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The Semantics of Inheritance in Spec 

Valdis Berzins 
Luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

ABSTRACT 

Spec is a language for writing black-box specifications in the ·early stages of software 
development which supports multiple inheritance. A formal transformational semantics 
for a subset of the language containing the inheritance mechanism is presented, along with 
examples and a discussion of the issues which make it difficult to design clean multiple 
inheritance mechanisms in programming languages. 

1. Introduction 

Spec is a. language for writing black-box specifications in the functional specification and 
architectural design of software systems. Black-box specifications are essential for realizing .the 
benefits of abstractions in the software development process [3]. The critical early stages of 
software development are dominated by the tasks of building conceptual models of the proposed 
software and defining its interfaces. A precise notation for such models is needed both as a 
medium for organizing and communicating conceptual models and as a means for supporting 
computer-aided design. Some of the of the tasks that should be supported by a CAD system based 
on Spec include error checking, materializing implied aspects of a design, test case generation, and 
prototyping. 

Spec has evolved from earlier specification languages [2, 13] based on extensive classroom 
experience in using formal specifications in multi-person projects [3]. A general description of the 
language can be found _in [5l. In this paper we concentrate on the inheritance mechanism of Spec. 

Specifications share many of the uses of inheritance with programming languages. An inheri
tance mechanism induces a generalization hierarchy, which can be useful for organizing a library of 
reusable components. The inheritance mechanism can also b~ used to adapt the behavior of an 
existing specification by adding new features or by further constraining existing features, without 
modifying the original. A generalized solution to a design problem can thus be defined only once, 
to be shared and adapted by many different applications, rather than being re-developed from 
scratch each time. The generalization structure can be exploited when automating the bookkeep
ing associated with design by stepwise refinement, which in practice involves considering alterna
tives [ 12] and occasionally backtracking to explore parallel paths. Inheritance also has some uses 
which are more important for specifications than for programs, and may be less familiar. 

Standardization 
A common problem in developing very large software systems is to ensure that the same 
commands in different subsystems have consistent interfaces and interpretations. One way 
to achieve this is by means of a skeleton specification for the common interfaces, which is 
defined once by the system architect and inherited by all of the subsystems. Such an 
approach should be backed up by software tools for expanding and checking the consistency 
of the inherited constraints. 

View Integration 
Large systems are designed by groups of people, who must work on different aspects of the 
same problem simultaneously. When a specification language supporting multiple inheri
tance is available, each designer can specify the view of the system through one of the exter
nal interfaces as a separate module. The whole system is materialized in a trivial module 
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that inherits the features of the modules defining the views. View integration would also 
benefit from automated tools for expanding and checking the consistency of inherited con
straints. 

There has been a great deal of previous work on providing programming language support 
for inheritance [6, 11, 14j. Parameterization is an important mechanism for reusing designs and 
code [10], which is important for realizing the full benefits of inheritance. 

Section 2 describes the simple language addressed in this paper. Section 3 presents a 
transformational semantics [7, 8] for the inheritance mechanism of the language. Section 4 con
tains some examples, and section 5 presents our conclusions. 

2. The Microspec Language 

We will consider a simplified version of Spec called Microspec which includes parametrized 
modules and the inheritance mechanism, but does not include state changes, exceptions, or defined 
concepts. A grammar for Microspec is shown below. 

spec = { module } 
module = "function" id formals parents events "end" 

I "type" id formals parents model events "end" 
formals = [ 11 

{ 
11 id { 11

, 
11 id } 11

}" ] 

parents = [ "inherit" id actuals { 11
," id actuals } ] 

actuals = [ 11 
{" typespec { 11

, 
11 typespec } 11

}" ] 

model= "model" declaration 
events = { "message" id declaration response } 
declaration = 11 

(" id ": 11 typespec { "," id ":" typespec } 11
)" 

response= { "when" exp "reply" declaration "where" exp } 
typespec = "?" I "any" I id actuals 
exp= "true" I "false" I n-n exp I exp"&" exp I "for all." declaration"::" "("exp")"" 

Lexical details, such as the structure of identifiers (id), are omitted because they are not needed for 
the purposes of the paper. An example of a Microspec specification for an abstract data type is 
shown in section 4. 

Microspec is based on the event model of computation, and uses predicate logic for defining 
the desired behavior of modules. In the event ·model, computations are described in terms of 
modules, messages, and events. A module is an active black box that interacts with other modules 
only by sending and receiving messages. A message is data that is sent from one module to , 
another. An event oc-curs at the instant of time when a module receives a message. -The response 
to an event consists of the messages sent to other rno_dules that are directly triggered by the event. 
A more detailed description of the event model can be found in [5j. 

An event specification of the form 

message f(x: tl} when pre(x) reply (y: t2) where post(x, y) 

means that whenever the module· receives a message with data components x of types tl such-· that~ 
pre(x) is true, it must send back a reply message with data components y of types t2 such that 
post(x, y) is true, where x, y are vectors of data values and tl, t2 are vectors of data types. In 
normal usage the preconditions of the when ·clauses associated with a message are disjoint. If an 
incoming message satisfies the precondition of more than one when clause, then the reply must 
satisfy the postconditions of all such clauses simultaneously. 

It is most convenient to describe transformations based on an abstract syntax rather than 
the concrete syntax given above. The abstract syntax of Microspec is defined as a heterogeneous 
algebra with one sort for each of the substantive syntactic classes of Microspec. The ope:rations of 
the algebra include the constructor operations for each sort, as well as some extra. constants 
representing ill-formed syntactic objects. The sort boolean is assumed to be primitive, with the 
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standard two-valued model, constants true and false, and operations and, or, and not with the 
usual interpretations. The sort id is also assumed to be primitive, and isomorphic to the natural 
numbers with the standard interpretation of equality. 

sort spec 
operations 

empty: spec 
defi.ne(id, formals, module, spec): spec 

The empty and define operations are the primitive constructors for specifications. 

sort module 
operations 

undefined: module 
function(parents, events): module 
type(parents, declaration, events): module 

axioms 
if conflicting(d) then type(p, d, e) = undefined 

Undefined is an extra value introduced to represent ill-formed modules. The axiom states that 
types with model declarations containing type conflicts are ill-formed. In Microspec a module is 
either a function or an abstract data type. The full Spec language contains several other kinds of 
modules, which are omitted here due to lack of space. 

sort events 
operations 

empty: events 
message(id, declaration, response, events): events 

sort response 
operations _ 

empty: response 
when(exp, declaration, exp, response): response 

% precondition, reply declaration, postcondition, other cases 
axioms 

when(false, d, e, r) = r 
The axiom shows that when clauses with uniformly false guards can be deleted ( dead code elimina
tion). 

sort parents 
operations 

empty: parents 
add(id, actuals, parents): parents 

ax10ms 
add(il, al, add(i2, a2, p)) = add(i2, a2, add(il, al, p)) 

The axiom states that the order of the ancestors in the inheritance list does not matter. 

sort formals 
operations 

empty: formals 
add(id, formals): formals 

This sort represents the list of formal parameters of a module. 

sort declaration 
operations 
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conflict: declaration 
empty: declaration 
declare(id, typespec, declaration): declaration 

The constant conflict represents an ill-formed declaration. 

sort actuals 
operations 

conflict: actuals 
empty: actuals 
add(typespec, actuals): actuals 

The constant conflict represents an ill-formed list of actual type parameters for modules. 

sort typespec 
operations 

inconsistent: typespec 
undefined: typespec 
any: typespec 
variable(id): typespec 
type-name(id, actuals): typespec 

The type constant inconsistent is an extra value to denote the result of merging two incompatible 
type specifications. The type constant undefined represents a data type that has not yet been 
specified and is used in representing unfinished specifications. The type constant any represents 
the union of all other data types, and is used in specifying polymorphic operators. 

sort exp 
operations 

true: exp 
false: exp 
not(exp): exp 
and ( exp, exp): exp 
all(declaration, exp): exp 

Expressions represent logical assertions, and include quantifiers. Only a subset of the expression 
syntax is shown here due to lack of space. 

3. Transformational Semantics of Inheritance 

The semantics of inheritance are defined by showing how to transform specifications with 
inheritance into equivalent specifications that do not use the inheritance mechanism. This is done 
by enriching the spec sort of the algebra defined in the previous section with an expand operation 
that performs this transformation. This requires enriching the other sorts of the algebra with addi
tional helping functions. To reduce the number of axioms, we will incorporate the following equa
tions for all sorts that have an equal operation 

equal(x, x) = true 
equal(x, y) = equal(y, x) 

The definitions of these operations are given below. 

enrich spec 
operations 

expand (spec): spec 
fetch(id, actuals, spec): module 

axioms 
expand(empty) = empty 
expand(define(i, f, m, s)) = define(i, f, inherit(m, s), expand(s)) 
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fetch(i, a, empty) = undefined 
fetch(il, a, define(i2, f, m, s)) = if equal(il, i2) then subst(a, f, m) else fetch(il, a, s) 

The expand operation merely expands the inherited features of each module in the specification, by 
means of the inherit operation. The problem of circular dependencies cannot arise in Microspec 
because only previously defined modules can be inherited. The fetch operation retrieves the 
module associated with an identifier, and substitutes actual values for the generic type parameters 
of the module. For simplicity we have chosen to take the first definition in case there is more than 
one. A more practical approach, illustrated in our treatment of declarations below, is to treat mul
tiply declared identifiers as errors. 

enrich module 
operations 

inherit(module, spec): module 
merge(module, module): module 
subst(actuals, formals, module): module 

axioms 
inherit ( undefined, s) = undefined 
inherit(function(empty, e), s) = function(empty, e) 
inherit(function(add(i, a, p), e), s) := merge(inherit(function(p, e), s), inherit(fetch(i, a, s), s)) 
inherit(type(empty, d, e), s) = type(empty, d, e) 
inherit(type(add(i, a, p), d, e), s) = merge(inherit(type(p, d, e), s), inherit(fetch(i, a, s), s)) 
merge(undefined, m) = undefined 
merge(m, undefined) = undefined 
merge(function(empty, el), function(empty, e2)) = function{empty, merge{el, e2)) 
merge(type(empty, dl, el), type(empty, d2, e2)) = type(empty, merge(dl, d2), merge(el, e2)) 
merge(type(empty, d, el), function(empty, e2)) = type(empty, d, merge(el, e2)) 
merge(function(empty, el), type(empty, d, e2)) = undefined 
subst(a,·f, undefined) = undefined 
subst(a, f, function(p, e)) = function(subst(a, f, p), subst(a, f, e)) 
subst(a, f, type(p, d, e)) = type(subst(a, f, p), subst(a., f, d), subst(a, f, e)) 

The inherit operation merges the module with all of its ancestor;, both direct and indirect. The 
merge operation combines the features of several modules, declarations, or event specifications. 
Merge is not symmetric on modules because a type can inherit a function, but a function cannot 
inherit a type. 

enrich events 
operations 

merge(events, events): events 
fetch(id, declaration, events): response 
remove(id, declaration, events): events 
subst(actuals, formals, events): events 

axioms 
merge(empty, e) = e 
merge(message(il, dl, rl, el), e2) = 

message(il, dl, merge(rl, fetch(il, dl, e2) ), merge(el, remove(il, dl, e2))) 
fetch(i, d, empty) = empty 
fetch(il, dl, message(i2, d2, r, e)) = 
if equal(il, i2) and equal( dl, d2) then r else fetch(il, dl, e) 

remove(i, d, empty) = empty 
remove(il, dl, message(i2, d2, r, e)) = 
if equal(il, i2) and equal(dl, d2) then remove(il, dl, e) 
else message(i2, d2, remove(il, dl, e)) 

subst(a, f, empty) = empty 
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subst(a, f, message(i, d, r, e)) = message(i, subst(a, f, d), subst(a, f, r), subst(a, f, e)) 

Event specifications to be merged are matched up by message name and argument declarations, 
reflecting the fact that message names can be overloaded (cf. [9]). The fetch and remove opera
tions are used because the order of the messages in an event specification is not significant. The 
declarations are used in addition to message names when matching up corresponding messages 
because messages can be overloaded. 

enrich response 
operations 

merge(response, response): response 
append(response, response): response 
suhst(actuals, formals, response): response 

axioms 
merge(empty, r) = r 
merge(r, empty) = r 
merge(when(el, dl, e2, rl), when(e3, d2, e4, r2)) = 

append(when(and(el, e3), coerce(dl, d2), and(e2, e4), empty), 
append(merge(when(el, dl, e2, empty), r2)), merge(rl, when(e3, d2, e4, r2))) 

append(empty, r) = r. 
append(when(el, d, e2, rl), r2) = when(el, d, e2, append(rl, r2)) 
suhst(a, f, empty) = empty 
subst(a, f, when(el, d, e2, r)) = when(el, subst(a, f, d), e2, subst(a, f, r)) 

The when clauses of a message specification are combined by forming the cross product and then 
taking conjunctions of corresponding predicates. The coerce operation is used to combine declara
tions because a message has a single reply, whose type is part of the interface. For the merged 
module to have a consistent interface with the originals, the types of the reply messages must 
agree. Such interface consistency is needed if the descendents of a type with respect to inheritance 
are to be subtypes with respect to the usual type consistency rules (an expression E of type Tl can 
be bound to a variable X of type T2 if Tl is a subtype of T2). Microspec has this property, but 
languages that allow hiding or renaming some of the operations as a part of the inheritance 
mechanism do not. In contrast, the model of a type is an internal feature that does not appear in 
the interface, so that the model declarations of two type modules can be combined using merge 
instead of coerce without impacting interface consistency. We have chosen to combine similarly 
named components of the model rather than treating - them as local names that should be 
artificially made disjoint because we expect inheritance to be used in view integration, where the 
same name is should refer to the same attribute in all views. When using multiple inheritance in a 
programming language to combine the features of several abstract data types, the opposite conven
tion is more appropriate, to prevent interference between the protected and unknown representa
tions of the multiple parents. 

enrich parents 
operations 

subst( actuals, formals, parents): parents 
axioms 

subst(a, f, empty) = empty 
subst(al, f, add(i, a2, p)) = add(i, subst(al, f, a2), subst(al, f, p)) 

enrich declaration 
operations 

merge( declaration, declaration): declaration 
coerce (declaration, declaration): declaration 
fetch(id, declaration): typespec 
remove(id, typespec, declaration): declaration 
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. . 

equal( declaration, declaration): boolean 
conflicting (declaration): boolean 
in(id, declaration): boolean 
subst(actuals, formals, declaration): declaration 

axioms 
merge(empty, d) = d 
merge(declare(i, t, dl), d2) = declare(i, merge(t, fetch(i, d2)), merge(tll, remove(i, d2))) 
coerce(dl, d2) = if equal(dl, d2) then dl else conflict 
fetch(i, conflict) = undefined 
fetch(i, empty) = undefined . 
fetch(il, declare(i2, t2, d)) = if equal(il, i2) = false then t2 else fetch(il, d) 
remove(i, t, conflict) = conflict 
remove(i, t, empty) = empty 
remove(il, tl, declare(i2, t2, d)) = 
if equal(il, i2) and equal(tl, t2) then remove(il, tl, d) else declare(i2, t2, remove(il, tl, d)) 

equal( conflict, empty) = false 
equal(conflict, declare(i, t, d)) = false 
equal(empty, declare(i, t, d)) = false 
equal(declare(il, tl, dl), declare(i2, t2, d2)) = equal(il, i2) and equal(tl, t2) a~d equal(dl, d2) 
conflicting (conflict) = true 
conflicting(empty) = false 
conflicting(declare(i, t, d)) = in(i, d) or equal(t, inconsistent) or conflicting(d) 
in ( i, conflict) = false 
in(i, empty) = false 
in(il, declare(i2, t, d)) = equal(il, i2) or in(il, d) 
subst( a, f, conflict) = conflict 
subst( a, f, empty) = empty 
su-bst(a, f, declare(i, t, d)) = declare(i, subst(a, f, t),·subst(a, f, d)) 

The merge of two declarations declares all of the identifiers in each with the least restrictive type 
specification consistent with both declarations. 

enrich actuals 
operations 

merge(actuals, actuals): actuals 
equal(actuals, actuals): boolean 
subst(actuals, formals, actuals): actuals 

axioms 
merge(al, a2) = merge(a2, al) 
merge(conflict, a) = conflict 
merge(empty, empty) = empty 
merge(empty, add(t, a)) = conflict 
merge(add(tl, al), add(t2, a2)) = add(merge(tl, t2), merge(al, a2)) 
equal(confl.ict, empty) = false 
equal(confl.ict, add(t, a)) = false 
equal(empty, add(t, a)) = false . 
equal(a.dd(tl, al), add(t2, a2)) = equal(tl, t2) and equal(al, a2) 
su bst ( a, f, conflict) = conflict 
subst(a, f, empty) = empty 
subst(al, f, add(t, a2)) = add(subst(al, f, t), subst(al, f, a2)) 

enrich typespec 
operations 

merge(typespec, typespec): typespec 
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equal( typespec, typespec): boolean 
subst(actuals, formals, typespec): typespec 
replace(actuals, formals, id): typespec 

axioms 
merge(tl, t2) = merge(t2, tl) 
merge(inconsistent, t) = inconsistent 
merge(undefi.ned, t) = t 
if equal(t, undefined) = false then merge(any, t) = t 
merge(variable(il), variable(i2)) = if equal(il, i2) then variable(il) else inconsistent 
merge(variable(il), type-narne(i2, a)) =. inconsistent 
merge(type-narne(il, al), type-name(i2, a2)) = 
if equal(il, i2) then type-narne(il, merge(al, a2)) else inconsistent 

equal(inconsistent, undefined) = false 
equal(inconsistent, any) = false 
equal(inconsistent, variable(i)) = false 
equal(inconsistent, type-narne(i, a)) = false 
equal(undefined, any) = false 
equal( undefined, variable(i)) = false 
equal(undefined, type-name(i, a)) = false 
equal(any, varia.ble(i)) = false 
equal(any, type-narne(i, a)) = false 
equal(variable(il), type-name(i2, a)) = false 
equa.l(variable(il), variable(i2)) = equal(il, i2) 
equal(type-narne(il, al), type-name(i2, a2)) = equal(il, i2) and equal(al, a2) 
subst(a, f, inconsistent) = inconsistent 
su bst ( a, f, undefined) = undefined 
subst( a, f, any) = any 
subst(a, f, varia.ble(i)) = replace(a, f, i) 
subst(al, f, type-na.rne(i, a2)) = type-name(i, subst(al, f, a2)) 
replace(ernpty, empty, i) = variable(i) 
replace(add(t, a), add(il, f), i2) = if equal(il, i2) then t else replace(a, f, i2) 
replace(empty, add{il, f), i2) = inconsistent 
replace(add(t, a), empty, i) = inconsistent 

The typespecs form a generalization lattice, and the merge operation is a least upper bound in this 
lattice. The same kind of approach ex~ends easily to lattices with a richer subtype structure, such 
as the one induced by the inheritance relation. A more detailed discussion of type lattices ·can be 
found in (1]. · 

enrich exp 
operations 

subst(actuals, formals, exp): exp 
ax10ms 

subst( a, f, true) = true 
su bst ( a, f, false) = false 
subst(a, f, not(e)) = not(sub~t(a, f, e)) 
subst(a, f, a.nd(el, e2)) = and(subst(a, f, el), subst(a, f, e2)) 
subst(a, f, all(d, e)) = all(subst(a, f, d), subst(a, f, e)) 

4. Examples 

Consider the following set of parameterized functions. 

function equality { t} 
message equal(x y: t) 
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when true reply (b: boolean) where for all (a: t :: a= a) & 
for all ( a b: t : : a = b = > b = a) & 
for all (ab c: t :: (a= b & b = c) => a= c) 

message not equal(x y: t) 
when true ~ply (b: boolean) where b <=> - equal(x, y) 

end 

The example agrees with the grammar for Microspec given above, except for a richer expression 
syntax. These functions can be inherited by a data type by means of a PARENT clause as follows. 

•. 
• type complex 

inherit equality{ complex} 
model (re: real, im: real) 

message one() 
when true reply(r: complex) where r.re = 1.0 & r.im = 0.0 

message i() 
when true reply(r: complex) where r.re = 0.0 & r.im = 1.0 

message plus(x: complex, y: complex) 
when true reply(z: complex) where z.re = x.re + y.re & z.im = x.im + y.im 

message minus(x: complex, y: complex) 
when true reply(z: complex) where z.re = x.re - y.re & z.im = x.im - y.im 

message equal(x: complex, y: complex) 
when true reply(b: boolean) where b <=> x.re = y.re & x.im = y.im 

end 

Expanding this module with respect to the previous specification results in the following. 

type complex 
model (re: real, im: real) 

message one() 
when true reply(r: complex) where r.re = 1.0 & r.im = 0.0 

message i() 
when true reply(r: complex) where r.re = 0.0 & r.im = 1.0 

message plus(x: complex, y: complex) 
when true reply(z: complex) where z.re = x.re + y.re & z.im = x.im + y.im 

message minus(x: complex, y: complex) 
when true -reply(z: complex) where z.re = x.re - y.re & z.im = x.im - y.im 

message equal(x: complex, y: complex) 
when true reply(b: boolean) where (b <=> x.re = y.re & x.im = y.im) & 

for all (a: complex:: a= a) & 
for all (ab: complex :: a= b => b = a) & 
for all (ab c: complex :: (a= b & b = c) => a= c) 

message not equal(x y: complex)-
when true ;eply (b: boolean) where b <=> - equal(x, y) 

end 

The general properties of equality are inherited by the equal operation of the type complex, and are 
combined with the more specific properties relating to the model of the type. The operation 
not_equ.al is also inherited, along with the standard relationship to equal. Note the use of generic 
parameters to adapt the interfaces of the generic equality operations to the particular data type 
which inherits them. 

5. Conclusions 

Inheritance is especially useful in the context of specification languages. We have precisely 
defined the semantics of the inheritance mechanism of the Microspec language, which closely 
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mirrors the inheritance mechanism of the full Spec language. While the Microspec language does 
not include the state changes, exceptions, or defined concepts of the full Spec language, the 
approach presented here can be extended to cover those aspects. 

The surface level conflicts that can readily detected by the expansion process· are type 
conflicts, as illustrated by the equations. Simplification of the assertions by means of term rewrite 
systems can sometimes eliminate unreachable cases (when a precondition can be simplified to the 
constant false) or to detect semantic inconsistencies (when a postcondition can be simplified to the 
constant false). Some deeper conflicts can sometimes be detected by trying to prove the theorems 

for all (x: tl) -:: (pre(x) => for some (y: t2) :: (post(x, y))) 

that show the satisfiability of each when clause. While complete automatic procedures for these 
checks a.re impossible, reliable partial procedures can be very useful in practice. It is still a matter 
of research whether it is possible to have a language that is strong enough to be useful and has a 
decidable class of inheritance conflicts, although a. positive answer seems unlikely. Tools for expli
citly expanding inheritance structures and displaying the results in ways meaningful to human 
designers are desirable for near term applications of inheritance. 

Defining the semantics of multiple inheritance for a specification language is much easier 
than defining the semantics of multiple inheritance in a programming language, because merging 
assertions is much easier than merging code. Some results on merging different versions of code in 
an applicative language can be found in [ 4]. Since the process of merging programs is not yet well 
understood in the general case, multiple inheritance mechanisms in programming languages are 
often subjected to implementation restrictions that complicate the semantics. We believe that it is 
preferable to report conflicts in cases where it is not possible to produce merged code corresponding 
to the semantics of the merged specifications, rather than to produce code with behavior that is 
hard to predict. A conservative design would report a conflict whenever two different algorithms 
for the same message must be merged. 
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