
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1999-11

Approximate declarative semantics for rule
base anomalies

Zhang, Du; Luqi
Elsevier

Zhang, Du and Luqi. "Approximate declarative semantics for rule base anomalies."
Knowledge-Based Systems 12.7 (1999): 341-353.
https://hdl.handle.net/10945/65274

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Approximate declarative semantics for rule base anomalies

Du Zhanga,* , Luqib

aDepartment of Computer Science, California State University, Sacramento, CA 95819-6021, USA
bDepartment of Computer Science, Naval Postgraduate School, Monterey, CA 93943, USA

Received 1 December 1998; received in revised form 9 June 1999; accepted 18 June 1999

Abstract

Despite the fact that there has been a surge of publications in verification and validation of knowledge-based systems and expert systems in
the past decade, there are still gaps in the study of verification and validation (V&V) of expert systems, not the least of which is the lack of
appropriate semantics for expert system programming languages. Without a semantics, it is hard to formally define and analyze knowledge
base anomalies such as inconsistency and redundancy, and it is hard to assess the effectiveness of V&V tools, methods and techniques that
have been developed or proposed. In this paper, we develop an approximate declarative semantics for rule-based knowledge bases and
provide a formal definition and analysis of knowledge base inconsistency, redundancy, circularity and incompleteness in terms of theories in
the first order predicate logic. In the paper, we offer classifications of commonly found cases of inconsistency, redundancy, circularity and
incompleteness. Finally, general guidelines on how to remedy knowledge base anomalies are given.q 1999 Elsevier Science B.V. All rights
reserved.

Keywords:Knowledge base anomalies; Inconsistency; Redundancy; Circularity; Incompleteness; Knowledge base verification

1. Introduction

The last decade has witnessed a surge of publications in
verification and validation (V&V) of expert systems and
knowledge-based systems which resulted in several books
[1,2], and special issues of several journals [3–6]. Major AI
conferences have had workshops and special sessions that
were devoted to the issue. A sample of additional publica-
tions can be found in Refs. [7–40]. Many V&V methods,
techniques and tools have been proposed, developed or
implemented for expert system applications. On the other
hand, advances in knowledge engineering have resulted in
better methodologies and practice that aim at reducing
errors and faults during system development and mainte-
nance [41–44]. Despite all these activities, there are still
gaps in the study of V&V of expert systems, not the least
of which is the lack of appropriate semantics for expert
system programming languages. Without a semantics, it is
hard to formally define and analyze knowledge base (KB)
anomalies such as inconsistency and redundancy, and it is
hard to assess the effectiveness of V&V tools, methods and
techniques that have been developed or proposed.

V&V of expert systems in general and V&V of KB in
particular need to be based on a sound theoretical founda-
tion. However, the reality is that “the construction of either
declarative or Hoare-style semantics for current rule-based
languages is a hopeless task” [31]. In the long run, concern
for verifiability and reliability should lead to the develop-
ment of programming languages with tractable semantics
for expert system applications. In the meantime, some
approximate semantics (declarative or imperative) is needed
to enable a formal analysis of properties of expert system
components (such as a KB). For example, sketches of an
approximate declarative semantics, which is based on a
logical interpretation of a rule base, and an approximate
imperative semantics, which is based on axiomatic logic
and invariants, for the current rule-based programming
languages were proposed in Ref. [31].

Adopting a declarative semantics for a rule-based
language has some potential difficulties: (a) It is hard to
provide a purely declarative interpretation of rules, because
they often behave in an imperative manner with the intended
side effects of updating a working memory. Simply treating
a rule base as a logical theory may result in an excessively
conservative semantics. (b) Due to the fact that consistency
in the first order logic is semi-decidable, there does not exist
an algorithm that can find all inconsistencies and redundan-
cies in an arbitrary first order KB, thus, making it difficult to
develop practical V&V tools.

Knowledge-Based Systems 12 (1999) 341–353

0950-7051/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-7051(99)00032-5

www.elsevier.com/locate/knosys

* Corresponding author. Tel.:1 1-916-278-7952; fax:1 1-916-278-
6774.

E-mail addresses:zhangd@ecs.csus.edu (D. Zhang), luqi@cs.nps.navy.
mil (Luqi)

There have been several efforts toward providing a
precise characterization of the logical nature of a rule-
based KB [11,31,35]. An algorithm to detect all inconsis-
tencies and redundancies in “a certain well-defined,
reasonably expressive, subset of all quasi-first-order-logic
KB” is presented in [11].1 The results in [35] indicate that a
rule-based language is still amenable to logical analysis.

The purposes of this paper are to (a) Provide an approx-
imate declarative semantics for rule-based KB so that
various KB anomalies can be formally defined and correctly
understood. We go beyond the results of [11,31,35] by deal-
ing with not only KB inconsistencies and redundancies, but
also KB circularity and incompleteness. (b) Establish KB
anomaly analysis procedures using theories in the first order
predicate logic (such as themodel theory, satisfiability,and
derivability of certain tautologous well-formed formulas
[45–47]). This may serve as the theoretical underpinnings
of practical V&V tools. (c) Offer classifications for cases of
inconsistency, redundancy, circularity and incompleteness
commonly found in rule-based KB. (d) Propose guidelines
on how to remedy the anomalies once they are identified.

The rest of the paper is organized as follows: Section 2
briefly reviews the terms and concepts to be used throughout
the paper. Definitions, classifications and analyses of KB
inconsistency, redundancy, circularity and incompleteness
are provided in Sections 3–6, respectively. Some possible
remedial measures for KB anomalies are discussed in
Section 7. Section 8 concludes with remarks about future
work.

2. Preliminaries

We assume that the reader is familiar with the basic
concepts and terminology in the first order predicate logic
[45–47]. We usewff to denote thewell-formed formulasin
the predicate logic. Anatomic formula(or atom) refers to an
n-place predicate symbol and itsn terms. Agroundatom is
one not containing any variables. Aliteral is an atom or its
negation. To avoid confusion, we adopt the typesetting
conventions as given in Table 1.

Definition 1. An interpretationof a wff consists of a non-
empty domain Ð, and an assignment of “values” to each
constant, function symbol and predicate symbol appearing
in the wff according to the following: (a) assigning an
element of Ð to each constant; (b) assigning a mapping
from Ðn to Ð to eachn-ary function symbol; and (c) assign-
ing a mapping from Ðn to { true, false} to eachn-ary predi-
cate symbol.

Definition 2. A wff H (or a set Ç of wff) is satisfiable
(consistent)if and only if there exists an interpretationz
such that H (or every wff inÇ) is evaluated totrue for all
variable assignments2 underz , which is denotedoz H (oz

Ç). z is said to be amodelof H (Ç) andz satisfiesH (Ç). H
(Ç) is inconsistentif and only if there exists no model for H
(Ç). H is said to bevalid (tautologous) if and only if every
possible interpretation satisfies H. H is alogical conse-
quenceof Ç if and only if every model ofÇ is also a
model of H. This is denoted asÇ o H.

Theorem 1. Given a set of wffÇ� fP;…;Qg and a wff H,
Ç o H if and only if P∧ … ∧ Q! H is valid.

Definition 3. Let Ç andÇ 0 be sets of wff.Ç < Ç 0 denotes
that Ç is satisfiable if and only ifÇ 0 is satisfiable [45].

This paper focuses on rule-based knowledge bases. A
rule-based KB can be divided into a set offacts which is
stored in aworking memory(WM) and a set ofrulesstored
in a rule base(RB). Rules represent general knowledge
about an application domain. They are entered into a RB
during initial knowledge acquisition or subsequent KB
updates. Facts in a WM provide specific information
about the problems at hand and may be elicited either dyna-
mically from the user during each problem-solving session,
or statically from the domain expert during knowledge
acquisition process, or derived through rule deduction.

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353342

Table 1
Typesetting conventions

Symbol Meaning

Ð A nonempty domain of elements
z An interpretation
Boldface capital letter Set of wff (literals), or set of rules
Ordinary capital letter Individual wff (literal)
Lower-case ordinary letter Constant
Lower-case italic letter(s) Predicate
ri Rule label
f j Fact label
LHS (ri) Set of literals in the left-hand

side of ri
RHS (ri) Set of literals in the right-hand

side of ri
true, false Logical values
x, y, z, x0, y0, z0 Variable

1 The key step in the algorithm is the subsumption tests which must be
decidable for a given KB in order for the KB to be completely analyzed for
inconsistency and redundancy. The subsumption tests will be decidable
only when the expressions to be tested satisfy thequantifier decoupled
(q-decoupled) property [11]. In general, one does not know in advance if
a given KB will generate any non q-decoupled expressions because there
does not exist a syntactic test for determining the q-decoupleability of the
KB.

2 A variable assignment is a mapping from variables in a wff to elements
in Ð.

Definition 4. Rules in a KB have the format: P1 ∧ …∧
Pn ! R; where Pi’s are the conditions (collectively, theleft-
hand side, LHS, of a rule), R is the conclusion (orright-
hand side, RHS, of a rule), and the symbol “! ” is under-
stood as the logical implication. The Pi’s and R areliterals.
If the conditions of a rule instance are satisfied by facts in
WM, then its conclusion is deposited into WM.

Definition 5. A fact is represented as a ground atom. It
specifies an instance of a relationship among particular
objects in the problem domain. WM contains a collection
of positive ground atoms, which are deposited through
either assertion (initial or dynamic), or rule deduction.

Definition 6. A negated condition:p�x� in the LHS of a
rule is satisfied ifp�x� is not in WM for anyx. A negated
ground atom:p�a� in the LHS of a rule is satisfied ifp�a� is
not in WM. A negated conclusion:R in the RHS of a rule
results in the removal of R from WM, when the LHS of the
rule is satisfied.3 Rule instances and negated literals can be
utilized by the inference system, but are never deposited
into WM [11].

Definition 7. Given two sets of literalsL andL 0, L 0 is said
to be aspecializationof L , denotedL 0 4 L , if there exists a
nonempty set ofsubstitutionsu , such thatL 0 � �L �u: In
particular, a literal P0 is a specialization of P, denoted as
P0 4 P if there exists a nonempty set of substitutionu such
that P0 � �P�u:

Definition 8. Given a setL of n literals, r(L) represents
the set of all literal permutations inL .

Definition 9. If r i is a rule and P is a literal, the expression
ri r P is used to indicate arbitrary length derivation of P from
ri in terms of some inference methods.4

Using logical equivalence, we can always convert a logi-
cal implication into a disjunction of literals. We further
simplify the notation by dropping the logical connective
“ ∨ ” from such a disjunction. For instance, the set of wff
fP∧ Q! R; U∧ :V !Wg has the following logically
equivalent short representation:f:P:QR; :UVWg where
each element in the set is a disjunction of literals.

Definition 10. The concepts of thesame, synonymous,
complementary, mutual exclusive, incompatible,and
conflict literals are defined in Table 2 in terms of syntax
and semantics considerations.

Example 1. Given the following literals:father(x, john),
male_parent(x, john), animal(sea_cucumber),vegetable
(sea_cucumber),bird(fred), :bird(fred), sent_to(x, emer-
gency_room), sent_to(x, waiting_room), expensive(x),
high_priced(x), we have:

father(x, john� � father(x, john);
father(x, john) ù male_parent(x, john);
bird(fred)#:bird(fred);
animal(sea_cucumber)% vegetable(sea_cucumber);
sent_to(x, emergency_room)% sent_to(x, waiting_
room);
expensive(x) Õ :high_priced(x);
father(x, john)f :male_parent(x, john).

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 343

Table 2
Same, synonymous, complementary, mutual exclusive, incompatible, and conflict literals

Semantics Syntax

Identical Different

Equivalent Same:denoted as L1 � L2
a. L1 and L2 are syntactically

identical (same predicate symbol, same arity, and same
terms at corresponding positions)

Synonymous:denoted L1 ù L2
b. L1 and L2 are

syntactically different, but logically equivalent

Conflictc Complementary: denoted L1#L2. L1 and L2 are an atom
and its negation

Mutual exclusive: denoted L1 % L2. L1 and L2 are
syntactically different and semantically have opposite
truth values
Incompatible:denoted L1 Õ L2. L1 and L2 are
complementary pair of synonymous literals

a Given two rules ri and rk, if LHS�ri � � fP1;…;Png and LHS�rk� � fP10;…;Pn0g; then LHS�ri � � LHS�rk�iff ;i [�1; n�Pi � Pi 0:
b Given two rules ri and rk, if LHS�ri � � fP1;…;Png and LHS�rk� � fP10;…;Pn0g; then LHS�ri � ù LHS�rk� iff ;i [[1,n] Pi ù Pi 0:
c L1 and L2 are conflict literals, denoted L1 f L2, if (L 1#L2) ∨ (L1%L2)∨(L1ÕL2).

3 There would be no effect on WM if R is not in WM when:R is derived.

4 Strictly speaking, the expression should be {ri < WM} r P because
facts in WM will be used during the derivation.

In this paper, we do not consider the situation in which
rules are augmented withcertainty factors. Because of the
way they are defined, rules and facts are subsets of wff.
Therefore, the terms “rule” and “fact” can be freely replaced
by the term “wff” throughout the rest of the paper.

3. KB inconsistency

3.1. Definition of inconsistency

The root cause of KB inconsistency is due to rules in RB,

but its manifestation is through WM. For instance, the
inconsistency of a RB containing a pair of rulesfp�x� !
q�x�; p�x� !:q�x�g is not apparent until a factp�a� is
asserted into WM. In general, although the rules in a RB
may be consistent on their own (because there exists a
model for them), they can form an inconsistent theory
when combined with certain facts in WM. In order for a
KB to be consistent, there needs to be a model for both RB
and WM.

On the other hand, facts in WM are changing over time due
to dynamic assertions and retractions. If we use subscripts to
denote states of WM at different times, RB may be consis-
tent with WMi, but inconsistent with WMj where i ± j:
Thus, relying on a particular WM state in verifying the
consistency of RB may not produce an accurate result.

Definition 11. Let WM0 and R(WM0) denote the
initial state for WM and the reachability set of all
possible WM states from WM0, respectively. Let
WM denote all legitimate facts5 for an application.
WM � <fWM i uWM i [R�WM0�g.

Definition 12. Given two interpretationszi andzj ; zj is an
extension ofzi ; denoted aszi f zj ; if the domain and assign-
ments inzi are retained inzj :

Definition 13. Let z0 be a model forWM .6 A KB is
inconsistentif and only if :'z [z0 f z ∧ oz RB].

During problem solving process, inconsistent rules in RB
allow derivations of conflicting (complementary, mutual
exclusive and incompatible) outcomes from the same,
synonymous or consistent conditions, thus, seriously
compromising the reliability and correctness of knowl-
edge-based systems.

3.2. Classification of inconsistency

Two types of inconsistency are classified in Table 3. Each
type consists of a set of patterns and each pattern encom-
passes different cases. Type I contains anomalous situations
where rules with the same or synonymous conditions result
in conflict (complementary, mutual exclusive and incompa-
tible) conclusions. Type II captures the scenarios where a
chain of deduction involves a condition and a conclusion (at
two ends of the chain) which are either complementary, or
mutual exclusive, or incompatible. It is very important to
recognize the types of inconsistency for several reasons: (a)

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353344

Table 3
Types of inconsistency

Type Description Pattern

I-1 Rules with the same LHS result
in complementary conclusions

LHS�ri � � LHS�rk� and ri r P
and rk r Q, where P#Q

I-2 Rules with shared condition(s)
result in complementary
conclusions

LHS�ri �> LHS�rk� ± B and
ri r P and rk r Q, where P#Q

I-3 Rules with the same LHS result
in mutual exclusive conclusions

LHS�ri � � LHS�rk� and ri r P
and rk r Q, where P% Q

I-4 Rules with shared condition(s)
result in mutual exclusive
conclusions

LHS�ri �> LHS�rk� ± B and
ri r P and rk r Q, where P% Q

I-5 Rules with the same LHS result
in incompatible conclusions

LHS�ri � � LHS�rk� and ri r P
and rk r Q, where PÕ Q

I-6 Rules with shared condition(s)
result in incompatible
conclusions

LHS�ri �> LHS�rk� ± B and
ri r P and rk r Q, where PÕ Q

I-7 Rules with synonymous LHS
result in complementary
conclusions

LHS�ri � ù LHS�rk) and ri r P
and rk r Q, where P#Q

I-8 Rules with shared synonymous
conditions result in
complementary conclusions

L , LHS�ri � andL 0 , LHS�rk�
andL ù L 0 and ri r P and
rk r Q, where P#Q

I-9 Rules with synonymous LHS
result in mutual exclusive
conclusions

LHS�ri � ù LHS�rk� and ri r P
and rk r Q, where P% Q

I-10 Rules with shared synonymous
conditions result in mutual
exclusive conclusions

L , LHS�ri � andL 0 , LHS�rk�
andL ù L 0 and ri r P and
rk r Q, where P% Q

I-11 Rules with synonymous LHS
result in incompatible
conclusions

LHS�ri � ù LHS�rk� and ri r P
and rk r Q, where PÕ Q

I-12 Rules with shared synonymous
conditions result in incompatible
conclusions

L , LHS�ri � andL 0 , LHS�rk�
andL ù L 0 and ri r P and
rk r Q, where PÕ Q

I-13 Rules with consistent LHS result
in complementary conclusions

o z {LHS(r i), LHS(rk)} ∧
LHS(ri) > LHS(rk)�B ∧ ri r P
and rk r Q, where P#Q

I-14 Rules with consistent LHS result
in mutual exclusive conclusions

o z {LHS(r i), LHS(rk)} ∧
LHS(ri) > LHS(rk)�B ∧ ri r P
and rk r Q, where P% Q

I-15 Rules with consistent LHS result
in incompatible conclusions

o z {LHS(r i), LHS(rk)} ∧
LHS(ri) > LHS(rk)�B ∧ ri r P
and rk r Q, where PÕ Q

II-1 Rules with a condition result in
complementary literal

ri r Q, where P[LHS(ri) ∧
P#Q

II-2 Rules with a certain condition
result in incompatible literal

ri r Q, where P[LHS(ri) ∧
P Õ Q

II-3 Rules with a condition P result in
mutual exclusive literal

ri r Q, where P[LHS(ri) ∧
P % Q

5 Facts that satisfy the validity constraints of the application domain.
6 If there are validity constraints on facts inWM , then the models consid-

ered are restricted to those that satisfy the constraints.

so that effective detection algorithms can be developed; (b)
the completeness of the V&V tools can be measured.

The exhaustive nature of the classification can be consid-
ered by enumerating all cases that result in an unsatisfiable
RB (Definition 13). The clue is the derivation of conflict
literals by a RB or a derived literal being in conflict with a
fact in WM. Due to space limit, we will skip a formal proof.

3.3. Analysis

Given a RB and a WM containing a set of rules and a set
of facts, respectively, we can show that the KB is consistent
by trying to find a model for it. The way we try to find a
model for the KB is through considering an arbitrary inter-
pretationz . If z satisfies the KB (i.e.z satisfies RB and
WM), then z is a model for it; otherwise, there is no
model for the KB. If a model is found, then the KB is
consistent; otherwise, it is inconsistent. We show the analy-
sis through some examples.

Example 2. Given a KB consisting of a
RB� fr1; r2; r3; r4; r5g and a WM� ff1; f2; f3g shown below

r1 : P∧ Q! A f 1 : P

r2 : R ∧ Q! B f2 : Q

r3 : A ∧ B!W f3 : R

r4 : A ! D

r5 : B! :D

we can show that there is no model for the KB, thus, it is
inconsistent.

Proof. We convert the KB into the set below

V1 � {:P:QA;:R :QB;:A :BW;

:AD;:B :D;P;Q;R}

Let z be any interpretation forV1.

• If z is a model forV1, then oz P, oz Q, and oz R;
• According to the first two elements inV1, there must be

oz A and oz B;
• Sinceoz A and oz B, there must beoz D and oz :D in

order for :AD and :B :D to be true. But this is
impossible. As a result, one of the rules of:AD and
:B :D must befalse underz .

• Sincez cannot satisfy all rules inV1, it is not a model for
V1. Becausez is an arbitrary interpretation, there is no
model forV1. Thus, the given KB is inconsistent.A

The inconsistency in Example 2 is of type I-13 because r4

and r5 have different but consistent LHS and result in
conflicting conclusions D and:D. The proof procedure

can be automated using theresolution principlewhere the
derivation of an empty clause amounts to the failure of
finding a model (or the presence of inconsistency in the
KB). In practice, we can use the structure of the derivation
generated by the resolution principle to extract a set of
inconsistent rules.

The above example demonstrates an inconsistency in the
current state of a KB. There is, however, another scenario in
which the proof procedure yields a model for a KB, but there
exists the potential of inconsistency in a possible future state
of the KB. Consider the situation where fact f3 is a legitimate
input but is not present in the WM at the time of checking,
the proof procedure will find a model for (KB2 f3) and
conclude that it is consistent. (This coincides with the intui-
tive explanation that the conflicting conclusion:D is not
deducible because the LHS of r2 cannot be satisfied7).
However, inconsistency arises when fact f3 is asserted into
WM. This phenomenon confirms our early arguments that:

• The cause of inconsistency stems from rules, but facts
will help expose the inconsistency. Thus the inconsis-
tency checking should involve both RB and WM.

• KB consistency can be either temporary or persistent. For
instance, KB2 f3 is temporarily consistent until f3 is
asserted. Such a transient consistency is not a reliable
indicator. What is needed is an ultimate consistency
that guarantees that a KB will be consistent for all possi-
ble states.

• The set of all legitimate facts in an application domain
usually changes with time. Given a time period, it is
important to identify the set of all legitimate facts during
the period in order to conclude whether a KB will be
persistently consistent during the period.

Operationally, when a pair of conflicting conclusions is
derived, it amounts to a fact retraction in WM. In a rule-
based programming language, there are two types of fact
retraction:explicit one through a language construct such as
retract andimplicit one through derivation of a negated fact
and negation as absence rule for WM. The implicit fact
retraction would be an indicator for RB inconsistency, but
it is not a necessary condition for RB inconsistency. The
reason is that in general, a rule-based system may not have
theChurch–Rosserproperty,8 therefore the derived facts by
RB for the same initial facts in WM may not be unique. For
instance, when both r4 and r5 are enabled, depending on the
conflict resolution strategy used by the control component
of the system, r4 and r5 can be fired in different order. As a
result, different sets of output (derived facts) will be
produced.

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 345

7 If f 3 is not a legal input, then rule r2 can never be enabled because of the
unsatisfiability of its LHS. As a result, the rule will be picked up by the
incompleteness checking and classified as an incomplete case.

8 The Church–Rosser property of a rule-based system refers to the fact
that the order in which rules are fired does not affect the final values
produced [31].

Example 3. Given a KB containing the following rules
and facts

r1 : P∧ Q! R f1 : P

r2 : R!W f2 : Q

r3 : W ! A

r4 : A !:P

we can show that there is no model for the KB, thus, the KB
is inconsistent.

Proof. We convert the KB into the set
V2 � f :P:QR;:RW;:WA;:A :P;P;Qg

Let z be any interpretation forV2.

• If z is a model forV2, then oz P and oz Q;
• There must beo z:A, o z:W ando z:R, respectively, in

order for :A :P, :WA, and :RW to betrueunderz ;
• However, there must beoz R according to the first

element inV2. R and :R cannot be bothtrue underz .
As a result, one of the clauses of:P :QR and :RW
must befalseunderz .

• Sincez cannot satisfy all rules inV2, it is not a model for
V2. Becausez is an arbitrary interpretation, there is no
model forV2. Thus, the given KB is inconsistent.A

The inconsistency in Example 3 is of type II-1 because r1

has a condition P and results in the derivation of:P. Type II
inconsistency not only introduces the logical contradiction
into the inference process, it also has other pragmatic
ramifications:

• In Example 3, the inconsistency involves a pair of
complementary literals. When r4 is fired, it causes P to
be removed from WM, thus either preventing those rules
that rely on P as input from being enabled or deactivating
those rules that are enabled as a result of P.

• A list of synonymous literals and a list of mutual exclu-
sive literals must be declared and maintained as a KB is
being built and modified. In addition to Definition 6, the
following should be used to maintain the validity of WM:

If (P % Q) ∧ (Q [WM), then KBr P would result in
(WM 2 {Q}) < {P}.

If (P Õ Q) ∧ (Q [WM), then KBr P would result in
(WM 2 {Q}).

• Computationally, when:P is a derived fact, the infer-
ence engine will check not only for the presence of P in
WM, but also the presence of some literal synonymous to
P.9 Alternatively, before a derived fact P gets deposited
into WM, the inference system also need to check for the
presence of Q in WM that is mutually exclusive to P.

Though the use of synonymous and mutual exclusive
literals may aid the expressive power of the language,
their potential complications in system correctness should
never be underestimated and their computational cost
should not be ignored. Therefore, the use of those literals,
especially synonymous literals, should be judicious.

4. KB redundancy

4.1. Definition of redundancy

Though redundancy may not cause logical problems (i.e.
with no effect on the set of deducible literals), it may lead to
following situations where potential problems may arise:

• During KB maintenance or evolution, if one of the redun-
dant rules is modified and the others remain unchanged,
then the updated KB will not correspond to the intended
change, and inconsistencies can be introduced as well;

• For a KB where no certainty factors are utilized, redun-
dant rules may be enabled under a given state, thus
resulting in performance slow down because all the
enabled redundant rules may be fired, even though the
firings of those redundant rules will yield the same set of
literals (conclusions);

• For a KB containing certainty factors, redundancy will
become a serious problem, the reason being that each
redundant rule may be fired, resulting in multiple count-
ings of the same information, which, in turn, erroneously
increases the level of confidence assigned to the derived
literals (conclusions). This may ultimately impact the set
of deducible literals.

If redundancy is introduced by design to speed up some
classes of frequent deductions, then it is usually confined to
a subset of the cases (e.g. types I-2, I-3, I-5 in Table 4). We
can always isolate those “useful” redundant rules, and weed
out redundancy from the KB where there is supposed to be
none.

Definition 14. For a setS of rules, we define a functionc
which returns the number of distinct literals inS. If both
L and :L are in S, they will be counted as two different
literals.

Definition 15. Given a setSof rules, if we can construct a
setS0 of rules such thatS < S0 and

(a) eitherS0 � S2 D; whereD ± B andD , S;
(b) or S0 � f�S�; wheref is a transformation onS such
that uS0u � uSu andc�S0� , c�S�; then there is redundancy
in S.

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353346

9 Definition 6 now needs to be modified to reflect the impact of synon-
ymous literals on the occurrence of:P in LHS or RHS of a rule.

4.2. Commonly found types of redundancy

If either of the conditions in Definition 15 holds for a
given RB, then the RB is said to contain redundancy.
Thus, in essence, all types of redundancy are captured by
Definition 15. However, in practice, there are sets of
commonly found types of redundancy. What are included
in Table 4 are the frequently encountered types of redun-
dancy. Type I redundancy in Table 4 involves redundant
rule(s) and Type II involves redundant (or unnecessary)
literal(s). Each type encompasses a set of specific cases.

4.3. Analysis

Given a setS of rules, S r C indicates the setC of
conclusions derivable fromS. If we can construct a setS0

of rules fromS such that Property (a) in Definition 15 is
satisfied, we further divideC into C 0 andC 00 whereS0 r C 0

and D r C00. We can prove that ifS0 < S; then S0 o D.
According to Theorem 1, for every rule P[D, S0 ! P is
valid, thusC 00 , C 0 andC � C 0: Therefore, rules inD are
redundant. During the analysis process we can select a
modelz for S0 with regard to the enabling facts and obtain
C 0 from S0, and then obtainC 00 from D to showC 00 , C 0:

WhenS0 is constructed with Property (b) of Definition 15,
the number of literals inS0 is reduced, even though the
number of rules remain the same. Similar analysis can be
carried out to prove thatC � C 0: SinceS0 either contains
fewer rules or has fewer literals, we can useS0 to replaceS.
Examples 4 and 5 are used to demonstrate the analysis
process.

Example 4. Given the following setS of rules

r1: P∧ Q! R
r2: A ∧ B! U
r3: U ∧ V !W
r4: R ∧ W ! D
r5: P∧ Q ∧ A ∧ B ∧ V ! D

Let S0 � S2 {r 5} : We can show thatS0 < S and r5 is
redundant.

Proof. We first convertS and S0 into the abbreviated
format:

S� {:P:QR;:A :BU;:U :VW;

:R :WD;:P:Q :A :B :VD}

S0 � {:P:QR;:A :BU;:U :VW;:R :WD}

Let z be an interpretation. Two situations need to be
considered:

1. If oz S, then oz S0 is obvious. This is a trivial case.
2. If oz S0, we need to show thatoz Salso holds. This boils

down to proving thatoz r5. Since oz r4 in S0, we must
have oz D or oz :R or oz :W

Case1: If oz D, then oz r5;
Case2: If oz :R, then oz :P or oz :Q because
oz r1. Hence, oz r5;

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 347

Table 4
Types of redundancy

Type Description Pattern

I-1 Rules having the same conclusion but different
permutations of the same set of conditions

�RHS�ri � � RHS�rk�� ∧ (LHS(ri) [r(L)) ∧ (LHS(rk) [r(L)),
whereL is a set of literals

I-2 A rule rk which can be deduced from a set of rules {ri,…, rj} r rk, where�RHS�ri � � LHS�…�� ∧ …∧ �RHS�…� �
LHS�rj �� ∧ �LHS�ri � � LHS�rk�� ∧ �RHS�rj � � RHS�rk��

I-3 A rule ri which is a specialization of another rule rk (LHS(ri) 4 LHS(rk)) ∧ (RHS(ri) 4 RHS(rk)), where LHS(ri) and
RHS(ri) are specializations based on the same set of substitutions

I-4 A rule rk which is subsumed by another rule �LHS�ri � , LHS�rk�� ∧ �RHS�ri � � RHS�rk��
I-5 Generalized subsumed rule (rk is subsumed by ri and rj) �RHS�ri � , LHS�rj �� ∧ �RHS�rj � � RHS�rk�� ∧ �LHS�rk� �

�LHS�ri �< LHS�rj �2 RHS�ri ���
I-6 Rules with same condition(s) and synonymous

conclusions
�RHS�ri � ù RHS�rk�� ∧ �LHS�ri � � LHS�rk��

I-7 Rules with synonymous conditions and same
conclusion

�RHS�ri � � RHS�rk�� ∧ �LHS�ri � ù LHS�rk��

I-8 Rules with synonymous conditions and synonymous
conclusion

�RHS�ri � ù RHS�rk�� ∧ �LHS�ri � ù LHS�rk��

II-1 Two rules which have the same or synonymous
conclusion but contain pair(s) of conflict literals in
their conditions

��RHS�ri � � RHS�rj �� ∨ �RHS�ri � ù RHS�rj ��� ∧ �LHS�ri � �
L < { P} � ∧ �LHS�rj � � L < { Q} �; whereL is set of literals and
Pf Q

II-2 A rule with redundant condition(s) �P [LHS�ri �� ∧ �P0 [LHS�ri �� ∧
��P� P0� ∨ �P ù P0� ∨ �P4 P0��

II-3 Two rules sharing the same conclusion, and one rule
having a singleton condition that is in conflict with a
condition of another rule

�RHS�ri � � RHS�rj �� ∧ �LHS�ri � � L < {P} � ∧ �LHS�rj � �
{ Q} �; whereL is set of literals and Pf Q

Case3: If oz :W, then oz :U or oz :V because
oz r3

if oz :V, then o z r5.
if oz :U, then eitheroz :A or oz :B becauseoz r1.
Thus, o z r5.

Therefore, if S0 is satisfied underz , so isS. S0 < S:
If we choose a modelz0 for S0 in which oz0 {P, Q, A, B,

V}, z0 is also a model for r5. The set of derivable facts from
S0 and r5 are C 0 � {R ;U;W;D} and C 00 � {D} ; respec-
tively. Obviously,C 00 # C 0, therefore r5 is redundant. A

S is of redundancy type of I-5. Removing r5 will eliminate
the redundancy.

Example 5. Given the following setS of rules

r1: P ∧ Q ∧ W ! R
r2: :Q! R

Let f1 be a transformation that results in a rule r1
0 by

eliminating the literal Q from r1, and letS0 � fr1
0
; r2g: We

can show thatS0 < S and the literal Q is redundant (or
unnecessary).

Proof. We first convertS andS0 into the format below:

S� f:P:Q :WR;QRg; S0 � f :P:WR;QRg

Let z be an interpretation. Two cases need to be con-
sidered:

1. If oz S0, then oz S is trivial.
2. If oz S, we need to show thatoz S0 also holds. This boils

down to proving that wheneverS is satisfied byz , oz r1
0.

Since oz r2 in S, we must haveoz Q or oz R

Case1: If oz R, then oz r1
0;

Case2: If oz Q and pz R,10 then oz :P or oz :W
must betrue becauseoz r1. Hence, oz r1

0.

Therefore,S0 < S; the literal Q in r1 is redundant. A

S is of redundancy type of II-3. Correcting Type II redun-
dancy involves removing the literal(s) in question. For
instance, for Type II-3, when RB contains a rule setS
matching the pattern, it can be replaced by the

corresponding rule setS0 as shown below:

S : r1: P1∧ …∧ Pk ∧ Q! R k $ 1

r2: :Q! R

S0 : r 01: P1∧ …∧ Pk! R

r2: :Q! R

5. KB circularity

5.1. Definition of circularity

Circularity in a KB has been informally defined as a set of
rules forming a cycle [7,24,30]. What exactly a circularity
entails semantically is not that clear in the literature. In this
section, we provide a definition of the KB circularity in
terms of the derivation of tautologous rules and argue that
the phenomenon reflects an anomalous situation in a KB and
has both operational and semantic ramifications.

Definition 16. A rule E is tautologous, denoted as E¨ , if it
contains a complementary or an incompatible pair of
literals.

Example 6. Following are two tautologous rules:

• P∧ Q! P; where :P and P are a complementary pair
(in :P ∨ :Q ∨ P�

• high_priced(x) ∧ spacious(x) ! expensive(x), where
: high_priced(x) and expensive(x) are an incompatible
pair (in:high_priced(x) ∨:spacious(x) ∨ expensive(x)).

Definition 17. A nonempty setS of rules iscircular if we
can deduce a tautologous rule fromS.

Definition 18. A nonempty setS of rules is minimally
circular, denoted asŠ, if S is circular and no proper subset
of S is circular.

Given Š, rules in Š are said to be forming a cycle. The
deduction of a tautologous rule is trivial ifŠ is a singleton
set satisfying the aforementioned condition. In a givenŠ,
there may be more than one tautologous rule deducible from
it that involves different pairs of (complementary or incom-
patible) literals.

Operationally speaking, circular rules may result in
infinite loops (if an exiting condition is not properly defined)
during inference, thus hampering the problem solving
process. Semantically speaking, the fact that a tautologous

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353348

10 pz R indicates that R evaluates to false underz .

wff is derivable indicates that the circular rule set encom-
passes knowledge that is always true regardless of any
problem specific information. In general, tautologous wffs
are those that are true by virtue of their logical form and thus
provide no useful information about the domain being
described [47]. Therefore, circular rules prove to be less
useful in the problem solving process. What is needed, as
evidenced in many real KB systems, are consistent rules that
are triggered by problem specific information (facts) rather
than tautologous rules that are true regardless of the problem
to be solved.

5.2. Types of circularity

Circularity primarily stems from the definitions of rules in
RB. However, control strategies deployed (in places such as
the mechanisms of agendas, rule salience or priority level
definitions and module selections) in the inference system
may also be cause for the infinite looping of certain rules. In
this paper, we focus on the types of circularity that are
confined in the RB.

Definition 19. Given a minimally circular rule setŠ, we
define two sets of literalsŠL andŠR as follows:

�SL � fLuL [LHS�r� ∧ r [�Sg

�SR � fLuL [RHS�r� ∧ r [�Sg:

The types of circularity in a rule base, as summarized
in Table 5, are classified based on enumerating possible
relationships betweenŠL and ŠR and the nature of the
tautology. Type I circularity indicates cycles in which
�SL � �SR: Type II describes cycles with additional condi-
tions involved in the rules, therefore,ŠR is a proper
subset ofŠL. If CŠ is a cycle formed out of a minimally
circular rule setŠ, the girth g of CŠ can be defined as
g�C �S� � u �Su: Cycles in these types can have a girth
ranging from one to some integer MAX where MAX
is bounded by the cardinality of the rule baseuRBu of a
given KB.

5.3. Analysis

The analysis of KB circularity amounts to deriving
from a given rule base a tautologous rule r that satisfies
the conditions in Definition 16, using some inference
method.

Example 7. Below is a rule baseS containing five rules

r1: W! U
r2: P∧ A ! R
r3: Q ∧ C!W

r4: R ∧ B! Q
r5: U ∧ D ∧ E ∧ G! P

Using theresolutionmethod, we can derive a tautologous
rule from S. SinceS is the smallest set that yields such a
tautologous rule, it is thus minimally circular.

Proof. We convertS into the following format

S� f:WU;:P:AR;:Q :CW;:R :BQ;

:U :D :E :GPg:
It is not difficult to see that the following rule is derivable

from S by using the resolution method

:W :D :E :G :A :B :CW:

Since:W and W are a pair of complementary literals, the
derived rule is tautologous. Therefore,S is minimally
circular. A

Incidentally, there are four other tautologous rules
involving :P and P, :Q and Q, :R and R, and :U
and U, respectively. This example exhibits Type II-1 circu-
larity.

Once a circularity is detected, the circular rule set needs
to be syntactically redefined to break up the circularity.
Semantically, information about a problem domain needs
to be reorganized so that it will contribute to the problem
solving process. Some of the possible remedial measures for
circularity can be found in Section 7.

6. KB incompleteness

Informally speaking, a KB is incomplete when it does not
have all the necessary information to answer a question of
interest in an intended application [16,31]. Thus, complete-
ness represents a query-centric measure for the quality of a
KB. KB incompleteness is a real issue to be reckoned with
for at least the following reasons: (a) In many applications,
the KB is built in an incremental and piecemeal fashion and
it undergoes a continual evolution. The information
acquired at each stage of the evolution may be vague or
indefinite in nature. (b) The deployment of a KB system
cannot just wait for the KB to be stabilized in some final
and complete form since this may never happen.

Despite the fact that a practical KB can never
completely capture all aspects of a real problem
domain, it is still possible for a KB to be complete
for a specific area in the domain. The boundaries of
this specific area may be defined in terms of allrelevant
queriesto be asked during problem solving process. If a
KB has all the information to answer those relevant
queriesdefinitely, then the KB is complete with regard

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 349

to those queries. In what follows, we base our
discussions of completeness on the concepts of relevant
queries and the ability of a KB to answer those queries.

6.1. Definition of query-based incompleteness

Definition 20. Given a KB, we definePKB andPA as sets
of all predicate symbols andaskablepredicate symbols in
the KB, respectively. An askable predicate symbol is one
that can appear in a query. Usually it is the case that
PKB $ PA :

11 A query Q̄ containing predicate symbols
pi ;…;pj [PA is denoted as

�Q . Q�pi ;…; pj� 12

Definition 21. A setQ of relevant queriesis now defined
as follows:

Q � f �Qu �Q appears in some query session∧

�Q . Q�pi ;…; pj� ∧ pi ;…;pj [PA} :

Definition 22. Given a query �Q [Q; the answer to�Q;

denoted asa� �Q�; can be eitherdefiniteor unknown. a� �Q�
is definite if either KBr �Q or KB r : �Q; a� �Q� is unknown if
neither KBr �Q nor KB r : �Q:

Definition 23. A KB is completewith regard to a relevant
query setQ if ; �Q [Q �a� �Q� is definite].

6.2. Types of incompleteness

Let P � PKB < PA : For a predicate symbolp [P; we

introduce a set of predicate symbolsR(p) on which p
directly or indirectly depends.R(p) can be obtained using
the following procedure.

INPUT: p [P

OUTPUT: R(p)
R�p� :� B;

while 'r [KB �p [RHS�r�� do R�p� :� R�p�<
LHS�r�;

while 'r [KB 'q [PKB �q [RHS�r� ∧ q [
R�p� ∧ LHS�r� Ü R�p�� do R�p� :� R�p�< LHS�r�;

If a literal containing a predicate symbolp cannot be
satisfied by either a given fact or a derived fact, then it is
denoted asZ p. Three types of incompleteness are defined
in Table 6. Types I and II reveal KB incompleteness from
the perspective of relevant queries, i.e., lack of necessary
information to answer queries, and Type III indicates the
potential incompleteness of the relevant query setQ from
the perspective of known information (rules/facts).

Though the classification in Table 6 is exhaustive with
regard to Definition 23, there are pragmatic and application
specific considerations that will help determine the validity
of incompleteness cases.

6.3. Analysis

The analysis of KB incompleteness depends critically on
the availability of information regarding the relevant query
set in a problem domain. Prototyping often serves as a
means to ascertain the relevant query set. If the relevant
query set is available, the analysis amounts to finding out
if all queries can be answered definitely. Checking for the
presence or absence of the aforementioned syntactic symp-
toms is an integral and necessary part of the analysis
process. However, there are other considerations in the
analysis process that are semantic, pragmatic, or problem
specific. The analysis process is really an iterative one,
because as KB continually evolves, so will the relevant
query set.

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353350

Table 5
Types of circularity in a rule base

Type Description Pattern

I-1 �SL � �SR for Š and tautologous rule involves
complementary pair of literals

� �SL � �SR� ∧ (Šr Ë) ∧ (L, :L [Ë) ∧ (L# :L)

I-2 �SL � �SR for Š and tautologous rule involves pair of
incompatible literals

� �SL � �SR� ∧ (Šr Ë) ∧ (L, :L [Ë) ∧ (L ù :L)

II-1 �SR , �SL for Š and tautologous rule involves
complementary pair of literals

(ŠR , ŠL) ∧ (Š r Ë) ∧ (L, :L [Ë) ∧ (L# :L)

II-2 �SR , �SL for Š and tautologous rule involves pair of
incompatible literals

(ŠR , ŠL) ∧ (Š r Ë) ∧ (L, :L [Ë) ∧ (L ù :L)

11 When there is incompleteness in a KB, this may not be true, as
evidenced in Table 6.

12 We assume that the query�Q is a conjunction of the literals containing
predicate symbols Pi ;…;Pj :

Example 8. For the following KB,

r1 : h�x; y� ∧ r�y; z� ! p1�x; z� f 1 : m�d�
r2 : w�y� ∧ u�x� ! r�x; y� f 2 : v�a�
r3 : v�x� ! w�x� f 3 : u�b�
r4 : m�x� ! p3�x� f 4 : u�c�
we have

PA � fp1; p2g
PKB � fp1;p3; r ;u; v;w;h;mg
R�p1� � fh; r ;u; v;wg
R�p2� � B:

Since p2 [PA and �R�p2� � B ∧ p2 Ó PKB�; there
exists Type II incompleteness. No rules and facts could be
used to answer queries involvingp2. In addition,h [R�p1�
and Z h. So Type I incompleteness also exists. Finally, the
presence of the rule r4 and the fact f1 may indicate thatp3

should have been an askable predicate. In other words,PA is
incomplete, and there is reason to believe that the relevant
query set is incomplete also.A

7. Remedial measures

Once KB anomalies are identified, the next issue is how
to correct the situations in which the quality of a KB has
been compromised. Though it is of pivotal importance, the
issue has not been adequately addressed in the literature. To
a certain extent, this is due to the fact that the issue of how to
mend a KB relies on a whole host of considerations, many of
which are problem or application specific. In the rest of this
section, we would like to address the issue in terms of some
general principles and provide some example remedial
measures for the cases dealt with in the previous four
sections.

For correcting inconsistency, we suggest the following
actions:

• Avoid using synonymous literals if possible.
• Delete one of the offending rules that derives the conflict

conclusion.
• Modify the conditions (e.g. predicate symbols) of the

rules involved such that they no longer have or share
the same or synonymous conditions.

• Modify the conclusions (e.g. predicate symbols) of the
rules involved such that they are no longer in conflict.

• Move one of the offending rules to a different rule
module such that the derivation of conflict conclusions
cannot take place in the same problem-solving session or
at the same time.

Actions to eliminate redundancy may include:

• Delete redundant rule(s).
• Merge or collapse rules into one.

For example, P∧ Q! R; :P∧ Q! R) Q! R

• Delete condition(s) of certain rule(s).

For example, P∧ Q! R; :Q! R) P! R;
:Q! R

• Modify the conditions or conclusions of the redundant
rules such that they no longer are the same or synony-
mous.

To resolve circularity, the following remedial measures
may be taken:

• Remove a rule from a circular rule set.

For example, P! Q; Q! R; R! P) P! Q;

Q! R

• Redefine a conclusion of a rule in the set such that it no
longer serves as a condition of another rule in the set.

For example, P! Q; Q! R; R! P) P! Q;

Q! R0; R! P where R0 and R are no longer unifiable.

• Redefine a condition of a rule in the set such that it no
longer matches a conclusion of another rule in the set.

To plug holes in an incomplete KB, we could

• Add new rules and/or facts to make all relevant queries
definite.

For example, new rules and facts can be added to make
h(x, y) satisfiable in Example 8.

• Modify the initial facts to patch up holes.
• Modify the conditions and/or conclusions of rules

involved in an incompleteness case so that they will
be “connected” with the rest of RB.

Though it is beyond the scope of this paper, we would like
to point out that in a KB where certainty factors (CF) are
used, there are additional actions to be considered. For
instance, add or modify CF values for rules or facts, or

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 351

Table 6
Types of incompleteness

Type Descriptions [7,24,37] Pattern

I Dangling conditions,
unreachable conclusions

'q [P 'p [PA[q [R(p) ∧
Z q] a

II Missing initial facts,
missing rules

'p [PA [R(p) � B ∧
p Ó PKB]

III Useless conclusions,
unused initial facts,
isolated rules

'q [PKB ;p [PA [q Ó R(p)]

a Because the criterion for the completeness issue is domain-specific, it is
possible thatq in �q [R�p�∧ Z q� may be useless structure in the KB.
Ultimately, the domain expert or knowledge engineer has to determine
the nature of the anomaly.

modify the threshold value(s) for the CF-value propagation
during inference process.

8. Concluding remarks

As more and more expert systems and knowledge-based
systems are deployed in settings where failures may result in
loss of productivity, decision-making quality, property,
business, services, investment, or even life, ways to detect
and resolve potential anomalies in a KB become critical
issues in developing correct, accurate and reliable systems.
In order for the results to be credible, V&V techniques must
be built on a solid theoretical foundation.

It is difficult to assess many of the V&V tools, methods
and techniques that have been developed or proposed
because there is no accepted standard against which to
measure the reliability or correctness of an expert system.
Indeed there is lack of definite semantics for expert systems
in general and KB in particular. This prevents any definite
conclusions about reliability and hinders the use of expert
systems in safety-critical applications. The field of V&V for
expert systems is far from having tractable formal models
that can cover all of the features of real expert systems,
which often rely on imperative state changes and other
non-logical features. Our simplified model, though a preli-
minary one, does provide a basis for reaching definite
conclusions about the reliability of those aspects in expert
systems that can be expressed in logical terms. It is our hope
that the logical formulation presented in this paper makes a
step in the right direction.

Future work can continue in several directions. One is
concerned with how to establish an assessment standard,
based on logical instruments similar to those discussed in
this paper, for the V&V tools and methodologies. For
instance, given a KB and its semanticsG, we use ÃG to
indicate the set of anomalies defined underG. For a V&V
method M, we use A˜

M to denote the set of anomalies M is
capable of discovering. M issoundif ; ~a [~AM � ~a [~AG�; M
is completeif ; ~a [~AG � ~a [~AM�:

Another direction is to study the KB anomalies in an
object-oriented (OO) paradigm. Recent developments in
knowledge representation formalisms include: (a) extending
the OO paradigm to include rules (i.e. rules can be consid-
ered as a specific type of behavior for objects); (b) bringing
objects into the rule-based paradigm (i.e. rules are specified
about objects); (c) hybrid representation formalism that
blends frames, objects, cases and rules together [48]. The
next challenge to us is the issue of how to (re)define the
concepts and meanings of KB anomalies in the context of
those formalisms.

A KB should be developed based on its underlying ontol-
ogy [49,50]. It is not clear what relationship there is between
the anonymous situations that are manifested at a KB level
and the root causes at its ontology. This is yet another direc-
tion worth exploring.

Acknowledgements

The authors would like to express their sincere apprecia-
tion to Prof. V. Berzins, and the anonymous referees for
their helpful comments and suggestions on the earlier drafts
of the paper.

References

[1] M. Ayel, J.P. Laurent (Eds.), Validation, Verification and Test of
Knowledge-Based Systems Wiley, Chichester, UK, 1991.

[2] U.G. Gupta (Ed.), Validating and Verifying Knowledge-Based
Systems IEEE Computer Society Press, Los Alamitos, CA, 1991.

[3] Verification and validation of knowledge-based systems [Special
issue], C. Culbert (Ed.), Expert Systems with Applications 1 (3)
(1990).

[4] Verification and validation of intelligent systems: five years of AAAI
workshops [Special issue], D.E. O’Leary (Ed.), International Journal
of Intelligent Systems 9 (8/9) (1994).

[5] E. Plaza, Validation and verification of knowledge-based systems,
IEEE Expert 8 (3) (1993) 45–81.

[6] Verification and validation of knowledge-based systems, A. Preece,
C. Suen (Eds.), International Journal of Expert Systems 6 (2/3) (1993)
(special issue).

[7] C.L. Chang, J.B. Combs, R.A. Stachowitz, A report on the expert
systems validation associate (EVA), Expert Systems with Applica-
tions 1 (1990) 217–230.

[8] B.J. Cragun, H.J. Steudel, A decision-table-based processor for
checking completeness and consistency in rule-based expert systems,
International Journal of Man–Machine Studies 26 (1987) 633–648.

[9] R.F. Gamble, G.C. Roman, W.E. Ball, Formal verification of pure
production system programs, Proceedings of Ninth National Confer-
ence on AI, 1991, pp. 329–334.

[10] A. Ginsberg, Knowledge-base reduction: a new approach to checking
knowledge bases for inconsistency and redundancy, Proceedings of
Seventh National Conference on AI, 1998, pp. 585–589.

[11] A. Ginsberg, K. Williamson, Inconsistency and rdundancy checking
for quasi-first-order-logic knowledge bases, International Journal of
Expert Systems 6 (3) (1993) 321–340.

[12] D. Hamilton, K. Kelley, C. Culbert, State-of-the-practice in knowl-
edge-based system verification and validation, Expert Systems with
Applications 3 (1991) 403–410.

[13] M. Jafar, A.T. Bahill, Interactive verification of knowledge-based
systems, IEEE Expert 8 (1) (1993) 25–32.

[14] J.D. Kiper, Structural testing of rule-based expert systems, ACM
Transactions on Software Engineering and Methodology 1 (2)
(1992) 168–187.

[15] S. Kirani, I.A. Zaulkernan, W.T. Tsai, Evaluation of expert system
testing methods, Communications of ACM 37 (11) (1994) 71–81.

[16] H.J. Levesque, The logic of incomplete knowledge bases, in: M.L.
Brodie, J. Mylopoulos, J.W. Schmidt (Eds.), On Conceptual Model-
ing, Springer, New York, 1984.

[17] N.K. Liu, T. Dillon, An approach towards the verification of expert
systems using numerical petri nets, International Journal of Intelligent
Systems 6 (1991) 255–276.

[18] Luqi, D. Cooke, How to combine nonmonotonic logic and rapid
prototyping to help maintain software, International Journal of Soft-
ware Engineering and Knowledge Engineering (1999).

[19] Luqi, Knowledge-based support for rapid software prototyping, IEEE
Expert 3 (4) (1988) 9–18.

[20] Luqi, Rapid prototyping languages and expert systems, IEEE Expert 4
(2) (1989) 2–5.

[21] L.A. Miller, Recommended guidelines for V&V of cases, AAAI-94

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353352

Workshop on Validation and Verification of Knowledge-Based
Systems, 1994, pp. 1–9.

[22] T.J. Murray, M.R. Tanniru, Control of inconsistency and redundancy
in prolog-type knowledge bases, Expert Systems with Applications 2
(1991) 321–331.

[23] D.L. Nazareth, Investigating the applicability of petri nets for rule-
based system verification, IEEE Transactions on Knowledge and Data
Engineering 5 (3) (1993) 402–415.

[24] T.A. Nguyen, W.A. Perkins, T.J. Laffey, D. Pecora, Knowledge base
verification, AI Magazine 8 (1987) 69–75.

[25] H. Nonfjall, H.L. Larsen, Detection of potential inconsistencies in
knowledge bases, International Journal of Intelligent Systems 7
(1992) 81–96.

[26] R.M. O’Keefe, D.E. O’Leary, Expert system verification and valida-
tion: a survey and tutorial, Artificial Intelligence Review 7 (1993) 3–
42.

[27] R. Plant, S. Murrell, On the validation and verification of production
systems: a graph reduction approach, AAAI-94 Workshop on Valida-
tion and Verification of Knowledge-Based Systems, 1994, pp. 56–63.

[28] A. Preece, R. Shinghal, A. Batarekh, Verifying expert systems: a
logical framework and a practical tool, Expert Systems with Applica-
tions 5 (2/3) (1992) 421–436.

[29] M.C. Rousset, On the consistency of knowledge bases: the COVADIS
system, Proceedings of Eighth European Conference on AI, 1988, pp.
79–84.

[30] J. Rushby, Quality Measures and Assurance for AI Software, NASA
Contractor Report 4187, October 1988.

[31] J. Rushby, R.A. Whitehurst, Formal Verification of AI Software,
NASA Contractor Report 181827, February 1989.

[32] M. Suwa, A.C. Scott, E.H. Shortliffe, An approach to verifying
completeness and consistency in a rule-based expert system, AI
Magazine 3 (1982) 16–21.

[33] W.T. Tsai, I.A. Zualkernan, S. Kirani, Pragmatic testing methods for
expert systems, International Journal of AI Tools 2 (2) (1993) 181–
217.

[34] Verifying Knowledge Bases: A Bibliography, Knowledge Engineer-
ing Review 7 (2) (1992) 143–146.

[35] R.J. Waldinger, M. Stickel, Proving properties of rule-based systems,
International Journal of Software Engineering and Knowledge Engi-
neering 2 (1) (1992) 121–144.

[36] D. Zhang, Luqi, Formal analysis of inconsistency and redundancy in
knowledge bases, IJCAI-95 Workshop on Verification and Validation
of Knowledge-Based Systems, pp. 110–116.

[37] D. Zhang, D. Nguyen, PREPARE: a tool for knowledge base verifica-
tion, IEEE Transactions on Knowledge and Data Engineering 6 (6)
(1994) 983–989.

[38] D. Zhang, Perspectives in knowledge base verification, Proceedings
of Fifth International Conference on Software Engineering and
Knowledge Engineering, 1993, pp. 123–456.

[39] N. Zlatareva, A framework for verification, validation, and refinement
of knowledge bases: the VVR system, International Journal of Intel-
ligent Systems 9 (1994) 703–737.

[40] N. Zlatareva, A. Preece, State of the art in automated validation of
knowledge-based systems, Expert Systems with Applications 7 (2)
(1994) 151–167.

[41] R. de Hoog, et al., The CommonKADS organization model: content,
usage, and computer support, Expert Systems with Applications 11
(1) (1996) 247–260.

[42] G. Guida, C. Tasso, Design and Development of Knowledge-Based
Systems: From Life Cycle to Methodology, Wiley, Chichester, UK,
1994.

[43] G. Schreiber, et al., CommonKADS: a comprehensive methodology
for KBS development, IEEE Expert 9 (6) (1994) 28–37.

[44] D.S.W. Tansley, C.C. Hayball, Knowledge-Based Systems Analysis
and Design: A KADS Developer’s Handbook, Prentice Hall, UK,
1993.

[45] M. Ben-Ari, Mathematical Logic for Computer Science, Prentice
Hall, UK, 1993.

[46] C.L. Chang, R.C.T. Lee, Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

[47] M.R. Genesereth, N.J. Nilsson, Logical Foundations of Artificial
Intelligence, Morgan Kaufmann Publishers, Los Altos, CA, 1987.

[48] K.W. Tracy, P. Bouthhoorn, Object-Oriented Artificial Intelligence
Using C11, Computer Science Press, New York, 1997.

[49] B. Chandrasekaran, J.R. Josephson, V.R. Benjamins, What are ontol-
ogies, and why do we need them? IEEE Intelligent Systems 14 (1)
(1999) 20–26.

[50] D.E. O’Leary, Using AI in knowledge management: knowledge bases
and ontologies, IEEE Intelligent Systems 13 (3) (1998) 34–39.

D. Zhang, Luqi / Knowledge-Based Systems 12 (1999) 341–353 353

