
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

Specification Languages in Computer Aided
Software Engineering

Luqi
Naval Postgraduate School

Luqi, "Specification Languages in Computer Aided Software Engineering'', Technical
Report NPS 52- 88-005, Computer Science Department, Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65243

Downloaded from NPS Archive: Calhoun

NPS52-88-OO5

NAVAL POSTGRADUATE SCHOOL
Monterey, California

SPECIFICATION LANGUAGES IN
COMPUTER AIDED SOFTWARE ENGINEERING

LuQi

Uarch 1988

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

K. T. Marshall
Acting Provost

The work reported herein was supported in part by the Foundation Research Pro­
gram of the Naval Postgraduate School ..

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

Chairman
Department of Computer Science

LUQJV
Assistant Professor
of Computer Science

Released by:

•

~NCLASSIFIED
URITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIF ICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a . SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION I AVAILABILITY OF REPORT

Appro~ed for public release; distribution is
,.2b. DECLASSIFICATION I DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S}

,I NPS52-88-005

6a . NAME OF PERFORMING ORGANIZATION 6b . OFF ICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (If srcable) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

Sa. NAME OF FUNDING i SPONSORING Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

O&MN, Direct Funding Maval Postgraduate School
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT Monterey, CA 93943 ELEMENT NO . NO. NO ACCESSION NO.

11 . TITLE (Include Security Classification)

Specification Languages in Computer Aided Software Engineering (U)

12 . PERSONAL AUTHOR(S) LuQi

13a. TYPE OF REPORT 113b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) ,, s PAGE COUNT
FROM TO March 1988 36

16. SUPPLEMENTARY NOTATION

17 . COSA Tl CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if Mcessary and identify by block number)
One of the most important goals in CASE is to automate the design effort at the early

phases of software development. The only way to achieve a high degree of automation is to
create mechanically processable documents at the specification level. Thus formal specifi-
cation level. Thus formal specification languages are the basis of CASE.

This paper examines a number of specification languages, including MSG(MeSsaGe), PSDL
(Prototype System Description Language), and Spec(Specification Language). It describes
the general principles, language features and basic structures for each of them. The
purposes and benefits of using a formal specification language are discussed. The differ-
ences among these languages and the areas where each of them apply are explained to help
designers choose the right specification language and CASE tools for their applications •

.

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

£l UNCLASSIFIED/UN LI MITED fi SAME AS RPT D DTIC US=RS UNCLASSIFIED
22a . NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I22c OFFICE SYMBOL

LuQi (408)646-2735 52Lq

00 FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted

All other ed1t1ons a-e obsolete
SECURITY CLASSIFICATION OF THIS PAGE

11 U.S. Government Printing Office: 1986-606•243

UNCLASSIFIED

•

Spedftcation Lanpages in Computer Aided Software Enalneerlna

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

One of the most important goals in CASE is to automate the design effort at the early phases of
software development. 'lbe only way to achieve a high degree of automation is to create mechanically pro­
cessable documents at the specification level. Thus fonnal specification languages are the basis of CASE.

This paper examines a number of specification languages, including MSG(MeSsaGe),
PSDL(Prototype System Description Language), and Spec(Specification Language). It describes the gen­
eral principles, language features and basic structures for each of them. The pmposes and benefits of using
a formal specification language are discussed. 1be differences among these languages and the areas where
each of them apply are explained to help designers choose the right specification language and CASE tools
for their applications.

1. Introduction

Requirements analysis, functional specification and architectural design are very important early

phases in the software design life cycle. In these phases, the user and designer agree on the requirements

for the intended system, its external interfaces and its overall structure. 1be effort in software system

design and implementation is completely dependent on the decisions made and conceptual foundations

established at these early plwes.

The languages used in the new CASE paradigms differ &om the languages used in traditional

software development because of the need for supporting a higher level of automation at the early stages.

The traditional software life cycle comists of a series of phases sometimes called requirements analysis,

functional specification, architectural design, module design, implementation, testing, and evolution. 1be

result of each phase is a document serving as the starting point for the next pha.!e, or an error report requir­

ing recomideration of the earlier phases.

In traditional software development environments CASE is applied only in the module design and

programming phases. Automation is mostly based on programming languages. The tools in such environ­

ments include compilers, static analyzers, debuggers, and execution profilers. There are many existing pro-

1

gramming languages available for describing algorithms or writing programs. Traditionally the phases

before implementation have been carried out largely by manual processes, and the iesulting documents

have been expressed in informal notations. 1be designer bas limited choices among existing tools and

methods, especially with respect to fonnal specification languages for aiding the process of finning up

requirements and specifying the internal and external interfaces for the designed system.

CASE is a response to problems with traditional development methods. The problems are caused

largely by labor intemive tasks at the early stages of development. There are several feasible ways to

approach the problem. One approach involves wolk on executable specification languages and formal

verification. A CASE environment with knowledge-hued assistants for each phase of development start­

ing with requirements analysis is an example of this approach. The computer-aided aspects of the process

include completeness and consistency checking, displaying descriptiom of the system from various

viewpoints, concurrency and configuration control for the design data, and information retrieval functions.

Another CASE approach inttoduces the prototyping software life cycle (18). In this approach, the goals

and required behavior of the intended system are negotiated in the context of a computer-aided analysis of

the customer's problem, coupled with demonstrations of prototypes.

Fonnal specification languages are the basis of CASE. 1be only way to automate the earlier phases

of the software development is to create mechanically p~able docmnents at these phases. The reliabil­

ity and productivity of the process are detennined by the specification language used. A good specification

language will have maximum expressive capability and a complete formalism for supporting mechanical

processing. The systematic use of the formal specification language Spec (see section 3) in the early stages

integrated with the use of Ada in the later stages is described with detailed examples in (4).

A fonnal language is a notation with a clearly defined syntax and semantics. Fonnal languages are

critical components of a CASE environment because they are needed to achieve significant levels of

computer-aided design with currently feasible technologies. Automated tools are capable of handling only

formally defined aspects of notations. The tools applicable to informal notations usually treat them as unin­

terpreted text strings, which limits the tools to bookkeeping functions such as version control. Notations

with a fomially defined syntax but an infonnal semantics can support tools sensitive to the structure of the

syntax, such as pretty printers and syntax-directed editors. If both the syntax and semantics of a language

2

. _,

. .
have been fixed and clearly defined, it becomes possible to create automated tools for analysis, transforma­

tion, or execution of the aspects of the software system captured by the language and its conceptual model.

Formal languages are therefore key components in a CASE environment. A good CASE language

integrates the functions of a specification language, a design language, and a prototyping language (5).

Such a language can serve as the basis for integrating the tools in a CASE development environment. 1be

CASE tools in such an environment depend on each other, and must be integrated together for effective­

ness. Such integration depends both on formal languages and emerging technologies for managing special

purpose databases, e.g. design databases [22), software bases [14), and engineering databases (10-12, 18).

The formal languages in the environment should support specification, design, prototyping, and program­

ming.

The purpose of a specification language is to define an interface. A specification is a black-box

description of the behavior of a software system or one of its components. A black-box description

explains the behavior of a software component in terms of the data that crosses the boundary of the box,

without mentioning the mechanism imide the box. A specification language should allow simple abstract

descriptions of complex behaviors that can be easily understood by people and mechanically analyzed.

The purpose of a design language is to define the structure of a system. A design is a glass-box

description of a software system or component. A glass-box description gives the decomposition of a com­

ponent into lower level components and defines their interconnectiom in terms of both data and control. A

design language should allow simple abstract descriptions of system structure that can be easily understood

by people and mechanically analyzed.

The difference between specification and design languages is the difference between interface and

mechanism: a specification says what is to be done, and a design says how to do it. An important purpose

of specification and design languages is to serve as a precise medium of communication between the

members of a development team working on a large system. 1be evaluation criterion for both specification

and design languages is the ability to support simple, concise, and hmnanly understandable descriptions of

complex behavior. It is useful for specification and design languages to be executable, but simplicity of

expression takes precedence when the two considerations conflict. It is important to be able to determine

the properties of a specification and to certify that a design realizes a specification. Execution can help

3

attain these goaJs, but it is not the only way to do so, and it is not necessarily the most effective way.

The purpose of a prototyping language is to define an executable model of a system, using both

black-box and glass-box descriptions. Some meta-programming and functional programming languages

have similar properties. However, a prototyping language has no obligation to give detailed algorithms for

all componems of the system as long as it is descriptive and executable. Prototyping languages and pro­

gramming languages have different evaluation criteria: a prototyping language is optimized to allow an

analyst to create and modify a woddng system as quickly u possible, while a programming language is

optimized to allow a programmer to produce a time and space efficient implementation. A prototyping

language supports simple and abstract system descriptions, locality of infonnation, reuse, and adaptability

at the expense of execution efficiency. A prototyping language should have facilities for recording

specification and design infonnation, subject to the constraint that the final product must be executable.

Prototyping languages are used in requirements analysis for the purpose of requirements validation

via early demonstrations to the customer. They are aJso useful for evaluating competing design alterna­

tives, validating system structures, and establishing feasibility. Prototypes can be used to demonstrate the

feasibility of real-time constraints and to record and test interfaces and interconnection.,. Specification

languages are used for recording external interfaces in the functional specification stage and for recording

internal interfaces during architectural design at the highest levels of abstraction. They are also used in

verifying the conectness and completeness of a design or implementation. Design languages are used for

recording conventions and interconnections during architectural design and module design.

This paper examines a number of specification languages, including MSG (MeSsaGe) [l, 2), PSDL

(Prototype System Description Language) [13, 17), Spec (Specification Language) [4]. It describes the

general principles, language features and basic sttuctures for each of them. Through the discussion of these

languages, the purpose and benefits of using a fonnal specification language will be illustrated. The differ­

ences among these languages and the problems and areas where each of them should apply are explained to

help designers choose the right specification language for their own problems and their application area in

the new paradigm of computer aided software engineering.

4

• 'I

2. Spedftcadon Language MSG

A precisely defined specification language such as MSG is very useful for functional specifications,

because the language detennines what can be said. Bady experience with MSG in the research on software

development tools (1] a., well as use by student teams in a software engineering course [2] indicates that

the fonnal and precise nature of the notation is an aid rather than a banier to human desipers, once the

underlying concepts are mutered. A mathematical semantics for the language is essential in order to sup­

port computer aided design at the early stages of development.

2.1. General Principles of the Lanpqe

The design goals for MSG are the following.

(1) The notation must have a precise and unambiguous semantics.

(2) 1be notation must be based on a clean and coherent model of computation.

(3) The notation must be sufficiently powerful to express all relevant aspects of system behavior.

(4) The notation must support a convenient set of abstractions for building models of software systems.

Abstractions are vital for suppressing detail without sacrificing precision. A well chosen set of

building blocks can considerably ease the burden of the analyst.

(5) The notation must not be redlllldad, to avoid update inconsistencies.

(6) The notation must be modular and support effective searching.

(7) The notation must support partial descriptions, so that it may aid in developing a model and com­

pleteness checking.

(8) The notation must be easy to understand and modify. Small conceptual changes should correspond

to small changes in the text.

(9) The notation must be relatively easy to learn. Since it will be used by professionals, some special­

ized training can be required.

(10) The notation must apply to a broad range of applications, so that many different notation., are not

needed.

s

(11) The notation must apply to a large part of the life cycle, so that translation from one form to

another is minimized. A closely related set of notations can span the functional specification and

architectural design stages.

(12) The notation must support mechanical error checking and view extraction. A realistic system can­

not be accurately and efficiently,specified without a set of computer aided software tools because

the specificatiom get too large for reliable manual processin&

MSG bas a precise semantics and a fonnal definition based on the actor model. Its notation is

sufficiently powerful to conveniently express all functional aspects of system behavior and provides a use­

ful set of built-in abstractions and facilities. Modular descriptions;i..ate supported, and components in a

specification have a fixed order, to make it easier to find things. Concepts defined in other actors must be

explicitly imported, providing cross references and disambiguating nonlocal names. Its notation bas been

expressly· designed to allow message types to be defined independently of assertions describing finer

details, and to allow the existence of actors or messages to be reconled even if details are not yet available,

so that partial descriptions are supported. Such a notation supports mechanical processing at early stages

of design, when the specificatiom are not yet complete.

2.2. Spedal Features and Applications of the Lanpqe

A specification language should support Che kinds of abstractions commonly used in describing

softwue systems. The abstractions needed for functional specification are ttaosforms, state machines, data

types and iterators. Absttactions in MSG are modeled as actors in the underlying actor model of the

language.

MSG is hued on the actor model of computation, where actors ate independent active elements that

interact solely by sending each other messages. All communication between MSG actors modules is done

by SENDing messages (also actors) which will be RECEIVEd by some other module in an event For

imtance if a message is received that requests an array is to be sorted on some key, the section of an MSG

specification that responds to that message will describe the properties of the output array (i.e. keys in

ascending order), and not soine sorting algorithm like "quicbort".

6

MSG specifications provide an outline for programmers to follow, and via a series of aaertiom

relates expected output (post conditions attached to SBND, RBPL Y, UPDA TB) for each certain input

(precooditiom attached to RECEIVE) (i.e. expected output from a proa,dure call with inputs meetins cer­

tain criteria). MSG doesn't supply the algorithms to deliver this output, it just states what conditions the

output must meet.

The decomposition of concepts is supported by defined predicates and functiom, which can be used

in the assertions describing the behavior of an actor. The concepts inb'Oduced by definitions are needed to

r~cogniz~ when a proposed output value is correct, but Ibey are genenlly not needed to construct those

outputs. Comequendy the concepts introduced in deftne sections of MSG specifications will probably

appear in the user's manual of the proposed system, but probably will not be implemented as rw:ming code.

Concepts introduced by delne can depend on other defined concepts, leading to a concept biemdly

orlhogonal to die usual action biemdly.

By die time a MSG specification is finished, an experienced programmer should be able to code any

module of the system, using an algorithm of bis choice. Plevious experience wilh novices indicates lbat

programmers can learn to read the notation in a few weeks, and can leam to write it in ten weeks.

A number of the tools associated wilh MSG were developed and experimentally used in both teach­

ing Software Bngineering counes and many iaearcb projects. For example, an MSG parser/em,r checker

and a database were used to support a munber of meaningful consistency cbecb. 1be database was linked

to the lanpage by mean., of a bi-dilectiooal translator. A syntax-dilecled editor for MSG and a graphics

editor for the associated diagrams were developed.

MSG is used in functional specifications and in an:bitectural design. MSG can also be used in the

subset of requirements definition involving defining interfaces to extemal systems. Such notation will sup­

port mechanical processing.

In summary, specification language MSG is a fonnal tool allowing system designers to abstract

specifications, and to communicate design decision., to each other without getting lost in implementation

details. In other words, actors are the basic building blocks in MSG for comtnlcting software

specifications. A functional specification is a conceptual model of the proposed software system, which

presents only those aspects of the system relevant to the users of lhe system. Tbeae building blocks are

7

sufficient to describe_most current softwue systems that do not involve liming constraints.

2.3. Buie Stnactarea of the Lanpqe

Any specification of a software system will consist of a number of modules (or building blocks).

Bach MSG module defines an actor. MSG offers four module types: MACHINE, TYPB, TRANSFORM,

and ITERATOR.

Both machines and types have a MODEL as part of lheir MSG specification. The operations of a

machine ue desaibed in terms of a conceptual model of its internal state, while die operadons of a type are

described in tenns of a cooo,ptual model of ill iostances. A conceptual model is a ~on of the

infonnation content of an object in terms of the built-in types of MSG and the abstract data types defined

by die designer.

2.3.1. State Machines

A sta~ machin~ is an actor that exhibits internal memory, in the sense that the events activated by a

message depend on eadier mes.,ages. Many software systems codain databases or provide commands that

allow users to modify internal states in ways that affect the behavior of the system. Examples me inven­

tory coottol systems, operating systems, and flight simulators. Such systems are naturally modeled as state

macbinea, where user commands or tnnsactions conespond to messages received by the state macbi.ne,

and the amwers produced by the system correspond to the ieply messages sent by the state machine. The

key word MACHINB is used for state macbines in MSG.

An MSG MACHINB is a single instance emity with idemal memory, which is abslracted by the

MACHINB's MODEL. The MODBL of a MACHINE describes the state of the system or sub-system the

MACHINB represeda. The basic fonnat of an MSG MACHINB is provided by the following syntax:

MACHINE name

model

init

import

Binds a name to a machine for reference

The conceptual model of the machine

An assertion describing the inidal

state of the machine, optional

Allows this machine to use definitioos

8

. "

export

from odler actors, optional

Allows other modules to use any definitions

explicidy lisled, optional

Macros for commonly repeated definitiom,

and for exportadon, optional

BBHA VIOR keyword for beginning of the operations

action Tbe operations

BND name

2.3.2. Trandorms

A transform is an actor that computes a mathematical function, in the aenae that the evem activated

by a message depend only on lbat message, and not on lhe contents of earlier messages. A transfOIDl has

no memory or internal state. There may be moie than one iapome to a single iequest, in which caae the

responses me not causally ordered, and the potential for a parallel implementation exists. Responses can

either be sed to the actor that originated lhe request, as happens when a subroutine returns a value, or they

can be sem to other actors, u happens in a system with a pipeline stJucture.

MSG TRANSFORM's are lib mathematical functiom. They have no internal memory which

means the output is only a function of lhe input parameters. Tbe REPLY depends only on the moat recedly

received message. Examples include: aquare root, sort, compilers, etc. The basic form• of III MSG

TRANSFORM is defined by the following synl8X.

TRANSFORM

import

export

define

BEHAVIOR

action

END name

name

optional

optional

optional

see above madune and

type for desaiptioos

9

2.3.3. Types

MSG TYPB modules 11e used to describe abstract data typea. An absttact data type may have

several instances, unlike the macbioe module which bas a single instance. For example, an operaling sys­

tem (single instance, machine) can keep track of several prooeaes (multiple instance, type). An abstract

data type is one whose instances can be cbaoged, or accessed in any way only via a set of opel'llions asso­

ciated widl dlat type. There may be many instances of an MSG TYPB, just • many variables of some uaer

defined type may be declared in Pascal. A common example is a stack with the operations: create,

is_empty, push, top, and pop. In this example a suitable conceptual model is a sequence containing the ele­

ments in the order they wen: pushed onto the stae%. In general the MODBL of a type 1epresents an

instance of the absttact type. Calls to lhe operations for an MSG TYPE are of the fonnat:

<TYPE oame>$<operation name>(<parameters>)

Such calls may be used in the assertions describing other operations. It is important to note dlat the asser­

tions only state bow to ~gnize conect outputs and do not state lhat die implementation will oeoessarily

have such a call. The basic format of a MSG TYPE is given by the following syntax:

TYPE name Bind name to actor

model Conceptual model of die type

import optional

export optional

define optional

BBHAVIOR see model above

action

BND name

2.3.4. Iterator

MSG ITERA TORs 11e control abstractions. They YIBLD all elements in a particular imtantiation of

an absttact data TYPE one at a time, to be used by body of a foteacb loop. lteralOJS are defined in an archi­

tectural design, and called only in the algorithms in module designs. For example an ITBRA TOR called

10

Depdl_Fint on a binary tree would ietum each node of lhe tree in deplh fiat Older. Tbia could be uaed to

find the sum of all the elements of m inleger tree, or preform a deplb fint aeardl to aee if an element is in

the bee. Such an iterator is defined in the following example.

TYPBtree

MODEL oneof(leaf: int, node: tuple: (left right: tree)

BEHAVIOR

CASES

RBCBIVB DBPl1LFIRST: tuple (x: tree)

CASES

WHBRB x = (leaf: a)

YIBlD : sequence (int)

WHBRB YIBlD • [a]

ORBLSB

WHBRB X =s (node: D)

YIELD : sequence (int)

WHBRB YIELD• [ltree$deptb.Jint(n.left), ltree$deptb_first(n.dgbt)]

BNDCASBS

ORBLSB

RBCBIVB ... Cl, other bee operations such as ioseJt and delete

BNDCASBS

BNDtree

3. Spedlcati• Lanpaae Spec

Spec (4) is a language for writing black-box specifications of iderfaces defined in the functional

specificalion and an:bitectural design of softwue systems. 1be pmpose of the language is to simplify the

design and descdptioo of large systems by allowing the behavior of an interface to be described wilboat

ilnoducing details of the internal stmctme. This is important becaue the stJUctural details of most large

systems are too complex to be readily understood. Spec provides abstraclion m~baoisms for simplifying

11

the description of behavior by biding structural details.

1be critical early stages of softwue development are dominaCed by die tasks of building li'actable

cooceptual models of die proposed software and defining ill interfaces. Tbeae conceptual models consist

of abstractions chosen to reduce the complexity of the system. Black-box specificaliODB are essenlial for

realizing die benefits of abstractions in the softwue development process [2]. An abstraction is uaetul for

cootrolling complexity ooly if it bu a black-box specificatioo simpler than ill implemedadon. The

specification must enable the uae of the abstraction without any additional ioformati011. A precise notadon

for black-box specifications is needed for cODSIIUcli.ng and communicating conceptual models and for sup­

portins computer-aided desip. The Spec language provides one such notadon.

3.1. General Prlndplel ol the Lanpqe

Spe,c is a newly desiped specification language baaed on ~vious experiences [4]. It closely follows

the general desisn principles of specification languages described with details in [5].

The purpose of a specification language is to describe die interfaces of a softwue system or com­

ponent. Its coocepts and notations should allow the analyst or desiper to fonnulate an interface for a sys­

tem or component. It should help die analyst to coostruct a simpler conceptual model for the intended sys­

tem and to establish and maintain its concephJal imegrity.

A formal specification language allows the proposed interface to be analyzed with Je8l)eCt to many

different kinds of properties. Notali.0118 ue impoltam for inventing large systems because people are lim­

ited in die number of items Ibey can consider at the same lime. At a structural level, the languqe can be

used to help the analyst organize her tbougbls and to determine which pieces of infomaation me still miss­

ins. At a semantic level, the language can be used to determine many properties of the description and the

behavior of the proposed interface. Examples of such properties include type consistency, correctness of a

particular reapome for a particular input, lhe set of correct responses for a particular input, freedom from

deadlock for multistep protocols, coverage of all possible input values, satisfiability, uniqueness of outputs,

and consistency with a proposed design. None of these semantic properties can be determined without a

precise specification.

12

PJecisioo

Bach statement in die language should have a single well defined meaning.

Abstractness

It should be possible to completely define interface behavior without cODSidering mecbanisms and

low level details.

Bxplessiveness

The language should allow brief descriptions of common system behaviors which are undentandable

as they stand. Abbreviations that must be expanded before they can be understood me not expressive

in this sense. In addition to existing, the brief descriptions must be constructible by people in a

natural way.

Simplicity

The mies descrlbiag the meaning of the language should be simple, without exceptions or imerac­

tions between multiple componeDIB. This is importam both for ease of teaming and ease of automa­

tion. It is also important to avoid misunderstanding.,, because situations where extensive reasoning is

required to detennine the meaning of a stalemed provide opportunities for people to make errors of

interpretation.

Locality

The language should support localized descripdon units with limited interactions and the dependen­

cies between the units should be mechanically detectable. This ieduces the amount of informalion

needed to understand or modify a given aspect of a specification to a humanly manageable level, and

supports mechanical aid in assembling and displaying the information needed for a single

specification step.

Tractability

It should be possible to hnplemed a wide variety of automated aids for analyzing, transforming, and

implementing subsets of the specification language. While the subsets of the language that can be

handled by the tools should be as lll'Je as possible, it may not be possible to cover the entbe

13

Ianauage wilbout compromising the abstractness and e~veness of the language.

Adaptability

The language abould support the description of general pmpoae compooenl8 and the adaptation of

those components to puticul• situadons. Generic modules and inheritance mt'Cbanisma ue two

well known ways to support adaptability.

Spec is based on the event model of computation, and uses piedicale logic for the JRcise definidoa

of the desiml behavior of modules. 1be most important ideas of this language are modules, messaaes,

event8, parametrization, and defined COD0epl8. Spec also baa a number of features that become important

only for specifying very large systems, such as import/export controls for defined concepts, 111d view 111d

inheritance mechanisms.

The Spec language uses the event model to define lhe behavior of black box softwme modules. 1be

event model bu been inftuenced by the actor model (8). 1be main differences from the actor model are the

ttealmeot of time and temporal eveDIS, and the tteabnent of mold-event traDBIICtioos (1). In the event

model, computatioos me desaibed in tenns of modules, messages, and events. A module is a black box

that i.dencts with other modules only by sending and ~iving messages. A message is a data packet lhal

is sent from one module to anolber. An event OCCUD when a message is teceived by a module at a partie11-

lar imtaot of time.

Modules can be used to model extemal systems such as users and peripheral hardware devices, as

well as software components. Modules ue active black boxes, which have no visible iotemll structure.

The behavior of a module is specified by describing its interface. 1be interface of a module consists of the

set of messages it accepcs, along with its m1ponse to each kind of message it accepts. Bacb response con­

sists of the messages sent out by the module in response to the most recent incoming message and the deati­

natiom of those messages.

Any module accepts messages one at a time, in a well-defined order that can be observed u a com­

putation proceeds. Message transmirmioo is usumed to be reliable, wbicb meam every message sent even­

tually arrives at its destination. While resbictioos on message delay and ordering can be added for particu­

lar application,, these are not inherent in the event model Unless explicitly stated otherwise, messages can

have atbitrarily long and unpredictable trammission delays. The order in which messages anive is not

14

normally under the comol of the desiper. The Older in which a module accepts messages CID be con­

strained by means of atomic trallladions.

Bveots can also be tdgeled • absolute times. Such events are called temporal eveatl. Formally a

temporal event occma when a module sends a message to itaelf at a time determined by ill local cl~

Temporal eveDIB are the melll8 by which modules can ioitiale actiODS dlll are not diJect ieapooses to exter­

Dll stimuli.

3.2. Special Featares and Appllcatiom el the i..aaae

The Spec language cootaina a number of features lbat are needed mostly for specifying larae sys­

tems. Some of these fealmes include parameterlzed modules, defined concepts, and an inheritance

mechanism.

1be Spec lansuage bu an inheritance mechanism which can be used for specifying CODllraints com­

mon to the interfaa,s of many modules and for view integration. Specifying coasttaints common to many

imelfaces is e11endal for acbieving interface consislency in very large systems. Por example, lhe staDdanl

propedies and operations associaled with equality, padial Olderinp, and tOlal onlerlnp are defined by

components in the standmd type library. These properties ml operations can be inbedted by any mer­

defined type with an "•" or "<' operation, providing an easy way to ensure these operatiODS have their stan­

dmd meanings. 1be interface of a system to each class of users can be a separate view of lhe syalem, and

cliffereot interfaces can be specified by different designem or analysll. A total pictme of lhe system is

formed by expanding the definidon of a module that inherits all of the individual views. The inheritance

mechanism and die mies for combining different versiom of messages and concepts inherited from multi­

ple pumlS are described in moie detail in [3].

In Spec, atomic transactions are used to restrict the sequence of events in protocols involving chains

of eveDIS. Such restrictions are sometimes necessary to pieveot inte1mence between concmrent processes.

On0e a module stal18 an atomic transaction, the older of events at die module is cODllrained by the tnnsac­

tioo until lbe transaction is completed.

Atomic ttansactions are defined in tenns of sequencing (action ";" action), parallel combination

(action action ... acdoo), choice (''IF' action "I" ... "I" action "Fl"), and repetidon (''DO" action "I" ... "I"

15

action "OD"). Sequencing implies one instance of the the action on the left must occur before one imtance

of the action on the rigt.. Pamllel combination implies one instance of each action listed must occur in

some unspecified order. A choice implies exacdy one instance of the actions listed must occur. A repeti­

tion implies a sequence of zero or more imtances of the actions listed may occur. 1be acti.oos can be either

message names or transaction names. Message names preceded by "EXCEP11ON" match only events with

the given name and the condition exception, while message names without "EXCEP11ON" match only

events with the given name and the condition normal. The tramaction names used in actions can have

mutually recursive definition.,. if more than one atomic transaction is defined, then the first one listed con­

trols the module, and must contain direct or indirect references to the others. 1be set of legal event

sequences for a module fonns a context-free language. 1be definition of a set of atomic transactions can

be represented as a recursive transition graph similar to the diagrams commonly used to define the syntax

of Pascal ..

Spec is a specification language with a broad range of applications. 'lbe language is primarily

intended for recording black box interface specifications in the early stages of design. 1be language is

most useful in the functional specification and architectural design stages, in which interfaces are proposed

and specified. 'lbe language bas a precise semantics and a simple underlying model. Experience has

shown that it is sufficiendy powerful to allow the specification of many kinds of software systems, and

sufficiently flexible to allow software designers to express their thoughts without forcing them into a res­

trictive framework. 1be language is sufficiently fonnal to support mechanical processing. Some tools for

computer-aided design of software that are cmreody under investigation are syntax-dilected editors, con­

sistency checkers, design completion tools, test case generators, and prototype generators.

3.3. Basic Structures of the Language

The basic module types in Spec are the following: FUNCTION, MACHINE, TYPE, DEFINITION,

and INSTANCE. Functions, machines, and types are similar to the transfonns, machines, and types of

MSG. Iterators are replaced by GENERATE clauses in messages, which can appear in any of the first

three module types. Definition modules contain only concept definitions. Definition modules are used for

defining concepts that cannot be attributed to any single module and are used in many different modules of

a system. Instance modules are used for defining instances of generic components that need global names,

16

such as replicated external systems interacting with a proposed software system.

An example of a specification for a generic square_root function is sbo'Wll below.

FUNCTION square_root (precision: real}

WHBRE precision> 0.0

MPSSAGB (x: real)

WHBNx>=0.0

REPLY (y: real)

WHBRB y >= 0.0 & approximates(y • y, x)

01HBRWISB

REPLY BXCBPrION imaginary _square_root

CONCBPI' approximates(rl r2: real)

V ALUB (b: boolean)

WHBRB b <=> abs((rl - r2) / r2) <= precision

BND

The example shows the definition of a respome with two different cases. One of the cases produces a

nonnal response and the other produces an exception. The concept definition introduces and defines a

predicate symbol "approximates" that is used to define the properties of the nonnal response. An example

of a definition for a mutable type is shown below.

TYPB queue{ t: type J

-- mutable version

MODBL (e: sequence)

-- The front of the queue is at the right end.

INVARIANT true

-- Any sequence is a valid model for a queue.

MPSSAGB create

17

- A newly created empty queue.

REPLY (q: queue{t})

WHBREq.e = [], new(q)

MESSAGE enqueue(x: t, q: queue{t})

- Add x to the back of the queue.

TRANSmON q.e = appeod([x], •q.e)

MESSAGE dequeue(q: queue{t})

- Remove and return the front element of the queue.

WHEN not_empty(q)

REPLY (x: t)

WHERE •q.e = append(q.e, [x])

TRANSmON FOR SOME (y: t :: •q.e = append(q.e, [y]))

011-IERWISE RBPL Y BXCBPTION queue_underflow

MESSAGE not_cmpty(q: queue{t))

- True if q is not empty.

REPLY (b: boolean)

WHERE b <=> (q.e -= [])

END

In this example, the "create" operations creates a new imtance of the queue type each time it is

called, which "enqueue" and "dequeue" change the states of previously existing imtances. Expressions

preceded by a "•" refer to the previous state. An example of a module with timing constraints is given

below.

MACIHNE ticket_system

ST A TE(outstanding: set { ticket_id})

INVARIANT true

INI11ALL Y outstanding= { }

18

MBSSAOB tkket(violator: person, ticket_id: integer)

SBND cbeck_on_paymem(violator: person, ticket_id: integer)

TO ticket_system

WHBRB (30 DAYS)<= DELAY< (31 DAYS)

TRANSmON outstanding= •outstanding u (ticbt_id J

MBSSAOB payment(violator: person, ticket_id: imeger)

TRANSmON outstanding = •outstanding - (ticket_id)

MESSAGE cbeck_oo_payment(violator: person, ticket_id: integer)

WHBN ticket_id IN outstanding

SEND letter(s: string) TO violator WHERE waming(s)

SBND cbeck_on_payment(violator: person, ticket_id: integer)

TO ticket_system

WHBRE (30 DAYS)<= DBLA Y < (31 DAYS)

011fER.WISB -- do nothing

CONCBPr waming(s: string) V ALUB(b: boolean)

-- True ifs is a letter requesting immediate payment of the fine.

BND

This example illustrates explicitly specified delays for responses. The keywonl "DBLA Y" refers to

the time interval between two events, the stimulus and the response. This interval includes both computa­

tion time and message trammissioo time. In this case, both an upper bound and a lower bound on the delay

are specified. Time units can range from nanoseconds to weeks.

4. Prototyping Language PSDL

The purpose of a prototyping language is to support rapid prototyping. Prototyping is a method for

constructing executable models of software systems rapidly. Such models are known as software proto­

types.

19

Prototyping was distinguished from simulation to emphasize that it should be applied to the early

stages of software development and that its goal should be speedily accomplished by an environment con­

taining state of the art software tools. The goal of prototyping is to design, tailor, define, test, document

and implement a system (Fig. 1). The prototyping life cycle has two stages, prototyping and system gen­

eration. In the prototyping stage, a prototype version of the system is designed and repeatedly tested and

modified until the customer is satisfied with it. In the system generation stage, the prototype is used to

define and docwnent the architecture of the intended system. The system is implemented by filling in miss­

ing details and reworking key modules as needed to achieve adequate perfonnance. Prototyping is most

useful for systems that are difficult to built directly, quickly, and correctly, such as software systems with

hard real-time constraints and systems large enough to require multiple man-years of design effort.

The capability for rapid prototyping can best be realized in the context of a high level prototyping

language.· A prototyping language should have the properties of both a specification language and a design

language. The algorithmic level characterizing most current programming languages is not appropriate for

supporting rapid prototyping. A high level view can aid the prototype developer to cope with the complex­

ity of typical large software systems, or to support more effective computer-aided systems e.g. reasoning

Fig.1

20

from a design data bue or retrieving reusable software componems. A prototyping language containing

coosttucts for expressing descriptions of specifications and designs is crucial a., well a., an automated sup­

port environment. An example of such an enviromnent and the associated prototyping methodology is

described in (18) and (13, 16) respectively.

4.1. General Principles of the Language

A language for supporting rapid prototyping has different requirements from a general pwpose pro­

gramming language or a specification language. In addition to being executable, the language must support

the specification of requirements for the system and functional descriptions for the component modules.

Since rapid prototyping involves many design modifications, the language must make it easy for the system

designer to create a prototype with a high degree of module independence [23), and to preserve its good

modularity properties across many modification.,. 1be prototyping language bu to be sufficiendy ea.,y to

read to serve a., design documentation, and also bas to be fonnal enough for mechanical processing in the

rapid prototyping enviromnent.

The design of a prototyping language should be motivated by the reasons mentioned above and by

the requirements listed below:

(1) A prototyping language should be executable, so that the customer can observe the opemtion of the

prototype.

(2) A prototyping language should be simple and easy to use. The language should be based on a sim­

ple computational model and should be integrated with a computer-aided prototyping method. The

language should support a good designer interface with graphical smnmary views.

(3) A prototyping language should support hierarchically structured prototypes, to simplify prototyping

of large and complex systems. The descriptions at all levels of a prototype should be unifonn. 1be

underlying computational model should limit and expose interactions between modules to

encourage good decompositions. The language should harmoniously support data abstraction,

function abstraction, and control abstraction.

(4) A prototyping language should apply at bolb the specification and design levels to allow the

designer to concentrate on designing the prototype without the distraction of transforming one

21

notation into another.

(5) A prototyping language should be suitable for specifying the retrieval of reusable modules from a

software base, to avoid aeating multiple descriptions of each module. ·

(6) A prototyping language should support both formal and infonnal module specification methods, to

allow the designer to work in the style most appropriate to the problem.

(7) A prototyping language should contain a set of abstractions suitable for the problem. area for which

the prototyping.language is designed, e.g. timing for real-time and embedded systems.

When looking for a language meeting such a set of requirements, the designer or analyst may find bis

choices are limited. It is not bard to convince someone that high level abstractions and brief and powerful

language structures are needed to simplify the design at a conceptual levet Many requirements

specification and conceptual modeling languages are at a suitable high level, but unfortunately most of

them are not executable. Many of the existing programming languages are too inflexible and too difficult

to use. Many kinds of coupling problems between modules of a system are not preve .. able in a program­

ming language because conventional programming languages are required to execute efficiently on con­

ventional machines. Comequendy a special purpose language for rapid prototyping is needed.

Many informal versions of data flow diagrams have been used extensively to model the data transfor­

mation a.,pects of software systems. Data flow diagrams are easy to read, revealing the internal structure of

a process and the potential parallelism inherent in a design, making dataftow attractive to designers. PSDL

is based on dataftow to make it easier for a prototyping environment to provide graphical capabilities for

displaying and updating the structure of the prototype. 'Ibere are some dataftow based hardware design

models or programming languages available. 1bese models and languages support execution, but are not

sufficient for specification, design and prototyping in a CASE envirorment, since the requirements are

more complex.

Good modularity and good control are needed to support the central issue of system decomposition

[21] in the design of any large system. Good modularity is a key factor for increasing productivity, since it

reduces the debugging effort for producing a correct executable system, and improves the understandabil­

ity, reliability, and maintainability of the developed system. A powerful set of control abstractions are

22

needed for simple glass-box descriptions. These features are especially important in rapid prototyping.

Two well known system decomposition methods are based on data flow and conttol flow. 1be com­

ponents of a data flow decomposition are independent sequential processes that communicate via buffered

data streams, while the components of a conttol ftow decomposition are procedwes that are called by and

return to a main procedure with a single thread of conttol. Neither of these decomposition methods offers

both good modularity and good control.

PSDL is based on a unified dataflow and conttol method, which guarantees that the results of a com­

putation do not depend on undetermined properties of the schedulers. Dataflow is used to simplify the

interaction., between modules, eliminating direct external references and communication via side effects.

Conttol conmaints are combined with the dataflow model to achieve the best modularity with sufficiem

control infonnation.

4.2. Special Features and AppHcatiom of the Lanpaae

PSDL supports the prototyping of large systems with hard real-time consttaints. The language is

based on a simple computational model that is close to the designer's view of real-time systems. The

model integrates operator, data, and control abstractions and encourages hierarchical decompositions based

on both data ftow and conttol ftow.

1be PSDL computational model contains operators that communicate via data streams. Bach data

stream carries values of a fixed abstract data type. Each data stream can also comain values of the built-in

type "exception". The operators may be either data driven or periodic. Periodic operators have tradition­

ally been the basis for most real-time system design, while the importance of data driven operators for

real-time systems is recognized [16]. Fonnally the computational model is an augmented graph

G = (V, E, T(v), C(v))

where Vis the set of vertices, Eis the set of edges, T(v) is the maximum execution time for each vertex v,

and C(v) is the set of conttol constraints for each vertex v. Each vertex is an operator and each edge is a

data stream. The first three components of the graph are called the enhanced data ftow diagram.

An opentor is either a function or a state machine. When an operator fires, it reads one data object

from each of its input streams, and writes at most one data object on each of its output streams. The output

23

objects produced when a function fires depend only on the current set of input values. 1be :output values

produced when a state machine fires depend only on the current set of input values and the 'CUl'l'ent values

of a finite number of internal state variables. Operators of these two types are useful for prototyping real­

time systems.

Operators are either atomic or composite. Atomic operators cannot be decomposed in the PSDL

computational model. Composite operators have realization., as data and control flow netwodcs of lower

level operators.

A data stream is a communication link connecting exactly two operators, a producer and a coosu- •

mer. Communication links with more than two ends are realized using copy and merge operators. Bach

stream carries a sequence of data values.

There are two types of data streams - dataftow streams and sampled streams. A dataflow stream

guarantees that none of the data values lost or replicated, while a sampled stream guarantees the most

recendy generated data value is always available.

Abstractions are an important means for controlling complexity (2), which is especially important in

rapid prototyping because a system must appear to be simple to be built or analyzed quickly. PSDL sup­

ports three kinds of abstractions: operator abstractions, data abstractions, and control abstractions. An

operator abstraction is either a functional abstraction or a state machine abstraction. Data abstractions

are especially important in prototyping because the behavior of the intended system is only partially real­

ized, capturing only those aspects importaol for the purposes of the prototype. The behavior of the proto­

type data is also a partial simulation of the data in the intended system, so that the data representations in

the prototype and the intended system are likely to be different. Data abstraction allows the data interfaces

to be described independently of the representation of the data, so that the interfaces for the operations on

the data can be the same in the prototype and in the intended system. Control abstractions are important

for simplifying the design of real-time systems, because much of the complexity of such systems lies in

their control and scheduling aspects. 1be control abstractions of PSDL are represented as enhanced data

flow diagrams augmented by a set of non procedural control constraints. Periodic execution is supported

explicitly since it is a common property of real-time systems. Conditional execution is supported by PSDL

triggering cooditiom and conditional outputs.

24

,, .

A set of special coostmcts in PSDL are designed to support high level real-time specifications, e.g.,

maximum execution time, data synchrooimtion, minimum calling period, maximum response time,

periodic execution, timer comrol, etc.

Prototyping languages support executable specifications. There are two approaches to making a pro­

totyping language executable one based on meta-programming and the other on executable specificatiom

(5). 1be prototyping language PSDL uses the first approach.

PSDL prototypes are executable if all required infonnation is supplied, and the software bue con­

tains implementations for all atomic operators and types. Ada is used for implemendng both the PSDL

reusable components in the software base and the PSDL execution support environment [18]. 1be PSDL

execution support system (15] contains a static scheduler (9, 20], a translator [19], and a dynamic scheduler

[7]. The static scheduler produces a static schedule for the operators with real-time constraints. The trans­

lator augments the implementations of the atomic operators and types with code realizing the data streams

and activation conditiom, resuldng in an Ada program that can be compiled and executed. Execution is

under the control of the dynamic scheduler, which also schedules the operators without real-time con­

straints.

4.3. Basic Structures of the Lanpage

There are two kinds of building blocks for comtrucdng a PSDL prototype: OPERATOR and TYPE.

Buie structures for each of them are given below briefly:

OPERATOR

SPECIFICATION

name

GBNBRIC_PARAMBTBR

INPUT/OUTPUT

STATES

EXCEPTION

TIMING

RBQUIRBMBNTS_TRACB

IMPLEMENTATION RBUSABLB_COMPONBNT

BNHANCBD_DATAFLOW_DIAGRAM

25

TYPE

SPECIFICATION

STREAMS

CONTROL_CONSTRAINTS

name

OPERATORS_SPECIFICATION

IMPLEMENTATION OPERATORS_IMPLEMENTATION

The language uses enhanced dataftow mentioned in previous section as a basis combing control

structure. Conttol comtrai.ots and timing consttaints are the fundamental means to aid the execution.

The control aspect of a PSDL operator is specified implicitly, via CONTROL CONSTRAINTS,

rather than giving an explicit control algorithm. There are several aspects to be specified: whether the

operator is PERIODIC or SPORADIC, the triggering condition, and output guards. The stream types for

the data streams in the enhanced data flow diagram are detennined implicitly, bued on the triggering con­

dition.,.

PSDL supports both period.le and sporadic operators. Periodic operators are triggered by the

scheduler at approximately regular time intervals. The scheduler bas some leeway: a periodic operator must

be scheduled to complete sometime between the beginning of each period and a deadline, which defaults to

the end of the period. Sporadic operators are triggered by the arrival of new data values, possibly at inegu­

lar time intervals.

There are two types of data trigen inside PSDL operators.

OPERATOR p TRIGGERED BY ALL x, y, z

OPERATOR q TRIGGERED BY SOME a, b

In the first example the operator p is ready to fire whenever new data values have anived on all three of the

input arcs x, y, and z. This rule is a slightly generalized fonn of the natural dataflow firing rule [6], since in

PSDL a proper subset of the input arcs can determine the triggering condition for an operator, without

requiring new data on all input arcs. This kind of data trigger can be used to ensure that the output of the

operator is always based on fresh data for all of the inputs in the list, and can be used to synchronize the

26

processing of corresponding input values from several input streams.

In the second example, the operator q fires when any of the inputs a and b gets a new value. This

kind of activation condition guarantees that the output of operator q is based on the most recent values of

the critical inputs a and b mentioned in the activation condition for q. If q bas some other input c, the out­

put of q can be based on old values of c, since q will not be triggered on a new value of c until after a new

value for a or b arrives. This kind of trigger can be used to keep softwue estimates of sensor data up to

date.

PSDL supports two kinds of conditionals: conditional execution of an operator and conditional

transmission of an output. These constructs band.le the controlled input and output of an operator. PSDL

operators can have a TRIGGERING CONDmON in addition to or imtead of a data trigger for condi­

tional execution. In general, the ttiggering condition acts as a guard for the operator. Two examples of

operators with ttiggering conditions ue shown below.

OPERATOR rTRIGGBRED BY SOME x, y
IF x: NORMAL AND y: critical

OPERA TOR s TRIGGERED IF x: critical

The fust example shows the cODb'OI comtraints of an operator with both a data ttigger and a ttiggering con­

dition. 'lbe operator r fires only when one or both of the inputs x and y have fresh values, x is a normal

data value, and y is an exceptional data value with the exception name "critical". This example illustrates

exception handling in PSDL.

The second example shows the control constraints of an operator s with a ttiggering condition but no

data ttigger. In this example s must be a periodic operator with an q,ut x since sporadic operators must

have data triggers, and ttiggering conditions can only depend on timers and locally available data. In this

case the value of x is tested periodically to see if it is a "critical" exception, and the operators is fired if that

is the case. Both of these examples illustrate ways of using PSDL operators to serve as exception handlers.

An example of a comrol constraint specifying a conditional output is shown below.

27

OPERA TOR t OUTPUT z IF 1 < z AND z < max

1be example shows an operator with an output guard, which depends on the q,ut value max and the out­

put value z.

In genenl an output guard acts u if the corresponding unconditiooal output bad been pused through

a conditionally executed filtering operator with the same predicate as a ttiggering condition.

1be data trigger of an operator determines the stream types of its q,ut stteams by the following

rules.

(1) If a stream is listed in an ALL data trigger, then it is a dataftow stream.

(2) All streams not comt:rained by the first rule are sampled streams.

In the following example, the operator op bas the q,ut streams x, y, z and the output stream w.

X ---->

y ----> op ----> w

z ---->

Under the following cootrol comtraint

OPBRATORopTRIGGBREDBY ALLx,y

x, y are dataflow streams while z is a sampled stream. Under a different conttol comtraint

OPERATOR op TRIGGERED BY SOME x, y

x, y, z are all sampled streams. In either case, the stream type of w is not ·affected by the control comtraint

associated with its producer operator op.

28

•

TIMING CONSTRAINTS are an essential part of specifying real-time systems. The most basic tim­

ing constraints are given in the specification part of a PSDL module, and consist of the MAXIMUM EXB­

ClITION TIME, the MAXIMUM RESPONSE TIME, and the MINIMUM CALLING PERIOD. The max­

imum execution lime is an upper bound on the length of time between the instant when a module begins

execution and the imtant when it completes. The maximum respome time for a sporadic operator is an

upper bound on the lime between to, arrival of a new data value (or set of data values for operators with

to, natural dataftow firing rule) and the time when the last value is put into the output stteams of the opera­

tor in response to to, arrival of the new data value. The minimum calling period is a conmaint on to,

environment of a sporadic operator, consisting of a lower bound on the time between the arrival of one set

of inputs and the arrival of the next set.

5. Conclusions

Spec has evolved from the specification language MSG [1] and a rapid prototyping language for to,

design of large real-time systems [17], guided by extemive classroom experience in using fonnal

specifications in multi-person projects [2]. Toe most important advances over MSG are the inlegration of

time inlo the underlying model, the development of an inheritance mechanism [3], and improved locality of

infonnation. Messages are tteated as independent subunits of a specification, and control state comidera­

tions are separated from to, event-level inlerfaces of a module by means of explicit definitions for atomic

transaction.,.

As compiler and hardware technology improves, to, distinctions between prototyping languages,

specification languages, design languages, and programming languages are getting smaller and may even­

tually disappear. Programming languages are getting more expressive and more flexible, and are support­

ing more abstract descriptions of the processes to be carried out, while specification and design languages

are getting to have larger executable subsets. A prototyping language must have the capabilities of both a

specification and a design language while still remaining executable. In the short run these four kinds of

languages will remain distinct to more effectively support different classes of powerful CASE tools. Pro­

gramming languages will support optimizing compilers whose main objective is to produce efficient imple­

mentations. Specification and design languages will support CASE tools for requirements analysis and for

proving the correctness of designs and implementations. Specification languages can be used for

29

fonnulation, analysis~. communication, aoc:t:retrieval. Prototyping languages will support tools for prototype

demonsttatiom and implementation planning.

Since the completely automatic and totally correct implementation of powerful specification

languages is an algorithmically unsolvable problem, research on CASB technology should investigate ways

in which people can most effectively guide tools for computer-aided implementation. A promising

approach is augmenting abstract specifications with annotations giving hints about ways to implement

them. An important problem is finding concepts and notations that can naturally express such infonnation

in an abstract and orthogonal way.

Progress on automatically generating prototypes or efficient implementatioos from abstract

specifications is going to depend on a knowledge-based approach. The size of the required knowledge

hues depends on the range of problems the language is attempting to address. For this reason, the most

powerful systems appearing in the near tenn will be those with narrow application areas, because such

tools can be built with smaller knowledge bases. For a general purpose system, the knowledge base will

have to include a large fraction of cunendy available knowledge about clames of efficient algorithms and

data structures, along with the restrictions on their use and measures of their perfonnance. This part of the

knowledge is known u the software base. Other kinds of knowledge that may tum out to be necessary

include knowledge about ways of adapting and combining the structures in the software base, properties of

the application domain and properties of the CASB environment

1. V. Demos and M. Gray, ••Analysis and Design in MSG.84: Fonnalizing Functional Specificatioos' ',

IEEE Trans. on Software Eng. SE-11, 8 (Aug. 1985).

2. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software Development", Comm. of tM

ACM 29, 5 (May 1986), 402-415.

3. V. Berzins and Luqi, The Semantics of Inheritance in Spec, Computer Science, Naval Postgraduate

School, 1987. NPS 52-87-032.

4. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated Approach to Software

Development using Ada, Addison-Wesley, 1988.

30

,.. .

5. V. Berzins and Luqi, "Languages for Specification, Design and Prototyping", in Handbook of

Compu~r-Aided Software Engineering, Van Nostrand Reinhold, 1988.

6. J.B. DeDDis, 0. A. Boughton and C. K. C. Leung, ''Building Blocks for Dataflow Prototypes'', in

Proc. Seventh Symposium on Computer Architecture, La Baule, Prance, May 1980.

7. S. Baton, '' An Implementation Design of A Dynamic Scheduler for a Computer Aided Prototyping

System'', M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, March 1988.

8. C. Hewitt and H. Baker, "Actors and Continuous Functionals", in Formal Description of

Programming Concepts, North-Holland, New York, 1978, 367-387.

9. D. Janson, "A static Scheduler for Hard Real-Time Comtraints in the Computer Aided Prototyping

System'', M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, March 1988.

JO. M. _Ketabcbi and V. Berzins, "Generalization Per Category: Theory and Application", Proc. Int.

Conf. on Information Systems, 1986. also Tech. Rep. 85-29, Computer Science Dept., University of

MinnesotL

11. M. Ketabcbi and V. Berzins, ''Modeling and Managing CAD Databases'', IEEE Computer 20, 2

(Feb. 1987), 93-102.

12. M. Ketabchi and V. Bemo.,, "Mathematical Model of Composite Objects and its Application for

Organizing Efficient Engineering Data Bases'', IEEE Transactions on Software Engineering, Jan

1988.

13. Luqi, "Rapid Prototyping for Large Software System Design", Ph. D. Thesis, University of

Minnesota, 1986.

14. Luqi, Normalized Specifications for Identifying Reusable Software, Proc. of the ACM-IEBE 1987

Fall Joint Computer Conference, Dallas, Texa.,, October 1987.

15. Luqi, "Execution of Real-TlDle Prototypes", in ACM First International Workshop on Computer­

Aided Software Enginuring, vol 2 , ACM, Cambridge, Massachusetts, May 1987, 870-884.

Technical Report NPS 52-87-012.

31

16. Luqi and V. Berzins, "Rapid Prototyping of Real-Tune Systems", to appear in IEEE Software,

1988.

17. Luqi, V. Berzim and R. Yeh, '' A Prototyping Language for Real-Tune Software'', to appear in

IEEE TSE, 1988.

18. Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Software, Mudl 1988.

19. C. Moffitt, ''Development of a Language Translator for a Computer Aided Prototyping System'', M.

S. Thesis, Computer Science, Naval Postgraduate School, Momerey, CA, March 1988.

20. J. O'Hem, '' A Conceptual Design of a Static Scheduler for Hard Real-Tune Systems'', M. S. Thesis,

Computer Science, Naval Postgraduate School, Monterey, CA, March 1988.

21. D. PU11U, "On the Criteria to be Used in Decomposing a System into Modules", Comm. of the

ACl,I 15, 12 (Dec. 1972), 1053-1058.

22. S. Simmel and V. Berzins, "A Software Management System", in Proc. First International

Workshop on Computer-Aided Software Engineering, Cambrdge, MA, May 1987, 767-783.

23. W. Stevens, G. Meyers and L. Constantine, "Structured Design", IBM Systems Journal 13, 2 (May

1974), 115-139.

32

•

. "")

r-

Initial Dlatribu tlon List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 1
800 N. Quincy Street
Arlington, VA 22217

...

