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Specification Languages in Computer Aided Software Engineering

Lugi
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

One of the most important goals in CASE is to automate the design effort at the early phases of
software development. The only way to achieve a high degree of automation is to create mechanically pro-
cessable documents at the specification level. Thus formal specification languages are the basis of CASE.

This paper examines a number of specification languages, including MSG(MeSsaGe),
PSDL(Prototype System Description Language), and Spec(Specification Language). It describes the gen-
eral principles, language features and basic structures for each of them. The purposes and benefits of using
a formal specification language are discussed. The differences among these languages and the areas where
each of them apply are explained to help designers choose the right specification language and CASE tools
for their applications.

1. Introduction

Requirements analysis, functional specification and architectural design are very important early
phases in the software design life cycle. In these phases, the user and designer agree on the requirements
for the intended system, its external interfaces and its overall structure. The effort in software system
design and implementation is completely dependent on the decisions made and conceptual foundations
established at these early phases.

The languages used in the new CASE paradigms differ from the languages used in traditional
software development because of the need for supporting a higher level of automation at the early stages.
The traditional software life cycle consists of a series of phases sometimes called requirements analysis,
functional specification, architectural design, module design, implementation, testing, and evolution. The
result of each phase is a document serving as the starting point for the next phase, or an error report requir-
ing reconsideration of the earlier phases.

In traditional software development environments CASE is applied only in the module design and
programming phases. Automation is mostly based on programming languages. The tools in such environ-

ments include compilers, static analyzers, debuggers, and execution profilers. There are many existing pro-



gramming languages available for describing algorithms or writing programs. Traditionally the phases
before implementation have been carried out largely by manual processes, and the resulting documents
have been expressed in informal notations. The designer has limited choices among existing tools and
methods, especially with respect to formal specification languages for aiding the process of firming up
requirements and specifying the internal and external interfaces for the designed system.

CASE is a response to problems with traditional development methods. The problems are caused
largely by labor intensive tasks at the early stages of development. There are several feasible ways to
approach the problem. One approach involves work on executable specification languages and formal
verification. A CASE environment with knowledge-based assistants for each phase of development start-
ing with requirements analysis is an example of this approach. The computer-aided aspects of the process
include completeness and consistency checking, displaying descriptions of the system from various
viewpoints, concurrency and configuration control for the design data, and information retrieval functions.
Another CASE approach introduces the prototyping software life cycle [18]. In this approach, the goals
and required behavior of the intended system are negotiated in the context of a computer-aided analysis of

the customer’s problem, coupled with demonstrations of prototypes.

Formal specification languages are the basis of CASE. The only way to automate the earlier phases
of the sofiware development is to create mechanically processable documents at these phases. The reliabil-
ity and productivity of the process are determined by the specification language used. A good specification
language will have maximum expressive capability and a complete formalism for supporting mechanical
processing. The systematic use of the formal specification language Spec (see section 3) in the early stages
integrated with the use of Ada in the later stages is described with detailed examples in [4].

A formal language is a notation with a clearly defined syntax and semantics. Formal languages are
critical components of a CASE environment because they are needed to achieve significant levels of
computer-aided design with currently feasible technologies. Automated tools are capable of handling only
formally defined aspects of notations. The tools applicable to informal notations usually treat them as unin-
terpreted text strings, which limits the tools to bookkeeping functions such as version control. Notations
with a formally defined syntax but an informal semantics can support tools sensitive to the structure of the

syntax, such as pretty printers and syntax-directed editors. If both the syntax and semantics of a language



have been fixed and clearly defined, it becomes possible to create automated tools for analysis, transforma-

tion, or execution of the aspects of the software system captured by the language and its conceptual model.

Formal languages are therefore key components in a CASE environment. A good CASE language
integrates the functions of a specification language, a design language, and a prototyping language [5].
Such a language can serve as the basis for integrating the tools in a CASE development environment. The
CASE tools in such an environment depend on each other, and must be integrated together for effective-
ness. Such integration depends both on formal languages and emerging technologies for managing special
purpose databases, e.g. design databases [22], software bases [14], and engineering databases [10-12, 18].
The formal languages in the environment should support specification, design, prototyping, and program-
ming.

The purpose of a specification language is to define an interface. A specification is a black-box
description of the behavior of a software system or one of its components. A black-box description
explains the behavior of a software component in terms of the data that crosses the boundary of the box,
without mentioning the mechanism inside the box. A specification language should allow simple abstract

descriptions of complex behaviors that can be easily understood by people and mechanically analyzed.

The purpose of a design language is to define the structure of a system. A design is a glass-box
description of a software system or component. A glass-box description gives the decomposition of a com-
ponent into lower level components and defines their interconnections in terms of both data and control. A
design language should allow simple abstract descriptions of system structure that can be easily understood

by people and mechanically analyzed.

The difference between specification and design languages is the difference between interface and
mechanism: a specification says what is to be done, and a design says how to do it. An important purpose
of specification and design languages is to serve as a precise medium of communication between the
members of a development team working on a large system. The evaluation criterion for both specification
and design languages is the ability to support simple, concise, and humanly undesstandable descriptions of
complex behavior. It is useful for specification and design languages to be executable, but simplicity of
expression takes precedence when the two considerations conflict. It is important to be able to determine

the properties of a specification and to certify that a design realizes a specification. Execution can help



attain these goals, but it is not the only way to do so, and it is not necessarily the most effective way.

The purpose of a prototyping language is to define an executable model of a system, using both
black-box and glass-box descriptions. Some meta-programming and functional programming languages
have similar properties. However, a prototyping language has no obligation to give detailed algorithms for
all components of the system as long as it is descriptive and executable. Prototyping languages and pro-
gramming languages have different evaluation criteria: a prototyping language is optimized to allow an
analyst to create and modify a working system as quickly as possible, while a programming language is
optimized to allow a programmer to produce a time and space efficient implementation. A prototyping
language supports simple and abstract system descriptions, locality of information, reuse, and adaptability
at the expense of execution efficiency. A prototyping language should bave facilities for recording

specification and design information, subject to the constraint that the final product must be executable.

Proiotyping languages are used in requirements analysis for the purpose of requirements validation
via early demonstrations to the customer. They are also useful for evaluating competing design alterna-
tives, validating system structures, and establishing feasibility. Prototypes can be used to demonstrate the
feasibility of real-time constraints and to record and test interfaces and interconnections. Specification
languages are used for recording external interfaces in the functional specification stage and for recording
intemal interfaces during architectural design at the highest levels of abstraction. They are also used in
verifying the comrectness and completeness of a design or implementation. Design languages are used for

recording conventions and interconnections during architectural design and module design.

This paper examines a number of specification languages, including MSG (MeSsaGe) [1, 2], PSDL
(Prototype System Description Language) [13,17], Spec (Specification Language) [4]. It describes the
general principles, language features and basic structures for each of them. Through the discussion of these
languages, the purpose and benefits of using a formal specification language will be illustrated. The differ-
ences among these languages and the problems and areas where each of them should apply are explained to
help designers choose the right specification language for their own problems and their application area in

the new paradigm of computer aided software engineering.



2, Specification Language MSG

A precisely defined specification language such as MSG is very useful for functional specifications,
because the language determines what can be said. Early experience with MSG in the research on software
development tools [1] as well as use by student teams in a software engineering course [2] indicates that
the formal and precise nature of the notation is an aid rather than a barrier to human designers, once the
underlying concepts are mastered. A mathematical semantics for the language is essential in order to sup-

port computer aided design at the early stages of development.

2.1. General Principles of the Language
The design goals for MSG are the following.
(1) The notation must have a precise and unambiguous semantics.
(2) The notation must be based on a clean and coherent model of computation.
(3) The notation must be sufficiently powerful to express all relevant aspects of system behavior.

(4) The notation must support a convenient set of abstractions for building models of software systems.
Abstractions are vital for suppressing detail without sacrificing precision. A well chosen set of

building blocks can considerably ease the burden of the analyst.

(5) The notation must not be redundant, to avoid update inconsistencies.

(6) The notation must be modular and support effective searching.

(7) The notation must support partial descriptions, so that it may aid in developing a model and com-
pleteness checking.

(8) The notation must be easy to understand and modify. Small conceptual changes should correspond
to small changes in the text.

(9) The notation must be relatively easy to learn. Since it will be used by professionals, some special-
ized training can be required.

(10) The notation must apply to a broad range of applications, so that many different notations are not

needed.



(11) The notation must apply to a large part of the life cycle, so that translation from one form to
another is minimized. A closely related set of notations can span the functional specification and
architectural design stages.

(12) The notation must support mechanical error checking and view extraction. A realistic system can-
not be accurately and efficiently specified without a set of computer aided software tools because

the specifications get too large for reliable manual processing.

MSG has a precise semantics and a formal definition based on the actor model. Its notation is
sufficiently powerful to conveniently express all functional aspects of system behavior and provides a use-
ful set of built-in abstractions and facilities. Modular descriptions.are supported, and components in a
specification have a fixed order, to make it easier to find things. Concepts defined in other actors must be
explicitly imported, providing cross references and disambiguating nonlocal names. Its notation has been
expressly designed to allow message types to be defined independently of assertions describing finer
details, and to allow the existence of actors or messages to be recorded even if details are not yet available,
so that partial descriptions are supported. Such a notation supports mechanical processing at early stages

of design, when the specifications are not yet complete.

2.2. Special Features and Applications of the Language

A specification language should support the kinds of abstractions commonly used in describing
software systems. The abstractions needed for functional specification are transforms, state machines, data
types and iterators. Abstractions in MSG are modeled as actors in the underlying actor model of the
language.

MSG is based on the actor model of computation, where actors are independent active elements that
interact solely by sending each other messages. All communication between MSG actors modules is done
by SENDing messages (also actors) which will be RECEIVEd by some other module in an event. For
instance if a message is received that requests an array is to be sorted on some key, the section of an MSG
specification that responds to that message will describe the properties of the output array (i.e. keys in

ascending order), and not some sorting algorithm like "quicksort".



MSG specifications provide an outline for programmers to follow, and via a series of assertions
relates expected output (post conditions attached to SEND, REPLY, UPDATE) for each certain input
(preconditions attached to RECEIVE) (i.e. expected output from a procedure call with inputs meeting cer-
tain criteria). MSG doesna’t supply the algorithms to deliver this output, it just states what conditions the
output must meet.

The decomposition of concepts is supported by defined predicates and functions, which can be used
in the assertions describing the behavior of an actor. The concepts introduced by definitions are needed to
recognize when a proposed output value i correct, but they are generally not needed to construct those
outputs. Consequently the concepts introduced in define sections of MSG specifications will probably
appear in the user’s manual of the proposed system, but probably will not be implemented as running code.
Concepts introduced by define can depend on other defined concepts, leading to a concept hierarchy
orthogonal to the usual action hierarchy.

By the time a MSG specification is finished, an experienced programmer should be able to code any
module of the system, using an algorithm of his choice. Previous experience with novices indicates that
programmers can learn to read the notation in a few weeks, and can leamn to write it in ten weeks.

A number of the tools associated with MSG were developed and experimentally used in both teach-
ing Software Engineering courses and many research projects. For example, an MSG parser/error checker
and a database were used to support a number of meaningful consistency checks. The database was linked
to the language by means of a bi-directional translator. A syntax-directed editor for MSG and a graphics
editor for the associated diagrams were developed.

MSG is used in functional specifications and in architectural design. MSG can also be used in the
subset of requirements definition involving defining interfaces to external systems. Such notation will sup-
port mechanical processing.

In summary, specification language MSG is a formal tool allowing system designers to abstract
specifications, and to communicate design decisions to each other without getting lost in implementation
details. In other words, actors are the basic building blocks in MSG for constructing software
specifications. A functional specification is a conceptual model of the proposed software system, which
presents only those aspects of the system relevant to the users of the system. These building blocks are



sufficient to describe most current software systems that do not involve timing constraints.

2.3. Basic Structures of the Language
Any specification of a software system will consist of a number of modules (or building blocks).
Each MSG module defines an actor. MSG offers four module types: MACHINE, TYPE, TRANSFORM,

and ITERATOR.

Both machines and types have a MODEL as part of their MSG specification. The operations of a
machine are described in terms of a conceptual model of its internal state, while the operations of a type are
described in terms of a conceptual model of its instances. A conceptual model is a representation of the
information content of an object in terms of the built-in types of MSG and the abstract data types defined
by the designer.

2.3.1. State Machines

A state machine is an actor that exhibits intemal memory, in the sense that the events activated by a
message depend on earlier messages. Many software systems contain databases or provide commands that
allow users to modify internal states in ways that affect the behavior of the system. Examples are inven-
tory control systems, operating systems, and flight simulators. Such systems are naturally modeled as state
machines, where user commands or transactions correspond to messages received by the state machine,
and the answers produced by the system correspond to the reply messages sent by the state machine. The
key word MACHINE is used for state machines in MSG.

An MSG MACHINE is a single instance entity with intemal memory, which is abstracted by the
MACHINE’s MODEL. The MODEL of a MACHINE describes the state of the system or sub-system the
MACHINE represents. The basic format of an MSG MACHINE is provided by the following syntax:

MACHINE name ! Binds a name to a machine for reference
model ! The conceptual model of the machine
init ! An assertion describing the initial

| state of the machine, optional
import 1 Allows this machine to use definitions



! from other actors, optional

export ! Allows other modules to use any definitions
1 explicitly listed, optional

define ! Macros for commonly repeated definitions,
! and for expostation, optional

BEHAVIOR ! keyword for beginning of the operations

action | The operations

END name

2.3.2. Transforms

A transform is an actor that computes a mathematical function, in the sense that the events activated
byamwgagedependonlyonmntmesuge,andnotonlheconuentsofeaﬂiumessages. A transform has
no memory or internal state. There may be more than one response to a single request, in which case the
responses are not causally ordered, and the potential for a parallel implementation exists. Responses can
either be sent to the actor that originated the request, as happens when a subroutine returns a value, or they
can be sent to other actors, as happens in a system with a pipeline structure.

MSG TRANSFORM's are like mathematical functions. They have no internal memory which
means the output is only a function of the input parameters. The REPLY depends only on the most recently
received message. Examples include: square root, sort, compilers, etc. The basic format of an MSG
TRANSPORM is defined by the following syntax.

TRANSFORM name

import ! optional
export ! optional

define ! optional

BEHAVIOR ! see above machine and
action ! type for descriptions

END name



23.3. Types

MSG TYPE modules are used to describe abstract data types. An abstract data type may have
several instances, unlike the machine module which has a single instance. For example, an operating sys-
tem (single instance, machine) can keep track of several processes (multiple instance, type). An abstract
data type is one whose instances can be changed, or accessed in any way only via a set of operations asso-
ciated with that type. There may be many instances of an MSG TYPE, just as many variables of some user
defined type may be declared in Pascal. A common example is a stack with the operations: create,
is_empty, push, top, and pop. In this example a suitable conceptual model is a sequence containing the ele-
ments in the order they were pushed onto the stack. In general the MODEL of a type represents an
instance of the abstract type. Calls to the operations for an MSG TYPE are of the format:

<TYPE name>$<operation name>(<parameters>)

Such calls may be used in the assertions describing other operations. It is important to note that the asser-
tions only state how to recognize correct outputs and do not state that the implementation will necessarily

have such a call. The basic format of a MSG TYPE is given by the following syntax:

TYPE name | Bind name to actor
model ! Conceptual model of the type
import ! optional
export ! optional
define ! optional
BEHAVIOR ! see model above
action
END name
2.3.4. Iterator

MSG ITERATORS are control abstractions. They YIELD all elements in a particular instantiation of
an abstract data TYPE one at a time, to be used by body of a foreach loop. Iterators are defined in an archi-

tectural design, and called only in the algorithms in module designs. For example an ITERATOR called

10



Depth_First on a binary tree would retum each node of the tree in depth first order. This could be used to
find the sum of all the elements of an integer tree, or preform a depth first search to see if an element is in
the tree. Such an iterator is defined in the following example.

TYPE tree
MODEL oneof{leaf: int, node: tuple: {left right: tree)
BEHAVIOR
CASES
RECEIVE DEPTH_FIRST: tuple {x: tree}
CASES
WHERE x = (leaf: a}
YIELD : sequence int}
WHERE YIELD = [a]
OR ELSE
WHERE x = {node: n}
YIELD : sequence(int}
WHERE YIELD = [ltree$depth_first(n.left), ltree$depth_first(n.right)]
END CASES
OR ELSE
RECEIVE ... % other tree operations such as insert and delete
END CASES

END tree

3. Specification Language Spec

Spec [4] is a language for writing black-box specifications of interfaces defined in the functional
specification and architectural design of software systems. The purpose of the language is to simplify the
design and description of large systems by allowing the behavior of an interface to be described without
introducing details of the internal structure. This is important because the structural details of most large
systems are too complex to be readily understood. Spec provides abstraction mechanisms for simplifying

11



the description of behavior by hiding structural details.

The critical early stages of software development are dominated by the tasks of building tractable
conceptual models of the proposed software and defining its interfaces. These conceptual models consist
of abstractions chosen to reduce the complexity of the system. Black-box specifications are essential for
realizing the benefits of abstractions in the software development process [2]. An abstraction is useful for
controlling complexity only if it has a black-box specification simpler than its implementation. The
specification must enable the use of the abstraction without any additional information. A precise notation
for black-box specifications is needed for constructing and communicating conceptual models and for sup-
porting computer-aided design. The Spec language provides one such notation.

3.1. General Principles of the Language

Spec is a newly designed specification language based on previous experiences [4]. It closely follows
the general design principles of specification languages described with details in [S].

The purpose of a specification language is to describe the interfaces of a software system or com-
ponent. Its concepts and notations should allow the analyst or designer to formulate an interface for a sys-
tem or componemnt. It should help the analyst to construct a simpler conceptual model for the intended sys-

tem and to establish and maintain its conceptual integrity.

A formal specification language allows the proposed interface to be analyzed with respect to many
different kinds of properties. Notations are important for inventing large systems because people are lim-
ited in the number of items they can consider at the same time. At a structural level, the language can be
used to help the analyst organize her thoughts and to determine which pieces of information are still miss-
ing. At a semantic level, the language can be used to determine many properties of the description and the
behavior of the proposed interface. Examples of such properties include type consistency, correctness of a
particular response for a particular input, the set of correct responses for a particular input, freedom from
deadlock for multistep protocols, coverage of all possible input values, satisfiability, uniqueness of outputs,
and consistency with a proposed design. None of these semantic properties can be determined without a

precise specification.



Spec was designed to have the following general properties.

Precision
Each statement in the language should have a single well defined meaning.

Abstractness
It should be possible to completely define interface behavior without considering mechanisms and
low level details.

Expressiveness
The language should allow brief descriptions of common system behaviors which are understandable
as they stand. Abbreviations that must be expanded before they can be understood are not expressive
in this sense. In addition to existing, the brief descriptions must be constructible by people in a
natural way.

Simplicity
The rules describing the meaning of the language should be simple, without exceptions or interac-
tions between multiple components. This is important both for ease of leaming and ease of automa-
tion. It is also important to avoid misunderstandings, because situations where extensive reasoning is
required to determine the meaning of a statement provide opportunities for people to make errors of
interpretation.

Locality
The language should support localized description units with limited interactions and the dependen-
cies between the units should be mechanically detectable. This reduces the amount of information
needed to understand or modify a given aspect of a specification to a humanly manageable level, and
supports mechanical aid in assembling and displaying the information needed for a single
specification step.

Tractability
It should be possible to implement a wide variety of automated aids for analyzing, transforming, and
implementing subsets of the specification language. While the subsets of the language that can be
handled by the tools should be as large as possible, it may not be possible to cover the eatire



language without compromising the abstractness and expressiveness of the language.

Adaptability
The language should support the description of general purpose components and the adaptation of
those componenis to particular situations. Generic modules and inheritance mechanisms are two
well known ways to support adaptability.

Spec is based on the event model of computation, and uses predicate logic for the precise definition
of the desired behavior of modules. The most important ideas of this language are modules, messages,
events, parametrization, and defined concepts. Spec also has a number of features that become important
only for specifying very large systems, such as import/export controls for defined concepts, and view and
inheritance mechanisms.

The Spec language uses the event model to define the behavior of black box software modules. The
event model has been influenced by the actor model [8). The main differences from the actor model are the
treatment of time and temporal events, and the treatment of multi-event transactions [1]. In the event
model, computations are described in terms of modules, messages, and events. A module is a black box
that interacts with other modules only by sending and receiving messages. A message is a data packet that
is sent from one module to another. An event occurs when a message is received by a module at a particu-
lar instant of time.

Modules can be used to model external systems such as users and peripheral hardware devices, as
well as software components. Modules are active black boxes, which have no visible intemal structure.
The behavior of a module is specified by describing its interface. The interface of a module consists of the
set of messages it accepts, along with its response to each kind of message it accepts. Bach response con-
sists of the messages sent out by the module in response to the most recent incoming message and the desti-

nations of those messages.

Any module accepts messages one at a time, in a well-defined order that can be observed as a com-
putation proceeds. Message transmission is assumed to be reliable, which means every message sent even-
tually arrives at its destination. While restrictions on message delay and ordering can be added for particu-
lar applications, these are not inherent in the event model. Unless explicitly stated otherwise, messages can
have arbitrarily long and unpredictable transmission delays. The order in which messages arrive is not

14



normally under the control of the designer. The order in which a module accepts messages can be con-
strained by means of atomic transactions.

Events can also be triggered at absolute times. Such events are called temporal events. Formally a
temporal event occurs when a module sends a message to itself at a time determined by its local clock.
Temporal events are the means by which modules can initiate actions that are not direct responses to exter-
nal stimuli.

3.2. Special Features and Applications of the Language

The Spec language contains a number of features that are needed mostly for specifying large sys-
tems. Some of these features include parameterized modules, defined concepts, and an inheritance

The Spec language has an inheritance mechanism which can be used for specifying constraints com-
mon to the interfaces of many modules and for view integration. Specifying constraints common to many
interfaces is essential for achieving interface consistency in very large systems. For example, the standard
properties and operations associated with equality, partial orderings, and total orderings are defined by
components in the standard type library. These properties and operations can be inherited by any user-
defined type with an "=" or "<" operation, providing an easy way to ensure these operations have their stan-
dard meanings. The interface of a system to each class of users can be a separate view of the system, and
different interfaces can be specified by different designers or analysts. A total picture of the system is
formed by expanding the definition of a module that inherits all of the individual views. The inheritance
mechanism and the rules for combining different versions of messages and concepts inherited from multi-
ple parents are described in more detail in [3).

In Spec, atomic transactions are used to restrict the sequence of events in protocols involving chains
of events. Such restrictions are sometimes necessary to prevent interference between concurrent processes.
Once a module starts an atomic transaction, the order of events at the module is constrained by the transac-
tion until the transaction is completed.

Atomic transactions are defined in terms of sequencing (action ";" action), parallel combination

(action action ... action), choice ("IF" action "I" ... "I" action "FI"), and repetition ("DO" action "I" ... "I"
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action "OD"). Sequencing implies one instance of the the action on the left must occur before one instance
of the action on the right. Parallel combination implies one instance of each action listed must occur in
some unspecified order. A choice implies exactly one instance of the actions listed must occur. A repeti-
tion implies a sequence of zero or more instances of the actions listed may occur. The actions can be either
message names or transaction names. Message names preceded by "EXCEPTION" match only events with
the given name and the condition exception, while message names without "EXCEPTION" match only
events with the given name and the condition normal. The transaction names used in actions can have
mutually recursive definitions. if more than one atomic transaction is defined, then the first one listed con-
trols the module, and must contain direct or indirect references to the others. The set of legal event
sequences for a module forms a context-free language. The definition of a set of atomic transactions can
be represented as a recursive transition graph similar to the diagrams commonly used to define the syntax
of Pascal..

Spec is a specification language with a broad range of applications. The language is primarily
intended for recording black box interface specifications in the early stages of design. The language is
most useful in the functional specification and architectural design stages, in which interfaces are proposed
and specified. The language has a precise semantics and a simple underlying model. Experience has
shown that it is sufficiently powerful to allow the specification of many kinds of software systems, and
sufficiently flexible to allow software designers to express their thoughts without forcing them into a res-
trictive framework. The language is sufficiently formal to support mechanical processing. Some tools for
computer-aided design of software that are currently under investigation are syntax-directed editors, con-

sistency checkers, design completion tools, test case generators, and prototype generators.
3.3. Basic Structures of the Language

The basic module types in Spec are the following: FUNCTION, MACHINE, TYPE, DEFINITION,
and INSTANCE. Functions, machines, and types are similar to the transforms, machines, and types of
MSG. Iterators are replaced by GENERATE clauses in messages, which can appear in any of the first
three module types. Definition modules contain only concept definitions. Definition modules are used for
defining concepts that cannot be attributed to any single module and are used in many different modules of

a system. Instance modules are used for defining instances of generic components that need global names,
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such as replicated external systems interacting with a proposed software system.

An example of a specification for a generic square_root function is shown below.

FUNCTION square_root {precision: real)
WHERE precision > 0.0

MESSAGE (x: real)
WHEN x >= 0.0
REPLY (y: real)
WHERE y >= 0.0 & approximates(y * y, x)
OTHERWISE
REPLY EXCEPTION imaginary_square_root

CONCEPT approximates(rl 12: real)
VALUE (b: boolean)
WHERE b <=> abs((r1 - 12) / 12) <= precision
END

The example shows the definition of a response with two different cases. One of the cases produces a
normal response and the other produces an exception. The concept definition introduces and defines a
predicate symbol "approximates” that is used to define the properties of the normal response. An example

of a definition for a mutable type is shown below.

TYPE queue(t: type)
-- mutable version
MODEL (e: sequence)
-- The front of the queue is at the right end.
INVARIANT true

-- Any sequence is a valid model for a queue.

MESSAGE create
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-- A pewly created empty queue.
REPLY (q: queue(t))
WHERE q.e = [ ], new(q)

MESSAGE enqueue(x: t, q: queue{t})
— Add x to the back of the queue.

TRANSITION q.e = append([x], *q.e)

MESSAGE dequeue(q: queue(t})
-- Remove and return the front element of the queue.
WHEN not_empty(q)
REPLY (x:t)
WHERE *q.e = append(q.e, [x])
TRANSITION FOR SOME (y: t :: *q.e = append(q.e, [y]))
OTHERWISE REPLY EXCEPTION queue_underflow

MESSAGE not_cmpty(q: queue{t})
- True if q is not empty.
REPLY (b: boolean)
WHERE b <=>(q.e "=[])

END

In this example, the "create” operations creates a new instance of the queue type each time it is
called, which "enqueue” and "dequeue” change the states of previously existing instances. Expressions
preceded by a "*" refer to the previous state. An example of a module with timing constraints is given

below.

MACHINE ticket_system
STATE(outstanding: set{ticket_id})
INVARIANT true

INITIALLY outstanding = { }
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MESSAGE ticket(violator: person, ticket_id: integer)
SEND check_on_payment(violator: person, ticket_id: integer)
TO ticket_system
WHERE (30 DAYS) <= DELAY < (31 DAYS)
TRANSITION outstanding = *outstanding U {ticket_id}

MESSAGE payment(violator: person, ticket_id: integer)
TRANSITION outstanding = *outstanding - {ticket_id})

MESSAGE check_on_payment(violator: person, ticket_id: integer)
WHEN ticket_id IN outstanding
SEND letter(s: string) TO violator WHERE waming(s)
SEND check_on_payment(violator: person, ticket_id: integer)
TO ticket_system
WHERE (30 DAYS) <= DELAY < (31 DAYS)
OTHERWISE -- do nothing

CONCEPT waming(s: string) VALUE(b: boolean)
-- True if s is a letter requesting immediate payment of the fine.

END

This example illustrates explicitly specified delays for responses. The keyword "DELAY" refers to

the time interval between two events, the stimulus and the response. This interval includes both computa-

tion time and message transmission time. In this case, both an upper bound and a lower bound on the delay

are specified. Time units can range from nanoseconds to weeks.

4. Prototyping Language PSDL

The purpose of a prototyping language is to support rapid prototyping. Prototyping is a method for

constructing executable models of software systems rapidly. Such models are known as software proto-

types.
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Prototyping was distinguished from simulation to emphasize that it should be applied to the early
stages of software development and that its goal should be speedily accomplished by an environment con-
taining state of the art software tools. The goal of prototyping is to design, tailor, define, test, document
and implement a system (Fig. 1). The prototyping life cycle has two stages, prototyping and system gen-
eration. In the prototyping stage, a prototype version of the system is designed and repeatedly tested and
modified until the customer is satisfied with it. In the system generation stage, the prototype is used to
define and document the architecture of the intended system. The system is implemented by filling in miss-
ing details and reworking key modules as needed to achieve adequate performance. Prototyping is most
useful for systems that are difficult to built directly, quickly, and correctly, such as software systems with
hard real-time constraints and systems large enough to require multiple man-years of design effort.

The capability for rapid prototyping can best be realized in the context of a high level prototyping
language.” A prototyping language should have the properties of both a specification language and a design
language. The algorithmic level characterizing most current programming languages is not appropriate for
supporting rapid prototyping. A high level view can aid the prototype developer to cope with the complex-

ity of typical large software systems, or to support more effective computer-aided systems e.g. reasoning

Fig. 1
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from a design data base or retrieving reusable software components. A prototyping language containing
constructs for expressing descriptions of specifications and designs is crucial as well as an automated sup-
port environment. An example of such an environment and the associated prototyping methodology is

described in [18] and [13, 16] respectively.

4.1. General Principles of the Language

A language for supporting rapid prototyping has different requirements from a general purpose pro-
gramming language or a specification language. In addition to being executable, the language must support
the specification of requirements for the system and functional descriptions for the component modules.
Since rapid prototyping involves many design modifications, the language must make it easy for the system
designer to create a prototype with a high degree of module independence [23], and to preserve its good
modularity properties across many modifications. The prototyping language has to be sufficiently easy to
read to serve as design documentation, and also has to be formal enough for mechanical processing in the
rapid prototyping environment.

The design of a prototyping language should be motivated by the reasons mentioned above and by
the requirements listed below:

(1) A prototyping language should be executable, so that the customer can observe the operation of the
prototype.

(2) A prototyping language should be simple and easy to use. The language should be based on a sim-
ple computational model and should be integrated with a computer-aided prototyping method. The
language should support a good designer interface with graphical summary views.

(3) A prototyping language should support hierarchically structured prototypes, to simplify prototyping
of large and complex systems. The descriptions at all levels of a prototype should be uniform. The
underlying computational model should limit and expose interactions between modules to
encourage good decompositions. The language should harmoniously support data abstraction,
function abstraction, and control abstraction.

(4) A prototyping language should apply at both the specification and design levels to allow the

designer to concentrate on designing the prototype without the distraction of transforming one
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notation into another.

(5) A prototyping language should be suitable for specifying the retrieval of reusable modules from a

software base, to avoid creating multiple descriptions of each module.

(6) A prototyping language should support both formal and informal module specification methods, to

allow the designer to work in the style most appropriate to the problem.

(7) A prototyping language should contain a set of abstractions suitable for the problem:area for which

the prototyping language is designed, e.g. timing for real-time and embedded systems.

When looking for a language meeting such a set of requirements, the designer or analyst may find his
choices are limited. It is not hard to convince someone that high level abstractions and brief and powerful
language structures are needed to simplify the design at a conceptual level. Many requirements
specification and conceptual modeling languages are at a suitable high level, but unfortunately most of
them are not executable. Many of the existing programming languages are too inflexible and too difficult
to use. Many kinds of coupling problems between modules of a system are not preventable in a program-
ming language because conventional programming languages are required to execute efficiently on con-
ventional machines. Consequently a special purpose language for rapid prototyping is needed.

Many informal versions of data flow diagrams have been used extensively to model the data transfor-
mation aspects of software systems. Data flow diagrams are easy to read, revealing the internal structure of
a process and the potential parallelism inberent in a design, making dataflow attractive to designers. PSDL
is based on dataflow to make it easier for a prototyping environment to provide graphical capabilities for
displaying and updating the structure of the prototype. There are some dataflow based hardware design
models or programming languages available. These models and languages support execution, but are not
sufficient for specification, design and prototyping in a CASE environment, since the requirements are
more complex.

Good modularity and good control are needed to support the central issue of system decomposition
[21] in the design of any large system. Good modularity is a key factor for increasing productivity, since it
reduces the debugging effort for producing a correct executable system, and improves the understandabil-

ity, reliability, and maintainability of the developed system. A powerful set of control abstractions are
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needed for simple glass-box descriptions. These features are especially important in rapid prototyping.
Two well known system decomposition methods are based on data flow and control flow. The com-
ponents of a data flow decomposition are independent sequential processes that communicate via buffered
data streams, while the components of a control flow decomposition are procedures that are called by and
return to a main procedure with a single thread of control. Neither of these decomposition methods offers

both good modularity and good control.

PSDL is based on a unified datafiow and control method, which guarantees that the results of a com-
putation do not depend on undetermined properties of the schedulers. Dataflow is used to simplify the
interactions between modules, eliminating direct external references and communication via side effects.
Control constraints are combined with the dataflow model to achieve the best modularity with sufficient

control information.

4.2, Special Features and Applications of the Language

PSDL supports the prototyping of large systems with hard real-time constraints. The language is
based on a simple computational model that is close to the designer’s view of real-time systems. The
model integrates operator, data, and control abstractions and encourages hierarchical decompositions based
on both data flow and control flow.

The PSDL computational model contains operators that communicate via data streams. Each data
stream carries values of a fixed abstract data type. Each data stream can also contain values of the built-in
type "exception”. The operators may be either data driven or periodic. Periodic operators have tradition-
ally been the basis for most real-time system design, while the importance of data driven operators for

real-time systems is recognized [16]. Formally the computational model is an augmented graph
G=(V,E, T(v), C(v))

where V is the set of vertices, E is the set of edges, T(v) is the maximum execution time for each vertex v,
and C(v) is the set of control constraints for each vertex v. Each vertex is an operator and each edge is a

data stream. The first three components of the graph are called the enhanced data flow diagram.

An operator is either a function or a state machine. When an operator fires, it reads one data object

from each of its input streams, and writes at most one data object on each of its output streams. The output
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objects produced when a function fires depend only on the current set of input values. The output values
produced when a state machine fires depend only on the current set of input values and the ‘current values
of a finite number of intemal state variables. Operators of these two types are useful for prototyping real-

time systems.

Operators are either atomic or composite. Atomic operators cannot be decomposed in the PSDL
computational model. Composite operators have realizations as data and control flow networks of lower

level operators.

A data stream is a communication link connecting exactly two operators, a producer and a consu-
mer. Communication links with more than two ends are realized using copy and merge operators. Each

stream carries a sequence of data values.

There are two types of data streams - dataflow streams and sampled streams. A dataflow stream
guaranteeé that none of the data values lost or replicated, while a sampled stream guarantees the most

recently generated data value is always available.

Abstractions are an important means for controlling complexity [2], which is especially important in
rapid prototyping because a system must appear to be simple to be built or analyzed quickly. PSDL sup-
ports three kinds of abstractions: operator abstractions, data abstractions, and control abstractions. An
operator abstraction is either a functional abstraction or a state machine abstraction. Data abstractions
are especially important in prototyping because the behavior of the intended system is only partially real-
ized, capturing only those aspects important for the purposes of the prototype. The behavior of the proto-
type data is also a partial simulation of the data in the intended system, so that the data representations in
the prototype and the intended system are likely to be different. Data abstraction allows the data interfaces
to be described independently of the representation of the data, so that the interfaces for the operations on
the data can be the same in the prototype and in the intended system. Control abstractions are important
for simplifying the design of real-time systems, because much of the complexity of such systems lies in
their control and scheduling aspects. The control abstractions of PSDL are represented as enhanced data
flow diagrams augmented by a set of non procedural control constraints. Periodic execution is supported
explicitly since it is a common property of real-time systems. Conditional execution is supported by PSDL

triggering conditions and conditional outputs.



A set of special constructs in PSDL are designed to support high level real-time specifications, e.g.,
maximum execution time, data synchronization, minimum calling period, maximum response time,
periodic execution, timer control, etc.

Prototyping languages support executable specifications. There are two approaches to making a pro-
totyping language executable one based on meta-programming and the other on executable specifications
[5]. The prototyping language PSDL uses the first approach.

PSDL prototypes are executable if all required information is supplied, and the software base con-
tains implementations for all atomic operators and types. Ada is used for implementing both the PSDL
reusable components in the software base and the PSDL execution support environment [18]. The PSDL
execution support system [15] contains a static scheduler [9, 20], a translator [19], and a dynamic scheduler
[7]. The static scheduler produces a static schedule for the operators with real-time constraints. The trans-
lator augments the implementations of the atomic operators and types with code realizing the data streams
and activation conditions, resulting in an Ada program that can be compiled and executed. Execution is
under the control of the dynamic scheduler, which also schedules the operators without real-time con-

straints.

4.3. Basic Structures of the Language

There are two kinds of building blocks for constructing a PSDL prototype: OPERATOR and TYPE.

Basic structures for each of them are given below briefly:

OPERATOR name
SPECIFICATION GENERIC_PARAMETER
INPUT/OUTPUT
STATES
EXCEPTION
TIMING
REQUIREMENTS_TRACE
IMPLEMENTATION  REUSABLE_COMPONENT
ENHANCED_DATAFLOW_DIAGRAM
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STREAMS
CONTROL_CONSTRAINTS

TYPE name
SPECIFICATION OPERATORS_SPECIFICATION
IMPLEMENTATION OPERATORS_IMPLEMENTATION

The language uses enhanced datafiow mentioned in previous section as a basis combing control

structure. Control constraints and timing constraints are the fundamental means to aid the execution.

The control aspect of a PSDL operator is specified implicitly, via CONTROL CONSTRAINTS,
rather than giving an explicit control algorithm. There are several aspects to be specified: whether the
operator is PERIODIC or SPORADIC, the triggering condition, and output guards. The stream types for
the data streams in the enhanced data flow diagram are determined implicitly, based on the triggering con-
ditions.

PSDL supports both periodic and sporadic operators. Periodic operators are triggered by the
scheduler at approximately regular time intervals. The scheduler has some leeway: a periodic operator must
be scheduled to complete sometime between the beginning of each period and a deadline, which defaults to
the end of the period. Sporadic operators are triggered by the arrival of new data values, possibly at irregu-

lar time intervals.

There are two types of data triggers inside PSDL operators.

OPERATOR p TRIGGERED BY ALL x,y, z

OPERATOR q TRIGGERED BY SOME a, b

In the first example the operator p is ready to fire whenever new data values have arrived on all three of the
input arcs x, y, and z. This rule is a slightly generalized form of the natural dataflow firing rule [6}, since in
PSDL a proper subset of the input arcs can determine the triggering condition for an operator, without
requiring new data on all input arcs. This kind of data trigger can be used to ensure that the output of the
operator is always based on fresh data for all of the inputs in the list, and can be used to synchronize the
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processing of corresponding input values from several input streams.

In the second example, the operator q fires when any of the inputs a and b gets a new value. This
kind of activation condition guarantees that the output of operator q is based on the most recent values of
the critical inputs a and b mentioned in the activation condition for q. If q has some other input c, the out-
put of q can be based on old values of c, since q will not be triggered on a new value of c until after a new
value for a or b arrives. This kind of trigger can be used to keep software estimates of sensor data up to

date.

PSDL supports two kinds of conditionals: conditional execution of an operator and conditional
transmission of an output. These constructs handle the controlled input and output of an operator. PSDL
operators can have a TRIGGERING CONDITION in addition to or instead of a data trigger for condi-
tional execution. In general, the triggering condition acts as a guard for the operator. Two examples of
operators with triggering conditions are shown below.

OPERATOR r TRIGGERED BY SOME x, y
IF x: NORMAL AND y: critical
OPERATOR s TRIGGERED IF x: critical

The first example shows the control constraints of an operator with both a data trigger and a triggering con-
dition. The operator r fires only when one or both of the inputs x and y have fresh values, x is a normal
data value, and y is an exceptional data value with the exception name "critical”. This example illustrates
exception handling in PSDL.

The second example shows the control constraints of an operator s with a triggering condition but no
data trigger. In this example s must be a periodic operator with an input x since sporadic operators must
have data triggers, and triggering conditions can only depend on timers and locally available data. In this
case the value of x is tested periodically to see if it is a "critical" exception, and the operator s is fired if that

is the case. Both of these examples illustrate ways of using PSDL operators to serve as exception handlers.

An example of a control constraint specifying a conditional output is shown below.
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OPERATOR t OUTPUT zIF 1 <z AND z < max

The example shows an operator with an output guard, which depends on the input value max and the out-

put value z.

In general an output guard acts as if the corresponding unconditional output had been passed through

a conditionally executed filtering operator with the same predicate as a triggering condition.

The data trigger of an operator determines the stream types of its input streams by the following

rules.
(1)  If a stream is listed in an ALL data trigger, then it is a dataflow stream.
(2)  All streams not constrained by the first rule are sampled streams.

In the following example, the operator op has the input streams x, y, z and the output stream w.

X ----> 1 |
y ----> 1| op | ---->w
zZ ----> | |

Under the following control constraint

OPERATOR op TRIGGERED BY ALL x,y

x, y are dataflow streams while z is a sampled stream. Under a different control constraint

OPERATOR op TRIGGERED BY SOME x, y

X, y, z are all sampled streams. In either case, the stream type of w is not affected by the control constraint

associated with its producer operator op.



TIMING CONSTRAINTS are an essential part of specifying real-time systems. The most basic tim-
ing constraints are given in the specification part of a PSDL module, and consist of the MAXIMUM EXE-
CUTION TIME, the MAXIMUM RESPONSE TIME, and the MINIMUM CALLING PERIOD. The max-
imum execution time is an upper bound on the length of time between the instant when a module begins
execution and the instant when it completes. The maximum response time for a sporadic operator is an
upper bound on the time between the arrival of a new data value (or set of data values for operators with
the natural dataflow firing rule) and the time when the last value is put into the output streams of the opera-
tor in response to the arrival of the new data value. The minimum calling period is a constraint on the
environment of a sporadic operator, consisting of a lower bound on the time between the arrival of one set

of inputs and the arrival of the next set.

8. Conclusions

Spe'c has evolved from the specification language MSG [1] and a rapid prototyping language for the
design of large real-time systems [17], guided by extensive classroom experience in using formal
specifications in multi-person projects [2]. The most important advances over MSG are the integration of
time into the underlying model, the development of an inheritance mechanism [3], and improved locality of
information. Messages are treated as independent subunits of a specification, and control state considera-
tions are separated from the event-level interfaces of a module by means of explicit definitions for atomic

transactions.

As compiler and hardware technology improves, the distinctions between prototyping languages,
specification languages, design languages, and programming languages are getting smaller and may even-
tually disappear. Programming languages are getting more expressive and more flexible, and are support-
ing more abstract descriptions of the processes to be carried out, while specification and design languages
are getting to have larger executable subsets. A prototyping language must have the capabilities of both a
specification and a design language while still remaining executable. In the short run these four kinds of
languages will remain distinct to more effectively support different classes of powerful CASE tools. Pro-
gramming languages will support optimizing compilers whose main objective is to produce efficient imple-
mentations. Specification and design languages will support CASE tools for requirements analysis and for

proving the correctness of designs and implementations. Specification languages can be used for

29



formulation, analysis, communication, and retrieval. Prototyping languages will support tools for prototype

demonstrations and implementation planning.

Since the completely automatic and totally correct implementation of powerful specification
languages is an algorithmically unsolvable problem, research on CASE technology should investigate ways
in which people can most effectively guide tools for computer-aided implementation. A promising
approach is augmenting abstract specifications with annotations giving hints about ways to implement
them. An important problem is finding concepts and notations that can naturally express such information

in an abstract and orthogonal way.

Progress on automatically generating prototypes or efficient implementations from abstract
specifications is going to depend on a knowledge-based approach. The size of the required knowledge
bases depends on the range of problems the language is attempting to address. For this reason, the most
powerful systems appearing in the near term will be those with narrow application areas, because such
tools can be built with smaller knowledge bases. For a general purpose system, the knowledge base will
have to include a large fraction of cumrently available knowledge about classes of efficient algorithms and
data structures, along with the restrictions on their use and measures of their performance. This part of the
knowledge is known as the software base. Other kinds of knowledge that may tumn out to be necessary
include knowledge about ways of adapting and combining the structures in the software base, properties of

the application domain and properties of the CASE environment.
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