
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

A Static Scheduler for the Computer Aided
Prototyping System, An Implementation Guide

Janson, D.; Luqi
Naval Postgraduate School

D. Janson and Luqi, "A Static Scheduler for the Computer Aided Prototyping System,
An Implementation Guide", Technical Report NPS 52-88-006, Computer Science
Department Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65244

Downloaded from NPS Archive: Calhoun

"

NPSSZ-88-OO6

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A STATIC SCHEDULER FOR
THE COMPUTER AIDED PROTOTYPING SYSTEM:

AN IMPLEMENTATION GUIDE

Dorothy M. Janson

LuQi

March 1988

Approved for public release; distribution is unlimited

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

K. T. Marshall
Acting Provost

The work reported herein was supported in part by the Foundation Research Pro
gram of the Naval Postgraduate School with funds provided by the Chief of Naval
Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

Chairman
Department of Computer Science

/

Assistant Professor
of Computer Science

Released by:

,.

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS
UNCLASSIFIED

2a . SECURITY CLASSIFICATION AUTHORITY 1 DISTRIBUJIOt I AVAl~f l~ITY OF REPORf pprove or pu 1c release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER($)

NPS52-88-006 NPS52-88-006
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (If applicable)
52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

Ba. NAME OF FUNDING, SPONSORING Sb . OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Naval Postgraduate School
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Monterey, CA 93943 ELEMENT NO . NO . NO ACCESSION NO.

11 . TITLE (Include Security Classification)

A STATIC SCHEDULER FOR THE COMPUTER AIDED PROTOTYPING SYSTEM: AN IMPLEMENTATION GUIDE (U)

12. PERSONAL AUTHOR(S) JANSON, DOROTHY M., LUQI

13a. fY.PE S_F REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year,Month,Day) 11 s PAGE COUNT
1na FROM Qct BL TO Mar 88 March 1988 32

16. SUPPLEMENTARY NOTATION

17. COSAT I CODES 18 SUBJECT TERMS (Continue on reverse if.necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necess.,,y and identify by block number)

Computer-aided rapid prototyping assists the software desi ner during the design and
specification stages for hard real-time or embedded systems. Automated prototyping

of these systerrsbenefits from an Execution Support System (ESS) which validates software
design before development nf production software. This paper describes the pioneering
efforts to implement the Static Scheduler component of the ESS whfrh creates a static

schedule, using worst case timing information, guaranteein that all critical timing
constraints are met at run time.

tl

.
20 . DISTRIBUTION/ AVAILABILITY OF ABSTRA :1 21 ABSTRACT SECURITY CLASSIFICA flON

[3l UNCLASSIFIED/UNLIMITED KJ SAME ,.5 RPT 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c OFFICE . SYMBOL

LuQi

DD FORM 1473, 84 MAR

(408)646-2735

83 APR edit on may be used until exhausted

All other ed1t1ons are obsolete

52Lq

SECURITY CLASSIFICATION OF THIS PAGE

0 U.S. Government Printing Office: 1996-605•2•3

UNCLASSIFIED

A STATIC SCHEDULER

FOR THE COMPUTER AIDED PROTOTYPING SYSTEM:

AN IMPLEMENTATION GUIDE

Dorothy M. Janson

Luqi

Computer Science Department

!\aval Postgraduate School

\'lonterey, California 93943

ABSTRACT

Computer-aided rapid prototyping assists the software designer during the design and

specification stages for hard real-time or embedded systems. Automated prototyping

of these systems benefits from an Execution Support System (ESS) which validates

sofnvare Jesign before development of production software. This paper Jescribe~ the

pioneering efforts to implement the Static Scheduler component of the ESS which cre

ates a static schedule, using ,vorst case tinting information, guaranteeing that all critical

timing constraints are met at run time.

KEYWORDS

rapid prototyping, hard real-time systems, static scheduler, Ada, specification language,

computer-aided design

1. Introduction

The Department of Defense (DOD) and the Department of the ~avy (DO~) allo

cate billions of dollars each year for initial development or maintenance of progressively

more complex \veapons and communications systems. These advanced systems in

creasingly rely on requirements for hard real-time processing of information, utilizing

embedded computer systems to monitor or control system performance. These embed

ded systems currently perform time-critical functions that are primarily computational

in nature, such as missile guidance or communications network control.

As they approach the 21st century, the DOD and the DO~ \vill be faced with ever

increasing demands for complex, hard real-time or embedded systems. This growth of

and dependency on embedded systems is readily apparent when compared with the

growing civilian reliance on similar, small-scale systems to prepare their food and "drive"

their automobiles. Considering the growth of software development and maintenance

costs versus computer hardware costs [Ref. l: p. 14), users must insist that delivered

systems are rcceiYed on schedule and arc responsive to stated needs; that they arc reli

able, efficient and within cost estimates; and, that they are modifiable and transportable

to other applications. Fulfilling these user demands requires a systematic approach to

software development and an ability to deal with complex solutions.

1.1. Conventional Rapid Prototyping

Current research suggests a methodology for the software development life cycle,

especially when designing hard real-time systems, which consists of two phases, rapid

prototyping and automatic program generation [Ref. 2: p. 2). Although current ca

pabilities preclude completely automatic program generation, the required software tools

and capabilities do exist for rapid prototyping. Rapid prototyping provides the user and

designer with a fast, efficient and easy-to-use stepwise process. When utilized during the

early stages of the development life cycle, rapid prototyping allo,vs validation of the re

quirements, specifications and initial design before valuable time and effort are expended

on implementation software.

Figure I on page 3 graphically describes this methodology as a typical feedback

loop [Ref. 3: p. 3]. Rapid prototyping initially establishes an iterative process between

the user and the designer to concurrently define specifications and requirements for the

time critical aspects of the enYisioned system. The designer then constructs a model or

prototype of the system in a high-level, prototype description language. This prototype

is a partial representation of the system, including only those critical attributes necessary

for meeting user requirements, and is used as an aid in analysis and design rather than

as production software. [Ref. 3: pp. 2-5) During demonstrations of the prototype, the

2

•
J

DETERnlNE
REQUIREnENTS

flEOUIRED
NOOIFICA

TIONS

"

y

Uf':LlllnTEO
REQUIREnl:.riTS

/

SYSTEn
I nrLEnEtlTAT I ON

r.r:ou I r.nrr ,n ~ ,
~

PERFonnr.NCE

figure I. Rapid Protot~·ping Method

cor:STHllCT
PHOlOIYrE

EX£CUTflf'LC
PF:0101YPE

,

ll[MON~TnOTE
PAOTOYTPE

user validates the prototype's actual performance against its expected performance. If

the prototype fails to execute properly or to meet any critical timing constraints, the user

identifies required modifications and redefines the critical specifications and require

ments. This process continues until the user determines that the prototype successfully

meets the time critical aspects of the envisioned system. Following this final validation,

the designer uses the prototype as a basis for the design and eventual hand coding of the

production software.

3

1.2. Computer-Aided Rapid Prototyping

Computer-aided rapid prototyping further refines the efficiency and accuracy of this

new methodology. While utilizing the same iterative approach, computer-aided rapid

prototyping relies on software tools which assist the designer in constructing and exe

cuting the prototype. First, the computer-aided environment includes a software base

management system which creates uniform retrieval specifications for software modules

in the software database and later retrieves these reusable modules for assembling the

executable prototype. Second, a graphics-capable user interface including a syntax

directed editor expedites the designer's data entry at a terminal and prevents syntax er

rors in the design. Finally, an execution support system demonstrates and measures the

prototype's performance and analyzes the accuracy of design specifications.

[Ref. 4: p. 4]

A computer-aided rapid prototyping approach will provide the software designer

with a powerful tool, designed specifically for development of hard real-time or embed

ded systems. Rapid protoytping suggests significant advantages in several major areas.

Designing a simplified executable prototype of the envisioned system forces the user and

the designer to decompose a complex system into its major components, creating mod

ules that individuals can easily unJerstand and manage. This modularized design is en

forced by a formal prototyping language based on abstractions of the system's

requirements and high-level constructs of the language itself. A computer-aided rapid

prototyping approach using a modularized design focuses tl~e designer's attention on

analysis of the requirements and specifications of the system rather than becoming en

grossed with detailed programming eITorts inherent in conventional prototyping. This

approach allo,vs the user to verify requirements and to identify problem areas early in

the de\·clopment cycle. This verification process eliminates expensive redesign efforts

and increases the user's confidence that the system, as envisioned, is feasible.

[Ref. 2: pp. 2-3]

Rapid prototyping offers promising advantages in improved sofnvare engineering

productivity, increased reliability of the finished product, more realistic cost estimates

based on identified system complexity, and a reduction in the total conception to oper

ational timeframe [Ref. 3: pp. 11-12]. Ongoing research and pioneering efforts must

now fully elevate computer-aided rapid prototyping from its conceptualized design into

a functioning reality.

4

..

2. Computer Aided Prototyping System (CAPS)

The computer-aided rapid prototyping tool addressed in this paper which incorpo

rates a Static Scheduler is the CAPS. Recognizing that available prototyping method

ologies require extensive amounts of individual time and effort, CAPS is <lesigned

specifically as a development tool for hard real-time systems. Its primary objective is

development of a specification method for identifying and later retrieving reusable soft

ware components from an online database while utilizing a formal prototyping language.

Together with an iterative process similar in concept to Figure I on page 3, CAPS will

provide an effective and efficient tool for constructing and validating a prototype.

[Ref. 3: pp. 1-2) Rapid construction of this prototype relics on the applicable proto

typing method and on a support environment which automates the steps involved. The

follo\ving sections and Figure 2 on page 6 describe the components of the CAPS archi

tecture and how they work together to make computer-aided rapid prototyping possible.

CAPS is initialized through the Cser Interface (U I) as the user and designer work

together in defining the critical attributes of the envisioned system. The CI consists of

a syntax-directed editor for the formal prototyping language and a graphics tool for

displaying data flow diagrams. The editor eliminates syntax errors by prompting the

designers \\·ith appropriate alternatives at each step of the design process. The graphics

tool provides a picture of the data flow diagrams which reinforces the verbal description

of the system specifications. [Ref. 5: pp. 6-7)

The PSDL was designed as the primary connection between the designer and the

remaining components of CAPS. By definition, PSDL is a high-level prototyping lan

guage with special features appropriate for defining critical real-time constraints and is

applied at the specification or design stage. [Ref. 6: pp. 3, 23) In order to rapidly

construct a prototype, PSDL also includes its own associated prototyping method and

automated support environment. Csing a top-down design approach, the PSDL method

aids the designer in systematically refining and decomposing each critical component

into its lower level components. Cniform PSDL specifications associated with each

lower level description act as templates for retrieving reusable software components

having similar specifications from the CAPS Software Database. Thus, the PSDL

method produces a computational model consisting of the basic building blocks needed

to describe the abstractions and concepts of the hierarchically structured prototype. The

PSD L execution support environment then verifies the design an<l the validity of the

prototyp~· s real-time requirements. The actual execution of the prototype demonstrates

5

usrn
I ti Jr HF nCE

(lJ I)

/

Plt£110fVPE

' SY~IF.n
/ OESCIIIPTION

LONGUOGE:

'\.l/' ,, '·,,

BEUHITE urnll ION

5lJDSVSTEn Sllf'f>(HH
~Y~ll:'1

✓ '

,,
!it,nunnE

1Jr!:1r.N
"uro u;f nF rt r

!;\'!; I f.'1

'· /

- PrlOJ UT YPE nr11 nr.•1~[

!iUF I Ut~;r[IJ~ll ~Ull:>E

Figure 2. CAPS Architecture

whether these critical tinting constraints will perform in an acceptable manner that meets

the timing constraints of the system as a whole [Re[5: pp. 2-7].

The CAPS Rewrite Subsystem provides a means for automatically generating uni

form specifications for each reusable software module in the CAPS Software Database

and for each PSDL lower level component. Existing methods for retrieving reusable

modules are based on keywords. The Rc\vrite Subsystem, however, uses an approach

which allows the designer to give more precise PSD L specifications. The Rewrite Sub

system then transforms each specification into a uniform or normal form. This trans-

6

'"" .

formation is achieved by mapping a semantic alias to its normalized term as shown in

Figure 3 on page 8. [Ref. 2: pp. 7-8] These normalized specifications are free from

ambiguity and create a template used by the Software Design Management System

(SDMS) to retrieve software modules from the database with corresponding normalized

specifications [Ref. 7: pp. 3-10).

The SDMS is similar to a database management system with additional features re

quired for computer-aided design applications. The SDYIS is responsible for organizing,

retrieving and instantiating the reusable software modules from the CAPS Database.

Retrieval of reusable modules is supported by the normalized specification templates

described above. The SD :\-1 S instantiates these modules as specified by the designer for

execution of the current PSDL prototype. Overal_l, the SD~IS supports efficient se

lection and retrieval of the relevant software modules. [Ref. 2: p. 9) This minimizes

instances where a non-match requires manual creation of a ne\v soft\varc module before

execution of the prototype occurs.

T\vo distinct subdivisions of the CAPS Database are the Prototype Database and

the Software Database. The first maintains and manages the PSDL prototypes along

with their sets of requirements. It also records successive refinements of the prototype

alternatiYes. This process includes facilities for backtracking to previous versions or for

combining successive design decisions from the different alternatives. [Ref. 4: p. 10]

The Software Database contains the reusable software modules together with their

PSDL nonnalizcd specifications. This database allows future growth as new modules

arc identified for inclusion into the database.

The Execution Support System (ESS), although a component of the CAPS archi

tecture, actually provides the execution support environment for the PSDL prototyping

method. After assembling a prototype of the envisioned system, the three ESS subsys

tems provide the capability to demonstrate the prototype's actual performance. One

subsystem, the Static Scheduler, reads the PSD L prototype source program to identify

and extract the PSD L operators with their timing constraints and precedence relation

ships. For operators with critical timing constraints, the Static Scheduler creates a static

schedule. if a feasible one exists, guaranteeing their accurate execution using worst case

time scenarios. A second subsystem, the Translator. also reads and translates the PSDL

prototype source program to augment implementation of atomic operators and data

types \Vith software code. The Translator accomplishes this by communicating the

PSDL prototype's specifications to the SD:\-1S and assembling the executable prototype

7

TER:\1 ALIASES

READ GET, FETCII, OBTAI~, l~PUT, RETRIEVE

CPDATE CHAXGE, YIODIFY, REFRESH, REPLACE

Replace all occurences of an alias with its term.

Example: "RETRIEVE temperature from thermometer and

REFRESI I the tempcrature_rea<ling"

is normalized to

"READ temperature from thermometer and

CPDA TE temperaturc_reading"

Figure 3. Normalizing a Specification

from the reusable software modules. The final subsystem, the Dynamic Scheduler,

maintains run-time execution control of the prototype using the completed static

schedule. The Dynamic Scheduler must also schedule operators without critical timing

constraints during any excess time slots that remain after each time critical operator

completes execution. [Ref. 3: pp. 6-7]

3. Execution Support Slstem

CAPS as an effective and efficient tool for creating an executable prototype of a

hard real-time system. Rapid construction and validation of a prototype re4uirc an ex

ecution support environment that automates the many time-consuming tasks involved

with developing the design up through analyzing the performance of the prototype.

Although the ESS represents only one component of the CAPS prototyping tool, it is

the primary factor that differentiates CAPS from manual prototyping tools. The ESS

provides automated control and interface capabilities that allow the system to save cur-

8

rent state information when run-time discrepancies are noted and to execute modified

versions of the prototype without repeating the initial steps of the execution

[Ref. 5: p. 7]. These capabilities are essential to realize time and cost savings and to

increase user confidence that the system's design is feasible.

The ESS contains a Dynamic Scheduler, a Static Scheduler, and a Translator. As

conceptualized in Reference 8, Figure 4 on page 10 illustrates the ESS subsystems' ex

ternal interfaces to other components of CAPS and the interactions within the ESS itself.

The ESS utilizes four external interfaces from outside the ESS. Initially, a command

from the CI to the Dynamic Scheduler activates the ESS when the designer requests

execution of the PSDL prototype. Second, the Translator and the Static Scheduler re

quire access to the PSDL prototype source program created jointly by the designer and

the user. Third, the Combiner Linker Exporter (CLE) receives, compiles and links the

Ada source code from the Translator and the Static Scheduler. The executable code

generated by the CLE becomes input to the Dynamic Scheduler for run-time execution.

The final interface from the Dynamic Scheduler to the CI provides prototype execution

statistics, analysis and error message information direct to the designer.

3.1. Dynamic Scheduler

The conceptualized design for the Dynamic Scheduler utilized in this paper derives

directly from Reference 9 and as initially conceived in Reference 3. The Dynamic

Scheduler fulfills two major roles for the CAPS. First, the Dynamic Scheduler exercises

the prototype which is a fundamental requirement of a rapid ·computer-aided prototyp

ing system. Second, prompt feedback from the Dynamic Scheduler to the CI allows the

designer and the user to assess the prototype's execution performance. In order to per

form these roles, the Dynamic Scheduler coordinates the functions of the entire ESS.

In its first role, the Dynamic Scheduler acts as the primary link between the CAPS

CI and the ESS. \Vhen the designer completes the PSDL prototype source program, a

request from the CI (or a potential subsystem of the Cl) to execute the PSDL prototype

is receiv~J by the Dynamic Scheduler. The Dynamic Scheduler in turn invokes the

Translator and the Static Scheduler, and initiates procedures which pre-load data stream

buffers for the Translator. The Translator transforms the PSDL prototype program into

an executable Ada program while the Static Scheduler provides a linear static schedule

for time critical operators. An Ada-compiled implementation of the prototype then be

comes an input to the Dynamic Scheduler. After successful completion of these pre-

9

/ ,

51011C
5tlllUlJLLB

Figure 4. Execution Support System Interfaces

CUPS
u~.1 n

IN I(fH UCl
(lJ I >

UYNIIMIC
5CIIE.IJUL[Jl

con,· 11 HI
l I Ii!'. l r.

EXPllnT In
(l.lf)

. I'

'

execution functions, the Dynamic Scheduler provides all run-time executive activities

while exercising the prototype.

As the ESS driver program, the Dynamic Scheduler has two main responsibilities.

First, it schedules operators without timing constraints that were not included in the

static schedule. The Dynamic Scheduler receives an input file from the Static Scheduler

containing these unscheduled operators. Since the Static Scheduler uses worst case times

C\ilETs) for scheduling the critical operators, on the average these operators will not

utilize the entire allotted time slots. The Dynamic Scheduler identifies this spare capa<.:-

10

Q

ity as it occurs and schedules operators without timing constraints during the time re

maining. In some cases the operators so scheduled may not complete execution during

this time slot. The Dynamic Scheduler must then preempt the operator's execution and

abandon the entire operation before the next pre-scheduled critical operator must begin

execution.

The second ESS responsibility of the Dynamic Scheduler provides run-time excep

tion handling and hardware/operator interrupts. EXCEPTIO~s are raised from the

Translator as either dataflow overloads when an operation attempts to write to a buffer

that is full or dataflow underloads when an operation attempts to read from an empty

buffer. EXCEPTI01's are raised from the Static Scheduler when a critical operator ex

ceeds its worst case (.\.'IET) time slot or validity checks on constraint values indicate a

static schedule is not feasible. In all of these cases, execution of the prototype will stop

and an applicable error message is displayed at the t; I. The Dynamic Scheduler must

also handle conventional interrupts, such as a <control> C from the user or an

equipment failure.

Future enhancements identified in addition to the current Dynamic Scheduler design

would provide debugging capabilities and statistical information. During execution of

the prototype, the debugging capabilities would trace relevant information concerning

operator execution. Computed values and their associated input and output times would

display a record of events that occur during execution. Statistical information collected

during execution would include frequency of operator firing, quantity of EXCEPTIO:'\s

occurring, and statistical data on timing parameters · for critical operators.

[Ref. 3: pp. 10-11] When combined, these two enhancements would provide the de

signer and the user with precise information for measuring, analyzing and validating the

prototype· s performance.

3.2. Translator

The conceptualized design for the Translator utilized in this paper derives directly

from Reference IO and as initially conceived in Reference 3. The Translator's primary

responsibility is the translation of the PSDL prototype source program into an execut

able Ada program that simulates the behavior of the prototype. The Translator ac

complishes this translation by utilizing a version of the Kodiyak translator generator

specifically tailored for this application. The Translator invokes the AG translator pro

gram which semantically parses the PSDL program statements into their Ada program

11

representations. The translator contains a list of PSDL grammar statements with their

associated attribute definition equations that represent the corresponding Ada grammar.

These equations define the semantics of the translation using a structured grammar tree

approach.

Augmentation code for PSDL atomic operators is embedded within the attribute

definition equations. These augmentations implement the PSDL data streams, PSDL

operator conditional constraints and PSD L TI ,\J1 ER functions. Both sampled and data

flow stream augmentations are implemented with individual buffers containing one

computed value for each stream. PSDL operator triggering conditions and output

guards are implemented by the equivalent Ada semantics. A PSDL TI:vtER is imple

mented using the CLOCK function from the standard Ada library package CALE~

DAR.

During the early prototype design phase, any PSDL composite operators are de

composed into atomic operator networks. Reusable modules from the CAPS Database,

considered as Ada program units for this thesis, are inserted as the implementation code

for these operators. The augmentation code described above, combined with these Ada

implementations, produces the prototype's Ada source code. The CLE compiles this

source code and links it with the compiled static schedule to generate the executable Ada

program. This executable program then becomes the input to the Dynamic Scheduler

for execution of the prototype.

4. The Static Scheduler

The conceptualized design for the Static Scheduler utilized in this paper derives from

Reference 8 and 11 and as initially conceived in Reference 3. The primary development

emphasis for CAPS was computer-aided rapid prototyping for hard real-time systems.

By automating many of the time-consuming tasks of conventional rapid prototyping

tools. the ESS and the SD\-1S differentiate the CAPS from its manual or semi-automated

counterparts. But the Static Scheduler subsystem of the ESS alone represents the single

most important component of CAPS as the basic requirement for computer-aided rapid

prototyping of hard real-time systems. The Static Scheduler specifically addresses only

those operators with critical tinting constraints whose precise performance dcternune

whether the system, as designed, will meet the required timing specifications.

As conceptualized, the primary purpose of the Static Scheduler is creation of a static

schedule which gives the precise execution order and timing of operators with hard

12

•

real-time constraints in such a manner that all timing constraints are guaranteed to be

met [Ref. 3: p. 7]. Assuming that such a schedule is feasible given the system specifi

cations, the static schedule contains the pre-allocated starting time and execution time

for each critical operator. This structure implicitly denotes the precedence relationships

between the operators. Without the benefit of a Static Scheduler, execution of the pro

totype would rely on basic control flow and processor scheduling as currently utilized in

the majority of software systems. Rapid prototyping in general would benefit from

CAPS without a static schedule. I Iowever, the Static Scheduler provides CAPS with the

unique capability required to realize increased gains in designer productivity and system

reliability during development of hard real-time systems.

The remainder of this section provides implementation guidelines describing how the

Static Scheduler functions as conceptualized in Reference 8 and 11. The implementation

design in this paper addresses a single processor application only. The impact on or

modification to this design when multi-processors and concurrent processing are utilized

will not be addressed explicitly. Data Flow Diagrams (DFDs) will illustrate the con

ceptualized design for implementation of the Static Scheduler. The 1st level DFD pre

sents a general description of the Static Scheduler while the lower level DFDs contain

more specific implementation guidelines.

4.1. Static Scheduler 1st Le\'el DFD

The 1st Level DFD, Figure 5 on page 14, outlines the five major functions of the

conceptualized Static Scheduler [Ret: 11]. The initial input to_ the Static Scheduler is a

text file containing the PSDL prototype program created jointly by the designer and the

user. An intermediate output to the Dynamic Scheduler is a text file containing the

non-time-critical operators that were extracted from the PSDL program together with

the time critical operators. The final output from the Static Scheduler to the CLE is an

Ada source file containing the static schedule. The CLE compiles and links this program

to the Translator's compiled Ada program. This combined program is the executable

Ada program used by the Dynamic Scheduler to demonstrate the prototype's perform

ance. The following sections describe the functions performed by each lower level DFl).

13

T~T
rlLE

Figure 5. 1st Level DFD

(a) "Read_PSDL"

STATIC
SCHEDULE

Following initiation by the Dynamic Scheduler, the Static Scheduler's first major

function is reading and processing the PSD L prototype program. Although the Trans

lator performs a similar but extensive process for the entire PSD L program, the Static

Scheduler requires only that information which identifies critical operators along with

their associated timing constraints and the link statements which syntactically describe

the PSDL graphs. A specifically tailored version of the AG-based Kodiyak tool for the

Static Sc.:hcduler identifies and extracts this information only from the PSDL source

program. This process creates a seq ucntial text file containing operator identifiers, tim

ing information and link statements.

14

\.

As conceptualized, implementation of the current design is based on two assump

tions. First, this design assumes that the PSD L prototype program is syntactically cor

rect. This implies that each line begins with a PSD L keyword or reserved word. Second,

this design assumes that the designer structured the PSD L prototype program using a

top-down design. This implies that the program begins with the highest level and then

decomposes all composite operators, with the last (or lowest) level being the Ada im

plementation modules. These assumptions are realistic in that PSDL encourages the

designer's use of a structured, modular architecture and also that the CI will include a

syntax-directed editor.

(b) HPre-Process_File"

After the AG processor creates the output text file, the Static Scheduler's next major

function is sorting the contents of this file and performing basic validity checks on per

tinent information. The input text file is a sequentially ordered file containing all re

quired information as it was extracted from the PSDL program. This information must

be divided into three separate files based on its destination or additional processing re

quired. The :\'on-Crits file contains a sequential list of all non-time-critical operator

identifiers ,vhich becomes an intermediate input to the Dynamic Scheduler. The Dy

namic Scheduler schedules these operators during execution of the prototype as excess

time becomes available. The Operator file contains all critical operator identifiers and

their associated tinling constraints. This file is organized as an array of records. Each

record contains fields for the operator identifier and the numeric values of its :Vl ET,

:VIRT, :VlCP, period and fl:\'ISII_ WITH IX The Links file contains the link statements

which syntactically describe the PSD L implementation graphs. This file is also organ

ized as an array of records. Each record contains fields for the data stream identifier

which communicates between the two operators, the producer operator identifier and the

numeric value of its :\IET, and the consumer (user) operator identifier. The derivation

of these link statements appears in the section "Sort_ Topological".

During this phase, the Static Scheduler also performs basic validity checks on the

timing constraints contained in the critical operator file. At a minimum, three validity

checks performed at this stage will increase the probability of creating a feasible schedule

during the later stages. The first check verifies that an operator record containing an

:vi CP value also contains an \ii RT value. Ir the :vi RT is nlissing, it is calculated as either

(:VIRT equals FI~ISI-1_ WITH I~) or (:vtRT equals :\IIET). A second check verifies

15

that an operator's ~ET value do.es not equal its period value, if a period is present in

the record. A third check verifies that an operator's MET value is less than its MRT

value. [Ref. 12: p. 6) In all three cases, if any one of the checks fails an EXCEPTIO~

will be raised and an appropriate error message submitted to the U I. The significance

of these validity checks will become apparent m the section for

"Build_Harmonic_Blocks".

As conceptualized, implementation of the current design is based on two assump

tions. First, this design assumes that critical operators will always include an :vf ET

value. If this value is not present, the operator is assumed non-time-critical and is de

livered to the Dynamic Scheduler. Second, this design assumes that all timing con

straints are non-negative integer values. These assumptions are realistic in that "critical"

here implies maximum or minimum timing constraints. In addition, a negative time

value would be meaningless and the time units available in PSDL (i.e. mille- or micro

seconds) provide sufficient time divisions.

(c) "Sort_ Topological"

After the "Pre_Proccss_File" function creates its output files, the Static Scheduler's

next major function is performing a topological sort of the link statements contained in

the Links file. In order to appreciate the complexity of this topological sort, Figure 6

on page 17 illustrates a PSDL linear augmented graph and its corresponding sorted link

statements. Lower case characters identify data streams which provide data value com

munication paths between two operators. The upper case characters identify the critical

operators. An operator identifier appearing on the left side or the arrow represents a

producer of data. An operator identifier appearing on the right side of the arrow re

presents a consumer (user) of data values. The special word EXTER~AL identifies a

situation where the data input,'output arrivcs:exits the current level of the system under

consideration depending on whether EXTER~AL is located on the left/right of the link

statement. The numerical value on the right side of the colon records the YI ET value

and unit of measurement for the operator identifier on the left side of the colon.

All link statements conform to this same format regardless of the level of decom

position under consideration. However, as these lower levels are encountered, each sin

gle statement could be replaced by or affect two or more statements. As an example,

Figure 7 on page 18 illustrates the decomposition of operator B from Figure 6 on page

17. A comparison of the two figures indicates that two new statements were added:

16

•

10 ms

o.EXTERHAL --> A
b.A : 10 ms --> B
c.B : 20 ms --> C

10 ms

d.C : 10 ms --> [. ~:ter n~"d

"--------------------

Figure 6. PSDL Graph and Link Statements

• bl'.Bl: 5ms--> B2

• b2' . 82 : 10 ms -- > 83

and two statements were modified:

• b . A : 10 ms -- > B is now b . A : IO ms -- > Bl

• c . B : 20 ms -- > C is now c . 83 : 5 ms -- > C

All of the link statements from each level appear sequentially in the Links file as they

were extracted from the PSD L prototype program.

The requirement for a topological sort implies that the statements being sorted have

a natural continuity and connectedness. These properties define the execution preced

ence of the time critical operators regardless of whether the graphs are linear or acyclic.

With a linear graph, the sort establishes a start point by locating the statement con

taining the EXTER:'\AL keyword in the left-hand operator position. Conversely, the

17

r
~,

b.A 10 ms --> Bl
b 1 ·.n 1 5 ms --·., r•"

I -· ·-
b2".G2 10 ms r· -~ ... ,
c.B3 Sm --> C

Figure 7. Decomposition of Operator 8

end point is established by locating a statement containing the EXTER-:'\AL keyword

in the right-hand operator position. The remaining operators are ordered by locating

matches between the right and left-hand operators. Sorting an acyclic digraph differs

only in how the start and end points are established. The sort establishes a start point

by locating the statemcnt(s) having a left-hand operator with no matching right-hand

operator. The cn<l point is established by locating the statement having a right-hand

operator with no matching left-hand operator. An augmented acyclic digraph is illus

trated in Figure 8 on page 19. In this type of digraph, a decision to choose the "a.A"

link first and the "d.:\" link last is arbitrary. In either linear or acyclic, the output is a

precedence list of critical operators stipulating the exact order in which they must be

executed.

As conceptualized, implementation of the current design is based on two assump

tions. First, this design assumes that the link statements are formatted correctly. This

18

,. .

5 m~

4 ms

5 ms

f ts.A 5 ms --> B l
b.O 4 fi~~ - ·-) C
c.C 5 :-:·,r, - - ·) D
d.A 5 r.~

__ ..
D ,·

' L _)

Figure 8. PSDL Augmented Acyclic Digraph

assumption is realistic here and in future designs when the u I contains a syntax-directed

editor. Last, although this design assumes a linear graph, the sort procedure will ac

commodate both linear graphs and acyclic digraphs. The linear sort produces one pre

cedence list ,vhile the acyclic sort produces two or more lists.

(d) "Build_Harmonic_Blocks"

A second output of the "Pre-Process_File" function, the Operator file, is the input

to the next major function of building harmonic blocks. An harmonic block as defined

19

in this thesis is a set of periodic operators where the periods of all its component oper

ators are exact multiples of a calculated base period [Ref. 3: p. 7). This implementation

design treats each harmonic block as an independent scheduling problem. When this

definition is applied to scheduling hard real-time constraints, the design approach re

quires one processor for each harmonic block. This approach utilizes the capabilities

of concurrency and multi-processing which are normally a requirement for complex,

hard real-time systems. The implementation used in this paper addresses a single

processor environment only. Therefore, the procedures utilized in generating the final

static schedule assume that only one harmonic block is created. The following sections

describe how sporadic operators are converted to their periodic equivalents, how the

base period is calculated and how it relates to the harmonic block, and finally, how the

harmonic blocks are created.

The Operator file generated earlier contains all the critical operators with their tim

ing constraints that were extracted from the PSDL prototype program. However, this

file can initially contain both periodic and sporadic operators. Periodic operators arc

triggered for execution at approximately regular intervals. The resultant triggering in

terval, or period, is the governing factor that identifies an operator as periodic. This

periodicity helps insure that execution is completed between the beginning of a period

and its deadline, which defaults to the end of the period. In contrast, sporadic operators

are data-driven, meaning that they arc triggered by the arrival of a new data value or set

of values. Attempts to create a static schedule with sporadic operators would prove

diiTicult, if not impossible, especially when the objective of a static schedule is guaran

teeing execution of operators in a predictable manner. For this reason, sporadic opera

tors arc implemented by their calculated periodic equivalent.

The first preliminary step in creating a static schedule uses an algorithm

[Ref. 3: p. 8] which calculates the periodic equivalent for all sporadic operators. Cse

of this algorithm requires that all sporadic operators (those without periods) have values

for \1CP, \'IRT, and \'IET. If any of these values are missing they must be calculated

from the available information. The \1 RT value was computed during the

"Validate_Data" function. This implementation assumes that YIET is given for all time

critical operators and that either a period, an \1CP, or both are also given for all critical

operators. This author interprets the latter as indicating that an operator with both

values defaults to a periodic operator. The following relationships between these values

must exit to calculate a valid operator:

20

I. MET< MRT

2. YICP < MRT

3. :\1ET < MCP.

The first condition insures that (M RT - MET) produces a positive value. The second

condition is necessary, but it is not sutncient to insure a valid period. This condition

guarantees that an operator can fire at least once before a response is expected. The last

condition insures that the period calculated will conform to a single-processor environ

ment. l Ref. 12: p. 6) The periodic equivalent is then calculated as:

P = minimum (YICP, MRT - MET).

The value of P must be greater than MET in orJer for the operator to complete exe

cution within the calculated period. If this test fails, a last resort is setting P equal to

M CP as a worst case, or tightest, scheduling constraint.

After all operators are in periodic form, they are sorted in ascending order based on

the period values. This sort assumes that all units of time measurement were previously

converted to microseconds. A second preliminary step to creating the static schedule

uses an algorithm which calculates the base block and its period for the sorted sequence

of operators. Within this paper, the base period is defined as the greatest common de

nominator (GCD) of all operators in one sequence (or block) that will be scheduled

together. Two algorithms can be used for determining the GCD. One addresses a

single-processor environment only. This algorithm divides each period value in the se

quence by the smallest period value. \Vhenever a remainder occurs, the denominator is

decreased by one and the process repeats until all remainders equal zero. This algorithm

results in one sequence of periods (the base block) with one base period (the GCD).

The second algorithm, applicable to multi-processor environments, is similar in de

sign but results in one or more base blocks, each having a unique GCD and a upique

sequence of operators. An initial pass through all of the periods results in two se

quences, only one of which is a final base block with a GCD. When division results in

a zero remainder, the period is placed in a primary sequence. When division results in

a non-zero remainder, the period is placed in an alternate sequence. Subsequent passes

only use the most recent alternate sequence. This process is continued until the alternate

sequence equals the null set. This implementation uses the second algorithm for two

reasons. First, although the basic designs are similar, the implementation is more

straightforward. Second, for a single-processor environment, the second pass verifies

21

that all periods were assigned correctly to the first sequence if the alternate sequence

equals the null set.

The last preliminary step to create the static schedule uses an algorithm which cal

culates the length of time for the harmonic block. In a single-processor environment,

the operators and their periods used to create the base block are the same as those in the

harmonic block. The actual harmonic block length is the least common multiple (LC\tl)

of all the operators' periods contained in the block. The algorithm first calculates the

GCD as above for the first pair of periods in the block. The LC\tl is then calculated

by dividing the product of this pair by the GCD. The calculated LC\tl is paired with the

next period in the block, after \Vhich the GCD and LC\tl arc again calculated. The LC\tl

calculated using the last such pair is the LC\tl for the harmonic block. Mathematically,

for a block of four periods the algorithm corresponds to

LE~GTH = LC\'I [{ LC\tl (LC\tl, Pcriod_3), Period_ 4 }].

The harmonic block and its length are an integral part of creating the static schedule.

This block represents an empty timcframc within which the operators will be allocated

time slots for execution.

(e) "Schedule_Operators"

The "Sort_ Topological" and "Buil<l_Harmonic_Blocks" func.:tions generated output

files for Prcce<lencc_Lists and Harmonic_Blocks, respectively. Both of these files are

necessary to create a static schedule for time critical operator~. The Prccedcnce_Lists

file contains the required sequential execution order for all time critical operators. The

llarmonic_Blocks file contains the basic timeframe within which the critical operators

are allocated non-overlapping time slots. The resulting static schedule is a linear table

giving the exact execution start time for each critical operator and the reserved maxi

mum execution time (\IET) within which each operator completes it execution.

The algorithm used in this implementation is a two-step process, both of \Vhich use

the operators' periods and :\1ETs. The first iterative process performs two distinct

futH.:tions. Initially, it allocates an execution time interval for each operator

[Ref~ 13: p. 126] based on

I~TERVAL = (current_time, current_time + \·IET).

~ext the process creates a firing interval for each operator during which the second it

erative process must schedule the operator. The firing interval stipulates the lower and

22

,.

/

upper bound for the next possible start time for an operator based on its period. As an

example, OP _2 in Figure 9 on page 24 is scheduled to begin execution at time 2 and to

complete execution by time 3 based on its MET of I. With a period of 10, OP _2 can

not fire again before time 12, the lower bound. But OP _2 must fire at or before time 21,

the upper bound, in order to guarantee that execution is completed on or before time
.., .,

The second process has three distinct functions. Initially, it uses the lower bound

of each firing interval when it schedules operators during subsequent iterations. The

sequence of operators is allocated time slots according to the earliest, lower bound first.

r or the example in the previous figure, the operators arc scheduleJ in the order { OP_ 1,

OP _2, OP _3 } during the first iteration in this process. Since OP_ 4 has a period of 20

units and the harmonic block length is also 20 units, OP_ 4 is scheduled only once in each

harmonic block. Before an operator is allocated a time slot, this process verifies that

either:

1. (current time + ~ET) < harmonic block length

2. (current time + ~ ET) = < harmonic block length.

The second condition is applicable to the last operator scheduled in that harmonic block

only. Failure to meet either condition results in an infeasible schedule. This situation

raises an EXCEPT I 0~ which halts execution since the tinung constraints of that oper

ator, or of future operators in the next iteration, will not be met.

This process also calculates new firing intervals for each operator scheduled. As an

example, Figure 10 on page 25 shows the static schedule and two harmonic blocks after

three iterations of this process. This example illustrates the importance of calculating

an accurate harmonic block. Once all operators arc correctly s<.:heduled within an entire

harmonic block, all subsequent harmonic blocks are mirror-images of the first -- a static

schedule.

5. Design Environment

During this research effort, a software translator generator tool and a dynamic

programming language provided the environment required to design a feasible Static

Scheduler. The Kodiyak AG translator generator provided a software tool which ex-

tracted the required information from the PSDL prototype source program. The Ada

programming language provided a set of constructs specifically designed for develop-

23

E1ven tne ronowiny 1nrormut1on

rR[C El'lNCL . .1.15 I 5 (Of'_ I • OI '-2. m· -3. Of'-")

HARM0HIC...lll0CL.U.NG J ti 20

OPI ~AJOK JP- Mf_l _t-'lPIOL'

CP_I

!'f'-~
(\f· __ .5

~'!' _1

~'~··. ~ .. • 1 !'•-:_:! ? -- · --- -·-

t.: __ _ ,

3 4

' . I I
r .
• J

'L

-

0

h

:o

3
;,

1

Figure 9. Static Schedule after First Process

10

1U

~-!'

~ '-~

(12.7'1)

(:.:.'1L'J

(t 6 .~5)

' f I

::n

ment of hard real-time or embedded systems. The following sections briefly describe

each of these in terms of designing and implementing the Static Scheduler.

5.1. Kodiyak Translator Generator

Ctilization of CAPS during rapid prototyping of hard real-time systems produces a

PSDL prototype source program of the envisioned software system. The ESS's Static

Scheduler must identify and extract the critical operators and their associated timing

constraints from this PSDL source program before creating the static schedule. The

24

... .

,.

..

ST ,\TIC SCHEDULE·

START END FIRING

OP£R A TOf~_ID TIME .1!m. INTERY6L

OP_1 0 2 (10. 18)

OP-2 2 3 (12.21)

OP....3 3 6 (23,40)

op_4 6 7 (16,25)

or_1 10 12 (20.28)

or--2 12 13 (22 ,31)

or_4 16 17 (26,35)

Of'_1 20 22 (30 ,30)

OP...2 2.2 ~3 (32,41)

ur_3 2::; 26 (43,60)

OP_4 26 27 (36 ,45)

Qf'_1 30 32 (40 ,-13)

er-2 32 33 (¢2.51)

OP_4 3(, 37 (4G .~S)

Hr• .. r.MQNJC eLDCY.:

I 2 ~- ·1 I 2 4 t :.' 3 -I I 2 4 -,., _,,-.- : r--: I . ' I . r I ID
I I I , ~

0 ::; 10 15 20 25 30 35 40
-.. - TIM[

Figure IO. Static Schedule for 2 Harmonic Blocks

Kodiyak automatic translator generator is the tool which provides the Static Scheduler

with the capability to process the PSD L source program. This section begins with a

general description of the Kodiyak tool and concludes with its specific application for

the Static Scheduler.

Kodiyak is an attribute grammar (AG) based tool which automatically generates a

translator. The AG approach provides a way for the designer to assign meanings to

each input string in a context-free manner. Thus, the AG-based source code contains

application specific grammar and attribute equations written in Kodiyak. The compiled

25

output is a translator in C langu'1rge. The translator parses each input string and places

it's translation in a derivation tree whose structure is based on the specified equations.

The structure of the tree, therefore, provides the meaning for each string. Reference 14

and 10 contain detailed information on the Kodiyak translator generator.

5.2. Ada Programming Language

With the increased demand for complex real-time systems, the DOD recognized that

the design and management of these systems required a new development approach.

DOD initiated development of a programming language incorporating new soft\vare

engineering principles including capabilities designed specifically for complex systems.

As a result, implementation of CAPS in Ada will provide a computer-aided rapid pro

totyping tool compatible with and directly related to the development of future complex

software systems. [Ref. I: pp. 3-4]

Early Ada designers recognized that complex software systems required parallel

processing, real-time control, exception handling, and unique input/output (L'O) control

[Ret: I: p. 16]. The designers identified a progranuning style and its associated lan

guage constructs that are fundamental to the development of complex systems contain

ing critical timing constraints. At the highest level, the recommended programming style

includes conventions for organizing program units and for naming entities. Proper use

of Ada's program, task and package units insures a modular design supported by sepa

rate compilation of individual units and by data abstractions. The preferred Ada naming

conventions for all user-defined entities create program code that is easily understood

and self-documenting. The Ada programming language includes a pre-defined language

environment that contains extensive data types, calendar/timing functions, system ex

ceptions, and several levels of 1,'0 operations. However, Ada programming principles

also stress user-defined data types. exceptions, and 1,10 operations to insure precise im

plementations and consistent, self-documenting code.

At a lower level, Ada constructs for task program units containing rendezvous op

erations are integral concepts for prototyping real-time systems. The rendezvous con

structs E:'\TR Y and ACCEPT provide explicit synchronization between two parallel

tasks, supporting both concurrency of operation and precedence relationships between

time critical operators.

26

11

"'

r •

V

6. Conclusion

The goals of this pioneering effort were to demonstrate the feasibility of imple

menting a Static Scheduler for CAPS and to provide guidelines for implementation. This

paper outlined the tools and algorithms required, at a minimum, to implement the Static

Scheduler and to integrate it within the Execution Support System. This empirical study

accomplished these goals while identifying specific areas of concern for future research.

The Kodiyak AG translator generator is an effective and efficient tool for processing

a PSDL prototype source program. An AG processor designed precisely for the Static

Scheduler is fundamental to successful scheduling of critical operators. Misrepresen

tation of or failure to identify operators and their timing constraints negates the benefits

of the best designed scheduling algorithms. Lack of detailed error messages and basic

manuals causes an extensive learning period using trial and end or verbal "pass down".

The A<la programming language provides the constructs and enforces a modular

ized, self-documenting design, which enhance the feasibility of implementing the Static

Scheduler. Cser-defined file and data types allow precise definition of critical operators'

timing constraints. Rendezvous operations using E~TR Y and ACCEPT statements

provide a means to establish and enforce execution precedence among critical operators.

Rendezvous operations provide the backbone of the runtime static schedule created by

the Static Scheduler. Formal demonstration of the Static Scheduler will determine

whether Ada constructs are suflicient and effective in meeting the critical timing con

straints of hard real-time or embedded systems.

Concurrent research projects to conceptualize components of the CAPS Execution

Support System are complete. These individual efforts cmpiric(\lly demonstrate that the

initial goal of providing an automated execution environment for software design or

specification prototypes is feasible. The CAPS will provide software designers with an

automated tool allowing validation of prototypes for hard real-time or embedded sys

tems before extensive time and money arc invested in production software. Additional

research projects arc currently undenvay to conceptualize, implement and integrate the

various components or subsystems of CAPS. Time and effort expended today toward

formal demonstration of CAPS, together with increased usage of the Ada programming

language, promise a future rapid prototyping environment which meets the demanding

needs of the DOD and DO~ soft\vare procurement and development process.

27

LIST OF REFERENCES

1. Booch, G. Software Engineering with Ada, 2d ed., Benjamin,:Cummings Publishing

Co. Inc., Menlo Park, CA, 1986.

2. Luqi and Ketabchi, M. A Computer Aided Prototyping System. Technical Report

~PS52-87-0ll, 1\aval Postgraduate School, 1987 and in IEEE Software, :vtarch

1988, pp. 66-72.

3. Luqi. Execution of Real-Time Prototypes. Technical Report 1'PS52-87-0l 2, Naval

Postgraduate School, 1987 and in ,A CiH First lnternmiona/ 1-Vorkslwp on

Cornputer-Aided Software Engineering. Cambridge, Massachusetts, \fay 1987, Vol.

2, pp. 870-884.

4. Luqi. Research Aspects of Rapid ProtolJ"J-'i11g. Technical Report :\PS52-87-006,

:\aval Postgraduate School, 1987.

5. Luqi. Rapid Proto(vping for Large Software System Design. Ph.D. thesis, Cniversity

of:\:I innesota, \fay 1986.

6. Berzins, V. and Luqi. "Languages for Specification, Design, and Prototyping"

chapter in Handbook of Computer-Aided Software Engineering. Van :\ostrand

Reinhold, 1988.

7. Luqi. i.Vormalized Specifications for Identifying Reusable Software. Technical Re

port :\PS52-87-007, :\'aval Postgraduate School, 1987 and in Proceedings of rhe

A C\1-1 EEE 1987 Fall Joint Conzpurer Conference in Dallas, TX, October 1987, pp.

46-49.

8. Janson, D. A Static Scheduler for the Computer Aided Prototyping System: An Im

plementation Guide. \1.S. thesis, ~aval Postgraduate School, :\-larch 1988.

28

. .,

...

... '

"

9. Eaton, S. A Dynamic Scheduler for the Computer Aided Prototyping System

(CAPS). M.S. thesis, ~aval Postgraduate School, March 1988 .

10. Moffitt, C. A Language Translator for a Computer Aided Rapid Prototyping System.

~1.S. thesis, ?\a val Postgraduate School, :VI arch I 988.

11. O'Hern, J. A Conceptualized Design of a Static Scheduler for Hard Real-Time Sys

tems. :VI.S. thesis, :'\aval Postgraduate School, ~·larch 1988.

12. :vi ok, A. "The Design of Real-Time Programming Systems Based on Process

Models." in the IEEE Proceedings of the Real-Time Systems Symposium in Austin,

TX, December 4-6, 1984, pp. 5-17.

13. :Vlok, A. "The Decomposition of Real-Time System Requirements into Process

:\1 odcls". in the IEEE Proceedings of the Real-Time Systems Symposium in Austin,

Texas, December 4-6, 1984, pp. 125-134.

14. Herndon, R. The /ncornpleat AG User's Guide and Reference Manual.

Technical Report 85-37, Cnivcrsity of :vtinnesota, October 1985.

29

Initial Distribution List

Defense Technical Information Center 2
, 11

Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

