
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

April 1988

Generating a Language Translator Based on
an Attribute Grammar Tool

Herndon, Robert; Luqi
Naval Postgraduate School

R. Herndon and Luqi, "Generating a Language Translator Based on an Attribute
Grammar Tool", Technical Report NPS 52-88-007, Computer Science Department,
Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65245

Downloaded from NPS Archive: Calhoun

NPSSZ-88-OO7

NAVAL POSTGRADUATE SCHOOL
Monterey, California

GENERATING A LANGUAGE TRANSLATOR BASED ON
AN ATTRIBUTE GRAMMAR TOOL

LuQi

Robert Herndon

April 1988

Approved for public release; distribution is unlimited

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

K. T. Marshall
Acting Provost

This report was prepared in conjunction with research conducted
under the Naval Postgraduate School Foundation Research Program.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

VINCENTY.
Chairman
Department of Computer Science

/

LUQI~
Associate Professor
of Computer Science

Released by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl~UTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-88-007

• 6a. NAME OF PERFORMING ORGANIZATION 6b . OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (If applicable) Naval Postgraduate School 52

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

Sa. NAME OF FUNDING/ SPONSORING 8b. OFF ICE SYMBOL 9 . PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Naval Postgraduate School

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Monterey, CA 93943 ELEMENT NO . NO. NO . ACCESSION NO.

11 . TITLE (Include Security Classification)

GENERATING A LANGUAGE TRANSLATOR BASED ON AN ATTRIBUTE GRAMMAR TOOL (U)

12. PERSONAL AUTHOR(S)
LUQI, HERNDON, Robert

13a. TYPE OF REPORT 113b. TIME COVIHD M 88 114. DATE OF REPORT (Year,Month,Day) 115. PAGE COUNT
FROM Oct TO ar APRIL 1988 22

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify bl block number)

FIELD GROUP SUB-GROUP rapid prototyping, attribute grammars, trans ator generator,
Ada, specification languag_e, embedded system design,
application generator, computer aided software engineering

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A translator for the prototyping language PSDL is an important part of the associated
computer-aided prototyping system. PSDL enables the prototype designer to rapidly
construct prototypes of real-time systems by adapting and interconnecting reusable Ada
software components. This paper describes the design of an experimental version of such
a translator and its rapid implementation using an attribute grammar and a translator
generation tool.

I

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION
£l UNCLASSIFIED/UNLIMITED k) SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TEbEPH~N2 ~nc~de Area Code) 122c. OFFICE SYMBOL
LUQI (408 64 - 3 52Lq

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. ~ U.S. Government Printing Office: 1986-606•243

UNCLASSIFIED

'

I
I
I
I

j
Generating a Language Translator based on an Attribute Gram' mar Tool1

Luqi /
Naval Postgraduate School Monterey, California 93943

Robert Herndon I
University of Minnesota Mpls, MN 55 455

ABSTRACT /
I

I

KEYWORDS

rapid prototyping, attribute grammars, translator generator, Ada2
, :;pecification language, embedded system

design, application generator, computer aided software engineering

INTRODUCTION

We believe that computer aided prototyping shows promise. The Computer Aided Prototyping Sys

tem (CAPS) system frees designers from many implementation details by constructing executable

specifications from reusable components maintained by a software design management system [Luqi

1988a]. This system is particularly intended for the development and testing of real-time and control

specifications and applications.

Our approach to rapid prototyping uses an prototyping language (PSDL - Prototype System Descrip

tion Language) [Luqi 1988c] integrated with a set of software tools, including a user interfaces to speed up

design entry and prevent syntax errors, an execution support system to demonstrate and measure prototype

behavior and to perform static analyses of the prototype design, a software design-management system to

manage reusable software components and design data, a software base to store reusable components, and

a design database to store the prototype design. The prototyping language is an integral part of the CAPS

software tools, since PSDL specifications are used by the software design management system for organiz

ing and retrieving Ada reusable components in the software base. The prototyping language allows the

1This research was supported in part by the National Science Foundation under grant number CER-8710737.
2Ada is a registered trademark of the United States Government Ada Joint Program Office.

1

designer to use dataflow diagrams with n on-procedural control constraints as part of the specification of a

hierarchically structured prototype. The 1 ·esulting description is free from programming level details, in

contrast to prototypes constructed using a 1 'lrogramming language. The underlying computational model

unifies data flow and control flow, providing . a vehicle suitable for developing top-down decompositions.

' Such decompositions allow large prototypes to ,be executed with practical computation times, in contrast to

prototyping by simulating specifications via logi;c programming without providing a system architecture

[Luqi 1988b].

PSDL is optimized for use at the specification and design level. The structure of the language

encourages modular design of the prototype, and by exte1nsion the eventual production version. Special

structures exist for describing real-time systems.

Two kinds of building blocks, representing func:tion and data abstractions in PSDL, are used for

constructing a PSDL prototype: operator and data type. , A PSDL description represents a system decompo

sition as operators communicating via data streams. Ea1ch data stream carries values of a fixed abstract data

type. Each data stream can also contain values of th.e built-in type "exception". The operators may be

either data driven or periodic. Periodic operators haV'e traditionally been the basis for most real-time sys

tem design, while the importance of data driven operators for real-time systems is recognized [Luqi 1986].

Such a description is based on the PSDL computational model. Formally the computational model is an

augmented graph

G = (V, E, T(v), C(v))

where Vis the set of vertices, Eis the set of edges, T(v) is the maximum execution time for each vertex v,

and C(v) is the set of control constraints for each vertex v. Each vertex is an operator and each edge is a

data stream. The first three components of the graph are called the enhanced data flow diagram.

Abstractions are an important means for controlling complexity [Berzins 1988a]. This is especially

important in rapid prototyping because a system must appear to be simple to be built or analyzed quickly.

PSDL supports three kinds of abstractions: operator abstractions, data abstractions, and control abstrac

tions. First two are mentioned in the previous paragraph. Control abstractions in PSDL are extracted by

the computational model and are represented as enhanced data flow diagrams augmented by a set of non

procedural control constraints. Periodic execution is supported explicitly since it is a common property of

2

real-time systems. Conditional execution is supported by PSDL triggering conditions and conditional out

puts.

Prototyping languages support executable specifications. There are two approaches to making a pro

totyping language executable, one based on meta-programming and the other on executable specifications

[Berzins 1988b]. The PSDL prototyping language uses the first approach -- PSDL programs are

specifications of the desired systems' behavior. It is an executable program whose behavior can be tested if

all required information is supplied. The software base contains implementations for all atomic operators

and types. The language uses the enhanced dataflow diagram as a basis for combining operators. Control

constraints and timing constraints are the fundamental mechanisms to aid execution. Ada is used for

implementing both the PSDL reusable components in the software base and the PSDL execution support

environment.

EXECUTION SUPPORT SYSTEM

The PSDL Execution Support System [Luqi 1987] contains a static scheduler, a translator, and a

dynamic scheduler. The static scheduler produces a static schedule for the operators with real-time con

straints. The static schedule is a piece of Ada code containing calls to the program units implementing the

operators to be scheduled. The translator augments the implementations of the atomic operators and types

with Ada code realizing the data streams and activation conditions, resulting in an set of executable Ada

programs for realizing the prototype system. Execution is under the control of the dynamic scheduler,

which schedules the operators without real-time constraints. Figure 1 describes the functions of each com

ponent of the Execution Support System and the relationships among them.

The translator generates executable Ada code for PSDL operators and data streams [Moffitt 1988].

As a research tool, translator itself must be easily modifiable to reflect changes in PSDL or changes in the

mapping from PSDL to Ada. This is accomplished by using an attribute grammar to define the translator at

a high level, and an automated tool to generate the detailed code for parsing and translation. Experimen

tally, the translator generates Ada code to implement the operators as procedures which will be called by

the Ada program generated by the Static Scheduler. One example of a change to the translation to be

explored in future research is a buffer elimination optimization which would use Ada packages to imple-

3

TRANSLATOR

DYNAMIC
SCHEDULER

STATIC
SCHEDU.ER

EXECUTING
AdaPROGRAM

Figure 1. Execution Support System

ment PSDL state machines. The translator is responsible for instantiating generic packages which realize

the data stream buffers between operators. The translator also ensures that all operator triggering condi

tions are encoded correctly, and that the Timer data type and the Exception data type are available if

needed in the final model.

The static scheduler examines the PSDL source file to identify all operators having real-time con

straints and to determine the precedence relations among the operators [Janson 1988, O'Hern 1988]. The

static scheduler produces a schedule which talces into account the worst case time requirements for all

4

·-

operators that have critical, real-time constraints such as a maximum execution time, minimum calling

period, and minimum response time. This information is encoded into the Ada program to enforce timing

constraints at run-time.

The dynamic scheduler operates at run-time along with the prototype model [Eaton 1988]. It is

designed to control the execution of all non-critical operators within the program. A noncritical operator is

one which is not subject to hard real-time constraints. The dynamic scheduler is invoked at run-time when

ever there is spare time within the static schedule. The dynamic scheduler commences execution of the

next available Ada program in its set of operators and continues to invoke non-critical modules until the

available time is exhausted. At that point, operation of the dynamic scheduler is interrupted and control is

returned to the static scheduler to continue the time critical operations.

MAPPING FROM PSDL CONSTRUCTS TO ADA

It is necessary to develop a mapping from the constructs of PSDL to the constructs of Ada in order to

build a translator. The mapping is relatively straightforward because PSDL was designed to abstract and

simplify the constructs of Ada relevant to the design of real-time systems. The semantics of some of the

fundamental constructs of PSDL are explained below along with a possible implementation mapping into

Ada. This mapping corresponds to an experimental version of the PSDL translator currently under

development

1. Operator

An operator is either a function or a state machine. When an operator fires, it reads one data object

from each of its input streams, and writes at most one data object on each of its output streams. The output

objects produced when a function fires depend only on the current set of input values. The output values

produced when a state machine fires depend on the current set of input values and the current values of a

finite number of internal state variables. Operators of these two types are useful for prototyping real-time

systems.

Operators are either atomic or composite. Atomic operators cannot be decomposed in the PSDL

computational model. Composite operators have realizations as data and control flow networks of lower

level operators.

s

The Operator construction of PSDL is implemented by producing an Ada procedure. This procedure

c.ontains code to implement input and output to PSDL data streams, PSDL triggering conditions, and PSDL

c.onditional output statements. Before presenting an example of this construction it will be necessary to

describe the implementation of the PSDL data streams.

2. Data Streams

A data stream is a communication link connecting exactly two operators, a producer and a consu

mer. Communication links with more than two ends are realized using copy and merge operators. Each

stream carries a sequence of data values.

There are two types of data streams - dataflow streams and sampled streams. A dataflow stream

guarantees that none of the data values are lost or replicated, while a sampled stream guarantees the most

recently generated data value is always available. Dataflow streams are used to control operators subject to

the natural dataflow firing rule. Sampled streams are used to connect operators that fire at incompatible

frequencies.

A PSDL stream is mapped into a buffer capable of holding one data value. Since a buffer may be

read by an operator executing independently of the operator writing into the buffer, they must be protected

from data conflicts due to concurrent access. Consequently buffers are embedded in Ada tasks and read or

written via task entries, to provide mutually exclusive access. The buffer manager task can be declared

inside a generic package to make it easy for the translator to create a separate buffer manager task for each

PSDL data stream. Thus each PSDL data stream is implemented by an instance of a generic package.

Two kinds of buffers are needed, corresponding to the two kinds of data streams in PSDL. Sampled

buffers are used to implement sampled streams and FIFO buffers are used to implement dataflow streams.

The difference between the two kinds of buffers is that a FIFO buffer makes sure that every value written

into the buffer is read exactly once before the next value is written into the buffer. Violations of this con

straint are reported via Ada exception conditions. There are two possible exceptions: Underflow and

Overflow. Underflow is raised if the consumer operator attempts to read the buffer before it has been

updated by the producer operator. Overflow is raised if the producer attempts to write to the buffer before

the consumer has read the previous data value. There are no constraints on the order a sampled buffer is

6

_,.

accessed, and no associated exception conditions.

3. Data Triggers

The translator must select the appropriate type for buffer for a given data stream according to the

triggering conditions of the consumer operator associated with the stream. There are two types of data

triggers for PSDL operators.

OPERATOR p TRIGGERED BY ALL x, y, z

OPERATOR q TRIGGERED BY SOME a, b

In the first example the operator p is ready to fire whenever new data values have arrived on all three of the

input arcs x, y, and z. This rule is a generalized fonn of the natural dataflow firing rule since in PSDL a

proper subset of the input arcs can determine the triggering condition for an operator, without requiring

new data on all input arcs. This kind of data trigger can be used to ensure that the output of the operator is

always based on fresh data for all of the inputs in the list, and can be used to synchronize the processing of

corresponding input values from several input streams.

In the second example, the operator q fires when any of the inputs a and b gets a new value. This

kind of activation condition guarantees that the output of operator q is based on the most recent values of

the critical inputs a and b mentioned in the activation condition for q. If q has some other input c, the out

put of q can be based on old values of c, since q will not be triggered on a new value of c until after a new

value for a or b arrives. This kind of trigger can be used to keep software estimates of sensor data up to

date.

If an operator mentions a data stream in a TRIGGERED BY ALL condition then a FIFO buffer will

be selected for the stream. If the operator mentions a data stream in a TRIGGERED BY SOME condition

then a sampled buffer will be selected for the data stream. If an operator does not mention an input stream

in either kind of triggering condition than a sampled buffer will be selected also. It is illegal for an opera

tor to mention the same data stream in both a TRIGGERED BY ALL and a TRIGGERED BY SOME con

dition, since this would introduce an inconsistency. For example, in Figure 2, operator T has four input

streams. The specification for Tis TRIGGERED BY ALL D, F, H. The translator will select FIFO buffers

7

for streams D, F, and H. Stream G will be a sampled buffer. In the same figure, operator P has four input

streams. The specification for Pis TRIGGERED BY SOMER. In this case all data streams will be sam

pled. Again in Figure 2, operator FF has two input streams. The specification for FF lacks a TRIGGERED

BY token, so that both streams will be sampled. The triggering conditions for the consumer operator deter

mine the type of each data stream.

d
by ell d,f,h

triggered by some r

(no triggered by token)

Figure 2. Queue selection based on the "TRIGGERED BY" construct

8

....

There is one more issue related to buffer management that must be addressed. The static scheduler

generates a schedule for the time critical operators and this schedule is enforced to ensure real-time con

straints are met Some operators do not have time critical constraints. These operators are executed during

unused time periods in the schedule for the time critical operators. It is possible that a time critical operator

is the consumer of a data stream produced by a non time-critical operator. The time critical operator has

priority and is scheduled to run by the static scheduler in some repetitive cycle. The non time-critical

operator is fired at the convenience of the dynamic scheduler, in the excess time in the main schedule. A

non time-critical operator can be attempting to write to a data stream when it is interrupted by the dynamic

scheduler in order to run a time critical operator. If the time critical operator is the consumer for the data

from the non time-critical operator, it may be unable to read a value from the buffer because the buffer task

is not ready to execute an accept statement, and is blocked because the execution of the non time-critical

operator has been preempted.

This difficulty can be overcome by giving the buffer tasks an even higher priority than the time

critical operators. In this way, once the buffer task is called, whatever operation is taking place on the

buffer must be allowed to complete before an interrupt can take place, since the priority associated with a

rendezvous is the higher of the priorities of the two tasks involved. This will guarantee that no process can

hang up the system by getting blocked in the middle of a buffer operation. The operation time for any

buffer task is be very short, so there should be little time penalty in switching between tasks. Figures 3 and

4 contain Ada code implementing the two types of buffer tasks, SAMPLED STREAM and FIFO.

The get and put operations of the buffers are for reading and writing the values in the buffer. The

check operations are used in the implementation of TRIGGERED BY ALL and TRIGGERED BY SOME

to determine if a new data element is present in the buffers. These checks are performed each time an

operator with a data trigger is scheduled to execute. If the triggering condition evaluates to false, the

operator is not fired and control is passed to the dynamic scheduler to utilize the unused time slot. 4.

Buffer Selection Conflicts

A problem which arises in buffer selection is illustrated in Figure 5. In this case a high level operator

is decomposed into three lower level operators. The designer will enter a specification for both the top

level operator A and for the lower level operators BB, CC, and DD. Suppose operator A is TRIGGERED

9

generic type ELEMENT _TYPE is private;
package SAMPLED is

task SAMPLED_BUFFER is
entry CHECK (NEW _DATA : out BOOLEAN);
entry PUT (VALUE : in ELEMENT_TYPE);
entry GET (VALUE : out ELEMENT_TYPE};

end SAMPLED_BUFFER;
end SAMPLED;

package body SAMPLED is
task body SAMPLED_BUFFER is
BUFFER: ELEMENT_TYPE;
VALUE : ELEMENT_TYPE;
NEW _DATA_ VALUE: BOOLEAN:= false;

begin
loop

select
accept CHECK (NEW _DATA : out BOOLEAN) do

NEW_DATA :=NEW_DATA_VALUE;
end CHECK;

or
accept GET (VALUE : out ELEMENT_TYPE} do

VALUE := BUFFER; NEW _DAT A_ VALUE := false;
end GET;

or
accept PUT (VALUE : in ELEMENT_TYPE) do

BUFFER := VALUE; NEW _DAT A_ VALUE := true;
end PUT;

end select;
end loop;

end SAMPLED_BUFFER;
end SAMPLED;

Figure 3. A Sampled Stream Buffer Task

BY ALL a. Also suppose that operator BB does not contain the TRIGGERED BY ALL tokens. When the

translator selects a buffer task for a, it will instantiate a FIFO buffer task to implement a. For BB, it would

select a sampled stream task to implement a'. Although a and a' carry the same data, they have not been

implemented with the same type of buffer. The translator does not presently check inheritance rules. In

operation data would be placed onto a and would then be passed to a' and into BB. The user must prevent

this type of error by ensuring that lower level operators which result from the decomposition of a higher

level operator have the same triggering conditions at the input in order to prevent the buffer mismatch just

demonstrated. This difficulty arises only for lower level operators which read the same input streams as the

higher level operator. This is true because the type of buffer required at any point in the system is deter

mined by the triggering conditions of a consumer operator. Therefore, decomposition rules do not affect

10

generic type ELEMENT_TYPE is private;
package FIFO is

task FIFO_BUFFER is
entry CHECK (NEW _DATA : out BOOLEAN);
entry PUT (VALUE : in ELEMENT_TYPE);
entry GET (VALUE : out ELE:MENT_TYPE);

end FIFO_BUFFER;
BUFFER_READ_ERROR, BUFFER_ WRITE_ERROR : exception;

end FIFO;

package body FIFO is
task body FIFO_BUFFER is
BUFFER: ELEMENT_TYPE;
VALUE : ELEMENT_TYPE;
NEW _DATA_ VALUE: BOOLEAN:= false;

begin
loop

select
accept CHECK (NEW _DATA : out BOOLEAN) do

NEW _DATA:= NEW _DATA_ VALUE;
end CHECK;

or
accept GET (VALUE : out ELEMENT_TYPE) do
if NEW _DATA_ VALUE then

VALUE := BUFFER; NEW _DAT A_ VALUE := false;
else raise BUFFER_READ _ERROR; end if;

end GET;
or
accept PUT (VALUE : in ELEMENT_TYPE) do
if not NEW _DATA_ VALUE then

BUFFER:= VALUE; NEW_DATA_ VALUE:= true;
else raise BUFFER_ WRITE_ERROR; end if;

end PUT;
end select;

end loop;
end FIFO_BUFFER;

end FIFO;

Figure 4. A FIFO Buffer Task

the specification requirements of operators CC and DD in Figure 5. However, if A is TRIGGERED BY

ALL a, then BB must be TRIGGERED BY ALL a'. Presently the translator does not enforce this con

straint, although refinements addressing this issue are planned.

5. The State Buffers

A final issue in data stream implementation is initializing PSDL state variables to the values desig

nated by the associated PSDL declaration STATES INITIALLY. Each state variable will have its own

11

Top~Q.
o~ro..{:o'f'

o..s °" f"'"°'t~~

~r\ol ~vet
cJ.,s,.cer,t11 p~i.-t.t OW'\

CC ,s. A. ~ M~~

d.

Figure 5. Stream Type Inheritance

buffer task. An example is shown in Figure 5. Operator CC is a state machine. It has a state variable

which is transmitted along buffer task D. The data value traveling along D must have some initial value.

That value is found in the ST A TES INITIALLY statement in PSDL. To insure the correct initial value for

the state variables in the program, buffer task D must be loaded with the correct value prior running the

prototype. An Ada procedure called PRELOAD is produced by the translator for all PSDL prototypes,

containing a series of calls on the "put" entries of the buffer tasks to put the correct initial values into the

appropriate buffers. If there are no state variables in the program, the procedure is empty. The static

scheduler must call PRELOAD before the execution of any schedule it creates for the prototype. The

preloading procedure is not part of the scheduler proper. It is run once to initialize the state buffers and is

not run again unless the prototype program is restarted from the beginning.

IMPLEMENTATION OF THE TRANSLATOR

12

The translator is created using an automated translator generator called Kodiyak. Kodiyak was

developed at the University of Minnesota [Herndon 1985, Herndon 1988a]. It is available as a research

tool and is quite effective. The system is based on Knuth's attribute grammars [Knuth 1968]. It utilizes a

variation of Jalili's algorithm [Jalili 1983] to evaluate the semantic tree it creates when generating a trans

lation. More details about generating translators using attribute grammars can be found in [Reps 1983].

Producing a translator with Kodiyak requires a translator description consisting of three major com

ponents. This translator description is a formal description of the terminal and non-terminal tokens of the

source language to be translated, a list of the attributes each token possesses, and any precedence relation

ships that may be required to properly evaluate ambiguous cases in the grammar. Finally, the file contains

a set of attribute equations that describe the relationship between the source language (in this case PSDL)

and the target language (in this case Ada). The translator generator system, Kodiyak, utilizes these equa

tions to produce C, Yacc, and Lex specifications that are compiled to produce an executable translator. By

running this program with a text file in the source language (PSDL) as input, an output file is created which

contains the derived code in the target language (Ada).

As noted earlier, the translator is generated with an automatic translator generator called Kodiyak.

The translator implementation is straightforward. Figure 6 illustrates the process.

Once the executable translator is created, it can be given any source program in PSDL and will out

put a source program in Ada. The essential difficulty is to specify the mapping between PSDL and Ada,

such that the results of translation will be correct, compilable Ada code which will faithfully implement the

system described in PSDL in Ada.

The translator generated by Kodiyak is capable of scanning an input file written in a specific

language, parsing it, locating syntax errors, and if no errors are present, producing a translation in an output

text file. The text file output can be a source program in another language.

In the present case the input language is PSDL and the output language is Ada. Kodiyak requires a

description of the syntax of PSDL together with attribute equations. The attribute equations map PSDL

constructs to the constructs of the target language Ada according to the mappings derived in the previous

section.

13

1. PSDL GRAMMAR IN
KODIYAK

2. MAPPING BETWEEN
PSDL & Ada IN
ATTRIBUTE EQUATIONS

N3TOOL

1. PRE-PROCESSOR

2. LEX

3. Yacc

TRANSLATOR

Figure 6.

Kodiyak is an attribute grammar based tool that generates executable translators. Particular transla

tors are capable of scanning an input file written in a specific language, parsing it, locating any syntax

errors, and if no errors are present, producing a translation in the form of an output text file. The text file

output can then be compiled, linked, and exported to the operating system. In the present case the input

language is PSDL and the output language is Ada. Kodiyak requires a description of the syntax of PSDL

in attribute grammar form. The BNF grammar of PSDL must be related to the target language Ada. Figure

7 illustrates the various portions of the input file for the PSDL to Ada translator.

14

The first section of any Kodiyak file is the Lexical Definition section. In this section all the lexical

symbols which make up the input language are defined. The %define line allows the definition of a vari

able name, e.g., DIGIT, which can be used in subsequent lexical definitions. All terminal symbols in the

language are defined in this section. These are the tokens which the translator will expect to detect in the

input file.

The next section of the Kodiyak file is the attribute declarations section. Here the attributes which

non-terminal and terminal symbols may have are identified. In Figure 7 the non-terminal, operator_spec, is

Lexical Definition Section:

Terminal Symbols

%define ALPHA :[a_zA_Z]
%define DIGIT :[0-9]
OPERATOR :operatorlOPERA TOR
MAX_EXEC_TIME :maximum execution timelMAXIMUM EXECUTION TIME

Attribute Declarations Section:

Grammar Symbols Attributes

operator_spec
max_exec_time
ID

{ tm: string; } ;
{ tm: string; } ;

{ %text: string; } ;

Attribute Grammar Section:

Grammar Symbols Attribute Equations

time
:NUMBER unit

{time.tm = [NUMBER.%text,unit.trn];}

unit
:MICROSEC

{unit.tm = ""; }
IMS

{unit.tm = "000";}

Figure 7. Sample From the Kodiyak Input File Specification For translator

15

assigned one attribute, trn, which is of type string. Kodiyak allows attributes to be either string, integer, or

map types. All attributes of the present translator are of type string since the objective is to convert a text

file of PSDL into a text file of Ada.

Attributes of terminal symbols are restricted. In Figure 7, the terminal ID has the attribute, %text

This is a special attribute for terminal symbols, identified in Kodiyak by the % marker. It is a string

valued attribute and is initialized to the text matched by the terminal symbol.

The final portion of the Kodiyak input file is the attribute grammar itself. Here the syntax and

semantics of the translation are specified. The BNF rules of the PSDL are defined and each is associated

with an equation defining the attributes and their relation to the target language.

The brief discussion here does not reveal the full power and capabilities of Kodiyak. However, it

should illustrate that Kodiyak provides simple yet effective means to accomplish translator generation.

CONCLUSION AND FUTURE RESEARCH

Currently the CAPS system is under development as a set of separate components. Conceptual work has

been completed for the design of both the Static and Dynamic Schedulers. Implementation of the concep

tual designs must be undertaken. The feasibility of the Translator has been demonstrated empirically. The

Translator requires a rigorous, formal definition of the relationship between PSDL and Ada syntax. This

definition must then be applied to the attribute equations in the Translator to achieve general applicability

and the fullest use of PSDL's and Ada's capabilities.

The present version of Kodiyak used to generate the translator is an excellent tool. It generates an

effective easily modified translator. However, some improvement in the error messages returned to the

user when the translator is applied to a syntactically incorrect input file is needed, and no semantic error

checking is performed. As the system develops, syntactic error recovery rules and additional attributes and

attribute equations for semantic checks will have to be added to improve the robustness of the PSDL trans

lator and prototypes.

Efforts to integrate the various parts of CAPS are being deferred as development proceeds on

remaining portions of the system. At present work has commenced on the Software Base management

16

..

System at the conceptual and, to a limited degree, the empirical levels. Work is underway to develop the

syntax directed editor for the system and portions of the graphic interface. As the remaining portions of the

system are developed work will be required to integrate all the individual tools into an integrated work

environment.

Automated facilities to translate a prototyping language into an underlying implementation language

are feasible, and are a working reality at this time. Much work remains to develop the formal basis for the

concept. The aims of this research effort are to create a sound foundation for the development and use of

highly automated program development environments. Such environments are designed to improve pro

ductivity in software development and are a first small step on the way to fully automatic generation of

complete programs from specifications. Before progress toward that end can be made, solid theory and

empirical demonstration of principles in several areas must be made.

REFERENCES

[Berzins 1988a]
V. Berzins, Luqi, Software Engineering with Abstractions: An Integrated Approach to Software
Development using Ada, Addison-Wesley, 1988.

[Berzins 1988b]
V. Berzins, Luqi, Languages for Specification, Design and Prototyping, Chapter in Handbook of
Computer-Aided Software Engineering, Van Nostrand Reinhold, 1988.

[Eaton 1988]
S. Eaton, An Implementation Design of a Dynamic Scheduler for a Computer Aided Prototyping Sys
tem, M. S. Thesis, Naval Postgraduate School, March, 1988.

[Herndon 1985]
R. Herndon, The Incomplete AG User's Guide and Reference Manual, University of Minnesota,
Computer Science, Technical Report 85-37, October 1985.

[Herndon 1988a]
R. Herndon, and V. Berzins, AG: A Useful Attribute Grammar Translator Generator, to appear in
IEEE TSE 1988. Also Tech. Report 85-25, Computer Science Department, University of Minnesota,
1985.

[Herndon 1988b]
R. Herndon, Attribute Grammar Systems for Prototyping Translators and Languages, Ph.D. disserta
tion, University of Minnesota, 1988.

[Jalili 1983]
F. Jalili, A General Linear-Time Evaluator for Attribute Grammars, ACM SIGPLAN Notices, Vol.
18, No. 9, September 1983, pp. 35-44.

[Janson 1988]
D. Janson, A Static Scheduler for Hard Real-Time Constraints in the Computer Aided Prototyping
System, M. S. Thesis, Naval Postgraduate School, March, 1988.

[Knuth 1968]
D. Knuth, Semantics of Context-Free Languages, Math. Syst. Theory Vol. 2, No. 2, June 1968, pp.
127-145.

17

[Luqi 1986]
Luqi, Rapid Prototyping for Large Software System Design, Ph.D. dissertation, University of Min
nesota, 1986.

[Luqi 1987]
Luqi, Execution of Real-Time Prototypes, ACM First International Workshop on Computer-Aided
Software Engineering, Cambridge, Massachusetts, May 1987, Vol. 2, pp. 870-884.

[Luqi 1988a]
Luqi, M. Ketabchi, "A Computer Aided Prototyping System," IEEE Software, March 1988, pp. 66-
72.

[Luqi 1988b]
Luqi, Specification Languages in Computer Aided Software Engineering, to appear in Proceedings of
IEEE Systems Design and Network Conference, Santa Clara, CA, April, 1988.

[Luqi 1988c]
Luqi, V. Berzins, R. Yeh, A Computer Aided Prototyping System, to appear in IEEE TSE, 1988.
Also Technical Report 86-4, Computer Science Department, University of Minnesota, Jan. 1986.

[Moffitt 1988]
C. Moffitt, II, A Language Translator for a Computer Aided Rapid Prototyping System, M. S. Thesis,
Naval Postgraduate School, March, 1988.

[O'Hem 1988]
J. O'Hem, A Conceptual Design of a Static Scheduler for Hard Real-Time Systems, M. S. Thesis,
Naval Postgraduate School, March, 1988.

[Reps 1983]
T. Reps, Generating Language Based Environments, Ph. D. Thesis, University of Massachusetts,
Amherst, 1983.

18

Initial Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 2037 4-1662

Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center
NAVCOMJ\.1UNIT Washington
Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

2

2

1

2

2

2

1

1

1

1

Ada·,Joint Program Office 1
OUSDRE(R&AT)
The !Pentagon
Washington, D.C. 230301 .
Naval Sea Systems Command 1
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense 1
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center 1
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

