is retrieved; if more than one component which meet

the specification is found the designer must choose one; otherwise, either the

specification should be decomposed or the required component should be hand­

coded. After a specification is decomposed the entire process is applied to the

specification of each component of the decomposition. Information about compos­

ing the components into the desired assembly is preserved when the specification

is decomposed and is used after components become available.

The process relies on an improved modularization technique [11] and reusable

software components. The support environment reduces the efforts of the analyst

and designer by automating time consuming tasks of rebuilding large components,

and searching for available components.

4. Major Components of CAPS

Software tools are needed to support the process of automated prototyping

described in section 3. The major parts of such a system are the prototype

description language PSDL, user interfaces for speeding up design entry and

4

preventing syntax errors, an execution support system for demonstrating and

measuring prototype behavior and for performing static analyses of the prototype

design, a software design management system for retrieving and adapting reusable

software components, and a component base which functions as a repository of

the reusable components

An initial description of a framework for a rapid prototyping environment

based on reusability can be found in [16]. We are developing methods for organ­

izing a software base to aid retrieval of reusable components using normalized

specifications, and better automated methods for component organization and

retrieval.

Figure 3 illustrates the architecture of CAPS which supports the process

illustrated in Figure 2. The following subsections describe the major components

of CAPS.

4 ...-1 Prototyping Language and Prototyping Method

The prototyping language PSDL [10] was developed together with a proto­

typing method [11] for rapidly constructing prototypes for large systems with

real-time constraints in a CAPS tool [8].

A good language for expressing design thoughts in terms of a precise model is

important for rapid prototyping. It is impossible to do a good design without a

language especially designed for this purpose. A powerful, easy to use, and port­

able prototype description language is also a critical part of an automated rapid

prototyping environment. Such a language is needed before the tools in the

environment can be built. PSDL (Prototype System Description Language) was

designed to serve as an executable prototyping language working at a specification

or a design level. The language has special features for real-time system design.

5

PSDL provides sufficient structures and desrriptive ability to describe the

internal and external situation for the modules comprising the system. Software

systems are modeled in PSDL as networks of operators communicating via data

streams, which uses enhanced data fl.ow diagrams for that purpose. The data

streams can carry data values of an abstract data type [4] as well as tokens

representing exception conditions. Each type or operator is either composite or

atomic. Composite operators are implemented by decomposing them into net­

works of more primitive operators using PSDL. The decomposition of a compo­

site operator is described in PSDL by an enhanced data fl.ow diagram that

includes non-procedural control constraints and timing constraints. Atomic

operators are realized by retrieving an implementation from a software base

(13, 15] containing reusable software components.

Good modularity is one of the key factors for increasing productivity, since it

significantly reduces the debugging effort for producing a correct executable sys­

tem, and also influences the understandability, reliability, and maintainability of

the developed system, which are especially important in rapid prototyping. A

clear and powerful modularization model is introduced in PSDL for building and

describing the prototype. This computational model is based on data flow under

semantically unified control and timing constraints. It prevents hidden interac­

tions between system components, to encourage designs with good module

independence. The language and the associated prototyping method [9] lead to

PSDL prototypes with a highly cohesive structure and few coupling problems,

since they support the model and combine it with a powerful set of data and con­

trol abstractions to make it easy to describe systems at a high level. This struc­

ture is suitable for multiple modifications at a specification level during the proto­

typing iterations of the new life cycle.

6

The PSDL prototyping method results in a hierarchically structured proto­

type. The method provides a hierarchical decomposition strategy for filling in

more details at any level of the prototype design. It also helps the designer to

concentrate on the critical subsystems that must be refined to resolve the prob­

lems that motivated the rapid prototyping effort. The prototyping method uses

stepwise refinement to selectively refine and decompose critical components. Each

higher level component is described in terms of lower level ones and the relations

between them. The decomposition of each composite component is a realization

of the system at a lower level of detail.

The prototype is designed based on abstract functions, abstract data, and

abstract control. This high level view emphasizes the overall configuration at

each level without getting bogged down in programming level details. The design

is refined by decomposing abstract functions and data types into lower level ones.

Functional, data, and control abstractions are used to hide lower level details.

Control constraints are combined with the data fl.ow model to achieve the best

modularity with sufficient control information. Data fl.ow is used to simplify the

interactions between modules, eliminating direct external references and commun­

ication by means of side effects.

PSDL and its prototyping method have been designed for use in an environ­

ment containing a software base management system, an execution support sys­

tem, a syntax directed editor with graphics capabilities, and a software design

database management system.

4.2 Rewrite Subsystem

Our approach to component specifications is based on term rewriting sys­

tems. The approach depends on normalizing specifications to reduce the variations

in the representation of software concepts. We seek component specifications that

7

admit effective reductions to a normal form to aid component retrieval. If many

different specifications with the same meaning can be reduced to the same normal

form, then designer can have freedom of expression while allowing the information

retrieval system to have fewer syntactically distinct forms for each semantically

distinct module that may appear in the software base. Since they can be

unboundedly many syntactic forms for the same semantic description, reduction

to a normal form is a more practical approach than attempting to generate all

variations and searching the software base for each variation. An example of such

a system for an informal approach to component specification is shown below:

TERM

update

read

ALIASES

change, modify, refresh, replace, substitute

fetch, obtain, input, get, retrieve

The rewrite rule defined by such a table simply replaces all occurrences of the

aliases by the associated basic terms given in the table. The sentence

"Fetch the order from the transaction file and modify the inventory"

would be rewritten to

"Read the order from the transaction ·file and update the inventory"

The rewrite subsystem will map equivalent specifications into a normalized

specification (see Figure 4) which will be used by Software Design Management

System to find and retrieve the required components from the component base.

Two kinds of normalization techniques, for formal and informal specifications, are

discussed respectively in [12]. In either case, the specifications stored with the

components in the component base are normalized. Operations to manipulate

8

normalized specifications are made available by SDMS.

4.3 Software Design Management System

The SDMS is responsible for organizing, retrieving, and instantiating reus­

able software components from the software base, and managing and alternatives

of prototypes. A SDMS must support efficient selection and retrieval of the

relevant software components from a component base, because the retrieval must

take less effort than constructing the components for computer aided prototyping

to be practical.

A SDMS is essentially a database management system which can efficiently

manage long transactions, data describing complex objects such as software com­

ponents, the iterative and tentative nature of the design process which leads to

versions, refinements, and alternatives of the design objects, and concurrent

design operations in a distributed computing environment. In addition· it provides

special purpose operations for composition of components, browsing the com­

ponent base, and manipulating the normalized specifications.

We have compared and contrasted the capabilities of conventional database

management systems with the requirements of computer aided design applications

in general and computer aided software engineering specifically. Since the con­

ventional DBMSs do not meet the data management requirements of CAD appli­

cations we are developing an Object-Oriented DBMS (OODBMS) based on our

object-oriented data model ODM [6] for SDMS. ODM meets the requirements of

CAD applications with considerable simplicity and economy of concepts. We will

tailor ODM and the OODBMS to meet the more specific requirements of CAPS.

Note that we are not excluding the use of a commercially available DBMS for the

purpose of experimenting with and studying the features of CAPS.

9

4.4 Software Base

Reusable components must be interpretable and portable [15]; the component

base must be easily extensible in order to allow the evolutionary growth of the

available components; it must be possible to browse, select, and retrieve com­

ponents from the component base efficiently. To achieve these goals we are

developing a highly structured component base. Three major structural founda­

tions of the component base are generalization per category, approximation of

specifications, and composition of components.

Components have certain properties which are used for their categorization.

Examples of these properties, called categorical properties [5] are implementation

languages, hardware environments, and time and space requirements. Generali­

zation of components according to their categorical properties imposes a lattice

structure on the set of components. The lattice structure of the components

allows efficient browsing of the component base, supports efficient selection and

retrieval of the components, and captures the semantics of component categoriza­

tion which in turn increases the interpretability of the component base.

The component base contains a large set of normalized specifications

corresponding to unique implementations. These specifications are called single­

ton specifications. A pair containing a singleton specification and its implementa- -

tion is a singleton component. A normalized specification requested by the

designer may not be singleton but an approximation of some singleton

specifications. A specification S i is an approximation of an specification S j if S j

implies Si· The SDMS provides operations which allow derivation of best approx­

imation of a set of singleton specifications. The set of singleton specifications and

their approximations has a lattice structure. Singleton specifications which are

explicitly stored are the basis of this lattice. Other specifications can be derived

10

from singleton specifications. Figure 5 illustrates a component base with four sin­

gleton specifications (S s) and three approximate specifications (S a)

Some components are compositions of components which themselves may be

composed of other components. The components which are not composed of

other components are atomic. Only atomic components need to be stored in the

component base explicitly. Atomic components are hand-coded while composite

components are derived by using a composition template which gives the subcom­

ponents of the desired composite component and their interconnections.

4.5 Execution Support System

A problem oriented top-down strategy is used to focus the prototyping effort

on critical problems or selected attributes of the entire system. The major system

attributes that must be demonstrated to the user usually appear in a critical sub­

system. It is necessary to create a quick sketch of the skeleton of the intended

system, because the environment of the critical subsystem must be at least par­

tially simulated to demonstrate the behavior of the prototype. This quick sketch

can be built rapidly and understood easily by means of a highly interactive graph­

ics editor for PSDL. The essential advantage of rapidly building the sketch of the

prototype is that it provides an initial description of the intended system, which

can serve as the basis for analysis and negotiation. The prototype system gradu­

ally fulfills the requirements during the iterations of the prototyping effort [8].

Our prototyping method enables each update to the prototype to be made quickly

and easily [1].

5. Concluding Remarks

The research described here will solve several key problems in automated

prototyping based on reusable software. Conceptual design of an integrated

11

CAPS, prototyping language and methodology, normal form of the specifications

of reusable components, a software design database management system, and a

software base which supports efficient retrieval of components by their

specification are among these problems.

The results of this research will help to increase productivity in the develop­

ment of software systems and improve the quality of the resulting products.

The proposed CAPS combines a high level prototyping language PSDL [8], a

systematic design method for rapid construction of prototypes [11], an automated

prototyping environment with a software base [13] containing a large set of reus­

able software components, and a software design database management system to

manage the component base and the prototype design data. Application of the

proposed CAPS should sharply reduce the need for requirements changes after

implementation has begun, as well as multiple requirements changes during the

design of a new feature in an evolving system. Demonstration of the prototypes

constructed by using CAPS will provide feedback early enough in the develop­

ment cycle to enable extensive adaptation of the design without wasting a large

investment of effort. This should lead to products that closely match user needs.

The approach described here uses specifications as an intimate part of the

computer-aided implementation, making documentation a natural by-product of

development rather than a costly extra task, and helping to ensure that the docu­

mentation corresponds to what the system actually does.

CAPS is an extensible system because it provides facilities for adding and

utilizing new components to its software base. The integrated approach taken in

CAPS to the maintenance and the management of prototype design data

simplifies the adaptation of new tools and techniques. It also provides a

knowledge base for expert design and analysis tools.

12

1. V. Berzins, "On Merging Software Extensions", Acta Informatica 23 (1986),

607-619.

2. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software

Development ", Comm. of the A CM 29, 5 (May 1986), 402-415.

3. J. Connell and L. Brice, ''Rapid Prototyping", in Datamation, Aug. 1984,

93-100.

4. J. V. Guttag, E. Horowitz and D. R. Musser, "Abstract Data Types and

Software Validation", Comm. of the ACM 21, 12 (1978).

5. M. Ketabchi and V. Berzins, "Generalization Per Category: Theory and

Application", Proc. Int. Conf. on Information Systems, 1986.

6. M. Ketabchi, V. Berzins and S. March, "ODM: An Object Oriented Data

Model for Design Databases", in Proc. A CM Computer Science Conference,

Feb. 1986.

7. L. Levy, "A Metaprogramming Method and Its Economic Justification",

IEEE TSE SE-12, 2 (Feb. 1986), 272-277.

8. Luqi, "Rapid Prototyping for Large Software System Design", Ph.D. Thesis,

University of Minnesota, 1986.

9. Luqi and V. Berzins, "Rapid Constru~tion of PSDL Prototypes", Tech.

Rep.-86-17, Computer Science, University of Minnesota, 1986.

10. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time

Software", to appear in IEEE TSE, 1987.

11. Luqi and V. Berzins, "Rapid Prototyping of Real-Time Systems", Revised

for IEEE SOFTWARE, 1987.

12. Luqi, Normalized Specifications for Identifying Reusable Software, submitted

to ACM-IEEE 1987 Fall Joint Computer Conference, Dallas, Texas,

13

October 1987.

13. N. Roussopoulos, "Architectural Design of the SBMS", Quarterly Report for

the STARS SB/SBMS Project, Department of Computer Science, Univ. of

Maryland, Apr. 1985.

L4. R. T. Yeh, Software Eng£neer£ng, IEEE Spectrum, Nov. 1983.

15. R. T. Yeh, N. Roussopoulos and B. Chu, "Management of Reusable

Software", Proc. COMPCON, Sep. 1984, 311-320.

16. R. T. Yeh, R. Mittermeir, N. Roussopoulos and J. Reed, "A Programming

Environment Framework Based on Reusability", Proc. Int. Conj. on Data

Engz"neering, Apr. 1984, 277-280.

14

determine requirements_
requirements

construct
prototype

requirements
~djustments

prototype

demonstrate
prototype

~equirements
PK

system
implementation

\I

Figure 1 - Process of requirments determination and
validation by prototyping

15

Decompose

Inter
onnecttons

Yes

Specify
Components

CAPS

Compose
Components

Hand Code

Implementation

None

Specifications

Rewrite
Specifications

Formulate
Query

Search
Components

Resolve
Choose

Retrieve
Component

Figure 2 - Prototype development using CAPS

16

One

User Interface
(UI)

\I

Prototype-System
Description Language

(PSDL)

Rewrite Subsystem
(RS)

So are Design
Management System

(SDMS)

,,

: Prototype :
. DB .

-- - ----s~1tware Bas~ ------
(SB)

Figure 3 - CAPS Architecture

17

II/

Execution Support
System

. . · .. : .. ··

0

PSDL

rewrite subsystem

Figure 4 - Normalization of Specifications

18

... ·

0

. .

\

\
\

I
I

I
I

I
\ I

I ,,, _,,

'(!)'

Ss Ss
I I

I

Figure 5 - A component base with 4 singleton components

19

Initial Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142 2

Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses 1
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 100
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 1 800 N. Quincy St.
Arlington, VA 22217-5000

20

