
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

The Semantics of Inheritance in Spec

Luqi; Berzins, Valdis
Naval Postgraduate School

V. Berzins and Luqi, ''The Semantics of Inheritance in Spec", Technical Report NPS
52-87-032, Computer Science Department, Naval Postgraduate School, 1987.
https://hdl.handle.net/10945/65241

Downloaded from NPS Archive: Calhoun

NPS52-87-032

NAVAL OS GRADUATE SC 00
Monterey, California

THE SEMANTICS OF INHERITANCE IN SPEC

Valdis Berzins

Luqi

July 1987

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

The work reported herein was supported in part by the Foundation Research Pro
gram of the Naval Postgraduate School with funds provided by the Chief of Naval
Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

Chairman
Department of Computer Science

Associate Professor
of Computer Science

Released by:

KNEALE T.MA
Dean of Information ari.'li, \
Policy Science ,J

=cuRITY CLASSIFICATION OF THIS PAGE -
REPORT DOCUMENTATION PAGE

a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

TTNf'T A~~T !i"TRn

'.a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION I AVAILABILITY OF REPORT

!b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release
Distribution unlimited

t PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

- NPSSZ-87-032
5a . NAME OF PERFORMING ORGANIZATION 6b . OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School
5c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

-
Monterev. CA 93943
Sa. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) N0001487WR4E011
Chief of Naval Research

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 N. Quincy St .. PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Arlington, VA 22217-5000 61153N RR014-01 lOP-011
11. TITLE (Include Security Classification)

The Semantics of Inheritance in Spec

12. PERSONAL AUTHOR($)

Valdis Berzins. Luai
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) I 15. PAGE COUNT
Technical· FROM TO J11lv 87 1?

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT {Continue on reverse _ if necessary and identify by block number)

Spec is a language for writing black-box specifications in the early stages of software
development which supports multiple inheritance. A formal transformational semantics for a
subset of the language containing the inheritance mechanism is presented, along with examples
and a discussion of the issues which make it difficult to design clean multiple inheritance
mechanisms in programming languages .

...

•20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

KJ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I ~2c. OFFICE SYMBOL
Valdis Berzins 408/646-2461
00 FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
'tr U.S. Government Printing Office: 1986--606•24-

J

The Semantics of Inheritance in Spec

Valdis Berzins
Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

Spec is a language for writing black-box specifications in the ·early stages of software
development which supports multiple inheritance. A formal transformational semantics
for a subset of the language containing the inheritance mechanism is presented, along with
examples and a discussion of the issues which make it difficult to design clean multiple
inheritance mechanisms in programming languages.

1. Introduction

Spec is a. language for writing black-box specifications in the functional specification and
architectural design of software systems. Black-box specifications are essential for realizing .the
benefits of abstractions in the software development process [3]. The critical early stages of
software development are dominated by the tasks of building conceptual models of the proposed
software and defining its interfaces. A precise notation for such models is needed both as a
medium for organizing and communicating conceptual models and as a means for supporting
computer-aided design. Some of the of the tasks that should be supported by a CAD system based
on Spec include error checking, materializing implied aspects of a design, test case generation, and
prototyping.

Spec has evolved from earlier specification languages [2, 13] based on extensive classroom
experience in using formal specifications in multi-person projects [3]. A general description of the
language can be found _in [5l. In this paper we concentrate on the inheritance mechanism of Spec.

Specifications share many of the uses of inheritance with programming languages. An inheri
tance mechanism induces a generalization hierarchy, which can be useful for organizing a library of
reusable components. The inheritance mechanism can also b~ used to adapt the behavior of an
existing specification by adding new features or by further constraining existing features, without
modifying the original. A generalized solution to a design problem can thus be defined only once,
to be shared and adapted by many different applications, rather than being re-developed from
scratch each time. The generalization structure can be exploited when automating the bookkeep
ing associated with design by stepwise refinement, which in practice involves considering alterna
tives [12] and occasionally backtracking to explore parallel paths. Inheritance also has some uses
which are more important for specifications than for programs, and may be less familiar.

Standardization
A common problem in developing very large software systems is to ensure that the same
commands in different subsystems have consistent interfaces and interpretations. One way
to achieve this is by means of a skeleton specification for the common interfaces, which is
defined once by the system architect and inherited by all of the subsystems. Such an
approach should be backed up by software tools for expanding and checking the consistency
of the inherited constraints.

View Integration
Large systems are designed by groups of people, who must work on different aspects of the
same problem simultaneously. When a specification language supporting multiple inheri
tance is available, each designer can specify the view of the system through one of the exter
nal interfaces as a separate module. The whole system is materialized in a trivial module

1

that inherits the features of the modules defining the views. View integration would also
benefit from automated tools for expanding and checking the consistency of inherited con
straints.

There has been a great deal of previous work on providing programming language support
for inheritance [6, 11, 14j. Parameterization is an important mechanism for reusing designs and
code [10], which is important for realizing the full benefits of inheritance.

Section 2 describes the simple language addressed in this paper. Section 3 presents a
transformational semantics [7, 8] for the inheritance mechanism of the language. Section 4 con
tains some examples, and section 5 presents our conclusions.

2. The Microspec Language

We will consider a simplified version of Spec called Microspec which includes parametrized
modules and the inheritance mechanism, but does not include state changes, exceptions, or defined
concepts. A grammar for Microspec is shown below.

spec = { module }
module = "function" id formals parents events "end"

I "type" id formals parents model events "end"
formals = [11

{
11 id { 11

,
11 id } 11

}"]

parents = ["inherit" id actuals { 11
," id actuals }]

actuals = [11
{" typespec { 11

,
11 typespec } 11

}"]

model= "model" declaration
events = { "message" id declaration response }
declaration = 11

(" id ": 11 typespec { "," id ":" typespec } 11
)"

response= { "when" exp "reply" declaration "where" exp }
typespec = "?" I "any" I id actuals
exp= "true" I "false" I n-n exp I exp"&" exp I "for all." declaration"::" "("exp")""

Lexical details, such as the structure of identifiers (id), are omitted because they are not needed for
the purposes of the paper. An example of a Microspec specification for an abstract data type is
shown in section 4.

Microspec is based on the event model of computation, and uses predicate logic for defining
the desired behavior of modules. In the event ·model, computations are described in terms of
modules, messages, and events. A module is an active black box that interacts with other modules
only by sending and receiving messages. A message is data that is sent from one module to ,
another. An event oc-curs at the instant of time when a module receives a message. -The response
to an event consists of the messages sent to other rno_dules that are directly triggered by the event.
A more detailed description of the event model can be found in [5j.

An event specification of the form

message f(x: tl} when pre(x) reply (y: t2) where post(x, y)

means that whenever the module· receives a message with data components x of types tl such-· that~
pre(x) is true, it must send back a reply message with data components y of types t2 such that
post(x, y) is true, where x, y are vectors of data values and tl, t2 are vectors of data types. In
normal usage the preconditions of the when ·clauses associated with a message are disjoint. If an
incoming message satisfies the precondition of more than one when clause, then the reply must
satisfy the postconditions of all such clauses simultaneously.

It is most convenient to describe transformations based on an abstract syntax rather than
the concrete syntax given above. The abstract syntax of Microspec is defined as a heterogeneous
algebra with one sort for each of the substantive syntactic classes of Microspec. The ope:rations of
the algebra include the constructor operations for each sort, as well as some extra. constants
representing ill-formed syntactic objects. The sort boolean is assumed to be primitive, with the

2

standard two-valued model, constants true and false, and operations and, or, and not with the
usual interpretations. The sort id is also assumed to be primitive, and isomorphic to the natural
numbers with the standard interpretation of equality.

sort spec
operations

empty: spec
defi.ne(id, formals, module, spec): spec

The empty and define operations are the primitive constructors for specifications.

sort module
operations

undefined: module
function(parents, events): module
type(parents, declaration, events): module

axioms
if conflicting(d) then type(p, d, e) = undefined

Undefined is an extra value introduced to represent ill-formed modules. The axiom states that
types with model declarations containing type conflicts are ill-formed. In Microspec a module is
either a function or an abstract data type. The full Spec language contains several other kinds of
modules, which are omitted here due to lack of space.

sort events
operations

empty: events
message(id, declaration, response, events): events

sort response
operations _

empty: response
when(exp, declaration, exp, response): response

% precondition, reply declaration, postcondition, other cases
axioms

when(false, d, e, r) = r
The axiom shows that when clauses with uniformly false guards can be deleted (dead code elimina
tion).

sort parents
operations

empty: parents
add(id, actuals, parents): parents

ax10ms
add(il, al, add(i2, a2, p)) = add(i2, a2, add(il, al, p))

The axiom states that the order of the ancestors in the inheritance list does not matter.

sort formals
operations

empty: formals
add(id, formals): formals

This sort represents the list of formal parameters of a module.

sort declaration
operations

3

conflict: declaration
empty: declaration
declare(id, typespec, declaration): declaration

The constant conflict represents an ill-formed declaration.

sort actuals
operations

conflict: actuals
empty: actuals
add(typespec, actuals): actuals

The constant conflict represents an ill-formed list of actual type parameters for modules.

sort typespec
operations

inconsistent: typespec
undefined: typespec
any: typespec
variable(id): typespec
type-name(id, actuals): typespec

The type constant inconsistent is an extra value to denote the result of merging two incompatible
type specifications. The type constant undefined represents a data type that has not yet been
specified and is used in representing unfinished specifications. The type constant any represents
the union of all other data types, and is used in specifying polymorphic operators.

sort exp
operations

true: exp
false: exp
not(exp): exp
and (exp, exp): exp
all(declaration, exp): exp

Expressions represent logical assertions, and include quantifiers. Only a subset of the expression
syntax is shown here due to lack of space.

3. Transformational Semantics of Inheritance

The semantics of inheritance are defined by showing how to transform specifications with
inheritance into equivalent specifications that do not use the inheritance mechanism. This is done
by enriching the spec sort of the algebra defined in the previous section with an expand operation
that performs this transformation. This requires enriching the other sorts of the algebra with addi
tional helping functions. To reduce the number of axioms, we will incorporate the following equa
tions for all sorts that have an equal operation

equal(x, x) = true
equal(x, y) = equal(y, x)

The definitions of these operations are given below.

enrich spec
operations

expand (spec): spec
fetch(id, actuals, spec): module

axioms
expand(empty) = empty
expand(define(i, f, m, s)) = define(i, f, inherit(m, s), expand(s))

4

fetch(i, a, empty) = undefined
fetch(il, a, define(i2, f, m, s)) = if equal(il, i2) then subst(a, f, m) else fetch(il, a, s)

The expand operation merely expands the inherited features of each module in the specification, by
means of the inherit operation. The problem of circular dependencies cannot arise in Microspec
because only previously defined modules can be inherited. The fetch operation retrieves the
module associated with an identifier, and substitutes actual values for the generic type parameters
of the module. For simplicity we have chosen to take the first definition in case there is more than
one. A more practical approach, illustrated in our treatment of declarations below, is to treat mul
tiply declared identifiers as errors.

enrich module
operations

inherit(module, spec): module
merge(module, module): module
subst(actuals, formals, module): module

axioms
inherit (undefined, s) = undefined
inherit(function(empty, e), s) = function(empty, e)
inherit(function(add(i, a, p), e), s) := merge(inherit(function(p, e), s), inherit(fetch(i, a, s), s))
inherit(type(empty, d, e), s) = type(empty, d, e)
inherit(type(add(i, a, p), d, e), s) = merge(inherit(type(p, d, e), s), inherit(fetch(i, a, s), s))
merge(undefined, m) = undefined
merge(m, undefined) = undefined
merge(function(empty, el), function(empty, e2)) = function{empty, merge{el, e2))
merge(type(empty, dl, el), type(empty, d2, e2)) = type(empty, merge(dl, d2), merge(el, e2))
merge(type(empty, d, el), function(empty, e2)) = type(empty, d, merge(el, e2))
merge(function(empty, el), type(empty, d, e2)) = undefined
subst(a,·f, undefined) = undefined
subst(a, f, function(p, e)) = function(subst(a, f, p), subst(a, f, e))
subst(a, f, type(p, d, e)) = type(subst(a, f, p), subst(a., f, d), subst(a, f, e))

The inherit operation merges the module with all of its ancestor;, both direct and indirect. The
merge operation combines the features of several modules, declarations, or event specifications.
Merge is not symmetric on modules because a type can inherit a function, but a function cannot
inherit a type.

enrich events
operations

merge(events, events): events
fetch(id, declaration, events): response
remove(id, declaration, events): events
subst(actuals, formals, events): events

axioms
merge(empty, e) = e
merge(message(il, dl, rl, el), e2) =

message(il, dl, merge(rl, fetch(il, dl, e2)), merge(el, remove(il, dl, e2)))
fetch(i, d, empty) = empty
fetch(il, dl, message(i2, d2, r, e)) =
if equal(il, i2) and equal(dl, d2) then r else fetch(il, dl, e)

remove(i, d, empty) = empty
remove(il, dl, message(i2, d2, r, e)) =
if equal(il, i2) and equal(dl, d2) then remove(il, dl, e)
else message(i2, d2, remove(il, dl, e))

subst(a, f, empty) = empty

5

subst(a, f, message(i, d, r, e)) = message(i, subst(a, f, d), subst(a, f, r), subst(a, f, e))

Event specifications to be merged are matched up by message name and argument declarations,
reflecting the fact that message names can be overloaded (cf. [9]). The fetch and remove opera
tions are used because the order of the messages in an event specification is not significant. The
declarations are used in addition to message names when matching up corresponding messages
because messages can be overloaded.

enrich response
operations

merge(response, response): response
append(response, response): response
suhst(actuals, formals, response): response

axioms
merge(empty, r) = r
merge(r, empty) = r
merge(when(el, dl, e2, rl), when(e3, d2, e4, r2)) =

append(when(and(el, e3), coerce(dl, d2), and(e2, e4), empty),
append(merge(when(el, dl, e2, empty), r2)), merge(rl, when(e3, d2, e4, r2)))

append(empty, r) = r.
append(when(el, d, e2, rl), r2) = when(el, d, e2, append(rl, r2))
suhst(a, f, empty) = empty
subst(a, f, when(el, d, e2, r)) = when(el, subst(a, f, d), e2, subst(a, f, r))

The when clauses of a message specification are combined by forming the cross product and then
taking conjunctions of corresponding predicates. The coerce operation is used to combine declara
tions because a message has a single reply, whose type is part of the interface. For the merged
module to have a consistent interface with the originals, the types of the reply messages must
agree. Such interface consistency is needed if the descendents of a type with respect to inheritance
are to be subtypes with respect to the usual type consistency rules (an expression E of type Tl can
be bound to a variable X of type T2 if Tl is a subtype of T2). Microspec has this property, but
languages that allow hiding or renaming some of the operations as a part of the inheritance
mechanism do not. In contrast, the model of a type is an internal feature that does not appear in
the interface, so that the model declarations of two type modules can be combined using merge
instead of coerce without impacting interface consistency. We have chosen to combine similarly
named components of the model rather than treating - them as local names that should be
artificially made disjoint because we expect inheritance to be used in view integration, where the
same name is should refer to the same attribute in all views. When using multiple inheritance in a
programming language to combine the features of several abstract data types, the opposite conven
tion is more appropriate, to prevent interference between the protected and unknown representa
tions of the multiple parents.

enrich parents
operations

subst(actuals, formals, parents): parents
axioms

subst(a, f, empty) = empty
subst(al, f, add(i, a2, p)) = add(i, subst(al, f, a2), subst(al, f, p))

enrich declaration
operations

merge(declaration, declaration): declaration
coerce (declaration, declaration): declaration
fetch(id, declaration): typespec
remove(id, typespec, declaration): declaration

6

. .

equal(declaration, declaration): boolean
conflicting (declaration): boolean
in(id, declaration): boolean
subst(actuals, formals, declaration): declaration

axioms
merge(empty, d) = d
merge(declare(i, t, dl), d2) = declare(i, merge(t, fetch(i, d2)), merge(tll, remove(i, d2)))
coerce(dl, d2) = if equal(dl, d2) then dl else conflict
fetch(i, conflict) = undefined
fetch(i, empty) = undefined .
fetch(il, declare(i2, t2, d)) = if equal(il, i2) = false then t2 else fetch(il, d)
remove(i, t, conflict) = conflict
remove(i, t, empty) = empty
remove(il, tl, declare(i2, t2, d)) =
if equal(il, i2) and equal(tl, t2) then remove(il, tl, d) else declare(i2, t2, remove(il, tl, d))

equal(conflict, empty) = false
equal(conflict, declare(i, t, d)) = false
equal(empty, declare(i, t, d)) = false
equal(declare(il, tl, dl), declare(i2, t2, d2)) = equal(il, i2) and equal(tl, t2) a~d equal(dl, d2)
conflicting (conflict) = true
conflicting(empty) = false
conflicting(declare(i, t, d)) = in(i, d) or equal(t, inconsistent) or conflicting(d)
in (i, conflict) = false
in(i, empty) = false
in(il, declare(i2, t, d)) = equal(il, i2) or in(il, d)
subst(a, f, conflict) = conflict
subst(a, f, empty) = empty
su-bst(a, f, declare(i, t, d)) = declare(i, subst(a, f, t),·subst(a, f, d))

The merge of two declarations declares all of the identifiers in each with the least restrictive type
specification consistent with both declarations.

enrich actuals
operations

merge(actuals, actuals): actuals
equal(actuals, actuals): boolean
subst(actuals, formals, actuals): actuals

axioms
merge(al, a2) = merge(a2, al)
merge(conflict, a) = conflict
merge(empty, empty) = empty
merge(empty, add(t, a)) = conflict
merge(add(tl, al), add(t2, a2)) = add(merge(tl, t2), merge(al, a2))
equal(confl.ict, empty) = false
equal(confl.ict, add(t, a)) = false
equal(empty, add(t, a)) = false .
equal(a.dd(tl, al), add(t2, a2)) = equal(tl, t2) and equal(al, a2)
su bst (a, f, conflict) = conflict
subst(a, f, empty) = empty
subst(al, f, add(t, a2)) = add(subst(al, f, t), subst(al, f, a2))

enrich typespec
operations

merge(typespec, typespec): typespec

7

equal(typespec, typespec): boolean
subst(actuals, formals, typespec): typespec
replace(actuals, formals, id): typespec

axioms
merge(tl, t2) = merge(t2, tl)
merge(inconsistent, t) = inconsistent
merge(undefi.ned, t) = t
if equal(t, undefined) = false then merge(any, t) = t
merge(variable(il), variable(i2)) = if equal(il, i2) then variable(il) else inconsistent
merge(variable(il), type-narne(i2, a)) =. inconsistent
merge(type-narne(il, al), type-name(i2, a2)) =
if equal(il, i2) then type-narne(il, merge(al, a2)) else inconsistent

equal(inconsistent, undefined) = false
equal(inconsistent, any) = false
equal(inconsistent, variable(i)) = false
equal(inconsistent, type-narne(i, a)) = false
equal(undefined, any) = false
equal(undefined, variable(i)) = false
equal(undefined, type-name(i, a)) = false
equal(any, varia.ble(i)) = false
equal(any, type-narne(i, a)) = false
equal(variable(il), type-name(i2, a)) = false
equa.l(variable(il), variable(i2)) = equal(il, i2)
equal(type-narne(il, al), type-name(i2, a2)) = equal(il, i2) and equal(al, a2)
subst(a, f, inconsistent) = inconsistent
su bst (a, f, undefined) = undefined
subst(a, f, any) = any
subst(a, f, varia.ble(i)) = replace(a, f, i)
subst(al, f, type-na.rne(i, a2)) = type-name(i, subst(al, f, a2))
replace(ernpty, empty, i) = variable(i)
replace(add(t, a), add(il, f), i2) = if equal(il, i2) then t else replace(a, f, i2)
replace(empty, add{il, f), i2) = inconsistent
replace(add(t, a), empty, i) = inconsistent

The typespecs form a generalization lattice, and the merge operation is a least upper bound in this
lattice. The same kind of approach ex~ends easily to lattices with a richer subtype structure, such
as the one induced by the inheritance relation. A more detailed discussion of type lattices ·can be
found in (1]. ·

enrich exp
operations

subst(actuals, formals, exp): exp
ax10ms

subst(a, f, true) = true
su bst (a, f, false) = false
subst(a, f, not(e)) = not(sub~t(a, f, e))
subst(a, f, a.nd(el, e2)) = and(subst(a, f, el), subst(a, f, e2))
subst(a, f, all(d, e)) = all(subst(a, f, d), subst(a, f, e))

4. Examples

Consider the following set of parameterized functions.

function equality { t}
message equal(x y: t)

8

when true reply (b: boolean) where for all (a: t :: a= a) &
for all (a b: t : : a = b = > b = a) &
for all (ab c: t :: (a= b & b = c) => a= c)

message not equal(x y: t)
when true ~ply (b: boolean) where b <=> - equal(x, y)

end

The example agrees with the grammar for Microspec given above, except for a richer expression
syntax. These functions can be inherited by a data type by means of a PARENT clause as follows.

•.
• type complex

inherit equality{ complex}
model (re: real, im: real)

message one()
when true reply(r: complex) where r.re = 1.0 & r.im = 0.0

message i()
when true reply(r: complex) where r.re = 0.0 & r.im = 1.0

message plus(x: complex, y: complex)
when true reply(z: complex) where z.re = x.re + y.re & z.im = x.im + y.im

message minus(x: complex, y: complex)
when true reply(z: complex) where z.re = x.re - y.re & z.im = x.im - y.im

message equal(x: complex, y: complex)
when true reply(b: boolean) where b <=> x.re = y.re & x.im = y.im

end

Expanding this module with respect to the previous specification results in the following.

type complex
model (re: real, im: real)

message one()
when true reply(r: complex) where r.re = 1.0 & r.im = 0.0

message i()
when true reply(r: complex) where r.re = 0.0 & r.im = 1.0

message plus(x: complex, y: complex)
when true reply(z: complex) where z.re = x.re + y.re & z.im = x.im + y.im

message minus(x: complex, y: complex)
when true -reply(z: complex) where z.re = x.re - y.re & z.im = x.im - y.im

message equal(x: complex, y: complex)
when true reply(b: boolean) where (b <=> x.re = y.re & x.im = y.im) &

for all (a: complex:: a= a) &
for all (ab: complex :: a= b => b = a) &
for all (ab c: complex :: (a= b & b = c) => a= c)

message not equal(x y: complex)-
when true ;eply (b: boolean) where b <=> - equal(x, y)

end

The general properties of equality are inherited by the equal operation of the type complex, and are
combined with the more specific properties relating to the model of the type. The operation
not_equ.al is also inherited, along with the standard relationship to equal. Note the use of generic
parameters to adapt the interfaces of the generic equality operations to the particular data type
which inherits them.

5. Conclusions

Inheritance is especially useful in the context of specification languages. We have precisely
defined the semantics of the inheritance mechanism of the Microspec language, which closely

9

mirrors the inheritance mechanism of the full Spec language. While the Microspec language does
not include the state changes, exceptions, or defined concepts of the full Spec language, the
approach presented here can be extended to cover those aspects.

The surface level conflicts that can readily detected by the expansion process· are type
conflicts, as illustrated by the equations. Simplification of the assertions by means of term rewrite
systems can sometimes eliminate unreachable cases (when a precondition can be simplified to the
constant false) or to detect semantic inconsistencies (when a postcondition can be simplified to the
constant false). Some deeper conflicts can sometimes be detected by trying to prove the theorems

for all (x: tl) -:: (pre(x) => for some (y: t2) :: (post(x, y)))

that show the satisfiability of each when clause. While complete automatic procedures for these
checks a.re impossible, reliable partial procedures can be very useful in practice. It is still a matter
of research whether it is possible to have a language that is strong enough to be useful and has a
decidable class of inheritance conflicts, although a. positive answer seems unlikely. Tools for expli
citly expanding inheritance structures and displaying the results in ways meaningful to human
designers are desirable for near term applications of inheritance.

Defining the semantics of multiple inheritance for a specification language is much easier
than defining the semantics of multiple inheritance in a programming language, because merging
assertions is much easier than merging code. Some results on merging different versions of code in
an applicative language can be found in [4]. Since the process of merging programs is not yet well
understood in the general case, multiple inheritance mechanisms in programming languages are
often subjected to implementation restrictions that complicate the semantics. We believe that it is
preferable to report conflicts in cases where it is not possible to produce merged code corresponding
to the semantics of the merged specifications, rather than to produce code with behavior that is
hard to predict. A conservative design would report a conflict whenever two different algorithms
for the same message must be merged.

1. H. Ait-Kaci, "A Lattice-Theoretic Approach to Computation Based on a Calculus of
Partially-Ordered Type Structures", Ph.D. Thesis, Department of Computer and
Information Science, University of Pennsylvania, 1984.

2. V. Berzins. and M. Gray, "Analysis and Design in MSG.84: Formalizing Functional
Specifications", IEEE Trans. on Software Eng. SE-11, 8 (Aug. 1985).

3. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software Development", Comm.
of the ACM 29, 5 (May 1986), 402-415.

4. V. Berzins, "On Merging Software Extensions", Acta Informatica 29 (1986), 607-619.

5. V. Berzins and Luqi, "Specifying Large Software Systems in Spec", submitted to IEEE
Software, 1987.

6. G. Birtwistle, O. Dahl, B. Myrhaug and K. Nygaard, Simula Begin, Auerbach Publishers,
1973.

7. M. Broy, "Transformational Semantics for Concurrent Programs", Inf. Proc. Letters 11, 2
(Oct. 1980), 87-91.

8. M. Broy, M. Wirsing and P. Pepper, "On the Algebraic Definition of Programming
La.nguagess", Trans. Prog. Lang and Systems 9, 1 (Jan. 1987), 54-99.

9. "Ada Programming Language", American National Standards lnstitute/MIL-STD-1815A,
DoD, 1983.

10. J. A. Goguen, "Parameterized Programming", IEEE Trans. on Software Eng. SE-10, 5 (Sep.
1984), 528-543.

11. A. Goldberg and D. Robinson, Smalltalk-BO: The Language and its Implementation, Addison
Wesley, Reading, MA, 1983.

10

I
\j

"• .

12. M. Ketabchi and V. Berzins, The Theory and Practice of Representing and Managing the
Refinements, Alternatives, and Versions of Composite Objects.

13. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", to appear
in IEEE TSE, 1987.

14. B. Meyer, "Eiffel: A Language for Software Engineering", TRCS85-19, Computer Science
Department, University of California, Santa Barbara, Nov. 1985.

11

Initial Distribution List

Defense Technical Information Center 2
Cameron Station

I
~

Alexandria, VA 22314
...

Dudley Knox Library
.

Code 0142 2
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses 1
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

V aldis Berzins 100
Code 52Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 1
800 N. Quincy St.
Arlington, VA 22217-5000

..

12

'1

