
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

Specifying Large Software Systems in Spec

Luqi; Berzins, Valdis
Naval Postgraduate School

V. Berzins and Luqi, "Specifying Large Software Systems in Spec", Technical Report
NPS 52-87-033, Computer Science Department, Naval Postgraduate School, 1987.
https://hdl.handle.net/10945/65242

Downloaded from NPS Archive: Calhoun

1
NPS52-87-033

NAVAL POSTGRADUATE SCHOOL
Monterey, California

SPECIFYING LARGE SOFTWARE SYSTEMS IN SPEC

Valdis Berzins

Luqi

·July 1987

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

The work reported herein was supported in part by the Foundation Research Pro
gram of the Naval Postgraduate School with funds provided by the Chief of Naval
Research.

Reproduction of all or part . of this report is authorized.

This report was prepared by:

Reviewed by:

Chairman
Department of Computer Science

vDISBEkzi
Associate Professor
of Computer Science

Released by:

Policy Science

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

rmr.T ass Ii,.·, 1i•11

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION / AVAILABILITY OF REPORT

Approved for public r.elease
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER($)

NPS52-87-033
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

.Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Z~P Code)

Monterey, CA 93943
Sa. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO . ACCESSION NO.

11 . TITLE (Include Security Classification)

Specifying Large Software Svstems in Spec
12. PERSONAL AUTHOR($}

Valdis Berzins, Luqi
11

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 115. PAGE COUNT

Technical FROM TO · Julv 1987 13
16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP .

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper presents a language for giving black-box specifications in the early stages
of software design. The underlying computational model combines message passing with
temporal events in a precisely defined way. The features of the language, especially those
important for large scale design are presented by means of examples.

,,
II

. .

,r

.. ,

· 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

IX] UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I ~le. OFFICE SYMBOL

Valdis Berzins 408-646-2461
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other ed1t1ons are obsolete .
~ U.S. Government Printing Office: 1986-606•24.

Specifying Large Software System~s in Spec

Va/dis Berzins
Luqi

Computer- Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

This paper presents a language for giving black-box specifications in the early stages of
software design. The underlying computational model combines message passing with
temporal events in a precisely defined way. The features of the language, especially those
important for large scale design are presented by means of examples.

1. Introduction

Spec is a formal language for writing black-box specifications for components of software sys
tems. Black-box specifications are essential for realizing the benefits of abstractions in the software
development process [2J. The critical early stages of software development a.re dominated by the
tasks of building conceptual models of the proposed software and defining its interfaces. The Spec
language is used in the functional specification stage for recording black-box specifications of the
external interfaces of the proposed system, and in the architectural design stage for recording
black-box specifications of the internal interfaces of the proposed system.

A formal specification language sur h as Spec is needed for defining the desired behavior of
the proposed system before it is built, because English and other informal notations are too impre
cise. Precision is important because in a large project many people have- to· agree on the-interpre
tation of the specifications to produce a correct implementation. Written specifications a.re attrac
tive as a communications medium in very large projects because the effort of writing a formal
specification is independent of the number of people reading it, whereas communications overhead
tends to increase with the size of the project in more informal techniques. Formal notation is
important because it enables mechanical processing, opening the way to higher levels of computer
aided design than are currently used in software development. Programming languages such as
Ada are formal, but are not well suited for writing black-box specifications because they have been
designed for describing the algorithms and data structures realizing a module rather than the
behavior a module presents at its interface.

There has been much previous work on providing programming language support for
abstractions [4, 6, 8, 13, 18]. Spec has been intended' primarily as a design tool. Much of the previ
ous work on formal specifications has been focused on the problem of proving the correctness of
programs [5, 7, 10, 15, 20]. Spec has evolved from an earlier specification language [lj and a rapid
prototyping language for the design of large real-time systems [14!, guided by extensive classroom
experience in using formal specifications in multi-person projects [2J. The most important
advances over the earlier language a.re the integration of time into the underlying model, the
development of an inheritance mechanism [3J, and the separation of granularity and control state
considerations from the event-level interfaces of a module.

Spec is based on the event model of computation, and uses predicate logic for the precise
definition of the desired behavior of modules. The most important ideas of this language are
modules, messages, events, parametrization, and defined concepts. Spec also has a number of
features that become important only for specifying very large systems, such as import/ export con
trols for defined concepts, and view and inheritance mechanisms.

1

2. The Event Model

The Spec language uses the event model to define the behavior of black box software
modules. The event model has been influenced by the actor model [9, 21]. The main differences
from the actor model are the treatment of time and temporal ~vents, and the treatment of multi
event transactions [1]. In the event model, computations are described in terms of modules, mes
sages, and events. A module is a black box that interacts with other modules only by sending and
receiving messages. A message is a data packet that is sent from one module to a~other. An event
occurs when a message is received by a module at a particular instant of time.

Modules can be used to model external systems such as users and peripheral hardware dev
ices, as well as software components. Modules are active black boxes, which have no visible inter
nal structure. The behavior of a module is specified by describing its interface. The interface of a
module consists of the set of messages it accepts, along with its response to each kind of message it
accepts. Each response consists of the messages sent out by the module in response to the most
recent incoming message and the destinations of those messages.

Any module accepts messages one at a time, in a well-defined order that can be observed as a
computation proceeds. Message transmission is assumed to be reliable, which means every message
that is sent eventually arrives at its destination. While restrictions on message delay and ordering
can be added for particular applications, these are not inherent in the event model. Unless expli
citly stated otherwise, messages can have arbitrarily long and unpredictable transmission delays.
The order in which messages arrive is not normally under the control of the designer.

In the event model each module has its own local clock. The local clocks of different modules
are not necessarily synchronized with each other. This la.ck of synchronization is realistic since
perfect synchronization of clocks at different locations i~ not possible in practice. Each event
occurs at a well-defined instant of time, which is the time at which the destination module receives
a message, according to its own local clock.

An event can be uniquely identified by specifying the module at which it occurred and the
local time of the event. Each event determines a single message that arrived at the event. The
attributes of an event are its location (the module at which it occurred), the time at which it
occurred, and the message that arrived.

Each message has a sequence of zero or more data values associated with it. When messages
are used to model subprogram invocations, these data values correspond to the arguments of the
subprogram call. The other attributes of a message a.re its name, its condition, and its origin. The
name of a message determines the kind of service being requested from the destination module.
Modules which · provide only a single service can accept anonymous messages. Formally the name
of an anonymous message is the empty string. Exceptions are modeled as messages by means of
the condition attribute, which can take on the values normal and exception. The condition of a
message expressing a normal request for service is normal The condition of a message reporting
an abnormal event somewhere is exception, in which case the name of the message is the name of
the exception condition. The origin attribute of a message identifies the event which triggered the
sending of a message. When messages are used to model subprogram invocations, the, location of
the origin event determines the destination of the reply message.

The response of a module to a message is completely determined by the sequence of messages
received by the module since it was created. The event model and the Spec language do not admit
nondeterministic behavior other than that caused by unpredictable communication delays.
Modules whose behavior is partially specified are treated as arbitrary members of the class of
deterministic modules satisfying the specification.

Definition 1
A module is mutable if the response of the module to at least one message it accepts can
depend on messages that arrived before the most recent incoming message.

2

Definition 2
A module is immutable if the response of the module to every possible message is com
pletely determined by the most recent message it has received.

Mutable modules behave as if they had internal states or memory, while immutable modules
behave like mathematical functions. A module is immutable if and only if it is not mutable.

Each module has the potential of acting independently, so that there is natural concurrency
in a system consisting of many modules. Since events happen instantaneously and the response of
a module is not sensitive to anything but the sequence of events at the module, the event model
implies concurrent interactions with a module cannot interfere with ea.ch other at the level of indi
vidual events. The response of a module to a message is under the control of the designer.

Events can also be triggered at absolute times. Such events are called temporal events.
Formally a temporal event occurs when a module sends a message to itself at a time determined by
its local clock. Temporal events are the means by which modules can initiate actions that are not
direct responses to external stimuli.

Modules can be used to model concurrent and distributed systems, as well as systems consist
ing of a single sequential process. The event model helps to expose the parallelism inherent in a
problem, because the only time orderings specified are those which are unavoidable and are agreed
on by all observers. Because there is no global time reference, the only observable time orderings
are derivable from discrete sequences of the following types of steps:

(I) A message arrived at a module before a second message arrived at the same module, as
determined by the local clock at the common location of both events.

(2) The event which triggered the sending of a message happened before the event in which
that same message is received by its destination.

3. Specifying Software in-Terms of Events

The Spec language provides a means . foi- specifying the behavior of four different types of
modules: functions, state machines [16], abstract data types [11), and iterators [12, 17]. The pro
perties of these four kinds of modules a.re described below, 'Yith examples of each.

3.1. Functions

A function module calculates the value of a function in the mathematical sense. Function
modules are immutable. Usually function modules provide only a single service, accepting
anonymous messages. An example of a specification for a squa.re _root function is shown below.

FUNCTION square root {precision: real}
WHERE precision-> 0.0

MESSAGE (x: real)
WHEN x >= 0.0

REPLY (y: real)
WHERE y >= 0.0 & approximates(y * y, x)

OTHERWISE
REPLY EXCEPTION imaginary _square _root

CONCEPT approximates(rl r2: real)
VALUE (b: boolean)

WHERE b <=> abs((rl - r2) / r2) <= precision
END

The square _root function accepts anonymous messages containing a single real number. The
response of a module to a message can be defined with several cases introduced by WHEN clauses.

3

The predicate after each WHEN is called the precondition, and describes the conditions und;r
which the associated response will be triggered by an incoming message with a given name and
condition. The preconditions in each WHEN statement are stated independently, so that the order
of the WHEN statements does not matter.

OTHERWISE is a.n abbreviation for the case where none of the other WHEN statements
apply. In the example above, the OTHERWISE means the same thing as WHEN x < 0.0. In the
Spec language each series of WHEN statements must be terminated by an OTHERWISE, to make
sure that all cases are covered.

A REPLY describes the message sent back in response to an event. The reply message is
sent to the mqdule originating the message that arrived in the event. In terms of the event model,
the destination of the reply message is the location of the origin event for th~ message that trig
gered the reply, which is contained in the origin attribute of the message. H REPLY is followed by
EXCEPTION then the condition of the reply message is exception, representing an exceptional
event, and otherwise the condition of the reply message is normal, representing a normal
response.

An outgoing message such as a REPLY can have a WHERE clause, which describes a
postcondition that must be satisfied by the outgoing message. The WHERE keyword is followed
by a statement in predicate logic describing the relation between the contents of the message that
was received and the contents of the reply message. This predicate states how to recognize a
correct result, but it does not specify ·how to compute the required output.

Whenever a message arrives which matches a MESSAGE header of a module and satisfies
the precondition (WHEN) of one of the cases, then a response must be sent which matches the
REPLY header and satisfies the associated postconditions (WHERE). A message matches a
header if the message has the specified name, condition, and number of data values, and if each
data value belongs to the specified da.ta type. A message satisfies a predicate if the predicate is
true for the data values in the messages mentioned in the predicate. Preconditions mention• only
an incoming message, while postconditions mention both an incoming and an outgoing message.
Messages without any WHEN clauses have a single case whose precondition is always true. H the
precondition for more th-an one case is satis~ed, all of the associated responses must be sent and
the constraints of all the associated postconditions must be met simultaneously. Overlapping
preconditions a.re not recommended because they can lead to inconsistencies.

3.2. Machines

A machine is a module with an internal state, i.e. ma~hines are mutable modules. An exam
ple of a machine is shown below.

MACHINE inventory
% assumes that shipping and supplier are other modules.
STATE (stock: map{from :: item, to:: integer})
INVARIANT FOR ALL (i: item:: stock[i] >= 0)
INITIALLY FOR ALL (i: item:: stock[i] = 0)

MESSAGE receive_shipment(i: item, quantity: integer)
WHEN quantity > 0

TRANSITION *stock[i] = stock[i] + quantity
OTHER WISE REPLY EXCEPTION empty _shipment

MESSAGE order(item ordered: item, quantity ordered: integer)
WHEN O <quantity-ordered<= stock[item ~rdered]

SEND shipping_ord-;r(item _shipped: item, quantity _shipped: integer)
TO shipping
WHERE item _shipped = item_ ordered, quantity _shipped = quantity ordered

4

.,.

TRANSITION *stock[item _ordered] + quantity _ordered= stock[item _ordered]
WHEN O < quantity ordered >= stock[item ordered]

SEND shipping_ord--;;r(item _shipped: item, quantity _shipped: integer)
TO shipping
WHERE item shipped = item ordered,

qu~tity shipped =-stock[item ordered]
SEND back order(item backordered: item, qu;:ntity backordered: integer)

TO supplier - · -
WHERE item backordered = item ordered,

qu~tity backordered =-quantity ordered - stock[item ordered]
% storage of a.nd del-;yed response to backord-;rs are not shown he;;;

TRANSITION *stock[item_ordered] = 0
OTHERWISE REPLY EXCEPTION empty _order

END .

The behavior of a machine is described in terms of a conceptual model of its state, rather than
directly in terms of the messages that arrived in the past, because such descriptions are usually
shorter and easier to understand. The components of the conceptual model of the state are
declared after the keyword STATE, and restrictions on the set of meaningful states are given after
the keyword INVARIANT. Restrictions on the initial state are given after the keyword INI
TIALLY. The restrictions after INVARIANT must be satisfied in all reachable states, while the
restrictions after INITIALLY must be satisfied only in the first state.

State changes are described by predicates after the keyword TRANSITION. In such state
ments, variables of the form *x refer to the value of x in the new state (just after the arrival of the
most recent message), while variables of the form x refer to the value of x in the old state (just
before the arrival of the most recent message). The transitions in the example are equations rather
than assignment statements. Equations can describe the transition either· forwards or backwards
in time, whichever is simpler (cf. the first two transitions). The *x notation can only be used in
the INVARIANT, the TRANSITIONS, and in WHERE clauses describing the output in terms of
the new ~tate. The Spec language follows the convention that components of the state of a
machine or the model of an abstract data type do not change unless there is a change explicitly
described in a TRANSITION clause.

The SEND statement is used instead of REPLY to describe messages sent to destinations
other than the origin of the incoming message. A SEND statement means that a message satisfy
ing the description must be sent to the given destination. There can be only one REPLY, but
there can be any number of SEND's. If there is more than one SEND, the message transmissions
can be performed concurrently ·or one at a time in any order, without waiting for any responses.
SEND statements are useful for describing distributed systems with a pipeline structure.

3.3. Types

A type module defines an abstract data type. An abstract data type consists of a value set
and a set of primitive operations involving the value set. In the event model, a type module
manages the value set of an abstract data type, creating all of the values of the type and perform
ing all of the primitive operations on those values. Ea.ch message accepted by the type module
corresponds to one of the operations of the abstract data type. The messages of a type module
usually have names, since abstract data types usually provide more than one operation. An exam
ple of a specification for an immutable abstract data type is shown below.

TYPE rational
MODEL (num den: integer)
INVARIANT den - = O

MESSAGE create (num den: integer)

5

WHEN den""= O
REPLY (r: rational)
WHERE r.num = num, r.den = den

OTHER WISE REPLY EXCEPTION zero denominator

MESSAGE add (x y: rational)
REPLY (r: rational)
WHERE r.num = x.num * y.den· + y.num * x.den, r.den = x.den * y.den

MESSAGE subtract (x y: rational)
REPLY (r: rational)
WHERE r.num = x.num * y.den - y.num * x.den, r.den = x.den * y.den

MESSAGE multiply (x y: rational)
REPLY (r: rational)
WHERE r.num = x.num * y.num, r.den = x.den * y,den

MESSAGE equal (x y: rational)
REPLY (b: boolean)
WHERE b <=> (x.num * y.den = y.num * x.den)

END

Data types have conceptual models, which are used to visualize and describe the value set of
the type. The conceptual model is used to specify the behavior of a type, and forms the mental
picture of the type for the programmers who use the operations of the type. The conceptual model
is chosen for clarity, and is usually different than the data structure used in the implementation.
In case the data. type must be re-implemented to improve performance, the data structure used in
the implementation will change, but the conceptual model will not.

Each instance of the type can be represented as a tuple cont.aining the data components
declared after the MODEL keyword. The restrictions on the components of the model are
described in the INVARIANT, which selects a subset of the tuple data type defined by the
MODEL to serve as the conceptual representation. The INVARIANT is a predicate that must be
true for all meaningful conceptual representations.

In the example we a.re using the standard mathematical model for rational numbers, which
are ratios of pairs of integers. The invariant must exclude pairs with zero denominators, because
the interpretation of the pairs as ratios does not make sense in that case. It is not necessary for
there to be a 1 : 1 correspondence between conceptual representations and values of the · abstract
data type, although in such cases the model is not fully abstract, and some extra care must be
taken in defining the operations. Our example does not have unique conceptual representations,
because the pairs [1, 2], [2, 41, and [-1, -2] all represent the same rational number, namely one-half.
This lack of uniqueness is reflected in the equal operation, where equality on rationals is defined in
terms of equality. on integers. It is incorrect to say that two rationals are equal if and only if
corresponding components are equal unless the invariant is strong enough to give unique concep
tual representations. Some additional restrictions that would make make the conceptual represen
tation unique in the example are that the denominator must be strictly positive and that the frac
tions must be reduced to lowest terms.

The invariant on the conceptual representation should be adjusted to make the descriptions
of the operations as simple as possible. The invariant on the conceptual representation need not
necessarily by satisfied by the implementation data structure and does not restrict the designer's
choice of implementations. The invariants on the implementation data structures will often be
much more complicated than the conceptual invariants, because the implementation invariants
may critically affect efficiency. Most books on data structures are really about the art of choosing

6

implementation invariants that enable efficient algorithms.

Inside the module defining an abstract data type, predicates describing the effects of the
operations can be written in terms of the conceptual representation. The data values can be
described as if they were instances of the tuple data type whose components are specified in the
MODEL. The notation x.y can be used to refer to the y component of the abstract data value x.
Such references a.re allowed only inside the module defining the abstract data type. The
specifications of other modules may describe the values of abstract types only in terms of the mes
sages it provides and the CONCEPTS it exports.

The example illustrates that messages with a single case can be defined without using
WHEN. It is sometimes convenient to express complicated conditions as lists of independent con
straints. The predicates after INVARIANT, WHEN, and WHERE can be lists of expressions
separated by commas. A list of statements is true if and only if all of the statements in the list are
true individually, so that in this context a comma means the same thing as &. The comma has a
lower precedence than all of the other operators, so that it can be used to separate statements at
the top level without need for parentheses.

An example of a definition for a mutable type is shown below.

TYPE queue{t: type}
% mutable version
MODEL (e: sequence)

% The front of the queue is at the right end.
INVARIANT true

% Any sequence is a valid model for a queue.

MESSAGE create
% A newly created empty queue.

REPLY (q: queue{t})
WHERE q.e = [}, new(q)

MESSAGE enqueue(x: t, q: queue{ t})
% Add x to the back of the queue.

TRANSITION *q.e = append([x}, q.e)

MESSAGE dequeue(q: queue{t})
% Remove and return the front element of the queue.

WHEN not ~mpty(q)
REPLY(~t) .

WHERE q.e = append(*q.e, [x])
TRANSITION FOR SOME (y: t :: q.e = append(*q.e, [y]))

OTHERWISE REPLY EXCEPTION queue_ underflow

MESSAGE not empty(q: queue{t})
% True if q ; not empty.

REPLY (b: boolean)
WHERE b <=> (q.e -= [1)

END

In mutable types the instances of the type have internal states, and operations are provided for
changing the internal states of the. instances. TRANSITION clauses are allowed in types as well as
machines. A type is mutable if and only if it has a non-trivial TRANSITION clause (i.e. a TRAN
SITION that implies *x - = x for some component x). Mutating operations, such as enqueue in the
example above, are described using TRANSITION clauses.

7

The distinction between mutable a.nd immutable data. types is subtle and is commonly
misunderstood. The state changes due to the mutating operations of a mutable data type are asso
ciated with the data values rather than with program variables. H several variables share the same
mutable value and a mutating operation is applied, then the change is visible in all of the variables
sharing the mutable value. Correctly programming with mutable data types is difficult, so that
mutable data types should be used only if required to faithfully model the behavior of a system
containing objects whose properties change with time or to meet tight performa~ce constraints.

Mutating operations are usually implemented as procedures with read-only parameters,
because they change the properties of existing objects, rather than creating new data objects.
Since a level of indirection is necessary to properly implement mutable data values in shared con
texts, a mutable val~e is usually implemented as a pointer that directly represents the identity of
the object and is not changed by mutating operations. The properties of such an object are
represented only indirectly. Procedures with update parameters (e.g. in out parameters in Ada)
a.re usually not mutating operations, unless the mutating operation also creates and returns a new
object. Such procedures are usually used to implement operations of immutable types, under the
restriction that the new output object must be delivered in the same variable as the input object
(19 J. Space efficiency is the usual justification for such restrictions.

The limited private types of Ada are also not usually used in implementing mutable abstract
data types. Such programs are usually implementations of immutable types that use mutable con
crete representations, for which sharing between variables cannot be allowed without causing
errors. In such cases aliasing due to procedure calls must be avoided in addition to the assignment
opera.tors explicitly prohibited by the limited private declaration.

3.4. Iterators

An iterator is a module that generates a sequence of values one at a time. An example of a
specification for an iterator is shown below.

ITERATOR primes

MESSAGE {limit: integer)
YIELD (s: sequence{integer})
WHERE increasing order(s),

FOR ALL (i: inte~r :: i IN s <=> 1 <= i <= limit & prirne(i))

QONCEPT increasing order(s: sequence{integer})
VALUE (b: boolean)-
WHERE b <=> FOR ALL (i j: integer SUCH THAT 1 <= i < j <= length(s) :: s(ij < s(j])

CONCEPT prime(i: integer)
VALUE (b: boolean)
WHERE b <=> i > 1 & FOR ALL (k: integer SUCH THAT 1 < k < i :: i mod k > 0)

END

The YIELD keyword means the same thing as a REPLY except that the result is a. sequence whose
elements are delivered one at a time rather than all at once. This means that the elements will be
generated one at a. time, and processed incrementally, rather than being generated all at once and
returned in a single data structure containing all of the elements, as would be the case for a
REPLY of type sequence. In a program a.n iterator is used to control a data driven loop. Iterators
are control abstractions, because they hide the details of the control sequence needed to generate
the YIELDed values, and specify only the content of the sequence and the order in which the ele
ments are to be generated.

Any message with a YIELD is an iterator, so that iterators can be defined as operations of an
abstract data type or a machine. This is an important application of iterators, because it is

8

otherwise difficult to scan all of the elements of an abstract collection without exposing the data
structure used to implement the collection.

Iterators are usually defined as black boxes at the architectural design level, and are usually
called in the algorithms implementing higher level modules in terms of lower level modules, which
are defined during the module design stage. An example of a module design for a function factors
using the primes iterator of the previous example is shown below.

function factors(i: integer)
s: set{integer} := { }

foreach p in primes(i) do
if i mod p = 0 thens := union(s, {p}) fi

od
return (s)

end

In a program, an iterator is always used to drive a foreach loop. The body of such a loop is exe
cuted once for each element of the sequence generated by the iterator. The next element generated
by the iterator is always bound to the loop control variable (p in the example above). The loop
stops when· the iterator runs out of values, if it ever does.

Iterators can also be used in specifications for other modules. In such a context, the iterator
call is treated as if it were a function returning a sequence, and predicates are used to describe the
relation between the sequence and something else. An example of such a definition is shown below.

CONCEPT big prime candidate(n: integer)
VALUE (x: integer) -
WHERE FOR ALL (k: integer SUCH THAT k in primes(n) :: x mod k = k - 1)

Note that this is a specification rather than a program, and that the sequence has been used to
specify the range of a bound variable in a quantifier rather than to control· a loop.

4. Features for Specifying Large Systems

The Spec language contains a number of features that are needed mostly for specifying large
systems. Some of these features include paramet~rized modules, defined concepts, and an inheri
tance mechanism.

4.1. Paramet.erized Modules

A parametrized module specifies a family of modules rather than an individual module. A
parametrized module looks like an ordinary module definition except that there can be parameters
after the module name, with an optional WHERE clause restricting the values of the parameters.
The specifications for square _root and queue given in the previous section are examples of
parametrized modules. Such a definition defines one module for each legal set of values for the
parameters of the module. The parameters can range over either data values or modules (func
tions, types, machines, or iterators). Actual parameters that are- functions and types can be· con
cepts as well as modules.

Parametrized modules can be implemented in Ada as generic packages. Parametrized
modules can be implemented in other languages by using a preprocessor to substitute actual
parameter values for the formal parameters of the module. This can be done by means of a macro
processor (such as m4 on unix) or by means of a script for an editor (such as sed on unix).

4.2. Concepts

A concept in the Spec language is a constant symbol, predicate symbol, or function symbol
that can be used in constructing the logical assertions defining the behavior of modules. Concepts
can be viewed as abbreviations or macros, with recursive definitions allowed. Concepts without

9

formal arguments are interpreted as constants. A constant can be either a symbolic name for a
data value or a symbolic name for a data type. Concepts with formal arguments are interpreted as
predicate symbols if they have one VALUE and its type is boolean, and as function symbols other
wise.

Every concept is attached to some module, and is local to that module unless it is exported
or inherited. Only concepts can be exported. H a. concept is exported, then it can be explicitly
imported by other modules and used in their definitions. The export/import mechanism is used to
record logical dependencies between modules, so that mechanical aid can be provided for tracing
the impact of a proposed change to a definition.

A facility for introducing named concepts with explicit definitions and interfaces is important
for organizing and simplifying descriptions of complex software systems. It is not a good idea to
express a complicated constraint as a single very long expression in predicate logic, just a.s it is not
a good idea to implement a large system as a single monolithic module: the result is too difficult
for people to understand. Concepts have the same purpose in a specification language that subpro
grams do in a programming language, namely to p~ovide a mechanism for orderly decomposition.

Concepts can also be used to mix formal and informal specifications, by a formal definition of
a precondition, postcondition, invariant, or transition in terms of some concepts, and then provid
ing informal definitions for the concepts. The formal definitions of the concepts can be filled in
later, when the design has stabilized, or can be left out entirely if the details are not critical. The
ability to mix formal and informal specifications in a disciplined manner can be very important in
practical projects with tight schedules.

Concepts represent the properties of the software that are needed to explain or describe the
intended behavior of the software system. Concepts are delivered to the customer in the manuals
explaining how the system is supposed to operate, where they may be explained less formally than
in the functional specifications and architectural design. Concepts. do not normally represent. com
ponents of the code to be delivered, although it may be useful to implement them for testing pur
poses.

A function should be defined as a module of type FUNCTION if it is part of the model of the
software system, and it should be defined as a concept that is part of a module if the function is
needed to specify the behavior of the module, but is not part of the model of the system at the
current level of description. H a function is needed to specify the behavior of a module at a high
level of the architectural design, and is also one of the components used to realize that module at a
lower level, then it should be defined as a concept attached to the module at the higher level and
exported. At the lower level it should be specified as a FUNCTION module, which imports the
concept from the higher level module and has a trivial definition in terms of the imp~rted conc~pt.

4.3. Views and Inheritance

The Spec language has an inheritance mechanism which can be used for specifying con
strain ts common to the interfaces of many modules and for view integration. Specifying con
straints common to many interfaces is essential for achieving interface consistency in very large
systems. The interface of a system to each class of users can be a separate view of the , system,
perhaps specified by different designers. A total picture of the system is formed by expan·ding the
definition of a module that inherits all of the individual views. The inheritance mechanism and
the rules for combining different versions of messages and concepts inherited from multiple parents
are described in more detail in [3].

5. Conclusions

Spec is a specification language with a broad range of applications. The language is pri
marily intended for recording black box interface specifications in the early stages of design. The
language has a precise semantics and a simple underlying model. Experience has shown that it is
sufficiently powerful to allow the specification of many kinds of software systems, and sufficiently

10

flexible to allow software designers to express their thoughts without forcing them into a restrictive
framework. The language is sufficiently formal to support mech·anical processing. Some tools for
computer-aided design of software that are currently under investigation are syntax-directed edi
tors, consistency checkers, design completion tools, test case generators, and prototype generators.

1. V. Berzins and M. Gray, "Analysis and Design in MSG.84: Formalizing Functional
Specifications", IEEE Trans. on Software Eng. SE-11, B (Aug. 1985).

2. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software Development ", Comm.
of the ACM 29, 5 (May 1986), 402-415.

3. V. Berzins and Luqi, "The Semantics of Inheritance in Spec", aubmitted to the ACM
Sympoaium on Principle, of Programming Language,, 1988.

4. "Ada Programming Language", American National Standards Institute/MIL-STD-1815A,
DoD, 1983.

5. J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright, "Abstract Data Types as
Initial Algebras and the Correctness of Data Representations", in Proc. Con/. on Computer
Graphics, Pattern Re.cognition, and Data Structu~es, 1975, 89-93.

6. A. Goldberg and D. Robinson, Smalltalk-BO: The· Language and its Implementation, Addison
Wesley, Reading, MA, 1983.

7. J. V. Guttag, E. Horowitz and D. R. Musser, "Abstract Data Types and Software
Validation", Comm. of the ACM 21, 12 (1978).

8. M. Herlihy and B. H. Liskov, "A Value Transmission Method for Abstract Data Types",
Trana. Prog. Lang and Systems 4, 4 (Oct. 1982), 527-551.

9. C. E. Hewitt and H. Baker, "Actors and Continuous Functionals", in Formal Description of
Programming Concepts, North-Holland, New York, 1978, 367-387.

10. C. A. R. Hoare, "Proof of Correctness of Data Representations", Acta. Informatica 1, 4
(1972), 271-281.

11. B. Liskov and S. Zilles, "Programming with Abstract Data Types", Proc. of the ACM
SIGPLAN Notices Conference on Very High Level Languages 9, 4 (Apr. 1974), 50-59.

12. B. H. Liskov, A. Snyder, R. Atkinson and J. C. Schaffert, "Abstraction Mechanisms in
CLU", Comm. of the ACM 20, 8 (Aug. 1977), 564-576.

13·_ B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. Schaffert and R. Scheifl.er, CLU Reference
Manual, Springer Verlag, 1981.

14. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", t~ appear
in IEEE TSE, 1987.

15. R. Nakajima, "IOTA", IEEE Trans. on Software Eng., Feb. 1985.

16. D. L. Parnas, "A Technique for Software Module Specification with Examples", Comm. of
the ACM 15, 5 (May 1972), 330-336.

17. M. Shaw, W. A. Wulf and R. L. London, "Abstraction and Verification in ALPHARD:
Defining and Specifying Iteration and Generators", Comm. of the ACM 20, 8 (Aug. 1977),
553-564.

• 18. M. Shaw, Alphard: Form and Content, Springer Verlag, 1981.

19. D. M. Volpano and R. B. Kieburtz, "Software Templates", CS/E 85-011, Department of
Computer Science and Engineering, Oregon Graduate Center, 1985.

20. W. A. Wulf, R. L. London and M. Shaw, "An Introduction to the Construction and
Verification of Alphard Programs", IEEE Trans. on Software Eng. SE-2, 4 (Dec. 1976),
253-265.

11

21. A. Yonezawa,, "Specification and Verification Techniques for Parallel Programs Based on
Message Passing Semantics", Ph.D. Thesis, MIT, 1977.

12

0

Initial Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Cent~r for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

V aldis Berzins
Code 52Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

13

2

2

1

1

1

100

•

. '

' '

