
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1989

Design and Implementation of an Expert User
Interface for the Computer Aided Prototyping System

Luqi; Raum, H.; Yurchak, J.
Naval Postgraduate School

Luqi, H. Raum, and J. Yurchak, "Design and Implementation of an Expert User
Interface for the Computer Aided Prototyping System", Technical Report NPS
52-89-033, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65275

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPS52-89-033

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND IMPLEMENTATION OF AN EXPERT USER
INTERFACE FOR THE COMPUTER AIDED

PROTOTYPING SYSTEM

by

Henry G. Raum

December 1988

Thesis Advisor:

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

Luqi

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr.
Superintendent

Harrison Shull
Provost

This report was prepared in conjunction with research funded in part by the National Science
Foundation and in part by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI

Assistant Professor
of Computer Science

Released by:

Dean of Information
and Policy Science

' ..

..

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

RE
1

PORT DOCUMENTATION PAGE

1a. REPORT SECURIT~ CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!3UTION / AVAILABILITY OF REPORT

Approved for public release;
_,:: (2b. qECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT. NUMBER(S)

NPS52-89-033
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6c. ADDRESS (City, St,He, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

I

Monterey. CA 93943 Monterey, CA 93943
8a. NAME OF FUNDING/ SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Post2raduate School NSF r.r.R-8710717 O&MN, Direct Fundino
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO . NO. NO . ACCESSION NO.

Motrt,erev. CA 93943
11. TITLE llnclude Security Classification)
DESIGN AND IMPLEMENTATION OF AN EXPERT USER INTERFACE FOR THE COMPUTER AIDED PROTOTYPING (U)

SYSTEM
12. PERSONAL AUTHOR(S)

RAUM, Henrl G.
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Progress FROM Q~t88 TO May 89 . MAY 1989 : 79
.. 16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP User Interface, Expert System, Rapid Prototyping, Computer
Aided Software Engineering (CASE), Ada, Real-Time, Embedded
Systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report builds on previous work done in the development of the Computer Aided System
(CAPS) and the Prototype System Description Language (PSDL). The increases in size and
complexity of software projects have caused system designers to reevaluate traditional
software engineering methodologies. Rapid prototyping is a method that allows the
validation of system requirements and design early in the development cycle. The need
for this type of tool is particularly critical in the development of real-time embedded
systems. CAPS is one such system.
CAPS is a complex system that consists of many individual software tools. An expert user
interface that guides the software designers through the development and execution of a
prototype is described in this report.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CD UNCLASSIFIED/UNLIMITED [I SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a,. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I ~le. OFFICE SYMBOL

LUO! (408) 646-271~ 52La
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete Q U.S. Govern,,;'ent Printing Office: t 916-60&•24.

TTNr.T,A~~n·rnn

II

...

ABSTRACT

This thesis builds on previous work done in the development of the

Computer Aided Prototyping System (CAPS) .and the Prototype System

Description Language (PSDL). The increases in the size and complexity of·

software projects have caused system designers to reevaluate traditional so(tware

engineering methodologies. Rapid prototyping is a method that allows the

validation of system requirements and design early in the development cycle.

The need for this type of tool is particularly critical in the development of real­

time embedded systems. CAPS is one such system.

CAPS is a complex system that consists of many individual software tools.

An expert user interface that guides the software designers through the

development and execution of a prototype is described in this thesis.

·'i 1 i

L

,.

TABLE OF CONTENTS

\. I. INTRODUCTION .. 1

A. DESCRIPTION OF SOFIWARE ENGINEERING

METHODOLOGIES .. 2

1. Traditional Software Engineering Paradigm 2 •

2. Prototyping in Software Engineering 3

B. OBJECTIVES ... 4

C. ORGANIZATION ... 5

II. BACKGROUND ... 6

A. DESCRIPTION OF CAPS .. 6

1. Architecture of CAPS ... 6

a. The User Interface Module ... 6

b. The Software Base and Rewrite System 7

c. The Execution Support System ... 8

2. Description of PSDL ... 9

a. Elements of PSDL ... 9

b. Example of PSDL ... 10

3. The CAPS Process .. 14

a. Prototype Design ... 15

b. Prototype Construction 15

c. Prototype Execution .. 17

d. Prototype Debugging and Modification ! 19

B. PRINCIPLES OF THE USER INTERFACE 20

1. Expert System and Sequence Control. 20

iv

2. Data Entry ... 22

3. Data Entry Methods .. 22

III. DESIGN OF THE USER INTERFACE ... 24

A. BOURNE SHELL SCRIPTS AND UNIX OPERATING SYSTEM 24

B. PROTOTYPE CONSTRUCTION .. 25

1. The Design Database .. 25

2. The Graphic Editor .. 27

3. The Syntax Directed Editor ... 27

4. The Software Base .. 27

5. The User Interface ... 28

6. Sequence Control .. 29

C. PROTOTYPE EXECUTION .. 31

1. Tl1e Translator ... 32

2. The Static Scheduler .. 32

3. The Dynamic Scheduler .. 33

4. Sequence Control .. 33

D. PROTOTYPE DEBUGGING AND MODIFICATION 34

1. The Debugger .. 34

2. Modifying the Prototypes .. 34

a. Modifying an Operator .. 35

b. Consistency of Views ... 36

E. TOP LEVEL USERS MANUAL ... 36

1. The Caps Command .. 36

2. The Construct Command .. 37

3. The Execute Command ... 37
,,

V

- - f ..
.
1

..;-J

4. The Modify Command •.! ••• 38

F. EVOLUTION OF THE USER INTERFACE 39

IV. IMPLEMENTATION OF THE USER INTERFACE 40

A. THE LINK STATEMENT ANALYZER ,40

B. SEQUENCE CONTROL IN THE USER INTERFACE 43

1. Implementation of the Construction Subsystem•...... 43

2. Implementation of the Execution Support System 45

3. Implementation of Debugging and Modification 46

C. EXAMPLE BOURNE SHELL SCRIPTS47

1. The Construct Script 47

2. The Graphic Editor Script. .. 49

D. FUTURE IMPLEMENTATION ... 51

V. CONCLUSIONS ... 52

A. FEASIBILITY ISSUES ~ ~····52

B. BENEFITS OF THE STUDY ... 52

C. RECOMMENDATIONS .. 53

1. Primary Data Entry .. 53

2. Prototype Modification ... 53

3. Execution Monitoring ... 54

D. APPLICATION OF CAPS IN THE DEPARTMENT OF

DEFENSE AND THE DEPARTMENT OF THE NA VY 54

APPENDIX A. PSDL GRAMMAR ... 56

APPENDIX B. BRAIN TUMOR TREATMENT SYSTEM EXAMPLE 59

APPENDIX C. PASCAL PROGRAM NODES.P ... 62

APPENDIX D. INPUT AND OUTPUT LINK ANALYZER 71

vi

APPENDIX E. BOURNE SHELL SCRIPTS .. 73

REFERENCES ... 7 5

BIBLIOGRAPHY ... 77

INITIAL DISTRIBUTION LIST ... 78

•

vii

... { LIST OF FIGURES

j Figure 1. The Prototyping Method .. 4

Figure 2. The Architecture of CAPS ...•. 7

Figure 3. Graphic Decomposition .. 10

Figure 4. PSDL Operator Specification 11

Figure 5. PSDL Operator Implementation 12

Figure 6. PSDL Data Type Specification and Implementation 14

Figure 7. PSDL Construction 17

Figure 8. Execution Support System 18

Figure 9. Seq_uence Control Dialogs .. 21

Figure 10. Operator Decomposition .. 30

Figure 11. Conceptual DDB Structure ... 32

Figure 12. Declaration Section of Nodes.p ... Al

Figure 13. Input and Output of Nodes.p ... 42

Figure 14. Construct Script .. 48

Figure 15. Graphical Editor Script .. 50

viii

i

•

-~ r LIST OF ABBREVIATIONS

J CAPS Computer Aided Prototyping System

DDB Design Database

DFD Data Flow Diagram

DOD Department of Defense

DON Department of the Navy

IB Dynamic Scheduler

ESS Execution Support System

GE Graphic Editor

MCP Minimum Calling Period

MET Maximum Execution Time

MRT Maximum Response Time

PSDL Prototype System Description Language
gJ Software Base
SDE Syntax Directed Editor
1R Translator
UI User Interface

ix

•

J

t

I. INTRODUCTION

Over the last twenty years, advancements in computer hardware have far

exceeded those in software development. This "software crisis" must be resolved .

if improved performance of systems is expected [Ref. 7:p. 11]. The most .

significant problem is that the users of the software systems often do not­

understand software engineering and the software engineers do not understand

the needs of the users. As a result, poor requirements analysis often leads to an

improper design. In the traditional ~oftware engineering paradigm testing of the

system is done only after coding is complete. This results in much wasted effort

as improper specifications are coded.

An alternate approach to software engineering is prototyping. In this method

a model of the eventual program is quickly constructed and tested. The goal is to

evaluate the design of the system and make modifications, if necessary, before the

coding is started. [Ref. 2:p. 69]

One system that implements the prototyping methodology is the Computer

Aided Prototyping System (CAPS). This system constructs a prototype from

specifications described in the Prototyping System Description Language (PSDL)

and generates an executable model of the real-time system. This model is

actually an Ada®1 program that can be executed and modified until the prototype

is performing correctly. [Ref. 3]

...1 Ada is a registered trademark of the U.S. Government, Ada Joint Program
Office

1

CAPS is applicable to the Department of the Navy (DON) and Department of

Defense (DOD) because it generates an Ada® prototype. With the requirement

that all embedded systems in DOD be implemented in Ada®, an Ada®

prototype that demonstrates use of the language constructs makes CAPS more

attractive.

The users of this system may not be familiar with PSDL or CAPS and may

not even have any software engineering expertise. For this reason, an intelligent

user interface that guides the user through the production of the prototype is

required. This thesis will describe the design and implementation of such a user

interface.

The remainder of this chapter will describe the traditional and rapid

prototyping software engineering methods and the CAPS system. This will

include a description of the elements and processes of CAPS and an overview of

PSDL.

A. DESCRIPTION OF SOFTWARE ENGINEERING
METHODOLOGIES.

1. Traditional Software Engineering Paradigm

The traditional software engineering paradigm, often called the

"waterfall model", is a systematic, sequential approach [Ref. 2:p. 13]. This

model begins with requirements analysis and continues with functional

specification, design, coding and testing. Requirements analysis defines the

scope of the system, and the environment it will operate in, while the functional

specification describes interfaces to the proposed system and the functions of that

system. The design stage includes the decomposition and detailed design. The

data ..structures, software architecture and procedural details are key issues at this

2

L

stage. The coding stage is where the designed system is written into a form

usable by the computer, normally a high level programming language. Finally,

testing is done. These tests not only show that the program meets the

requirements and specifications, but determines if these requirements produce the

desired results. [Ref. 4]

The fact that coding and testing occurs so late in the process has brought

much criticism of the "waterfall model". It is difficult for the customer to

furnish complete requirements before the process begins. In large software

systems this can lead to a disaster if a major oversight in the requirement analysis

phase is not discovered until testing. [Ref. 2:p. 15]

2. Prototyping in Software Engineering.

In response to the problems in the "waterfall model" a new approach to

software engineering, called prototyping, has been devised. Prototyping is a

method that is well suited to the iterative nature of the development of many

software systems. When the customers requirements cannot be completely

determined or there are questions about the suitability of proposed algorithims or

what the human interface should be, prototyping allows a model to be built which

can be tested and modified. After testing the prototype, a new set of improved

specifications can be used in the coding phase.

Figure 1 illustrates how, in this method, testing and refinement of

requirements is done before the actual product is engineered. Significant time

and cost savings can be realized because code is not being written for incomplete

and erroneous specifications. The complex and uncertain timing requirements of

real-time embedded systems makes them good candidates for prototyping.

[Ref-2]

3

The problem with prototyping is the cost of developing the prototype itself.

Paper prototypes are easy to construct, but do not show the dyn~mic nature of the

system. Working prototypes can show the feel of the program, but are limited to

a subset of the system. In the Computer Aided Prototyping System the entire

system is modeled. The time required to build this prototype is greatly reduced

through the use of syntax directed. and graphic editors, reusable Ada® modules · · .

and a self-contained execution and debugging system. CAPS attempts to validate

the timing aspects of real-time embedded systems by constructing a prototype of

the entire system, executing that prototype and measuring its performance. As

part of the software engineering effort, CAPS falls between the requirements

analysis and coding phases.

Requirements
Analysis

,,
Develop
Prototype

, '
Test and

---------1 Evaluation of 1----
n .~. • -

,,
Engineer
Product

Figure 1. The Prototyping Method

4

1·-
•

t

D. OBJECTIVES

This thesis describes the design and implementation of an expert user

interface for CAPS. The primary objective is to define the proper use of

database, graphic, and operating systems technology in the design of the

interface. Secondly, this thesis will explore the use of expert system technology ..

to produce an interface that can free the user from many of the details of the

system operation. In this way, an error free prototype can be produced quickly

and easily.

C. ORGANIZATION

Chapter II outlines the background research and includes a description of

CAPS, the Prototype System Description Language (PSDL) and the principles of

the user interface in software systems.

Chapter III describes a design for the user interface to include the interfaces

between CAPS and the user as well as those between the various elements of the

system. This chapter includes a users manual and recommendations for future

implementation.

Chapter IV outlines the implementation of the design, both what has been

done and what is recommended for future implementation.

Chapter V contains conclusions and recommendations of this research.

5

II. BACKGROUND

The Computer Aided Prototyping System is a complex collection of software

tools that enable the user to produce executable prototypes of large real-time

embedded systems. This chapter outlines the components of CAPS and PSDL in

detail. Finally the principles of the user interface are investigated.

A. DESCRIPTION OF CAPS

1.. Architecture of CAPS

CAPS consists of many software tools that each have a part in the

production of the prototype. The position of each component in the overall

system is illustrated in Figure 2. A brief description of the components follows.

a. Tlie User hiterface Module.

This module consists of two editors, a syntax directed editor and a

graphical editor. Together these editors produce the PSDL program that will

become the prototype.

(1) The Syntax Directed Editor is an editor that knows the key

words and proper syntax of PSDL. It insures grammatically correct PSDL as it

guides the user through the production of the program.

(2) The Graphic Editor is an editor that describes the decomposition

of PSDL components by the use of enhanced data flow diagrams. It is in these

diagrams that the user "creates" the program.

(3) The Design Database is the structure that stores the elements of

the system under construction. This database is organized to handle the

hierarchical nature of the top-down development of the system. The design

6

"-'(
~

..,,..

database also has the ability to keep a history of the prototype when changes are

made. [Ref. 4:p. 29]

Software Rewrite
Base System

j ~

, .
User Interface

Design
Data
Base

~

-
Syntax
Directed --- Editor

Execution Support
System

Translator

Graphic
Editor

~ .

. '

Dynamic

Scheduler

Debugger

Static
Scheduler

Figure 2. Architecture of Caps

Figure 2. The Architecture of CAPS

b. The Software Base and Rewrite System

Together the software base and rewrite system give CAPS its ability

to retrieve reusable Ada® components for construction of the prototype.

7

(1) The Rewrite System. The purpose of the rewrite system is to

provide a method for mapping all equivalent specifications to one common form.

This is called the normalized form.

(2) The software base is a database of reusable Ada® components

that are indexed and searched for based on PSDL specifications. This will

provide an Ada® module that fulfills the desired function. In the production of a

rapid prototype there is no time for browsing a software library by name, as in a

yellow pages type of index. [Ref. 5 :pp. 68-69]

c. The Execution Support System

The Execution Support System (ESS) consists of a translator, a static

scheduler, a dynamic scheduler and a debugger. While the purpose of the rest of

CAPS is to produce a PSDL program, the function of the ESS is to translate the

PSDL program into a executable Ada® prototype that tests the real-time aspects

of the designed system.

(1) Translator. The translator starts with the Ada® components

retrieved in the software base and adds to them the control constants described in

PSDL to produce an Ada® module that can be scheduled.

(2) The Static Scheduler. The static scheduler links all of the time

critical components together in an executable schedule that can demonstrate the

real-time aspects of the system.

(3) The Dynamic Scheduler. The dynamic scheduler adds the non­

time critical components to the system to produce an overall schedule.

(4) The Debugger. The debugger provides an interface between the

user and the executing prototype. The user may be asked to correct a problem in

the prototype or be presented with statistics on the operation of the prototype.

8

·r
A

- ,..

2. Description of PSDL

The Prototype System Description Language is an executable

prototyping language that is used at the design level. The user can define the

specifications in this language and these specifications are used to search the

software base of reusable Ada® components. If a suitable module is not found ·. ·

the PSDL operator is then decomposed by drawing an enhanced data flow

diagram that includes lower level operators, the data streams between these

operators, as well as timing and control constraints. [Ref. 5:p. 68]

a. Elements of PSDL

(1) Operators. Operators are the basic component in PSDL. They

can represent functions or state machines. These operators can be triggered by

the arrival of some input (sporadic) or at fixed time intervals (periodic). When

triggered the operator will fire (produce output) based on input values and the

value of the internal state variable in the case of the state machine.

[Ref. 6:pp. 12-13)

Operators are called atomic if they can be found in the software

base, otherwise they are called composite and must be decomposed with a data

flow diagram. Figure 3 shows such a decomposition. Data streams w and z are

the respective input and output of the composite operator and s is the state

variable. A, B, and C are newly created operators that may be atomic or

composite themselves. [Ref. 5]

(2) Data Streams. A data stream represents the flow of data

between. two operators. This communication can be in the form of a data flow

stream or a sampled stream. A data flow stream can be thought of as a FIFO

queue. In this way a data flow stream is never lost and is always acted on in the

9

order of arrival. A sampled stream can be thought of as a single memory cell.

This data can be used many times or written over before use, depending on the

rate of its input and use. [Ref. 3]

s

Figure 3. Graphic Decomposition

Data flow streams must be used when each piece of data

represents a unique transaction. A sampled stream can simulate a sensor that is

only interested in a current parameter such as temperature. In Figure 3, the data

streams are w ,x,y ,and z, with x and y being the new data streams created in the

decomposition.

(3) Timing and Control Constraints. The real-time nature of the

prototypes requires timing and non-procedural control constraints in PSDL.

Each time critical operator has a Maximum Execution Time, which is the

maximum time in which that operator can complete execution after it fires.

Control Constraints give conditional requirements on the firing of operators.

b. Example of PSDL.

To illustrate the PSDL program the example of the Hyperthermia

system that was defined in the conceptual research for CAPS [Ref. 3] will be

used. This example illustrates a dynamic real-time environment that is easy to

understand.
One approach to combating cancer is to destroy tumorous cells

selectively with heat. One way to do this is with a hyperthermia system,

10

I

~

..,

which uses a microwave generator connected to a fine tuner and matching
control system to produce and deliver controlled, local heating directly to
the tumors. A computerized control system adjusts power output
automatically to maintain the temperature in accordance with the treatment
plan .

The hyperthermia system has four subsystems: a computer system, an
operator's panel, a microwave generator, and a temperature sensor. The
critical subsystem is the software that receives input from the temperature
sensor and produces control commands to operate the whole system. The
software controls the rest of the system, which is typical of real-time
embedded systems. [Ref. 4:p. 30]

(1) PSDL Specification. The operator is described in PSDL as

shown in Figure 4. The Specification includes the operator name, an input list,

an output list, a state list (if operator is a state machine), optional exception

declarations and timing information. This specification is used to search the

software base. If no match is found this composite operator is decomposed in the

implementation part.

OPERA TOR Brain_tumor_treatment_system
SPECIFICATION

INPUT patient_chart: medical_history,
treatment_switch: boolean

OUTPUT treatment_finished: boolean
STA TES temperature: real INITIALLY 37 .0

DESCRIPTION {This is an English description of the operator specification}
END

Figure 4. PSDL Operator Specification

Timing constraints may be added to a specification in the

following ways:

• Maximum Execution Time (MET) which places a maximum time on the
execution of an operator from initiation to completion.

11

• Maximum Response Time (MRT) has sli~htly different meanings for
sporadic and periodic operators. It is the time between the start of the
period and the moment of the last output of an operator for periodic
operators and is the time between arrival of new data and the moment of
output for sporadic operators.

• Minimum Calling Period (MCP) is required for any sporadic operator with
an MRT and is the minimum time from the arrival of one set of data to the
arrival of the next. [Ref. 6:pp. 20-21]

(2) PSDL Implementation. The implementation part of PSDL

consists of the graph (data flow diagram), a list of new data streams and control

constraints for the newly created operators. The data flow diagram shown in

Figure 3 would appear in PSDL as the link statements shown after the keyword

GRAPH in Figure 5. A link statement is of the form:

data_stream.from_operator:met-->to_operator [Ref. 7 :p. 26] .

The from operator, in the case of an input, and the to operator, in the case of an

output, will be represented by the keyword EXTERNAL. The maximum

execution time of the operator, and the colon, are omitted for non-time critical

operators. The Data Stream part lists the new internal data streams named in the

graphical decomposition.

IMPLEMENTATION
GRAPH temperature.EXTERNAL -> hyperthermia_system

patient_chart.EXTERNAL -> hyperthermia_system
treatment_switch.EXTERNAL -> hyperthermia_system
treatmen t_power .h yperthermia_system -> simulated_patient
treatment_finished.hyperthermia_system -> EXTERNAL
temperature.simulated_patient -> hyperthermia_system

DAT A STREAM treatment_power : real
CONTROL CONSTRAINTS

OPERA TOR hyperthermia_system
PERIOD 200 ms BY REQUIREMENTS shutdown

OPERATOR simulated_patient
PERIOD 200 ms

DESCRIPTION { some text about it}
END

12

r

T

,

Figure 5. PSDL Operator Implementation

The Implementation section is completed with the Control

Constraint part of PSDL. These control constraints include data triggers,

periods, conditionals, timers and exceptions. This information is used to define

interconnections between operators.

The most common control method is the period and data

trigger. The period is shown in Figure 5 and indicates the synchronous timing of

the operator. The data trigger is used to indicate control from arriving data.

Two examples of data triggers are:

OPERATOR A TRIGGERED BY ALL x,y,z.

OPERATOR B TRIGGERED BY SOME v,w.

The by ALL trigger causes the operator to fire when all three

inputs are present, while the by SOME trigger fires the operator when any value

of v or w arrives. [Ref. 3:p. 17]

Conditional Constraints add an IF predicate to the data trjgger.

This boolean condition must be satisfied before the operator will fire. Examples

of the conditional constraint are:

OPERATOR A TRIGGERED if b<l0.

OPERATOR X OUTPUT y if z: critical.

A timer is used as an internal state that can be started, stopped,

reset, and its current time read by the operator to allow that operator to do its

own timing control if necessary. It is also possible to raise exceptions in PSDL.

These exceptions can be user or system defined and are raised when unusual or

catastrophic conditions are encountered. The exception is handled by an

exception handler at the highest level of the program.

13

L

Data Streams utilize the operator as both its specification and

implementation section as shown in Figure 6. Therefore, only the construction

of operators needs to be discussed.

14

T

,
JI

TYPE medical_history
SPECIFICATION

OPERATOR get_tumor_diameter
SPECIFICATION

INPUT patient_chart: medical_history,
tumor_location: string

OUTPUT diameter: real
EXCEPTIONS no_tumor
MAXIMUM EXECUTION TIME 5 ms
DESCRIPTION
{This is an English description of the operator}

END

IMPLEMENTATION
tuple[tumor_desc: map[from: string, to: real], ...]
OPERATOR

IMPLEMENTATION
GRAPH

patient_chart.EXTERN AL-->tuple.get_tumor_desc
tumor_location.EXTERNAL-->map.fetch
diameter.map.fetch:4ms-->EXTERNAL
td. tuple.get_tumor_desc: 1 ms-->map.f etch

DATA STREAM td: tumor_desc

CONTROL CONSTRAINTS
OPERATOR map.fetch

EXCEPTIONS no_tumor IF not(map.has(tumor_location, td))

END

Figure 6. PSDL Data Type Specification and Implementation

3. The CAPS Process

There are four major elements in the CAPS process: prototype design,

construction, execution and debugging/modification. The initial step, called

prototype design, actually takes place outside CAPS. The purpose of CAPS is not

to design a system, but rather to test and validate that design. Construction takes

place in the user interface portion of the system, while execution takes place in

15

the execution support system. Debugging and modification requires action in

both the user interface and execution support systems.

a. Prototype Design.

The design of the prototype starts with an analysis of the problem

and a decision as to what part or parts of the proposed system are to be

prototyped. Then requirements for the prototype are generated. These

requirements are usually written in English, but could be specified in a more

formal notation. Example requirements given in English taken from the

hyperthermia example are:

• Shutdown. Microwave power must drop to zero within 300 ms of turning
off the treatment switch.

• Temperature Tolerance. After the system stabilizes, the temperature must
be kept between 42.4 °C and 42.6°C

• Maximum Temperature. The temperature must never exceed 42.6°C.
• Startup Time. The system must stabilize within 5 minutes of turning on the

treatment switch.
• Treatment Time. The system must shut down automatically when the

temperature has been above 42.4°C for 45 minutes. [Ref. 3:pp. 28-29]

The requirements are refined by asking the customer questions to

determine exactly what the requirements mean and if they are complete. With

the completion of the preliminary design, the construction of the prototype may

begin.

b. Prototype Construction.

Construction of the prototype involves the use of the syntax directed

editor, graphic editor, design database, rewrite system, software base and the

16

r

r

sequence control of the CAPS user interface. This process is illustrated in Figure

7 and is described below.

To start the system, the PSDL specification of the operator that

represents the entire prototype is produced in the syntax directed editor. After ·

this specification has been normalized in the rewrite system a search of the

software base of reusable Ada® modules is performed. This search by

specifications produces no match, one match, or many matches. In the case of a

single match, that Ada® component is used as the implementation part of the

operator. A multiple match must be resolved and then the single resolved

component is used. When there is no match, the operator is a candidate for

decomposition.

Decomposition of an operator talces place in the graphic editor with

the production of the enhanced data flow diagram. In this diagram the editor

creates children operators of the current operator. In effect a multiway tree is

produced that is rooted at the original operator and has atomic operators as its

frontier. If the operator is a candidate for decomposition, but the designer feels

the operator is too simple for further decomposition, it may be simply coded in

Ada®. At this point, this operator would be atomic with this newly written code

as its implementation.The design database keeps track of all the nodes created in

the decomposition.

The primary responsibility of this database is to provide a storage

structure for the PSDL components of each operator in a way that maintains the

hierarchical nature of the prototype construction.

17

yes

Decompose
Operators

Create
New Nodes

no match

no

Code
Component

Insert
Implementation

Create Specification

Rewrite Specifications

Search Software Base

one
match

Retrieve
Component

Figure 7. PSDL Construction

many matches

The user interface controls the flow of data and the use of the

various tools in the system. This control includes calling the proper tool at any

given moment and the repetition of the constructive process until all leaf

operators in the design database tree are atomic.

c. Prototype Execution.

Execution of the prototype occurs in the execution support system

(ESS), through the use of the translator, static scheduler, dynamic scheduler and

18

1

the debugger as illustrated in Figure 8. The input to the ESS is the PSDL

program that was previously constructed.

PSDL

Translator Static Scheduler

Loosely
coupled
Ada modules

Static
Schedule

Dynamic Scheduler

Dynamic
Schedule

Compiler/Linker

Executable
Ada code

Figure 8.

• • 1 Debugger

Execution Support System

The first component in the ESS is the translator, which translates

PSDL into Ada® source code. The atomic operators are tempered by the control .

constraints of the composite operators and executable Ada® packages are

19

produced. This collection of modules is used by the static and dynamic

schedulers in the execution of the prototype. [Ref. 8:pp. 7-8]

The Static Scheduler also utilizes PSDL as input. It schedules all

components with real-time constraints after checking the compatibility of these

timing constraints between operators.

The Dynamic Scheduler combines the time critical static schedule

and the non-time critical components of the prototype into a piece of executable

Ada® code called the dynamic schedule. This schedule is compiled, linked and

finally executed. This execution is the test of the prototype and the design it

represents.

d. Prototype Debugging and Modification.

The debugging and modification phase of the CAPS process actually

takes place over the entire system and utilizes all the various tools. The

debugging talces place in two places, first at the time of the execution of the static

scheduler, at which time problems with timing constraints that would prohibit the

production of the static schedule are identified and corrected, and secondly,

during the execution of the dynamic schedule. At that time problems with the

dynamic execution of the prototype are determined.

In order to resolve these problems, a modification mode is used in

the user interface. This modification can go to any position in the defined

prototype and modify specifications and control constraints. The user interface

must interpret and make changes and, through the use of the design database,

carry this change through the levels of decomposition. This could require new

searches of the software base, deletion of existing operators or construction of

new -operators. If any changes are made, the modified PSDL program must be

20

r

(

run through the ESS again. This process will be done iteratively until the

prototype performs as desired or demonstrates problems in original

requirements.

B. PRINCIPLES OF THE USER INTERFACE

The user interface of a complex software engineering system, such as CAPS,

must do more than merely provide for data entry and display. It is also not

enough that the interface simply provide a loose collection of software tools,

rather it must provide sequence control, user guidance and data protection as

well. A system that provides all these functions and unites the tools into a single

system can be said to provide a software engineering environment.

1. Expert System and Sequence Control.

In order for software to provide all the functions of the user to system

interface, it must rely on expert system technology. This expert system does not

have to be based in an Artificial Intelligence language, rather the term expert

system is used to imply an ability to guide the user through the desired processes.

The interface must be able to interpret what the user is doing at any time and

provide support. This expert system must communicate with the user to find out

what they want to do at any moment when the system cannot be sure of the users

intentions. This type of expert system is also referred to as "mutual consultation"

[Ref. 9:p. 212].

While attempting to guide the user through a sequence of operations, it is

important to remember to allow the user to remain in control. One method of

achieving ihis goal is to allow the experienced user some flexibility of control. It

is good to have an interface that can guide the user through the system, but an

experienced user may regard such a system as "too restrictive". [Ref. 10:p. 48]

21

One of the benefits of a system that requires few control actions by the

user is reduced memory load on the user. The user does not have to remember

what to do next if the system can perform that function. Another way that this

expert system can reduce the memory load on the user is to apply all known ·

information to all possible uses. This frees the users from needing to remember

what they have already done.

Four methods of sequence control are given in Figure 9 with their

relative training requirements. A software engineering tool should limit the use

of the dialogs that require high amounts of user training. This can not be

avoided in a graphics tool, but limiting the number of commands the user needs

to know can make the system easier to use. In a software engineering tool the

interface should allow the user to concentrate on the developing software, rather

than the developmental tool. This will increase the users productivity.

DIALOG TYPE

Question and answer

Menu Selection

Command Language

Graphic Interaction

Figure 9.

REQUIRED USER TRAINING

Little/none

Little/none

High

High

Sequence Control Dialogs

The expert interface will insure that the user is placed in the proper tool

in order to produce the needed prototype component. Additionally, this interface

must "know" all the aspects of the developing software, so that the consistency of

data entered in the different tools can be maintained. The syntax and semantics

22

f

_

of PSDL are an important part of this intelligent interface. This enables the

interface to insure a valid PSDL prototype.

2. Data Entry.

Many of the same principles that applied to sequence control apply to

data entry. Once again the system should try to limit the number of input actions.

required by the user and also reduce the memory load on the user.

In order to provide the most efficient form of data entry, the interface

designers should consider textual, system driven and graphical inputs.

Regardless of the method, there are some underlying qualities that any interface

should provide.

Data should only be entered once and the system should be able to access

this information wherever it is needed. The user should not be asked to reenter

information that was already input.

Feedback should be provided during data entry. This includes displaying

keyed entries character by character and giving an indication of mouse-down and

mouse-up events in a graphics tool.

Data entry should be user paced. The system should not run away from

a novice user, but at the same time it should be able to accommodate the speed of

expert users.

3. Data Entry Methods.

The three data entry methods described above all have a place in the

interface. It is important to choose the proper method for a particular task.

When a program is being developed the naming of elements and the

description of arithmetic expressions are two tasks that seem best suited for

textual input. When possible, this input should be done with the aid of a syntax

23

.,

directed editor such as the Cornell Program Synthesizer. This system allows the

user to enter information without the frustrating syntactic details normally

encountered. This can be a tremendous help when the user is not very familiar

with the grammar of the programming language. [Ref. 11]

Graphical data entry is a very important area. With recent advances in

graphic technology it is possible for the user to enter information in a pictorial

form faster and more concisely than is possible in textual only environments.

The top down refinement of a software system is a logical use of graphic editing.

The decomposition from one level into many lower level components can be

easily represented by the human mind in a data flow diagram. In general, it can

be stated that people prefer pictures over words for describing structures, so

graphical data entry is desirable for this purpose. [Ref. 12: p. 152]

The final method of interface is through the use of questions and

response in a system driven interface. This system asks the user questions and

talces different actions based on the response of the user. Although this method is

more restrictive, it has its place in the user interface when the users cannot be

given freedom to enter anything they want. At the cost of flexibility, the user

can be guided to enter only information that is valid.

User interface design is more than just providing a method to get the

information from user to machine and back. The overriding factor is keeping

the user in control and this control should only be limited in situations where

possible errors would greatly degrade the system.

24

....

III. DESIGN OF THE USER INTERFACE.

In Chapter II, CAPS was introduced and discussed as a group of individual

components. In this chapter, the design of an interface that links these tools . .

together into a single software engineering tool will be described. The design of

the interface includes the specification of the inputs and outputs of the individual

components as well as a complete description of the previously undefined design

database. The interfaces involved in the the construction, execution and

debugging/modification of the prototype will be described. However, a brief

introduction to the Bourne Shell Scripts of the Unix2 operating system is

necessary.

A. BOURNE SHELL SCRIPTS AND UNIX OPERATING SYSTEM

The Bourne Shell Script is a way to perform a set of Unix commands

contained in a single file called a script. The Bourne Shell provides string-valued

variables, if-then-else logic, case statements, and for and while loops. In short,

all the constructs required to control the operation of the system are available.

Within the shell, all Unix comma~ds can be utilized, thus providing a very

powerful control environment [Ref. 13]. The Unix System allows for a

collection of different tools, many written in different languages. Once the

individual programs are compiled, they become executable Unix files and their

source is transparent to the system. Writing the interface in the Bourne· Shell

allowed it to be on a higher level than the system components. An additional

2 UNIX is a trademark of AT&T Bell Laboratories.

25

I

•

benefit of the Unix system is the ability to communicate with separate system

components with the Unix argument and the shared Unix files. Any function

required by the user interface could be performed in the Unix environment.

B. PROTOTYPE CONSTRUCTION

The Design Database (DOB), Software Base (SB), Graphic Editor (GE),

Syntax Directed Editor (SOE), and the Rewrite System are utilized in the

construction of the PSDL prototype. A description of the interface and function

of each of these components as well as the function of the user interface in the

coordination of the construction effort will be presented.

1. The Design Database.

The Design Database is a hierarchical storage structure for the

development of the PSDL program. This structure is a multiway tree with each

node containing:

• PSDL Specification part
• PSDL Implementation part (Graph or Ada®)
• Graphic Record (if implementation is Graph)
• PSDL Control Constraints part (if implementation is Graph).

The Specification part can be further divided to obtain the various

elements of the specification. In particular, it can be broken into operator name,

inputs, outputs, states, and MET individually. The Implementation part consists

of the link statements produced in the Graphic Editor or written or retrieved

Ada® code. The Graphic Record is the data used only by the Graphic Editor that

is used to redraw the data flow diagram.

Each level of the tree is produced by the decomposition of the parent

operator. The database is able to recognize the relation of parent and child. This

26

, .

\ ,

allows queries of the type find child and find parent, as well as a search by

operator name. Finally the DDB must be able to traverse the entire tree in a

breadth first order to produce the PSDL program.

The DD8 inputs are:

• Graphic Record (from GE)
• PSDL Implementation (Graph or Ada®)

• PSDL Control Constraints

• PSDL Specification
• Commands (from UI).

The DDB outputs are the same as the inputs with the addition of the

complete PSDL program.

The following operations were designed to enable the DOB to aid in the

construction and modification of the prototype.

• Create Root Node. This operation allows for the creation of a tree of
operators in the database.

• Create Child Node. This operation creates a new node for information
storage and sets the parent-child relationship between this new node and its
parent.

• Store Property. This operation stores a PSDL part (Specification,
Implementation or Control Constraints), subpart (Operator Name, Input
List, Output List, State List or Maximum Execution Time), or Graphic
record in the named node.

• Get Property. This operation retrieves these same properties from the
DDB.

• Get Children. This operation returns the names of all the children of the
named operator.

• Delete Node. This operator removes th~ named operator from the DOB.
Because of the hierarchical nature of the DOB, this operation will
effectively remove the entire subtree that is rooted at the named operator.

• Traverse Tree. This operation performs a breadth-first traversal of the
DDB that collects the PSDL components into a single program.

27

2. The Graphic Editor

The Graphic Editor is a graphics tool for drawing data flow diagrams

(DFD). It is the part of CAPS where most of the input of the prototype

descroption is done. The decomposition of a PSDL Operator into lower level

operators defines the actual creation of the new nodes in the tree structure. The

names of all operators and data streams are entered here. The editor insures a

valid decomposition by checking the consistency of inputs, outputs, states and

maximum execution times. The GE can also show the DFD of the parent

operator to aid the user in retaining the place of a single operator in the

prototype [Ref. 14].

Inputs to the GE include operators name, input, output, and state lists

and its maximum execution time. The outputs from the GE are the PSDL link

statements and the Graphic Record. The operations performed by the GE

include drawing operators data streams, inputs, and outputs showing parent DFD,

and loading and storing the Graphic Record.

3. The Syntax Directed Editor.

The Syntax Directed Editor produces syntactically correct PSDL and

syntax checks existing PSOL files. The SOE reads in and completes partial

PSOL specifications and produces PSDL Control Constraints.

Input to the SOE is the partial PSDL specifications produced in the UI

and its output is syntactically correct PSDL specification and control constraints.

4 • The Software Base

The Software Base of reusable Ada® modules has two parts; a query

module and a maintenance module. The maintenance module is involved with the

creation and upkeep of the database. All records must be stored by PSDL

28

~·

_;

....

specification so that they can later be searched by the same specification.

Although this part of the system is not utilized in the construction of the

prototype, it should enjoy the same interface as the query module. LRef. 15]

The query module receives the PSDL specification part and returns zero,

one or more Ada® modules that meet those specifications.

5. The User Interface.

The user interface has two main functions during the construction of the

prototype; sequence control of the construction effort, and the insurance of

continuity of the level-to-level decomposition of the operators. The sequence

control is performed by utilizing the if-then-else logic of the Bourne Shell. The

consistency of the decomposition is harder to achieve.

In the decomposition of an operator, a number of child operators are

produced through the use of the data flow diagram. Although this decomposition

can produce any number of new operators with any number of data streams

between them, the inputs and outputs of the system of child operators must be

exactly the same as those of the parent. The Graphic Editor can insure this by

reading in an input and output list. The GE will not allow any other inputs or

outputs and if all these inputs and outputs are not utilized the user will be notified

that the decomposition is not valid. Additional1y the Graphic Editor can check to

ensure that the maximum execution time for any of the children does not exceed

that of the parent. Finally, a state variable in a child must also exist in the DFD

decomposition as a self loop or a internal connection between two operators.

Figure 10 shows the decomposition of the operator top into its lower

level components, ape, bee, cat, and dog. Figure 1 O(b) is a valid decomposition of

the operator top, shown in Figure I O(a), because it has the same inputs and

29

outputs (a and c). The GE .would produce the link statements shown in Figure

l0(c) for inclusion in the PSDL implementation.

As previously stated, the four operators ape, bee, cat, and dog represent

the four child nodes of the node top in the DDB. These nodes are created, but the

name of these operators is not the only thing known about them. Actually the

link statements can be used to determine the inputs, outputs, names of any state

variables, and maximum execution times of these operators. The User Interface

reads the link statements and determines all of the information required to

produce a partial specification. The specification has the names but not the types

of the data streams. Production of this specification helps to ensure error -free

PSDL prototypes by relieving the user of the need to remember what he has

previously entered and is in keeping with the guideline that data should be

entered only once.

There is one additional place where the User Interface creates part of the

PSDL program. The Implementation part of PSDL consists of link statements

followed by a Data Stream List. This list consists of the internal data streams that

were drawn in the DFD. The UI appends the DataStream List to the end of the

link statements. To complete the Implementation part of the PSDL operator, the

type of each of these data streams must be added in the SOE.

6. Sequence Control.

The construct module consists of a loop that continues while there are

nodes in the DDB without an implementation part. The first incomplete node is

found in the DDB and its specification is used to search the Software Base. If a

match is found, that node is considered atomic and the Ada® code is placed in the

30

'i

implementation section of that operator. If there is no match the user is asked to

31

a

75 ms

a

(a)

10 ms

•

20 ms

a.EXTERNAL-->ape
ab.ape:1 Oms-->bee
ac.ape:1 Oms-->cat
be.bee :20ms-->cat
b.cat:30ms-->EXTE RNAL
state .cat:30ms-->cat
cd.cat:30ms-->dog
dc.dog:1 Oms-->cat

(b)

(c)

b

state

10 ms

Figure 10. Operator Decomposition

32

either decompose or write the Ada® implementation. If hand coding is done,

this operator is again atomic and the Ada® code becomes the implementation

part. Finally, if the user chooses to decompose the operator, the Graphic Editor

draws the DFD is and produces the link statements. The User Interface reads

these link statements and writes the partial specification for all newly created

operators. New nodes in the DDB are created for each new operator. The

Syntax directed editor is then called to complete the PSDL for the original

composite operator.

The construct loop ends when all leaf nodes of the DDB are atomic.

During the creation of a prototype, a rapid growth in the number of nodes is

expected, as the high level operators are decomposed. Eventually the Ada®

implementation for more of the lower level operators would be found in the SB

and the growth of the tree would stop.

The construction process deals only with the production of operators.

New data streams are produced in each operator. If these data streams are not

atomic they must be defined in PSDL. All user defined data streams (ds) would

appear outside the tree of operators on a level in the DDB equal to the root

operator. Exceptions (ex) would also appear at this level, which is similar tQ a

global type definition in Pascal. Figure 11 illustrates this structure. The tree of

operators contains both composite operators (co) and atomic operators (ao).

C. PROTOTYPE EXECUTION

Prototype execution utilizes the Translator (TR), Static Scheduler (SS), and

Dynamic Scheduler (DS) to produce an executable prototype in Ada®, that can

test the design and requirements of the actual system.

33

x1 •••

Figure 11. Conceptual DOB Structure

1. The Translator

The translator in CAPS translates the PSDL into Ada®. This is done by

taking the Ada® implementation of the atomic operators and adding the control

constraints of the composite operators to produce a group of loosely coupled

Ada® modules. [Ref. 16 J

The input to the translator is the PSDL program that was produced in

the breadth first traversal of the DDB. The output is the package of Ada®

modules.

2. The Static Scheduler

The Static Scheduler produces a schedule of time critical operators, if

one can be produced. If it is impossible to produce a valid schedule because of

the timing constraints set in the construction of the prototype, the user will be

notified by the Debugger. This process will be described in the debugging and

modification section.

34

.,.

3. The Dynamic Scheduler

The Dynamic Scheduler produces a dynamic version of the static

schedule that includes a schedule of time critical operators, a collection of non

critical operators and an exception handler that is the debugger. The Dynamic

Scheduler adds the ability to run non-time critical operators in conjunction with

the static schedule.

The produced dynamic schedule is a Ada® program that consists of two

tasks and the exception handler. The higher priority task is the schedule of time

critical operators. This task will execute until it reaches a designated milestone in

the schedule, if it is ahead of schedule the secondary task, (non-time critical

operators) will be executed for the amount of excess time. In the event that the

prototype falls behind its time schedule at any milestone, an exception will be

raised and the debugger will be started.

To aid in debugging, a trace and a graphical representation of the

executing prototype are planned. The trace will list the name of the operator and

the time that it is entered. This information is critical when the actual real-time

performance of the prototype is being evaluated. The run time status of the

prototype could be displayed by presenting the user with a tree that represents

the nodes of the DDB. The node on the frontier of the tree that corresponds to

the operator currently executing would be highlighted. This would give the user

the ability to watch the actual execution of the prototype.

4. Sequence Control.

The Translator and Static Scheduler may be executed in any order, or

~ simultaneously in a multitasking environment. After the Static Schedule is

produced and a non-time critical operators identified, these operators must be

35

grouped in a package for use in the Dynamic Scheduler. The Translator output

is compiled and used in both the Static Schedule and the non-time critical

package. These two packages then become part of the Dynamic Schedule, which

must be compiled and linked before it is executed.

D. PROTOTYPE DEBUGGING AND MODIFICATION.

The debugging of the prototype takes place during the execution of the Static

Scheduler, while the static schedule is being produced, and during the execution

of the dynamic schedule of the prototype. The Debugger must be broken into

two parts because exceptions caused by static problems arise before compilation,

while many of the dynamic timing problems of a real-time system will not occur

until the prototype has been compiled and is executing. [Ref. 17 J

1. The Debugger.

The Debugger has two methods of correcting problems in the prototype.

The first is through direct user interaction with the prototype and the second is

through the Syntax Directed Editor and the Graphical Editor in the modification

mode.

The Debugger gives the user a chance to make small changes to the

prototype in the ESS. This allows rapid feedback as to the results of the change.

The problem with this method of modification, is that these changes are

temporary. The only way to make a permanent change to the prototype is with

the SDE or GE.

2. Modifying the Prototypes.

There are many problems involved in implementing the facilities for the

modification of a PSDL prototype. These problems stem from the fact that

operators in the hierarchical structure of the DDB inherit information both up

36

and down. In addition there are both graphical and textual views of an operator.

These views actually hold different versions of the same information. A change

in one view requires a change in the other.

a. Modifyi11g an Operator.

If an operator is deleted the simple solution is to delete the entire

subtree that has that operator as a root. This action is very severe and the DOB

should record a historical version of the prototype at this time. If it is later

shown that this deletion was an improper choice, this version of the prototype

could be restored. A deletion would also require the modification of the DFD

(and link statements) of the parent operator, where the deleted operator is first

defined.

The addition of a new operator is as simple as a deletion. The new

operator is added to the DOB tree and the construction mode of the user

interface is entered. Construction continues until the new subtree is completely

defined. In both deletetion and insertion the DFD of the parent operator must be

modified to reflect the changes in its subtree.

The most significant problem in modifying an operator occurs when

small changes in the specifications or control constraints of an operator are made.

A change in the specification could cause changes in every node of its subtree.

Equally as likely, a specification change could cause an atomic operator to

become a complex operator if the search of the software base no longer yields a

match. The search on modified specifications may yield a match that was not

previously obtainable, therefor deleting a subtree and replacing it with an atomic

operator.

37

This level-to-level consistency problem can move up the tree as well.

Also a change at a child node may cause it to be different from the node required

for the decomposition of the parent.

b. Consistency of Views.

A change of a textual component of PSDL may be carried over to

the graphic representation. An example is the name of a data stream, that is

changed in the implementation section of a PSDL operator, must be reflected in

the link statement and also in the graphic record.

The graphical view of a change might be the best indication of the

problems caused by deletions or changes. More effort is required in the area of

prototype modification, if the same assurances of valid PSDL prototypes that are

present in the construction mode are expected during modification.

E. TOP LEVEL USERS MANUAL

The top level users manual contains the four commands; caps, construct,

execute and modify. This section describes these commands and the environment

the user will be in when these commands are executed. The individual user

manual for each system component, particularly the SOE and GE, should also be

consulted.

1. The Caps Command.

The caps command is how the user initiates CAPS and it places the user

in the user interface portion of CAPS. From this point the user can initiate one

of the three remaining commands.

caps <new _proto _ name>

The optional argument contains the name of a new prototype that is to be

constructed. If the DOB is empty, this name will be used to create a new root

38

node. If the argument is not used and the DOB is empty, the uler will be asked

to Enter the root node name . The response to this query will be used to create

the root node. When the DOB is empty the user will always be placed in the

construction mode as the execution and modification modes would not apply.

2. The Construct Command.

The construct command is used to place the user in the construction

mode. In this mode the user is directed into the SOE and GE to create the PSDL.

program.

construct

This command will place the user in the location where the PSDL

construction can begin or continue. The process is directed by the UI to insure

the production of a complete and valid PSDL program. The particular aspects of

both the SDE and GE users manuals should be reviewed in order to properly

utilize these tools when they are called. The search of the Software Base, the

storage and retrieval of components in the DOB, and the semantic checking of

the UI are all transparent to the user.

The user is advised of the results of the software search and the

completion of the construction with the below dialogs.

• Software Search Complete - no match found. This notifies the user that
the search for an Ada® implementation for the given specification was
unsuccessful. This would be followed by the question: Do you want to
decompose, y or n. Based on the response the user will be placed in the GE
or Ada® edttor.

• Software Search Complete - implementation found. This indicates a
successful retrieval of an Ada® implementation. The user is then asked to
choose the next operator for implementation.

• Select the next operator for implementation. This dialog presents the user
with a list of incomplete operators. The user then enters the name of the
desired operator. This question will follow the completion of any

·· implementation.

39

• Construction Complete. This message indicates the completion of the PSDL
prototype. The user is then placed in the UI portion of CAPS where
execution or modification can be selected.

3. The Execute Command.

The execute command places the user in the Execution Support System

where the constructed prototype is executed to test the real-time performance.

execute

This command first checks for the existence of a completed prototype.

If one does not exist the user is warned, No Completed Prototype Available, and

placed back in the UI. When a complete prototype is available, the Translator,

Static Scheduler and Dynamic Scheduler called in succession. The use of these

components, as well as the Ada® compiler and linker, is transparent to the user.

The user is informed of the status within the ESS with the below messages.

• Translation Complete.

• Static Scheduler Complete.

• Dynamic Scheduler Complete.

• Compilation Complete.

• Linking Complete.

• Execution Complete.

In the event of a problem in the scheduling or execution of the

prototype, the user will be notified by the Debugger. The user has the option to

make temporary corrections to the prototype in an attempt to achieve proper

execution. All permanent changes must be made in the appropriate editor

through the use of the modify command. The users manual for the Debugger

should be consulted for the form of any commands, messages and dialogs.

40

4. The Modify Command.

The modify command is used to make changes to the prototype. The

user is placed in the modification mode that insures that all changes are made

consistently throughout the various levels in the DDB.

modify

This command asks the user to Enter the name of the Operator to be

modified. The user must then call the SDE or GE to make the required change

to the operator. The UI insures that the appropriate changes are made in the

higher and lower levels of the DDB. The user will be asked to resolve the

questions that will arise as these changes are carried out. Depending on the

changes made the user might be required to enter the construction mode to

complete the modified prototype. The design of this area of CAPS is not

complete.

F. EVOLUTION OF THE USER INTERFACE.

The current design of CAPS is in an evolutionary stage. As CAPS changes

the design of the User Interface must change to keep the system performing. At

the present time, only a part of the total system has been implemented. As more

of the functions of CAPS are implemented changes to the interface will be

required.

41

IV. IMPLEMENTATION OF THE USER INTERFACE.

The user interface has not been completely implemented since all of the

components of CAPS have not been implemented. The link statement analyzer of

the UI has been implemented and is described here. The means of sequence

control have been tested and proved to be feasible for use in the implementation

of the interface. This chapter will outline the implementation of the link analyzer

as well as a plan for the implementation for the remainder of the User Interface

and the Dynamic Scheduler.

A. THE LINK STATEMENT ANALYZER.

The link statement analyzer is called nodes because it writes the partial

specification for the newly created operators and is used to create new nodes in

the DDB.

The program was written in Pascal, because that was the language most

familiar to the author. Berkley Pascal was used because, like the remainder of

the system, it can run on the Sun Workstation® 3 and the Unix Operating System.

The declaration section of nodes.p shown in Figure 12 describes the storage

structure that is used. In this program the link statements are parsed and the

operators are stored in the linked list of operators. Within a given operator a list

of inputs, outputs, and states as well as the Maximum Execution Time are stored.

State variables are determined by the existence of a data stream with the same

operator as its two end points. Graphically this would appear as a self loop.

3 Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

42

There is a linked list of internal data streams collected for inclusion in the

Implementation section of the parent operator. The storage structure is built up

as each link statement is read in succession.

program CreateNodes (input,output);

const
period = '.';
colon=':';
arrow = '-';
blank=' ';
EXTERNAL = 'EXTERNAL

type

(* Global Constants *)

(* 72 blanks *)
'· ,

string80 = packed array [0 .. 79] of char;
DataPtr = "DataType;
DataType = record

Name: string80;
Link: DataPtr;
end; (* DataType *)

OperPtr = "Operator;
Operator = record

OpName: string80;
lnputList: DataPtr;
InListTail: DataPtr;
OutputList: DataPtr;
OutListTail: DataPtr;
StateList: DataPtr;
StateListTail: DataPtr;
MET: string80;
Link: OperPtr;
end; (* Operator *)

var
OpHead: OperPtr;
OpTail: OperPtr;
DataHead: DataPtr;
Data Tail: DataPtr;

(* Node for Linked List of Nodes *)

(* Node of Linked List of Operators *)
(* Operator Name *)
(* Head Pointer to Input List *)

(* Tail Pointer to Input List *)
(* Head Pointer to Output List *)
(* Tail Pointer to Output List *)
(* Head Pointer to State List *)
(* Tail Pointer to State List *)
(* Maximum Execution Time *)

(* Head of Operator List *)
(* Tail of Operator List *)
(* Head of Data List *)
(* Tail of Data List *)

Figure 12. Declaration Section of Nodes.p

43

After the link statements are read into the data structure, specification parts

for each new node are written into dynamically created files. These files will be

used to create new nodes in the DDB, with each file being the input for the create

new node command. In addition to creating the child nodes, the Data Stream part

of the PSDL implementation section for the parent node is produced. This data

stream list consists of all new internal data streams created in the decompositions

that are not state variables. The creation of both a child node and the Data

Stream list in nodes .p are illustrated in Figure 13. This figure illustrates how

the link statements that were produced in the GE (Figure 13(a)) are used by the

UI to produce the partial specification of the newly defined operator, ape,

(Figure 13(b)). The entire input and output of this example is shown in

Appendix D. All of the semantic checking required to produce proper PSDL is

included in the nodes.p program. Nodes.p is included as an important part of

the construction subsystem.

ab.ape:l0s-->bee
ac.ape: l0s-->cat
bc.bee:20s-->cat
c.cat:30s-->EXTERNAL
state.cat:30s-->cat
cd.cat:30s-->dog
a.EXTERNAL-->ape
de.dog: 1 0s-->cat

(a)

NewNode.01

OPERA TOR ape
SPECIFICATION
INPUT a
OUTPUT ab

ac
MAXIMUM EXECUTION TIME 10s

(b)

44

Figure 13. Input and Output of Nodes.p

B. SEQUENCE CONTROL IN THE USER INTERFACE.

The Sequence Control of the construction and execution subsystems has been

designed and tested. Complete implement~tion can be started when all the

elements of CAPS are operating.

1. Implementation of the Construction Subsystem.

The goal of the construction subsystem is the production of the PSDL

prototype. Before the construction process can begin the specification of the root

operator must be written and the root node in the DDB created with the

createRootNode command. This command to the DDB is executed by the UI

when the user types the command caps. After this requirement is met the

construction subsystem is entered.

The prototype construction is a loop that is executed until all the

elements of the DDB are fully defined. The user interface maintains a list of

nodes in a file called node.list. When new operators are created, their name is

added to this list. As these operators are fully defined, they are removed from

the list. When this node.list is empty the prototype is complete. The command:

while test-s node.list do will perform this function in the Bourne Shell.

The first step in the construction is the completion of the PSDL

specification. To do this the partial specification is retrieved from the DDB

through the use of the getProperty command. This command is executed with

the operators name on the first line in the file ddb. in and the name specification

on the second. The DOB places the operator's specification in the file ddb.out.

The SOE is invoked to complete and syntactically check the specification. This

editor is called with the command SDE ddb.out. This specification is then sent to

45

the Software Base by placing it in the file psdl.spec and then executing the file

Software_Base. The response to the query is read from the file SB_out. If there

is no match, the file is empty, otherwise the Ada® code is in this file.

The command test-s SB out is used by the UI to determine if a match

has been found. If it has, the Ada® code will be appended to the Implementation

in the form of a PSDL comment. To do this, the words Ada® and the operator

name are added followed by the retrieved Ada® code which is surrounded by the

brackets of a PSDL comment.

If no match is found in the software search, the user is asked if they want

to decompose the operator. A string-valued variable containing the users

response is tested. When the response is negative, the user is placed in an editor,

currently vi, where the Ada® implementation is written. The Ada® code is

handled the same as the code that is retrieved from the Software Base. The

implementation is stored in the DOB with the command storeProperty with the

operator name followed by the Implementation section placed in ddb.in.

When the user wishes to decompose, the Graphic Editor is called and the

data flow diagram and its corresponding link statements are produced. The GE

is given the files graph.name, graph.in, graph.out, graph.state and graph.met

which are made from data retrieved from the specification part of PSDL. The

GE outputs graph.link and graph.pie are the link statements and graphical

record respectively. Graph.pie is also an input, but it will be empty unless a

DFD already exists.

The user interface creates graph.name, graph.in, graph.out, graph.state,

and graph.met by getting the specification part of the node as described above,

scanning for the information and writing it in the appropriate file. The output

46

~

files graph.pie and graph.link are produced in the GE. The implementation

section is stored in the DDB by writing the key words IMPLEMENTATION and

GRAPH to the file ddb.in and then concatenating the files graph.link and psdl.ds

to it. The file ddb.in is then stored using the storeProperty command.

While reading the link statements to determine the internal data streams

needed to produce psdl.ds the new nodes are identified. The program nodes.p

dynamically produce files named NewNode.01 to NewNodeXX depending on the

number of new operators in the decomposition. The new nodes are created by

executing the command createChildNode for each NewNode file. To execute

createChildNode, ddb.in must have the name of the new node on the first line

followed by the name of the parent node and then the partial specification

produced by the link analyzer.

The loop is executed until all nodes are fully described with the leaf

nodes being all atomic operators. The construction of the prototype is complete

when the command traverse is executed. With the name of the root node in

ddb.in , a breadth first traversal of the DOB is performed and the PSDL for each

operator is concatenated to the file. This PSDL specification for the entire

prototype is moved to the file psdl for use by the Execution Support System.

2. Implementation of the Execution Support System.

The implementation of the Execution Support System involves the

coordination of the Translator, Static Scheduler, Dynamic Scheduler, and the

Ada® compiler and linker as well.

To execute a prototype, the file psdl is first piped to the executable file

translator. This program generates a package of loosely coupled Ada®

47

components that each represent one of the leaf nodes of the prototype. This

package is called TL.a and is used by both the Static and Dynamic Schedules.

The Static Schedule is produced by executing the attribute grammar

preprocessor called psdl _reader with psdl piped as its input. The output file from

psdl_reader, called operator.info, is the input to the next program, called

Static_Scheduler. The Static_Scheduler produces a static scheduler, SS.a, as its

output. A secondary output of the Static_Scheduler is the list of non-time critical

operator NTC.out.

Both SS.a and NTC.out are used by the Dynamic Scheduler to produce

an executable schedule called DS.a. This output schedule, which is written in

Ada®, must be compiled and linked before execution. After schedule

completion, the name of the executable prototype code is changed to be the same

as the root operator.

3. Implementation of Debugging and Modification.

The debugger, as previously described, is broken into two parts; the

Static Scheduler debugger and the executing prototype debugger. Both parts are

embedded in the Execution Support System although it is not part of the

execution of the prototype. If the debugger gets direct input from the user this

information is used to try to keep the prototype executing. When the problems

become too large the debugger writes the error message into the file information

where the user can read it and attempt to modify the prototype.

The modification process is not completely defined at this time, but the

DDB is equipped with all the operations that should be required. In addition to

the operations that were previously discussed in the construction of the

protetype, there are the getParent and getChildren commands for moving

48

around the tree and the deletNode command for the removal of unneeded

operators.

The getParent command is called with the known nodes name in ddb.in.

The name of that nodes parent is placed in standard output and can be piped to

wherever _it is needed. The command getChildren is very similar except that the

output is the list of child nodes and is placed in the file ddb.out.

The deletNode command simply deletes the node named in ddb.in and its

entire subtree from the DDB. This command will require that a historical

version of the DDB be saved. As the modification process is defined, additional

operators in the various tools from the construction subsystem will be required.

C. EXAMPLE BOURNE SHELL SCRIPTS

The following example Bourne Shell scripts of the construct mode illustrate

the commands that have been tested for use in the sequence control of the UI.

These scripts are not complete, and have not been tested because the DDB was not

implemented at the time of this writing.

1. The Construct Script.

The script for the construct mode is illustrated in Figure 14. This script

is a loop that executes until the file node.list is empty, signifying a complete

prototype. The first command in the loop calls the executable file getChoice.

This file displays the list of incomplete operators to the user, who then selects the

next operator for implementation. The choice is stored in the file choice. The

command cat choice spec > > ddb.in places the name of the choice operator and

the keyword SPECIFICATION, found in the file spec, in the file ddb.in. The

command getProperty uses ddb.in to retrieve the specification of the operator

from the DOB.

49

I

50

while test-s node.list do
getChoice

done

cat choice spec >> ddb.in
getProperty
SDE ddb.out
mv ddb.out psdl.spec
cat ddb.in psdl.spec >> temp
mv temp ddbJn
s toreProperty
Software_Base
if test-s SB_out then

else

fi

echo "Software Search Complete - implementation found"
addlmpl

echo "Software Search Complete - no match found"
echo "Do you want to decompose, y or n."
read x
if test $x = y then

GE
else

adaEditor
addAdalmpl

fi

echo "Construction Complete"

Figure 14. Construct Script

The output from the DOB, ddb.out, is sent to the SDE, where it is

completed and syntax checked. The file is then moved with the mv command to

the file psdl.spec, which is the input file for the Software Base. The next three

commands create the file temp with the operator's name, the keyword

SPECIFICATION and the completed specification in it. This file is moved to

ddb.in where the storeProperty command stores it in the DDB.

The search of the SB is initiated by the command Software _Base. The

results of the search are placed in the file SB _out. If there is no match this file is

empfy and it would fail the test-s command. If there is an implementation in the

51

file, the user is notified with the message "Software Search Complete -

implementation found", and the executable program make/mp I is called. This

program creates a PSDL implementation section by placing the keywords

IMPLEMENTATION and Ada in the file ddb.in. The operator name and the

retrieved code, surrounded by the brackets ({}) of a PSDL comment are

concatenated to complete ddb.in.

If no implementation is found in the SB, the user is notified with the

command "Software Search Complete - no match found" and asked "Do you want

to decompose, y or n". The user's response is read into the variable x if the

response is "y" the GE is called. The script for the GE is demonstrated in the

next section.

If the user does not want to decompose, the Ada® editor is called

followed by addAdalmpl which adds the Ada® implementation to the PSDL

operator just as add/mp/ does.

When node.list is empty, all the operators are completely defined, and

the prototype is complete. The user is notified with the command" Construction

Complete".

2. The Graphic Editor Script.

The GE script, shown in Figure 15, is embedded in the construct script.

The primary purpose of the GE script is to get the inputs from the DDB, call the

Graphical Editor, and then store the outputs back in the DDB.

The executable file getlnputs calls the DOB command getProperty, with

the proper keywords in the file ddb.in, to retrieve the operator name, inputs,

outputs, states and maximum execution time from the operator specification, as

wellwas the graphic record, if one was previously produced. This information is

52

placed in the files graph.name, graph.in, graph.out, graph.states, graph.met, and

graph.pie respectively. These files are the inputs to the GE.

The command graph puts the user in the editor where the DFD that

defines _the decomposition of the operator are produced. The outputs of the GE

are the new graphic record graph.pie and the link statements in the file

graph.link. Graph.link is piped to the link analyzer nodes, where the partial

specification of the newly defined nodes and the data stream list are created.

get_inputs
.graph
nodes < graph.links
cat graph.links psdl.ds >> psdl.imp
cat choice Imp Graph psdl.imp >> ddb.in
SDE ddb.in
s toreProperty
cat Graphic graph.pie>> ddb.in
store Property
createN odes

Figure 15. Graphical Editor Script

The commands Graph.link psdl.ds >> psdl.imp and cat choice Imp

Graph psdl.imp > > ddb.in produce the implementation of a composite operator.

This is done by first combining the link statements and data stream list. The

keywords IMPLEMENTATION, in the file imp, and GRAPH are added as well

as the operator name. The PSDL implementation is then sent to the SOE where

the user must add the types to the data streams in the data stream list. The user

may also add any optional control constraints.

The storeProperty command is used to store both the implementation

section and the graphic record. The cat command in between sets up the file

ddb.in for the storage.

53

The last command in the script, createNodes takes the files of the form:

NewNode.XX, that were created in the UI for each new operator defined in the

the DFD, and creates a node in the DDB with the createChildNode command.

The executable file createNodes must load the file ddb.in with the new operator

name, parent operator name and the partial specification, in N ewN ode .XX, for

each new operator before executing the createChildNode command.

D. FUTURE IMPLEMENTATION.

There are two aspects to the future implementation of the User Interface.

The first is implementation of the designed features of the system. As the

individual components are completely implemented the UI will need to be

expanded to provide all the features of the system to the user. After all the

logical considerations of the interface are fully tested, the second part of the

implementation can begin.

The second phase is more directly involved with the Human Factors

Engineering of the system. Presently the major considerations are what the

system does, what information is to be passed and which tool should be invoked

next. The follow on work should be more involved with how the information is

presented to and received from the user. The use of a more graphic interface

with a response via the mouse, would be more compatible with the primarily

graphic input of the system.

54

V. CONCLUSIONS

The goal of this thesis · was to determine the requirements of a user interface

for CAPS and to design such an interface. This expert interface will help ·

transform CAPS from a collection of software engining tools, into ·a usable

system for rapid prototyping.

A. FEASIBILITY ISSUES.

The work done in this thesis demonstrates that a user interface that supports

the construction, execution and modification of an executable prototype can be

produced. First the requirements of interface were defined. These included data

entry, data protection, communication between elements and sequence control. A

design of an interface that could support these requirements was then produced.

Key aspects were tested and the implementation outlined.

This interface, along with the demonstration of the feasibility of most of the

components of CAPS, has shown that the system can be built. The next step is to

demonstrate that this prototyping effort can aide in the production of real-time

embedded systems. It must be shown that CAPS can construct and execute these

prototypes quickly with minimum user training.

B. BENEFITS OF THE STUDY

The primary benefit of the work done on the user interface is the

advancement of CAPS. CAPS has demonstrated the potential for significant time

and cost savings in the production of these real-time system. If the user interface

can be powerful and friendly enough to promote the users interest in the system

then -CAPS will be more readily used.

55

A secondary benefit of this research is in the area of user interfaces for other

systems. Other software engineering tools might be able to utilize some of the

aspects of the CAPS user interface. A tool that uses both graphical and textual

data entry and display could utilize the same type of control of data consistency

between the two views. The use of the Bourne shell scripts might a be a useful

model for some other system as well.

C. RECOMMENDATIONS.

There are three recommendations for the improvement of CAPS. These

recommendations include the addition of two new areas of work to the system

and a change in the primary method of data entry.

1. Primary Data Entry.

The original design of CAPS called for the majority of the data entry to

be done in the SOE. As the system has been developed, the GE has proven to be

the primary tool for the entry of new data. The DFD is the first place where the

new operators and data streams are defined in PSDL. The UI already uses the

information from the GE to produce the partial spec~fication of the newly

constructed operators and the data stream declaration. Currently the GE only

names data streams and the type must be added in the SDE. The inclusion of

types in the GE, and in the link statements, would eliminate the need to return to

the SDE to complete the specifications and data stream lists.

2. Prototype Modification.

A method of prototype modification must be provided. A modification

mode that not only allows changes to the prototype, but provides the same

assurances of valid PSDL prototypes as the construction mode is required. Until

56

this modification subsystem is in place, the rapid debugging of the prototype will

not be possible.

3. Execution Monitoring.

The current design of CAPS does not include a means of monitoring the

execution of the prototype. Some means of producing both a trace and a view of

the execution of the prototype would greatly improve the ability to debug and

verify the prototype's performance. The ability to trace a problem in the

execution to one of the original requirements would aid in the validation or

modification of these requirements.

D. APPLICATION OF CAPS IN THE DEPARTMENT OF DEFENSE
AND THE DEPARTMENT OF THE NAVY.

The substantial investment in real-time embedded systems in DOD and DON

points out the tremendous need for a tool such as CAPS. Since CAPS produces

an executable prototype in Ada® that can be used to test the design of a software

system before coding. MIL-H-48655B calls for requirements analysis, functional

specification and verification before the actual coding of the system [Ref. 19].

Rapid Prototyping supports this objective. All embedded systems in DOD are to

be written in Ada®, so it seems that CAPS is the tool that best supports the

production of real-time embedded systems. Although CAPS is not yet a complete

system, it does hold promise as an important tool for software engineering in

DOD and DON.

There is much interest in the rapid development and acquisition of software

for tactical systems in the Navy, as shown in OPNA VNOTE 5000. This

instruction outlines a method for accelerated acquisition of tactical systems

through the use of existing, "off the shelf" hardware and rapidly produced

57

developmental software[Ref. 20]. The production of this software could be

accelerated through the use of a software tool like CAPS.

Rapid prototyping has demonstrated a potential to be one possible solutions to

the inherent problems of producing large real-time systems with traditional

software engineering methodologies. CAPS shows promise as a practical

software engineering tool.

58

APPENDIX A. PSDL GRAMMAR

Start= psdl
psdl = {component}
component = data_type I operator

data_type = "type"id type_spec type_impl
operator= "operator"id operator_spec operator_impl
type_spec = "specification" [type_decl] { "operator" id operator_spec}

[functionality] "end"
type_impl = "implementation" "ada" id" {"text"}"

I "implementation" type_name {"operator" id operator_impl}
"end"
operator_spec = "specification" {interface} [functionality] "end"
operator_impl = "implementation" "ada" id"{" text"}"

I "implementation" psdl_impl
type_decl = id_list ":" type_name {"," id_list ":" type_name}
functionality= lkeywords] [informal_desc] [formal_desc]
psdl_impl = data_flow _diagram [streams] [timers] [control_constraints]

[informal_desc] "end"
type_name = id"[" type_decl "]"

I id
interface = attribute [reqmts_trace]
id_list = id { "," id }
keywords = "keywords" id_list
informal_desc = "description" " {" text "}"
formal_desc = "axioms" " {" text "}"
data_flow _diagram = "graph" {link}
streams = "data stream" type_decl
timers = "timer" id_list

attribute = generic_param
I input
I output
I states
I exceptions
I timing_info

generic_param = "generic" type_decl
input = "input" type_decl
output= "output" type_decJ
states= "states" type_decl "initially" expression_list

59

exceptions= "exceptions" id_list
timing_info = ["maximum execution time" time]

["minimum calling period" time]
["maximum response time" time]

reqmts_trace = "by requirements" id_list
link= id "." id l":" time] "->" id
control_constraints = "control constraints" { constraint}
constraint = "operator" id

["triggered" [trigger] ["if" predicate] [reqmts_trace]]
["period" time [reqmts_trace]]
["finish within" time [reqmts_trace]]
{ constraint_options}

trigger= "by all" id_list
I "by some" id_list

constraint_options = "output" id_list "if" predicate [reqmts_trace]
I "exception" id ["if" predicate] [reqmts_trace]
I timer_op id ["if" predicate] [reqmts_trace]

timer_op = "read timer"
I "reset timer"
I "start timer"
I "stop timer"

expression_list = expression ("," expression)
time = integer [unit]
unit= "ms" I "sec" I "tnin" I "hours"
expression = constant

I id
I type_name "." id "(" expression_list ")"

predicate = relation (bool_op relation}
relation = simple_expression

I simple_expression rel_op simple_expression
simple_expression = [sign] integer [unit]

I [sign] real
I ["not"J id
I string
I ["not"] "(" predicate ")"

I l "not" J boolean_constant
bool_op = "and" I "or"
rel_op = "<" I "<=" I ">" I ">=" I "-" I "/=" "·"
real = integer "." integer
integer = digit (digit}
boolean_constant = "true" I "false"
numeric_constant = real I integer

60

constant = numeric_constant I boolean_constant
sign= "+" I "-"
char = any printable character except "}"
digit = "O .. 9"
letter = "a .. z" I "A .. Z" I "_"
alpha_numeric = letter I digit
id = letter (a] pha_numeric}
string=""" (char} "'"'
text = (char}

61

APPENDIX B. BRAIN TUMOR TREATMENT SYSTEM

EXAMPLE

OPERA TOR Brain_tumor_treatment_system
SPECIFICATION

INPUT patient_chart: medical_history,
treatment_switch : boolean

OUTPUT treatment_finished: boolean
STATES temperature: real INITIALLY 37 .0

DESCRIPTION {This is an English description of the operator)
END
IMPLEMENTATION
GRAPH temperature.EXTERNAL--> hyperthermia_system

patient_chart.EXTERNAL--> hyperthermia_system
treatment_switch.EXTERNAL --> hyperthermia_system
treatment_power.hyperthermia_system --> simulated_patient
treatmen t_finished .hyperthermia_system --> EXTERNAL
temperature.simulated_patient --> hyperthermia_system

DAT A STREAM treatment_power : real
CONTROL CONSTRAINTS

OPERATOR hyperthermia_system
PERIOD 200 ms BY REQUIREMENTS shutdown

OPERATOR simulated_patient
PERIOD 200 ms

DESCRIPTION { some text about it)
END

OPERATOR hyperthermia_system
SPECIFICATION

INPUT temperature:real,
patient_chart:medical_history,
treatment_switch: boolean

OUTPUT treatment_power: real,
treatmen t_fin ished: boolean

MAXIMUM EXECUTION TIME 100 ms
BY REQUIREMENTS temperature_tolerance

MAXIMUM RESPONSE TIME 300 ms
BY REQUIREMENTS shutdown

KEYWORDS medical_equipment,
-· temperature_control,

62

hyperthermia,
brain_tumors

DESCRIPTION { }
END

IMPLEMENTATION
GRAPH temperature.EXTERNAL --> start_up

temperature.EXTERNAL --> maintain
patient_chart.EXTERNAL --> start_up
treatment_switch.EXTERNAL --> safety _control
estimated_power.start_up --> safety _control
estimated_power .maintain -->safety _control
treatmen t_finished .maintain --> safety _control
treatment_finished.start_up --> safety _control
treatment_power.safety _control --> EXTERNAL

DATA STREAM estimated_power: real
TIMER treatment_time
CONTROL CONSTRAINTS

OPERATOR start_up
TRIGGERED IF -42.4 > temperature
BY REQUIREMENTS maximum_temperature

STOP TIMER treatment_time
RESET TIMER treatment_time IF temperature <= 37 .0

OPERA TOR maintain
TRIGGERED by all temperature, treatment_time

IF temperature >= 42.4
BY REQUIREMENTS maximum_temperature

OUTPUT treatment_finished IF treatment_time >= 45 min
BY REQUIREMENTS treatment_time
START TIMER treatment_time

BY REQUIREMENTS treatment_time,
temperature_tolerance

END

OPERA TOR start_up
SPECIFICATION

INPUT patient_chart: medical_history,
temperature: real

OUTPUT estimated_power: real,
treatment_finished: boolean

EXCEPTIONS errl, err2, err3
BY REQUIREMENTS temperature_tolerance

63

DESCRIPTION { }
END
IMPLEMENTATION Ada start_up

OPERATOR maintain
SPECIFICATION

INPUT temperature: real
OUTPUT estimated_power: real,

treatment_finished: boolean
MAXIMUM EXECUTION TIME 90 ms

BY REQUIREMENTS temperature_tolerance
DESCRIPTION { }

END
IMPLEMENTATION Ada maintain
OPERA TOR safety _control
SPECIFICATION

INPUT treatment_switch,
treatmen t_finished: boo lean,
estimated_power: real

OUTPUT treatment_power: real
BY REQUIREMENTS shutdown

MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperature_tolerance

DESCRIPTION (}
END
IMPLEMENTATION Ada safety _control
OPERA TOR simulated_patient
SPECIFICATION

INPUT treatment_power: real
OUTPUT temperature : real
DESCRIPTION { }

END
IMPLEMENTATION ADA simulated_patient

64

APPENDIX C. PASCAL PROGRAM nodes.11

program CreateNodes (input,output);
const (* Global Constants *)

'·
'

. d '' peno = . ;
colon=':';
arrow='-';
blank=' ';
EXTERNAL = 'EXTERNAL

(* 72 blanks *)
type

string80 = packed array [0 .. 79] of char;
DataPtr = "DataType;
DataType = record

Name: string80;
Link: DataPtr;
end; (* DataType *)

OperPtr = "Operator;
Operator = record

OpName: string80;
lnputList: DataPtr;
InListTail: DataPtr;
OutputList: DataPtr;
OutListTail: DataPtr;
StateList: DataPtr;
StateListTail: DataPtr;
MET: string80;
Link: OperPtr;
end; (* Operator *)

var
OpHead: OperPtr;
OpTail: OperPtr;
DataHead: DataPtr;
Data Tail: DataPtr;

(* Node for Linked List of Nodes *)

(* Node of Linked List of Operators *)
(* Operator Name *)
(* Head Pointer to Input List *)
(* Tail Pointer to Input List *)
(* Head Pointer to Output List *)
(* Tail Pointer to Output List *)
(* Head Pointer to State List *)
(* Tail Pointer to State List *)
(* Maximum Execution Time *)

(* Head of Operator List *)
(* Tail of Operator List *)
(* Head of Data List *)
(* Tail of Data List *)

(*---*)
procedure ReadToken(delimeter:char;

var token:string80);
(* Reads PSDL Link statements from standard input, one token at *)

·· (* a time. Delimeters are: period, colon, arrow and End of Line *)

65

var
ndx:integer;
ch: char;

begin
ndx := O;
read(ch);

(* initialize *)

while (ch <> delimeter) and (not eoln) do
begin
token[ndxj := ch;
read(ch);
ndx := ndx + 1;
end; (* while*)

if eoln then token[ndx] := ch;
if delimeter = arrow then

begin
read(ch); read(ch);
end; (* if*)

if eoln then readln;
end; (* ReadToken *)

(* Gets token character by character *)
(* until delimeter or eoln *)

(* Gets last character *)
(*before end of line *)

(* remove rest of arrow *)

(* resets line *)

(*--*)

procedure ReadOperMet(var Operl, Met: string80);
(* Reads PSDL Link statements from standard input, one token at *)
(* a time. Determines Operator! and Maximum Execution Time *)

var
ndx:integer;
ch: char;

begin
ndx := O;
read(ch);

(* initialize *)

while (ch<> colon) and (ch<> arrow) do
begin
Operl [ndx] := ch;
read(ch);
ndx := ndx + 1;
end; (* while*)

if ch = colon then
begin
ndx := O;
read(ch);
while ch<> arrow do

begin

(* Gets token character by character *)
(* until delimeter or eoln *)

(* end of line *)

66

Met[ndx] := ch;
read(ch);
ndx := ndx + 1;
end; (* while*)

end; (*if*)
read(ch); read(ch);

end; (* ReadOperMet*)

(* Gets token by character *)
(* until delimeter or eoln *)

(* remove rest of arrow *)

(*--*)
function OpSearch (Head: OperPtr;

Target: string80): OperPtr;
(* Searches Operator List for Target string, returns pointer *)
(* to target if found, otherwise NIL *)

begin
if Head = nil then

OpSearch := nil (* empty list *)
else if Head".OpName = Target then

OpSearch := Head (* target found *)
else

OpSearch := OpSearch(Head".Link, Target);
end;

(*--*)
procedure Op Add (var Head: OperPtr;

var Tail: OperPtr;
Target: string80);

(* Adds new Operator to end of linked list*)
var

p: OperPtr;
begin

if Head = nil then
begin
new(p);
Head:= p;
Tail:= p;
p".OpName := Target;
p".InputList := nil;
p".lnListTail := nil;
p".OutputList := nil;
p".OutListTail := nil;
p" .Link := nil;
end (*if*)

else
begin

- new(p);

67

(* temp pointer *)

(* List is empty *)

(* Create new head node *)

(* Initialize new list *)

(* List not empty *)

(* Add new node after tail *)

TailA.Link := p;
Tail := TailA.Link;
pA.OpName := Target;
pAJnputList := nil;
pAJnListTail := nil;
pA.OutputList := nil;
pA.OutListTail := nil;
pA.StateList := nil;
pA.StateListTail := nil;
pA.Link := nil;
end (* else *)

end; (* OpAdd *)

(* Initialize new lists *)

(*--*)

function Search (Head: DataPtr;
Target: string80): DataPtr;

(* Searches Data Listfor Target string, returns pointer *)
(* to target if found, otherwise NIL *)

begin
if Head = nil then

Search := nil (* empty list *)
else if Head A.Name = Target then

Search := Head (* target found *)
else

Search := Search(HeadA.Link, Target);
end; (* Search *)

(*---*)
procedure Add (var Head: DataPtr;

var Tail: DataPtr;
Target: string80);

(* Adds new Data to end of linked lists *)
var

p: DataPtr;
begin

if Head = nil then
begin
new(p);
Head:= p;
Tail:= p;
pA.Name := Target;
pA.Link := nil;

end (*if*)

68

(* Temp pointer *)

(* List is empty *)

(* Create new node *)

(* Initialize new lists *)

else (* List not empty *)
begin
new(p); (* Add new node after tail *)
Tail''.Link := p;
Tail := Tail".Link;
p".Name := Target; (* Initialize new lists *)
p".Link := nil;
end (* else *)

end; (* OpAdd *)
(*---*)

procedure LoadDataStructure(var OpHead, OpTail: OperPtr;
var DataHead, DataTail: DataPtr);

(* Loads tokens into Data Structures *)
var

Current: OperPtr; (* Temp pointer *)
(* PSDL Tokens *) Data, Met: string80;

Operl, Oper2: string80;
begin

Data := blank;
Operl := blank;
Met := blank;
Oper2 := blank;
while not eof do

begin
ReadToken(period,Data);
ReadOperMet(Operl ,Met);
ReadToken(' ',Oper2);

(* Initialize Strings *)

(* Get tokens *)

if Operl <> EXTERNAL then (* Keyword EXTERNAL is not *)
begin (* an Operator *)
Current:= OpSearch(OpHead,Operl);
if Current = nil then

begin (* Add Operator 1 *)
OpAdd(OpHead,OpTail,Operl);
Current:= OpSearch(OpHead,Operl);
end; (*if*)

Current" .MET := Met; (* Enter Maximun Execution Time *)
(* Add Data to Operators Output List *)

if Operl = Oper2 then
begin
if Search(Current".StateList,Data) = nil then

Add(Current".StateList,Current".StateListTail,
Data);

end

69

else
if Search(CurrentA.OutputList,Data) = nil then

Add(CurrentA.OutputList,CurrentA .OutListTail,
Data);

end; (* if*)
if Oper2 <> EXTERNAL then (* Keyword EXTERNAL is not *)

begin (* an Operator *)
Current := OpSearch(OpHead,Oper2);
if Current = nil then

begin (* Add Operator 2 *)
OpAdd(OpHead,OpTail,Oper2);
Current := OpSearch(OpHead,Oper2);
end; (* if*)

(* Add Data to Operators Input List *)
if Operl = Oper2 then

begin
if Search(CurrentA.StateList,Data) = nil then

Add(CurrentA.StateList,CurrentA.StateListTail,
Data);

end
else

if Search(CurrentAJnputList,Data) = nil then
Add(CurrentA.JnputList,CurrentAJnListTail,

Data);
end; (* if*)

(* Enter new internal Data Streams in Data List *)
if ((Operl <> EXTERNAL) and (Oper2 <> EXTERNAL)) and

(Operl <> Oper2) then
if Search(Datal-Iead,Data) = nil then

Add(DataHead,DataTail,Data);
Data := blank; (* Reset Strings *)
Operl := blank;
Met := blank;
Oper2 := blank;
end (* while *)

end; (* LoadDataStructure *)
(*---*)

procedure WriteString(var File:text; Str: string80);
var

ndx: integer;
begin

ndx := O;
-while Str[ndx] <>' 'do

70

begin
write(File,Str[ndx]);
ndx := ndx + 1;
end; (* while *)

end; (* WriteString *)
(*---*)

procedure MakePSDL(Head: OperPtr);
(* Generates partial PSDL Specification for each new Operator *)
(* in the Graphical decomposition *)

type
stringl0 = packed array [0 .. 9J of char;

var
Current: OperPtr; (* Temp pointers *)
InTemp: DataPtr;
OutTemp: DataPtr;
StateTemp: DataPtr;
OutFile: text;
NodeName: stringl0; (* Unix file name*)

begin
Current := Head;
NodeName := 'NewNode.01 '; (* First file name *)
while Current<> nil do

begin
rewrite(OutFile,NodeName); (* Create new file*)

(* output PSDL *)
write(OutFile,'OPERATOR ');
WriteString(OutFile,Current" .OpN ame);
writeln(OutFile);
writeln(OutFile);
writeln(OutFile,'SPECIFICA TION');
writeln(OutFile);
InTemp := Current".lnputList;
if InTemp <> nil then (* Generate Input list *)

begin
write(OutFile,'INPUT ');
WriteString(OutFile,InTemp" .Name);
writeln(OutFile);
In Temp := In Temp" .Link;
while lnTemp <> nil do

begin
write(OutFile,' ');
W ri teS tring(Ou tFile,I n Temp" .Name);
writeln(OutFile);

71

In Temp := In Temp" .Link;
end; (* while *)

writeln(OutFile);
end; (* if*)

OutTemp := Current".OutputList;
if OutTemp <> nil then

begin (* Generate Output list *)
write(OutFile,'OUTPUT ');

WriteString(OutFile,OutTemp".Name);
writeln(OutFile);
OutTemp := OutTemp" .Link;
while OutTemp <> nil do

begin
write(OutFile,' ');
WriteString(OutFile,OutTemp".Name);
writeln(OutFile);
OutTemp := OutTemp".Link;
end; (* while *)

writeln(OutFile);
end; (* if*)

StateTemp := Current".StateList;
if StateTemp <> nil then

begin (* Generate State list *)
write(OutFile,'ST ATE ');

WriteString(OutFile,StateTemp".Name);
writeln(OutFile);
StateTemp := StateTemp".Link;
while StateTemp <> nil do

begin
write(OutFile,' ');
WriteString(OutFile,StateTemp".Name);
writeln(OutFile);
StateTemp := StateTemp".Link;
end; (* while *)

writeln(OutFile);
end; (* if*)

write(OutFile,'MAXIMUM EXECUTION TIME ');
WriteString(OutFile,Current".ME'T');
writeln(OutFile);
writeln(OutFile);
Current := Current".Link;

(* Dynamically create new file name *)
- if N odeN amel 9 j = '9' then

72

...

begin
NodeName[9] := 'O';

NodeName[8] := succ(NodeName[8]);
end (*if*)

else
NodeName[9] := succ(NodeName[9]);

end; (* while *)
end; (* MakePSDL *)

(*---*)
procedure MakeDataStream (Head: DataPtr);

(* Generate PSDL Data Stream *)
var

Temp: DataPtr;
Outfile: text;

begin
rewrite(Outfile,'psdl.ds');
writeln(Outfile);
if Head <> nil then

begin
Temp := Head;
write(Outfile,'DATA STREAM ');
WriteString(Outfile, TempA .Name);
writeln(Outfile);
Temp:= TempA.Link;

while Temp <> nil do
begin
write(Outfile,' ');
WriteString(Outfile,TempA.Name);
writeln(Outfile);
Temp := TempA.Link;
end; (* while *)

writeln(Outfile);
end; (*if*)

end; (* MakeDataStream *)
(*--*)
begin (* main *)

LoadDataStructure(OpHead, OpTail, DataHead, DataTail);
MakePSDL(OpHead);
MakeDataStream(DataHead);

end. (* main *)

73

APPENDIX D. INPUT AND OUTPUT LINK ANALYZER

LINK STATEMENTS
ab.ape: 1 0s-->bee
ac.ape: 10s-->cat
bc.bee:20s-->cat
b.cat:30s-->EXTERNAL
state.cat:30s-->cat
cd.cat:30s-->dog
a.EXTERNAL-->ape
de.dog: 1 0s-->cat

NEWLY CREATED NODES

NewNode.01:
OPERATOR ape
SPECIFICATION
INPUT a
OUTPUT ab

ac
MAXIMUM EXECUTION TIME 10s

NewNode.02:
OPERA TOR bee
SPECIFICATION
INPUT ab
OUTPUT be
MAXIMUM EXECUTION TIME 20s

NewNode.03:
OPERA TOR cat
SPECIFICATION
INPUTac

be
de

OUTPUTb
cd

STATE state
MAXIMUM EXECUTION TIME 30

74

.,.

NewNode.04:
OPERATOR dog
SPECIFICATION
INPUTcd
OUTPUT de
MAXIMUM EXECUTION TIME 10s

Data Stream part for OPERA TOR top:
DATA STREAM ab

ac
be
cd
de

75

APPENDIX E. BOURNE SHELL SCRIPTS

CONSTRUCT SCRIPT:

while test-s node.list do
getChoice
cat choice spec >> ddb.in
getProperty
SDE ddb.out
mv ddb.out psdl.spec
cat ddb.in psdl.spec >> temp ·
mv temp ddb.in
storeProperty
Software_Base
if test-s SB_out then

echo "Software Search Complete - implementation found"
addlmpl

else
echo "Software Search Complete - no match found"
echo "Do you want to decompose, y or n."
read x

fi
done

if test $x = y then
GE

else
adaEditor
addAdalmpl

fi

echo "Construction Complete"

GRAPHIC EDITOR SCRIPT:

get_inputs
graph
nodes < graph.links
cat graph.links psdl.ds >> psdl.imp
cat choice Imp Graph psdl.imp >> ddb.in
SDE ddb.in

76

storeProperty
cat Graphic graph.pie >> ddb.in
storeProperty
createN odes

.,·

77

- - -- --

REFERENCES

1. Booch, G., Software Engineering with Ada®, 2nd ed., Benjamin Cummings
Publishing Co., Inc., 1987.

· 2. Pressman, R., Software Engineering: A Beginners Guide, pp. 1-93, McGraw­
Hill Book Company, 1988.

3. Luqi, Rapid Prototyping for Large Software System Designs, Doctoral
Dissertation, University of Minnesota, Duluth, Minnesota, 1986.

4. Luqi, Berzins, V., "Rapidly Prototying Real-Time Systems," IEEE Software,
v. 5, pp. 25-36, September 1988.

5. Luqi, Ketabchi, M., "A Computer Aided Protyping System," IEEE Software,
v. 5, pp. 66-72, March 1988.

6. Janson, D., A Static Scheduler for the Computer Aided Prototyping System:
An Implementation Guide, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1988.

7. O'Hern, T., A Conceptual Level Design for a Static Scheduler for Hard Real­
Time Systems, Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1988.

8. Naval Postgraduate School, Technical Report NPS52-88-009, Automated
Translation from a Prototyping Language into Ada®, by C. Moffitt, II, and
Luqi, pp. 7-10, April 1988.

9. The Mitre Corporation, Guidelines for Designing User Interface Software,
U.S. Department of Commerce, National Technical Information Service,
August 1986.

10. Dumas, J., Designing User Interfaces for Software, Prentice-Hall, 1988.

· 11. Teitelbaum, T., and Reps, T., "The Cornell Program Synthesizer: A Syntax­
Directed Programming Environment," Connunications of the ACM, v. 24:9,
_pp. 563-573, September 1981.

78

12. Shi-Kuo, C., and others, Visual Languages, pp. 155-157, Plenum Press,
1986.

13. Sun Microsystems, Doing More with UNIX: Beginner's Guide,
pp. 123-149, 1986.

14. Thorstenson, R., A Graphical Editor for the Computer Aided Prototyping
System (CAPS), Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

15. Galik, D., A Conceptual Design of a Software Base Management System for
the Computer Aided Prototyping System, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

16. Altizer, C., Implementation of a Language Translator for a Computer Aided
Prototyping System, Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

17. Wood, M., An Execution. Support System for Rapid Prototyping, Master's
Thesis, Na val Postgraduate School, Monterey, California, December 1988.

18. Marlowe, L., A Scheduler for Critical Timing Constraints, Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

19. Department of Defense, Military Specification MIL-H-48655B, Human
Engineering Requirements for Military Systems, Equipment and Facilities,
31 January 1979.

20. Department of the Navy, OPNA V NOTICE 5000, Navy Rapid Prototyping
and the Research Development and Acquistion Process, 20 February 1988.

79

r

BIBLIOGRAPHY

Barstow, D., and others, Interactive Programming Environments, McGraw-Hill
Book Company, 1984.

Department of Defense, Military Standard MIL-STD-1472C, Human Engineering
Design Criteria for Military Systems, Equipment and Facilities, 1 September
1983.

McDermid, J., Jntergrated Project Support Environments, Peter Peregrinus Ltd.,
1985.

Porter, S., A Design of a Syntax-Directed Editor for CAPS, Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

Sanders, M., and McCormick, E., Human Factors in Engineering and Design,
McGraw-Hill Book Company, 1987.

80

•

..

·-
0 DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Prof. LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research 1
800 N. Quincy Street
Arlington, VA 22217

•

,.

,;

C

