
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1989

Design and Implementation of an Expert User
Interface for the Computer Aided Prototyping System

Luqi; Raum, H.; Yurchak, J.
Naval Postgraduate School

Luqi, H. Raum, and J. Yurchak, "Design and Implementation of an Expert User
Interface for the Computer Aided Prototyping System", Technical Report NPS
52-89-033, Computer Science Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65275

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NPS52-89-033 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

DESIGN AND IMPLEMENTATION OF AN EXPERT USER 
INTERFACE FOR THE COMPUTER AIDED 

PROTOTYPING SYSTEM 

by 

Henry G. Raum 

December 1988 

Thesis Advisor: 

Approved for public release; distribution is unlimited. 

Prepared for: 

Naval Postgraduate School 
Monterey, California 93943 

Luqi 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral R. W. West, Jr. 
Superintendent 

Harrison Shull 
Provost 

This report was prepared in conjunction with research funded in part by the National Science 
Foundation and in part by the Naval Postgraduate School. 

Reproduction of all or part of this report is authorized. 

Reviewed by: 

ROBERT B. MCGHEE 
Chairman 
Department of Computer Science 

LUQI 

Assistant Professor 
of Computer Science 

Released by: 

Dean of Information 
and Policy Science 

' .. 

.. 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE 

RE
1

PORT DOCUMENTATION PAGE 

1a. REPORT SECURIT~ CLASSIFICATION 1 b RESTRICTIVE MARKINGS 

UNCLASSIFIED 
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!3UTION / AVAILABILITY OF REPORT 

Approved for public release; 
_,:: ( 2b. qECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT. NUMBER(S) 

NPS52-89-033 
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION 

(If applicable) 

Naval Postgraduate School 52 Naval Postgraduate School 
6c. ADDRESS (City, St,He, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

I 

Monterey. CA 93943 Monterey, CA 93943 
8a. NAME OF FUNDING/ SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

ORGANIZATION (If applicable) 

Naval Post2raduate School NSF r.r.R-8710717 O&MN, Direct Fundino 
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

PROGRAM PROJECT TASK WORK UNIT 
ELEMENT NO . NO. NO . ACCESSION NO. 

Motrt,erev. CA 93943 
11. TITLE llnclude Security Classification) 
DESIGN AND IMPLEMENTATION OF AN EXPERT USER INTERFACE FOR THE COMPUTER AIDED PROTOTYPING (U) 

SYSTEM 
12. PERSONAL AUTHOR(S) 

RAUM, Henrl G. 
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT 

Progress FROM Q~t88 TO May 89 . MAY 1989 : 79 
.. 16. SUPPLEMENTARY NOTATION 

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

FIELD GROUP SUB-GROUP User Interface, Expert System, Rapid Prototyping, Computer 
Aided Software Engineering (CASE), Ada, Real-Time, Embedded 
Systems 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

This report builds on previous work done in the development of the Computer Aided System 
(CAPS) and the Prototype System Description Language (PSDL). The increases in size and 
complexity of software projects have caused system designers to reevaluate traditional 
software engineering methodologies. Rapid prototyping is a method that allows the 
validation of system requirements and design early in the development cycle. The need 
for this type of tool is particularly critical in the development of real-time embedded 
systems. CAPS is one such system. 
CAPS is a complex system that consists of many individual software tools. An expert user 
interface that guides the software designers through the development and execution of a 
prototype is described in this report. 

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 
CD UNCLASSIFIED/UNLIMITED [I SAME AS RPT. 0 DTIC USERS UNCLASSIFIED 

22a,. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I ~le. OFFICE SYMBOL 

LUO! (408) 646-271~ 52La 
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE 

All other editions are obsolete Q U.S. Govern,,;'ent Printing Office: t 916-60&•24. 

TTNr.T,A~~n·rnn 



II 



... 

ABSTRACT 

This thesis builds on previous work done in the development of the 

Computer Aided Prototyping System (CAPS) .and the Prototype System 

Description Language (PSDL). The increases in the size and complexity of· 

software projects have caused system designers to reevaluate traditional so(tware 

engineering methodologies. Rapid prototyping is a method that allows the 

validation of system requirements and design early in the development cycle. 

The need for this type of tool is particularly critical in the development of real­

time embedded systems. CAPS is one such system. 

CAPS is a complex system that consists of many individual software tools. 

An expert user interface that guides the software designers through the 

development and execution of a prototype is described in this thesis. 
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I. INTRODUCTION 

Over the last twenty years, advancements in computer hardware have far 

exceeded those in software development. This "software crisis" must be resolved . 

if improved performance of systems is expected [Ref. 7:p. 11]. The most . 

significant problem is that the users of the software systems often do not­

understand software engineering and the software engineers do not understand 

the needs of the users. As a result, poor requirements analysis often leads to an 

improper design. In the traditional ~oftware engineering paradigm testing of the 

system is done only after coding is complete. This results in much wasted effort 

as improper specifications are coded. 

An alternate approach to software engineering is prototyping. In this method 

a model of the eventual program is quickly constructed and tested. The goal is to 

evaluate the design of the system and make modifications, if necessary, before the 

coding is started. [Ref. 2:p. 69] 

One system that implements the prototyping methodology is the Computer 

Aided Prototyping System (CAPS). This system constructs a prototype from 

specifications described in the Prototyping System Description Language (PSDL) 

and generates an executable model of the real-time system. This model is 

actually an Ada®1 program that can be executed and modified until the prototype 

is performing correctly. [Ref. 3] 

...1 Ada is a registered trademark of the U.S. Government, Ada Joint Program 
Office 
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CAPS is applicable to the Department of the Navy (DON) and Department of 

Defense (DOD) because it generates an Ada® prototype. With the requirement 

that all embedded systems in DOD be implemented in Ada®, an Ada® 

prototype that demonstrates use of the language constructs makes CAPS more 

attractive. 

The users of this system may not be familiar with PSDL or CAPS and may 

not even have any software engineering expertise. For this reason, an intelligent 

user interface that guides the user through the production of the prototype is 

required. This thesis will describe the design and implementation of such a user 

interface. 

The remainder of this chapter will describe the traditional and rapid 

prototyping software engineering methods and the CAPS system. This will 

include a description of the elements and processes of CAPS and an overview of 

PSDL. 

A. DESCRIPTION OF SOFTWARE ENGINEERING 
METHODOLOGIES. 

1. Traditional Software Engineering Paradigm 

The traditional software engineering paradigm, often called the 

"waterfall model", is a systematic, sequential approach [Ref. 2:p. 13]. This 

model begins with requirements analysis and continues with functional 

specification, design, coding and testing. Requirements analysis defines the 

scope of the system, and the environment it will operate in, while the functional 

specification describes interfaces to the proposed system and the functions of that 

system. The design stage includes the decomposition and detailed design. The 

data ..structures, software architecture and procedural details are key issues at this 
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stage. The coding stage is where the designed system is written into a form 

usable by the computer, normally a high level programming language. Finally, 

testing is done. These tests not only show that the program meets the 

requirements and specifications, but determines if these requirements produce the 

desired results. [Ref. 4] 

The fact that coding and testing occurs so late in the process has brought 

much criticism of the "waterfall model". It is difficult for the customer to 

furnish complete requirements before the process begins. In large software 

systems this can lead to a disaster if a major oversight in the requirement analysis 

phase is not discovered until testing. [Ref. 2:p. 15] 

2. Prototyping in Software Engineering. 

In response to the problems in the "waterfall model" a new approach to 

software engineering, called prototyping, has been devised. Prototyping is a 

method that is well suited to the iterative nature of the development of many 

software systems. When the customers requirements cannot be completely 

determined or there are questions about the suitability of proposed algorithims or 

what the human interface should be, prototyping allows a model to be built which 

can be tested and modified. After testing the prototype, a new set of improved 

specifications can be used in the coding phase. 

Figure 1 illustrates how, in this method, testing and refinement of 

requirements is done before the actual product is engineered. Significant time 

and cost savings can be realized because code is not being written for incomplete 

and erroneous specifications. The complex and uncertain timing requirements of 

real-time embedded systems makes them good candidates for prototyping. 

[Ref-2] 
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The problem with prototyping is the cost of developing the prototype itself. 

Paper prototypes are easy to construct, but do not show the dyn~mic nature of the 

system. Working prototypes can show the feel of the program, but are limited to 

a subset of the system. In the Computer Aided Prototyping System the entire 

system is modeled. The time required to build this prototype is greatly reduced 

through the use of syntax directed. and graphic editors, reusable Ada® modules · · . 

and a self-contained execution and debugging system. CAPS attempts to validate 

the timing aspects of real-time embedded systems by constructing a prototype of 

the entire system, executing that prototype and measuring its performance. As 

part of the software engineering effort, CAPS falls between the requirements 

analysis and coding phases. 

Requirements 
Analysis 

,, 
Develop 
Prototype 

, ' 
Test and 

---------1 Evaluation of 1----
n .~. • - .... 

,, 
Engineer 
Product 

Figure 1. The Prototyping Method 
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D. OBJECTIVES 

This thesis describes the design and implementation of an expert user 

interface for CAPS. The primary objective is to define the proper use of 

database, graphic, and operating systems technology in the design of the 

interface. Secondly, this thesis will explore the use of expert system technology .. 

to produce an interface that can free the user from many of the details of the 

system operation. In this way, an error free prototype can be produced quickly 

and easily. 

C. ORGANIZATION 

Chapter II outlines the background research and includes a description of 

CAPS, the Prototype System Description Language (PSDL) and the principles of 

the user interface in software systems. 

Chapter III describes a design for the user interface to include the interfaces 

between CAPS and the user as well as those between the various elements of the 

system. This chapter includes a users manual and recommendations for future 

implementation. 

Chapter IV outlines the implementation of the design, both what has been 

done and what is recommended for future implementation. 

Chapter V contains conclusions and recommendations of this research. 

5 



II. BACKGROUND 

The Computer Aided Prototyping System is a complex collection of software 

tools that enable the user to produce executable prototypes of large real-time 

embedded systems. This chapter outlines the components of CAPS and PSDL in 

detail. Finally the principles of the user interface are investigated. 

A. DESCRIPTION OF CAPS 

1.. Architecture of CAPS 

CAPS consists of many software tools that each have a part in the 

production of the prototype. The position of each component in the overall 

system is illustrated in Figure 2. A brief description of the components follows. 

a. Tlie User hiterface Module. 

This module consists of two editors, a syntax directed editor and a 

graphical editor. Together these editors produce the PSDL program that will 

become the prototype. 

(1) The Syntax Directed Editor is an editor that knows the key 

words and proper syntax of PSDL. It insures grammatically correct PSDL as it 

guides the user through the production of the program. 

(2) The Graphic Editor is an editor that describes the decomposition 

of PSDL components by the use of enhanced data flow diagrams. It is in these 

diagrams that the user "creates" the program. 

(3) The Design Database is the structure that stores the elements of 

the system under construction. This database is organized to handle the 

hierarchical nature of the top-down development of the system. The design 

6 
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database also has the ability to keep a history of the prototype when changes are 

made. [Ref. 4:p. 29] 

Software Rewrite 
Base System 

j ~ 

, . 
User Interface 

Design 
Data 
Base 

~ 

-
Syntax 
Directed --- Editor 

Execution Support 
System 

Translator 

Graphic 
Editor 

~ . 

. ' 

Dynamic 

Scheduler 

Debugger 

Static 
Scheduler 

Figure 2. Architecture of Caps 

Figure 2. The Architecture of CAPS 

b. The Software Base and Rewrite System 

Together the software base and rewrite system give CAPS its ability 

to retrieve reusable Ada® components for construction of the prototype. 
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( 1) The Rewrite System. The purpose of the rewrite system is to 

provide a method for mapping all equivalent specifications to one common form. 

This is called the normalized form. 

(2) The software base is a database of reusable Ada® components 

that are indexed and searched for based on PSDL specifications. This will 

provide an Ada® module that fulfills the desired function. In the production of a 

rapid prototype there is no time for browsing a software library by name, as in a 

yellow pages type of index. [Ref. 5 :pp. 68-69] 

c. The Execution Support System 

The Execution Support System (ESS) consists of a translator, a static 

scheduler, a dynamic scheduler and a debugger. While the purpose of the rest of 

CAPS is to produce a PSDL program, the function of the ESS is to translate the 

PSDL program into a executable Ada® prototype that tests the real-time aspects 

of the designed system. 

( 1) Translator. The translator starts with the Ada® components 

retrieved in the software base and adds to them the control constants described in 

PSDL to produce an Ada® module that can be scheduled. 

(2) The Static Scheduler. The static scheduler links all of the time 

critical components together in an executable schedule that can demonstrate the 

real-time aspects of the system. 

(3) The Dynamic Scheduler. The dynamic scheduler adds the non­

time critical components to the system to produce an overall schedule. 

(4) The Debugger. The debugger provides an interface between the 

user and the executing prototype. The user may be asked to correct a problem in 

the prototype or be presented with statistics on the operation of the prototype. 

8 
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2. Description of PSDL 

The Prototype System Description Language is an executable 

prototyping language that is used at the design level. The user can define the 

specifications in this language and these specifications are used to search the 

software base of reusable Ada® components. If a suitable module is not found ·. · 

the PSDL operator is then decomposed by drawing an enhanced data flow 

diagram that includes lower level operators, the data streams between these 

operators, as well as timing and control constraints. [Ref. 5:p. 68] 

a. Elements of PSDL 

(1) Operators. Operators are the basic component in PSDL. They 

can represent functions or state machines. These operators can be triggered by 

the arrival of some input (sporadic) or at fixed time intervals (periodic). When 

triggered the operator will fire (produce output) based on input values and the 

value of the internal state variable in the case of the state machine. 

[Ref. 6:pp. 12-13) 

Operators are called atomic if they can be found in the software 

base, otherwise they are called composite and must be decomposed with a data 

flow diagram. Figure 3 shows such a decomposition. Data streams w and z are 

the respective input and output of the composite operator and s is the state 

variable. A, B, and C are newly created operators that may be atomic or 

composite themselves. [Ref. 5] 

(2) Data Streams. A data stream represents the flow of data 

between. two operators. This communication can be in the form of a data flow 

stream or a sampled stream. A data flow stream can be thought of as a FIFO 

queue. In this way a data flow stream is never lost and is always acted on in the 
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order of arrival. A sampled stream can be thought of as a single memory cell. 

This data can be used many times or written over before use, depending on the 

rate of its input and use. [Ref. 3] 

s 

Figure 3. Graphic Decomposition 

Data flow streams must be used when each piece of data 

represents a unique transaction. A sampled stream can simulate a sensor that is 

only interested in a current parameter such as temperature. In Figure 3, the data 

streams are w ,x,y ,and z, with x and y being the new data streams created in the 

decomposition. 

(3) Timing and Control Constraints. The real-time nature of the 

prototypes requires timing and non-procedural control constraints in PSDL. 

Each time critical operator has a Maximum Execution Time, which is the 

maximum time in which that operator can complete execution after it fires. 

Control Constraints give conditional requirements on the firing of operators. 

b. Example of PSDL. 

To illustrate the PSDL program the example of the Hyperthermia 

system that was defined in the conceptual research for CAPS [Ref. 3] will be 

used. This example illustrates a dynamic real-time environment that is easy to 

understand. 
One approach to combating cancer is to destroy tumorous cells 

selectively with heat. One way to do this is with a hyperthermia system, 

10 
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which uses a microwave generator connected to a fine tuner and matching 
control system to produce and deliver controlled, local heating directly to 
the tumors. A computerized control system adjusts power output 
automatically to maintain the temperature in accordance with the treatment 
plan . 

The hyperthermia system has four subsystems: a computer system, an 
operator's panel, a microwave generator, and a temperature sensor. The 
critical subsystem is the software that receives input from the temperature 
sensor and produces control commands to operate the whole system. The 
software controls the rest of the system, which is typical of real-time 
embedded systems. [Ref. 4:p. 30] 

( 1) PSDL Specification. The operator is described in PSDL as 

shown in Figure 4. The Specification includes the operator name, an input list, 

an output list, a state list (if operator is a state machine), optional exception 

declarations and timing information. This specification is used to search the 

software base. If no match is found this composite operator is decomposed in the 

implementation part. 

OPERA TOR Brain_tumor_treatment_system 
SPECIFICATION 

INPUT patient_chart: medical_history, 
treatment_switch: boolean 

OUTPUT treatment_finished: boolean 
STA TES temperature: real INITIALLY 37 .0 

DESCRIPTION {This is an English description of the operator specification} 
END 

Figure 4. PSDL Operator Specification 

Timing constraints may be added to a specification in the 

following ways: 

• Maximum Execution Time (MET) which places a maximum time on the 
execution of an operator from initiation to completion. 

11 



• Maximum Response Time (MRT) has sli~htly different meanings for 
sporadic and periodic operators. It is the time between the start of the 
period and the moment of the last output of an operator for periodic 
operators and is the time between arrival of new data and the moment of 
output for sporadic operators. 

• Minimum Calling Period (MCP) is required for any sporadic operator with 
an MRT and is the minimum time from the arrival of one set of data to the 
arrival of the next. [Ref. 6:pp. 20-21] 

(2) PSDL Implementation. The implementation part of PSDL 

consists of the graph ( data flow diagram), a list of new data streams and control 

constraints for the newly created operators. The data flow diagram shown in 

Figure 3 would appear in PSDL as the link statements shown after the keyword 

GRAPH in Figure 5. A link statement is of the form: 

data_stream.from_operator:met-->to_operator [Ref. 7 :p. 26] . 

The from operator, in the case of an input, and the to operator, in the case of an 

output, will be represented by the keyword EXTERNAL. The maximum 

execution time of the operator, and the colon, are omitted for non-time critical 

operators. The Data Stream part lists the new internal data streams named in the 

graphical decomposition. 

IMPLEMENTATION 
GRAPH temperature.EXTERNAL -> hyperthermia_system 

patient_chart.EXTERNAL -> hyperthermia_system 
treatment_switch.EXTERNAL -> hyperthermia_system 
treatmen t_power .h yperthermia_system -> simulated_patient 
treatment_finished.hyperthermia_system -> EXTERNAL 
temperature.simulated_patient -> hyperthermia_system 

DAT A STREAM treatment_power : real 
CONTROL CONSTRAINTS 

OPERA TOR hyperthermia_system 
PERIOD 200 ms BY REQUIREMENTS shutdown 

OPERATOR simulated_patient 
PERIOD 200 ms 

DESCRIPTION { some text about it} 
END 

12 
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Figure 5. PSDL Operator Implementation 

The Implementation section is completed with the Control 

Constraint part of PSDL. These control constraints include data triggers, 

periods, conditionals, timers and exceptions. This information is used to define 

interconnections between operators. 

The most common control method is the period and data 

trigger. The period is shown in Figure 5 and indicates the synchronous timing of 

the operator. The data trigger is used to indicate control from arriving data. 

Two examples of data triggers are: 

OPERATOR A TRIGGERED BY ALL x,y,z. 

OPERATOR B TRIGGERED BY SOME v,w. 

The by ALL trigger causes the operator to fire when all three 

inputs are present, while the by SOME trigger fires the operator when any value 

of v or w arrives. [Ref. 3:p. 17] 

Conditional Constraints add an IF predicate to the data trjgger. 

This boolean condition must be satisfied before the operator will fire. Examples 

of the conditional constraint are: 

OPERATOR A TRIGGERED if b<l0. 

OPERATOR X OUTPUT y if z: critical. 

A timer is used as an internal state that can be started, stopped, 

reset, and its current time read by the operator to allow that operator to do its 

own timing control if necessary. It is also possible to raise exceptions in PSDL. 

These exceptions can be user or system defined and are raised when unusual or 

catastrophic conditions are encountered. The exception is handled by an 

exception handler at the highest level of the program. 

13 
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Data Streams utilize the operator as both its specification and 

implementation section as shown in Figure 6. Therefore, only the construction 

of operators needs to be discussed. 

14 
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TYPE medical_history 
SPECIFICATION 

OPERATOR get_tumor_diameter 
SPECIFICATION 

INPUT patient_chart: medical_history, 
tumor_location: string 

OUTPUT diameter: real 
EXCEPTIONS no_tumor 
MAXIMUM EXECUTION TIME 5 ms 
DESCRIPTION 
{This is an English description of the operator} 

END 

IMPLEMENTATION 
tuple[tumor_desc: map[from: string, to: real], ... ] 
OPERATOR 

IMPLEMENTATION 
GRAPH 

patient_chart.EXTERN AL-->tuple.get_tumor_desc 
tumor_location.EXTERNAL-->map.fetch 
diameter.map.fetch:4ms-->EXTERNAL 
td. tuple.get_tumor_desc: 1 ms-->map.f etch 

DATA STREAM td: tumor_desc 

CONTROL CONSTRAINTS 
OPERATOR map.fetch 

EXCEPTIONS no_tumor IF not(map.has(tumor_location, td)) 

END 

Figure 6. PSDL Data Type Specification and Implementation 

3. The CAPS Process 

There are four major elements in the CAPS process: prototype design, 

construction, execution and debugging/modification. The initial step, called 

prototype design, actually takes place outside CAPS. The purpose of CAPS is not 

to design a system, but rather to test and validate that design. Construction takes 

place in the user interface portion of the system, while execution takes place in 
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the execution support system. Debugging and modification requires action in 

both the user interface and execution support systems. 

a. Prototype Design. 

The design of the prototype starts with an analysis of the problem 

and a decision as to what part or parts of the proposed system are to be 

prototyped. Then requirements for the prototype are generated. These 

requirements are usually written in English, but could be specified in a more 

formal notation. Example requirements given in English taken from the 

hyperthermia example are: 

• Shutdown. Microwave power must drop to zero within 300 ms of turning 
off the treatment switch. 

• Temperature Tolerance. After the system stabilizes, the temperature must 
be kept between 42.4 °C and 42.6°C 

• Maximum Temperature. The temperature must never exceed 42.6°C. 
• Startup Time. The system must stabilize within 5 minutes of turning on the 

treatment switch. 
• Treatment Time. The system must shut down automatically when the 

temperature has been above 42.4°C for 45 minutes. [Ref. 3:pp. 28-29] 

The requirements are refined by asking the customer questions to 

determine exactly what the requirements mean and if they are complete. With 

the completion of the preliminary design, the construction of the prototype may 

begin. 

b. Prototype Construction. 

Construction of the prototype involves the use of the syntax directed 

editor, graphic editor, design database, rewrite system, software base and the 
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sequence control of the CAPS user interface. This process is illustrated in Figure 

7 and is described below. 

To start the system, the PSDL specification of the operator that 

represents the entire prototype is produced in the syntax directed editor. After · 

this specification has been normalized in the rewrite system a search of the 

software base of reusable Ada® modules is performed. This search by 

specifications produces no match, one match, or many matches. In the case of a 

single match, that Ada® component is used as the implementation part of the 

operator. A multiple match must be resolved and then the single resolved 

component is used. When there is no match, the operator is a candidate for 

decomposition. 

Decomposition of an operator talces place in the graphic editor with 

the production of the enhanced data flow diagram. In this diagram the editor 

creates children operators of the current operator. In effect a multiway tree is 

produced that is rooted at the original operator and has atomic operators as its 

frontier. If the operator is a candidate for decomposition, but the designer feels 

the operator is too simple for further decomposition, it may be simply coded in 

Ada®. At this point, this operator would be atomic with this newly written code 

as its implementation.The design database keeps track of all the nodes created in 

the decomposition. 

The primary responsibility of this database is to provide a storage 

structure for the PSDL components of each operator in a way that maintains the 

hierarchical nature of the prototype construction. 
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Operators 

Create 
New Nodes 

no match 

no 

Code 
Component 

Insert 
Implementation 

Create Specification 

Rewrite Specifications 

Search Software Base 

one 
match 

Retrieve 
Component 

Figure 7. PSDL Construction 

many matches 

The user interface controls the flow of data and the use of the 

various tools in the system. This control includes calling the proper tool at any 

given moment and the repetition of the constructive process until all leaf 

operators in the design database tree are atomic. 

c. Prototype Execution. 

Execution of the prototype occurs in the execution support system 

(ESS), through the use of the translator, static scheduler, dynamic scheduler and 
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the debugger as illustrated in Figure 8. The input to the ESS is the PSDL 

program that was previously constructed. 

PSDL 

Translator Static Scheduler 

Loosely 
coupled 
Ada modules 

Static 
Schedule 

Dynamic Scheduler 

Dynamic 
Schedule 

Compiler/Linker 

Executable 
Ada code 

Figure 8. 

• • 1 Debugger 

Execution Support System 

The first component in the ESS is the translator, which translates 

PSDL into Ada® source code. The atomic operators are tempered by the control . 

constraints of the composite operators and executable Ada® packages are 
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produced. This collection of modules is used by the static and dynamic 

schedulers in the execution of the prototype. [Ref. 8:pp. 7-8] 

The Static Scheduler also utilizes PSDL as input. It schedules all 

components with real-time constraints after checking the compatibility of these 

timing constraints between operators. 

The Dynamic Scheduler combines the time critical static schedule 

and the non-time critical components of the prototype into a piece of executable 

Ada® code called the dynamic schedule. This schedule is compiled, linked and 

finally executed. This execution is the test of the prototype and the design it 

represents. 

d. Prototype Debugging and Modification. 

The debugging and modification phase of the CAPS process actually 

takes place over the entire system and utilizes all the various tools. The 

debugging talces place in two places, first at the time of the execution of the static 

scheduler, at which time problems with timing constraints that would prohibit the 

production of the static schedule are identified and corrected, and secondly, 

during the execution of the dynamic schedule. At that time problems with the 

dynamic execution of the prototype are determined. 

In order to resolve these problems, a modification mode is used in 

the user interface. This modification can go to any position in the defined 

prototype and modify specifications and control constraints. The user interface 

must interpret and make changes and, through the use of the design database, 

carry this change through the levels of decomposition. This could require new 

searches of the software base, deletion of existing operators or construction of 

new -operators. If any changes are made, the modified PSDL program must be 
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run through the ESS again. This process will be done iteratively until the 

prototype performs as desired or demonstrates problems in original 

requirements. 

B. PRINCIPLES OF THE USER INTERFACE 

The user interface of a complex software engineering system, such as CAPS, 

must do more than merely provide for data entry and display. It is also not 

enough that the interface simply provide a loose collection of software tools, 

rather it must provide sequence control, user guidance and data protection as 

well. A system that provides all these functions and unites the tools into a single 

system can be said to provide a software engineering environment. 

1. Expert System and Sequence Control. 

In order for software to provide all the functions of the user to system 

interface, it must rely on expert system technology. This expert system does not 

have to be based in an Artificial Intelligence language, rather the term expert 

system is used to imply an ability to guide the user through the desired processes. 

The interface must be able to interpret what the user is doing at any time and 

provide support. This expert system must communicate with the user to find out 

what they want to do at any moment when the system cannot be sure of the users 

intentions. This type of expert system is also referred to as "mutual consultation" 

[Ref. 9:p. 212]. 

While attempting to guide the user through a sequence of operations, it is 

important to remember to allow the user to remain in control. One method of 

achieving ihis goal is to allow the experienced user some flexibility of control. It 

is good to have an interface that can guide the user through the system, but an 

experienced user may regard such a system as "too restrictive". [Ref. 10:p. 48] 
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One of the benefits of a system that requires few control actions by the 

user is reduced memory load on the user. The user does not have to remember 

what to do next if the system can perform that function. Another way that this 

expert system can reduce the memory load on the user is to apply all known · 

information to all possible uses. This frees the users from needing to remember 

what they have already done. 

Four methods of sequence control are given in Figure 9 with their 

relative training requirements. A software engineering tool should limit the use 

of the dialogs that require high amounts of user training. This can not be 

avoided in a graphics tool, but limiting the number of commands the user needs 

to know can make the system easier to use. In a software engineering tool the 

interface should allow the user to concentrate on the developing software, rather 

than the developmental tool. This will increase the users productivity. 

DIALOG TYPE 

Question and answer 

Menu Selection 

Command Language 

Graphic Interaction 

Figure 9. 

REQUIRED USER TRAINING 

Little/none 

Little/none 

High 

High 

Sequence Control Dialogs 

The expert interface will insure that the user is placed in the proper tool 

in order to produce the needed prototype component. Additionally, this interface 

must "know" all the aspects of the developing software, so that the consistency of 

data entered in the different tools can be maintained. The syntax and semantics 
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of PSDL are an important part of this intelligent interface. This enables the 

interface to insure a valid PSDL prototype. 

2. Data Entry. 

Many of the same principles that applied to sequence control apply to 

data entry. Once again the system should try to limit the number of input actions. 

required by the user and also reduce the memory load on the user. 

In order to provide the most efficient form of data entry, the interface 

designers should consider textual, system driven and graphical inputs. 

Regardless of the method, there are some underlying qualities that any interface 

should provide. 

Data should only be entered once and the system should be able to access 

this information wherever it is needed. The user should not be asked to reenter 

information that was already input. 

Feedback should be provided during data entry. This includes displaying 

keyed entries character by character and giving an indication of mouse-down and 

mouse-up events in a graphics tool. 

Data entry should be user paced. The system should not run away from 

a novice user, but at the same time it should be able to accommodate the speed of 

expert users. 

3. Data Entry Methods. 

The three data entry methods described above all have a place in the 

interface. It is important to choose the proper method for a particular task. 

When a program is being developed the naming of elements and the 

description of arithmetic expressions are two tasks that seem best suited for 

textual input. When possible, this input should be done with the aid of a syntax 
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directed editor such as the Cornell Program Synthesizer. This system allows the 

user to enter information without the frustrating syntactic details normally 

encountered. This can be a tremendous help when the user is not very familiar 

with the grammar of the programming language. [Ref. 11] 

Graphical data entry is a very important area. With recent advances in 

graphic technology it is possible for the user to enter information in a pictorial 

form faster and more concisely than is possible in textual only environments. 

The top down refinement of a software system is a logical use of graphic editing. 

The decomposition from one level into many lower level components can be 

easily represented by the human mind in a data flow diagram. In general, it can 

be stated that people prefer pictures over words for describing structures, so 

graphical data entry is desirable for this purpose. [Ref. 12: p. 152] 

The final method of interface is through the use of questions and 

response in a system driven interface. This system asks the user questions and 

talces different actions based on the response of the user. Although this method is 

more restrictive, it has its place in the user interface when the users cannot be 

given freedom to enter anything they want. At the cost of flexibility, the user 

can be guided to enter only information that is valid. 

User interface design is more than just providing a method to get the 

information from user to machine and back. The overriding factor is keeping 

the user in control and this control should only be limited in situations where 

possible errors would greatly degrade the system. 
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III. DESIGN OF THE USER INTERFACE. 

In Chapter II, CAPS was introduced and discussed as a group of individual 

components. In this chapter, the design of an interface that links these tools . . 

together into a single software engineering tool will be described. The design of 

the interface includes the specification of the inputs and outputs of the individual 

components as well as a complete description of the previously undefined design 

database. The interfaces involved in the the construction, execution and 

debugging/modification of the prototype will be described. However, a brief 

introduction to the Bourne Shell Scripts of the Unix2 operating system is 

necessary. 

A. BOURNE SHELL SCRIPTS AND UNIX OPERATING SYSTEM 

The Bourne Shell Script is a way to perform a set of Unix commands 

contained in a single file called a script. The Bourne Shell provides string-valued 

variables, if-then-else logic, case statements, and for and while loops. In short, 

all the constructs required to control the operation of the system are available. 

Within the shell, all Unix comma~ds can be utilized, thus providing a very 

powerful control environment [Ref. 13]. The Unix System allows for a 

collection of different tools, many written in different languages. Once the 

individual programs are compiled, they become executable Unix files and their 

source is transparent to the system. Writing the interface in the Bourne· Shell .. .. 

allowed it to be on a higher level than the system components. An additional 

2 UNIX is a trademark of AT&T Bell Laboratories. 
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benefit of the Unix system is the ability to communicate with separate system 

components with the Unix argument and the shared Unix files. Any function 

required by the user interface could be performed in the Unix environment. 

B. PROTOTYPE CONSTRUCTION 

The Design Database (DOB), Software Base (SB), Graphic Editor (GE), 

Syntax Directed Editor (SOE), and the Rewrite System are utilized in the 

construction of the PSDL prototype. A description of the interface and function 

of each of these components as well as the function of the user interface in the 

coordination of the construction effort will be presented. 

1. The Design Database. 

The Design Database is a hierarchical storage structure for the 

development of the PSDL program. This structure is a multiway tree with each 

node containing: 

• PSDL Specification part 
• PSDL Implementation part (Graph or Ada®) 
• Graphic Record (if implementation is Graph) 
• PSDL Control Constraints part (if implementation is Graph). 

The Specification part can be further divided to obtain the various 

elements of the specification. In particular, it can be broken into operator name, 

inputs, outputs, states, and MET individually. The Implementation part consists 

of the link statements produced in the Graphic Editor or written or retrieved 

Ada® code. The Graphic Record is the data used only by the Graphic Editor that 

is used to redraw the data flow diagram. 

Each level of the tree is produced by the decomposition of the parent 

operator. The database is able to recognize the relation of parent and child. This 
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allows queries of the type find child and find parent, as well as a search by 

operator name. Finally the DDB must be able to traverse the entire tree in a 

breadth first order to produce the PSDL program. 

The DD8 inputs are: 

• Graphic Record (from GE) 
• PSDL Implementation (Graph or Ada®) 

• PSDL Control Constraints 

• PSDL Specification 
• Commands (from UI). 

The DDB outputs are the same as the inputs with the addition of the 

complete PSDL program. 

The following operations were designed to enable the DOB to aid in the 

construction and modification of the prototype. 

• Create Root Node. This operation allows for the creation of a tree of 
operators in the database. 

• Create Child Node. This operation creates a new node for information 
storage and sets the parent-child relationship between this new node and its 
parent. 

• Store Property. This operation stores a PSDL part (Specification, 
Implementation or Control Constraints), subpart (Operator Name, Input 
List, Output List, State List or Maximum Execution Time), or Graphic 
record in the named node. 

• Get Property. This operation retrieves these same properties from the 
DDB. 

• Get Children. This operation returns the names of all the children of the 
named operator. 

• Delete Node. This operator removes th~ named operator from the DOB. 
Because of the hierarchical nature of the DOB, this operation will 
effectively remove the entire subtree that is rooted at the named operator. 

• Traverse Tree. This operation performs a breadth-first traversal of the 
DDB that collects the PSDL components into a single program. 
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2. The Graphic Editor 

The Graphic Editor is a graphics tool for drawing data flow diagrams 

(DFD). It is the part of CAPS where most of the input of the prototype 

descroption is done. The decomposition of a PSDL Operator into lower level 

operators defines the actual creation of the new nodes in the tree structure. The 

names of all operators and data streams are entered here. The editor insures a 

valid decomposition by checking the consistency of inputs, outputs, states and 

maximum execution times. The GE can also show the DFD of the parent 

operator to aid the user in retaining the place of a single operator in the 

prototype [Ref. 14]. 

Inputs to the GE include operators name, input, output, and state lists 

and its maximum execution time. The outputs from the GE are the PSDL link 

statements and the Graphic Record. The operations performed by the GE 

include drawing operators data streams, inputs, and outputs showing parent DFD, 

and loading and storing the Graphic Record. 

3. The Syntax Directed Editor. 

The Syntax Directed Editor produces syntactically correct PSDL and 

syntax checks existing PSOL files. The SOE reads in and completes partial 

PSOL specifications and produces PSDL Control Constraints. 

Input to the SOE is the partial PSDL specifications produced in the UI 

and its output is syntactically correct PSDL specification and control constraints. 

4 • The Software Base 

The Software Base of reusable Ada® modules has two parts; a query 

module and a maintenance module. The maintenance module is involved with the 

creation and upkeep of the database. All records must be stored by PSDL 
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specification so that they can later be searched by the same specification. 

Although this part of the system is not utilized in the construction of the 

prototype, it should enjoy the same interface as the query module. LRef. 15] 

The query module receives the PSDL specification part and returns zero, 

one or more Ada® modules that meet those specifications. 

5. The User Interface. 

The user interface has two main functions during the construction of the 

prototype; sequence control of the construction effort, and the insurance of 

continuity of the level-to-level decomposition of the operators. The sequence 

control is performed by utilizing the if-then-else logic of the Bourne Shell. The 

consistency of the decomposition is harder to achieve. 

In the decomposition of an operator, a number of child operators are 

produced through the use of the data flow diagram. Although this decomposition 

can produce any number of new operators with any number of data streams 

between them, the inputs and outputs of the system of child operators must be 

exactly the same as those of the parent. The Graphic Editor can insure this by 

reading in an input and output list. The GE will not allow any other inputs or 

outputs and if all these inputs and outputs are not utilized the user will be notified 

that the decomposition is not valid. Additional1y the Graphic Editor can check to 

ensure that the maximum execution time for any of the children does not exceed 

that of the parent. Finally, a state variable in a child must also exist in the DFD 

decomposition as a self loop or a internal connection between two operators. 

Figure 10 shows the decomposition of the operator top into its lower 

level components, ape, bee, cat, and dog. Figure 1 O(b) is a valid decomposition of 

the operator top, shown in Figure I O(a), because it has the same inputs and 
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outputs (a and c). The GE .would produce the link statements shown in Figure 

l0(c) for inclusion in the PSDL implementation. 

As previously stated, the four operators ape, bee, cat, and dog represent 

the four child nodes of the node top in the DDB. These nodes are created, but the 

name of these operators is not the only thing known about them. Actually the 

link statements can be used to determine the inputs, outputs, names of any state 

variables, and maximum execution times of these operators. The User Interface 

reads the link statements and determines all of the information required to 

produce a partial specification. The specification has the names but not the types 

of the data streams. Production of this specification helps to ensure error -free 

PSDL prototypes by relieving the user of the need to remember what he has 

previously entered and is in keeping with the guideline that data should be 

entered only once. 

There is one additional place where the User Interface creates part of the 

PSDL program. The Implementation part of PSDL consists of link statements 

followed by a Data Stream List. This list consists of the internal data streams that 

were drawn in the DFD. The UI appends the DataStream List to the end of the 

link statements. To complete the Implementation part of the PSDL operator, the 

type of each of these data streams must be added in the SOE. 

6. Sequence Control. 

The construct module consists of a loop that continues while there are 

nodes in the DDB without an implementation part. The first incomplete node is 

found in the DDB and its specification is used to search the Software Base. If a 

match is found, that node is considered atomic and the Ada® code is placed in the 
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implementation section of that operator. If there is no match the user is asked to 
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Figure 10. Operator Decomposition 
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either decompose or write the Ada® implementation. If hand coding is done, 

this operator is again atomic and the Ada® code becomes the implementation 

part. Finally, if the user chooses to decompose the operator, the Graphic Editor 

draws the DFD is and produces the link statements. The User Interface reads 

these link statements and writes the partial specification for all newly created 

operators. New nodes in the DDB are created for each new operator. The 

Syntax directed editor is then called to complete the PSDL for the original 

composite operator. 

The construct loop ends when all leaf nodes of the DDB are atomic. 

During the creation of a prototype, a rapid growth in the number of nodes is 

expected, as the high level operators are decomposed. Eventually the Ada® 

implementation for more of the lower level operators would be found in the SB 

and the growth of the tree would stop. 

The construction process deals only with the production of operators. 

New data streams are produced in each operator. If these data streams are not 

atomic they must be defined in PSDL. All user defined data streams ( ds) would 

appear outside the tree of operators on a level in the DDB equal to the root 

operator. Exceptions (ex) would also appear at this level, which is similar tQ a 

global type definition in Pascal. Figure 11 illustrates this structure. The tree of 

operators contains both composite operators (co) and atomic operators (ao). 

C. PROTOTYPE EXECUTION 

Prototype execution utilizes the Translator (TR), Static Scheduler (SS), and 

Dynamic Scheduler (DS) to produce an executable prototype in Ada®, that can 

test the design and requirements of the actual system. 
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Figure 11. Conceptual DOB Structure 

1. The Translator 

The translator in CAPS translates the PSDL into Ada®. This is done by 

taking the Ada® implementation of the atomic operators and adding the control 

constraints of the composite operators to produce a group of loosely coupled 

Ada® modules. [Ref. 16 J 

The input to the translator is the PSDL program that was produced in 

the breadth first traversal of the DDB. The output is the package of Ada® 

modules. 

2. The Static Scheduler 

The Static Scheduler produces a schedule of time critical operators, if 

one can be produced. If it is impossible to produce a valid schedule because of 

the timing constraints set in the construction of the prototype, the user will be 

notified by the Debugger. This process will be described in the debugging and 

modification section. 

34 



.,. 

3. The Dynamic Scheduler 

The Dynamic Scheduler produces a dynamic version of the static 

schedule that includes a schedule of time critical operators, a collection of non 

critical operators and an exception handler that is the debugger. The Dynamic 

Scheduler adds the ability to run non-time critical operators in conjunction with 

the static schedule. 

The produced dynamic schedule is a Ada® program that consists of two 

tasks and the exception handler. The higher priority task is the schedule of time 

critical operators. This task will execute until it reaches a designated milestone in 

the schedule, if it is ahead of schedule the secondary task, (non-time critical 

operators) will be executed for the amount of excess time. In the event that the 

prototype falls behind its time schedule at any milestone, an exception will be 

raised and the debugger will be started. 

To aid in debugging, a trace and a graphical representation of the 

executing prototype are planned. The trace will list the name of the operator and 

the time that it is entered. This information is critical when the actual real-time 

performance of the prototype is being evaluated. The run time status of the 

prototype could be displayed by presenting the user with a tree that represents 

the nodes of the DDB. The node on the frontier of the tree that corresponds to 

the operator currently executing would be highlighted. This would give the user 

the ability to watch the actual execution of the prototype. 

4. Sequence Control. 

The Translator and Static Scheduler may be executed in any order, or 

~ simultaneously in a multitasking environment. After the Static Schedule is 

produced and a non-time critical operators identified, these operators must be 
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grouped in a package for use in the Dynamic Scheduler. The Translator output 

is compiled and used in both the Static Schedule and the non-time critical 

package. These two packages then become part of the Dynamic Schedule, which 

must be compiled and linked before it is executed. 

D. PROTOTYPE DEBUGGING AND MODIFICATION. 

The debugging of the prototype takes place during the execution of the Static 

Scheduler, while the static schedule is being produced, and during the execution 

of the dynamic schedule of the prototype. The Debugger must be broken into 

two parts because exceptions caused by static problems arise before compilation, 

while many of the dynamic timing problems of a real-time system will not occur 

until the prototype has been compiled and is executing. [Ref. 17 J 

1. The Debugger. 

The Debugger has two methods of correcting problems in the prototype. 

The first is through direct user interaction with the prototype and the second is 

through the Syntax Directed Editor and the Graphical Editor in the modification 

mode. 

The Debugger gives the user a chance to make small changes to the 

prototype in the ESS. This allows rapid feedback as to the results of the change. 

The problem with this method of modification, is that these changes are 

temporary. The only way to make a permanent change to the prototype is with 

the SDE or GE. 

2. Modifying the Prototypes. 

There are many problems involved in implementing the facilities for the 

modification of a PSDL prototype. These problems stem from the fact that 

operators in the hierarchical structure of the DDB inherit information both up 
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and down. In addition there are both graphical and textual views of an operator. 

These views actually hold different versions of the same information. A change 

in one view requires a change in the other. 

a. Modifyi11g an Operator. 

If an operator is deleted the simple solution is to delete the entire 

subtree that has that operator as a root. This action is very severe and the DOB 

should record a historical version of the prototype at this time. If it is later 

shown that this deletion was an improper choice, this version of the prototype 

could be restored. A deletion would also require the modification of the DFD 

(and link statements) of the parent operator, where the deleted operator is first 

defined. 

The addition of a new operator is as simple as a deletion. The new 

operator is added to the DOB tree and the construction mode of the user 

interface is entered. Construction continues until the new subtree is completely 

defined. In both deletetion and insertion the DFD of the parent operator must be 

modified to reflect the changes in its subtree. 

The most significant problem in modifying an operator occurs when 

small changes in the specifications or control constraints of an operator are made. 

A change in the specification could cause changes in every node of its subtree. 

Equally as likely, a specification change could cause an atomic operator to 

become a complex operator if the search of the software base no longer yields a 

match. The search on modified specifications may yield a match that was not 

previously obtainable, therefor deleting a subtree and replacing it with an atomic 

operator. 
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This level-to-level consistency problem can move up the tree as well. 

Also a change at a child node may cause it to be different from the node required 

for the decomposition of the parent. 

b. Consistency of Views. 

A change of a textual component of PSDL may be carried over to 

the graphic representation. An example is the name of a data stream, that is 

changed in the implementation section of a PSDL operator, must be reflected in 

the link statement and also in the graphic record. 

The graphical view of a change might be the best indication of the 

problems caused by deletions or changes. More effort is required in the area of 

prototype modification, if the same assurances of valid PSDL prototypes that are 

present in the construction mode are expected during modification. 

E. TOP LEVEL USERS MANUAL 

The top level users manual contains the four commands; caps, construct, 

execute and modify. This section describes these commands and the environment 

the user will be in when these commands are executed. The individual user 

manual for each system component, particularly the SOE and GE, should also be 

consulted. 

1. The Caps Command. 

The caps command is how the user initiates CAPS and it places the user 

in the user interface portion of CAPS. From this point the user can initiate one 

of the three remaining commands. 

caps <new _proto _ name> 

The optional argument contains the name of a new prototype that is to be 

constructed. If the DOB is empty, this name will be used to create a new root 
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node. If the argument is not used and the DOB is empty, the uler will be asked 

to Enter the root node name . The response to this query will be used to create 

the root node. When the DOB is empty the user will always be placed in the 

construction mode as the execution and modification modes would not apply. 

2. The Construct Command. 

The construct command is used to place the user in the construction 

mode. In this mode the user is directed into the SOE and GE to create the PSDL. 

program. 

construct 

This command will place the user in the location where the PSDL 

construction can begin or continue. The process is directed by the UI to insure 

the production of a complete and valid PSDL program. The particular aspects of 

both the SDE and GE users manuals should be reviewed in order to properly 

utilize these tools when they are called. The search of the Software Base, the 

storage and retrieval of components in the DOB, and the semantic checking of 

the UI are all transparent to the user. 

The user is advised of the results of the software search and the 

completion of the construction with the below dialogs. 

• Software Search Complete - no match found. This notifies the user that 
the search for an Ada® implementation for the given specification was 
unsuccessful. This would be followed by the question: Do you want to 
decompose, y or n. Based on the response the user will be placed in the GE 
or Ada® edttor. 

• Software Search Complete - implementation found. This indicates a 
successful retrieval of an Ada® implementation. The user is then asked to 
choose the next operator for implementation. 

• Select the next operator for implementation. This dialog presents the user 
with a list of incomplete operators. The user then enters the name of the 
desired operator. This question will follow the completion of any 

·· implementation. 
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• Construction Complete. This message indicates the completion of the PSDL 
prototype. The user is then placed in the UI portion of CAPS where 
execution or modification can be selected. 

3. The Execute Command. 

The execute command places the user in the Execution Support System 

where the constructed prototype is executed to test the real-time performance. 

execute 

This command first checks for the existence of a completed prototype. 

If one does not exist the user is warned, No Completed Prototype Available, and 

placed back in the UI. When a complete prototype is available, the Translator, 

Static Scheduler and Dynamic Scheduler called in succession. The use of these 

components, as well as the Ada® compiler and linker, is transparent to the user. 

The user is informed of the status within the ESS with the below messages. 

• Translation Complete. 

• Static Scheduler Complete. 

• Dynamic Scheduler Complete. 

• Compilation Complete. 

• Linking Complete. 

• Execution Complete. 

In the event of a problem in the scheduling or execution of the 

prototype, the user will be notified by the Debugger. The user has the option to 

make temporary corrections to the prototype in an attempt to achieve proper 

execution. All permanent changes must be made in the appropriate editor 

through the use of the modify command. The users manual for the Debugger 

should be consulted for the form of any commands, messages and dialogs. 
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4. The Modify Command. 

The modify command is used to make changes to the prototype. The 

user is placed in the modification mode that insures that all changes are made 

consistently throughout the various levels in the DDB. 

modify 

This command asks the user to Enter the name of the Operator to be 

modified. The user must then call the SDE or GE to make the required change 

to the operator. The UI insures that the appropriate changes are made in the 

higher and lower levels of the DDB. The user will be asked to resolve the 

questions that will arise as these changes are carried out. Depending on the 

changes made the user might be required to enter the construction mode to 

complete the modified prototype. The design of this area of CAPS is not 

complete. 

F. EVOLUTION OF THE USER INTERFACE. 

The current design of CAPS is in an evolutionary stage. As CAPS changes 

the design of the User Interface must change to keep the system performing. At 

the present time, only a part of the total system has been implemented. As more 

of the functions of CAPS are implemented changes to the interface will be 

required. 
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IV. IMPLEMENTATION OF THE USER INTERFACE. 

The user interface has not been completely implemented since all of the 

components of CAPS have not been implemented. The link statement analyzer of 

the UI has been implemented and is described here. The means of sequence 

control have been tested and proved to be feasible for use in the implementation 

of the interface. This chapter will outline the implementation of the link analyzer 

as well as a plan for the implementation for the remainder of the User Interface 

and the Dynamic Scheduler. 

A. THE LINK STATEMENT ANALYZER. 

The link statement analyzer is called nodes because it writes the partial 

specification for the newly created operators and is used to create new nodes in 

the DDB. 

The program was written in Pascal, because that was the language most 

familiar to the author. Berkley Pascal was used because, like the remainder of 

the system, it can run on the Sun Workstation® 3 and the Unix Operating System. 

The declaration section of nodes.p shown in Figure 12 describes the storage 

structure that is used. In this program the link statements are parsed and the 

operators are stored in the linked list of operators. Within a given operator a list 

of inputs, outputs, and states as well as the Maximum Execution Time are stored. 

State variables are determined by the existence of a data stream with the same 

operator as its two end points. Graphically this would appear as a self loop. 

3 Sun Workstation® is a registered trademark of Sun Microsystems, Inc. 
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There is a linked list of internal data streams collected for inclusion in the 

Implementation section of the parent operator. The storage structure is built up 

as each link statement is read in succession. 

program CreateNodes (input,output); 

const 
period = '.'; 
colon=':'; 
arrow = '-'; 
blank=' '; 
EXTERNAL = 'EXTERNAL 

type 

(* Global Constants *) 

(* 72 blanks *) 
'· , 

string80 = packed array [0 .. 79] of char; 
DataPtr = "DataType; 
DataType = record 

Name: string80; 
Link: DataPtr; 
end; (* DataType *) 

OperPtr = "Operator; 
Operator = record 

OpName: string80; 
lnputList: DataPtr; 
InListTail: DataPtr; 
OutputList: DataPtr; 
OutListTail: DataPtr; 
StateList: DataPtr; 
StateListTail: DataPtr; 
MET: string80; 
Link: OperPtr; 
end; (* Operator *) 

var 
OpHead: OperPtr; 
OpTail: OperPtr; 
DataHead: DataPtr; 
Data Tail: DataPtr; 

(* Node for Linked List of Nodes *) 

(* Node of Linked List of Operators *) 
(* Operator Name *) 
(* Head Pointer to Input List *) 

(* Tail Pointer to Input List *) 
(* Head Pointer to Output List *) 
(* Tail Pointer to Output List *) 
(* Head Pointer to State List *) 
(* Tail Pointer to State List *) 
( * Maximum Execution Time *) 

(* Head of Operator List *) 
(* Tail of Operator List *) 
(* Head of Data List *) 
(* Tail of Data List *) 

Figure 12. Declaration Section of Nodes.p 
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After the link statements are read into the data structure, specification parts 

for each new node are written into dynamically created files. These files will be 

used to create new nodes in the DDB, with each file being the input for the create 

new node command. In addition to creating the child nodes, the Data Stream part 

of the PSDL implementation section for the parent node is produced. This data 

stream list consists of all new internal data streams created in the decompositions 

that are not state variables. The creation of both a child node and the Data 

Stream list in nodes .p are illustrated in Figure 13. This figure illustrates how 

the link statements that were produced in the GE (Figure 13(a)) are used by the 

UI to produce the partial specification of the newly defined operator, ape, 

(Figure 13(b)). The entire input and output of this example is shown in 

Appendix D. All of the semantic checking required to produce proper PSDL is 

included in the nodes.p program. Nodes.p is included as an important part of 

the construction subsystem. 

ab.ape:l0s-->bee 
ac.ape: l0s-->cat 
bc.bee:20s-->cat 
c.cat:30s-->EXTERNAL 
state.cat:30s-->cat 
cd.cat:30s-->dog 
a.EXTERNAL-->ape 
de.dog: 1 0s-->cat 

(a) 

NewNode.01 

OPERA TOR ape 
SPECIFICATION 
INPUT a 
OUTPUT ab 

ac 
MAXIMUM EXECUTION TIME 10s 

(b) 
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Figure 13. Input and Output of Nodes.p 

B. SEQUENCE CONTROL IN THE USER INTERFACE. 

The Sequence Control of the construction and execution subsystems has been 

designed and tested. Complete implement~tion can be started when all the 

elements of CAPS are operating. 

1. Implementation of the Construction Subsystem. 

The goal of the construction subsystem is the production of the PSDL 

prototype. Before the construction process can begin the specification of the root 

operator must be written and the root node in the DDB created with the 

createRootNode command. This command to the DDB is executed by the UI 

when the user types the command caps. After this requirement is met the 

construction subsystem is entered. 

The prototype construction is a loop that is executed until all the 

elements of the DDB are fully defined. The user interface maintains a list of 

nodes in a file called node.list. When new operators are created, their name is 

added to this list. As these operators are fully defined, they are removed from 

the list. When this node.list is empty the prototype is complete. The command: 

while test-s node.list do will perform this function in the Bourne Shell. 

The first step in the construction is the completion of the PSDL 

specification. To do this the partial specification is retrieved from the DDB 

through the use of the getProperty command. This command is executed with 

the operators name on the first line in the file ddb. in and the name specification 

on the second. The DOB places the operator's specification in the file ddb.out. 

The SOE is invoked to complete and syntactically check the specification. This 

editor is called with the command SDE ddb.out. This specification is then sent to 
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the Software Base by placing it in the file psdl.spec and then executing the file 

Software_Base. The response to the query is read from the file SB_out. If there 

is no match, the file is empty, otherwise the Ada® code is in this file. 

The command test-s SB out is used by the UI to determine if a match 

has been found. If it has, the Ada® code will be appended to the Implementation 

in the form of a PSDL comment. To do this, the words Ada® and the operator 

name are added followed by the retrieved Ada® code which is surrounded by the 

brackets of a PSDL comment. 

If no match is found in the software search, the user is asked if they want 

to decompose the operator. A string-valued variable containing the users 

response is tested. When the response is negative, the user is placed in an editor, 

currently vi, where the Ada® implementation is written. The Ada® code is 

handled the same as the code that is retrieved from the Software Base. The 

implementation is stored in the DOB with the command storeProperty with the 

operator name followed by the Implementation section placed in ddb.in. 

When the user wishes to decompose, the Graphic Editor is called and the 

data flow diagram and its corresponding link statements are produced. The GE 

is given the files graph.name, graph.in, graph.out, graph.state and graph.met 

which are made from data retrieved from the specification part of PSDL. The 

GE outputs graph.link and graph.pie are the link statements and graphical 

record respectively. Graph.pie is also an input, but it will be empty unless a 

DFD already exists. 

The user interface creates graph.name, graph.in, graph.out, graph.state, 

and graph.met by getting the specification part of the node as described above, 

scanning for the information and writing it in the appropriate file. The output 
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files graph.pie and graph.link are produced in the GE. The implementation 

section is stored in the DDB by writing the key words IMPLEMENTATION and 

GRAPH to the file ddb.in and then concatenating the files graph.link and psdl.ds 

to it. The file ddb.in is then stored using the storeProperty command. 

While reading the link statements to determine the internal data streams 

needed to produce psdl.ds the new nodes are identified. The program nodes.p 

dynamically produce files named NewNode.01 to NewNodeXX depending on the 

number of new operators in the decomposition. The new nodes are created by 

executing the command createChildNode for each NewNode file. To execute 

createChildNode, ddb.in must have the name of the new node on the first line 

followed by the name of the parent node and then the partial specification 

produced by the link analyzer. 

The loop is executed until all nodes are fully described with the leaf 

nodes being all atomic operators. The construction of the prototype is complete 

when the command traverse is executed. With the name of the root node in 

ddb.in , a breadth first traversal of the DOB is performed and the PSDL for each 

operator is concatenated to the file. This PSDL specification for the entire 

prototype is moved to the file psdl for use by the Execution Support System. 

2. Implementation of the Execution Support System. 

The implementation of the Execution Support System involves the 

coordination of the Translator, Static Scheduler, Dynamic Scheduler, and the 

Ada® compiler and linker as well. 

To execute a prototype, the file psdl is first piped to the executable file 

translator. This program generates a package of loosely coupled Ada® 
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components that each represent one of the leaf nodes of the prototype. This 

package is called TL.a and is used by both the Static and Dynamic Schedules. 

The Static Schedule is produced by executing the attribute grammar 

preprocessor called psdl _reader with psdl piped as its input. The output file from 

psdl_reader, called operator.info, is the input to the next program, called 

Static_Scheduler. The Static_Scheduler produces a static scheduler, SS.a, as its 

output. A secondary output of the Static_Scheduler is the list of non-time critical 

operator NTC.out. 

Both SS.a and NTC.out are used by the Dynamic Scheduler to produce 

an executable schedule called DS.a. This output schedule, which is written in 

Ada®, must be compiled and linked before execution. After schedule 

completion, the name of the executable prototype code is changed to be the same 

as the root operator. 

3. Implementation of Debugging and Modification. 

The debugger, as previously described, is broken into two parts; the 

Static Scheduler debugger and the executing prototype debugger. Both parts are 

embedded in the Execution Support System although it is not part of the 

execution of the prototype. If the debugger gets direct input from the user this 

information is used to try to keep the prototype executing. When the problems 

become too large the debugger writes the error message into the file information 

where the user can read it and attempt to modify the prototype. 

The modification process is not completely defined at this time, but the 

DDB is equipped with all the operations that should be required. In addition to 

the operations that were previously discussed in the construction of the 

protetype, there are the getParent and getChildren commands for moving 
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around the tree and the deletNode command for the removal of unneeded 

operators. 

The getParent command is called with the known nodes name in ddb.in. 

The name of that nodes parent is placed in standard output and can be piped to 

wherever _it is needed. The command getChildren is very similar except that the 

output is the list of child nodes and is placed in the file ddb.out. 

The deletNode command simply deletes the node named in ddb.in and its 

entire subtree from the DDB. This command will require that a historical 

version of the DDB be saved. As the modification process is defined, additional 

operators in the various tools from the construction subsystem will be required. 

C. EXAMPLE BOURNE SHELL SCRIPTS 

The following example Bourne Shell scripts of the construct mode illustrate 

the commands that have been tested for use in the sequence control of the UI. 

These scripts are not complete, and have not been tested because the DDB was not 

implemented at the time of this writing. 

1. The Construct Script. 

The script for the construct mode is illustrated in Figure 14. This script 

is a loop that executes until the file node.list is empty, signifying a complete 

prototype. The first command in the loop calls the executable file getChoice. 

This file displays the list of incomplete operators to the user, who then selects the 

next operator for implementation. The choice is stored in the file choice. The 

command cat choice spec > > ddb.in places the name of the choice operator and 

the keyword SPECIFICATION, found in the file spec, in the file ddb.in. The 

command getProperty uses ddb.in to retrieve the specification of the operator 

from the DOB. 
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while test-s node.list do 
getChoice 

done 

cat choice spec >> ddb.in 
getProperty 
SDE ddb.out 
mv ddb.out psdl.spec 
cat ddb.in psdl.spec >> temp 
mv temp ddbJn 
s toreProperty 
Software_Base 
if test-s SB_out then 

else 

fi 

echo "Software Search Complete - implementation found" 
addlmpl 

echo "Software Search Complete - no match found" 
echo "Do you want to decompose, y or n." 
read x 
if test $x = y then 

GE 
else 

adaEditor 
addAdalmpl 

fi 

echo "Construction Complete" 

Figure 14. Construct Script 

The output from the DOB, ddb.out, is sent to the SDE, where it is 

completed and syntax checked. The file is then moved with the mv command to 

the file psdl.spec, which is the input file for the Software Base. The next three 

commands create the file temp with the operator's name, the keyword 

SPECIFICATION and the completed specification in it. This file is moved to 

ddb.in where the storeProperty command stores it in the DDB. 

The search of the SB is initiated by the command Software _Base. The 

results of the search are placed in the file SB _out. If there is no match this file is 

empfy and it would fail the test-s command. If there is an implementation in the 
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file, the user is notified with the message "Software Search Complete -

implementation found", and the executable program make/mp I is called. This 

program creates a PSDL implementation section by placing the keywords 

IMPLEMENTATION and Ada in the file ddb.in. The operator name and the 

retrieved code, surrounded by the brackets ( {}) of a PSDL comment are 

concatenated to complete ddb.in. 

If no implementation is found in the SB, the user is notified with the 

command "Software Search Complete - no match found" and asked "Do you want 

to decompose, y or n". The user's response is read into the variable x if the 

response is "y" the GE is called. The script for the GE is demonstrated in the 

next section. 

If the user does not want to decompose, the Ada® editor is called 

followed by addAdalmpl which adds the Ada® implementation to the PSDL 

operator just as add/mp/ does. 

When node.list is empty, all the operators are completely defined, and 

the prototype is complete. The user is notified with the command" Construction 

Complete". 

2. The Graphic Editor Script. 

The GE script, shown in Figure 15, is embedded in the construct script. 

The primary purpose of the GE script is to get the inputs from the DDB, call the 

Graphical Editor, and then store the outputs back in the DDB. 

The executable file getlnputs calls the DOB command getProperty, with 

the proper keywords in the file ddb.in, to retrieve the operator name, inputs, 

outputs, states and maximum execution time from the operator specification, as 

wellwas the graphic record, if one was previously produced. This information is 
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placed in the files graph.name, graph.in, graph.out, graph.states, graph.met, and 

graph.pie respectively. These files are the inputs to the GE. 

The command graph puts the user in the editor where the DFD that 

defines _the decomposition of the operator are produced. The outputs of the GE 

are the new graphic record graph.pie and the link statements in the file 

graph.link. Graph.link is piped to the link analyzer nodes, where the partial 

specification of the newly defined nodes and the data stream list are created. 

get_inputs 
.graph 
nodes < graph.links 
cat graph.links psdl.ds >> psdl.imp 
cat choice Imp Graph psdl.imp >> ddb.in 
SDE ddb.in 
s toreProperty 
cat Graphic graph.pie>> ddb.in 
store Property 
createN odes 

Figure 15. Graphical Editor Script 

The commands Graph.link psdl.ds >> psdl.imp and cat choice Imp 

Graph psdl.imp > > ddb.in produce the implementation of a composite operator. 

This is done by first combining the link statements and data stream list. The 

keywords IMPLEMENTATION, in the file imp, and GRAPH are added as well 

as the operator name. The PSDL implementation is then sent to the SOE where 

the user must add the types to the data streams in the data stream list. The user 

may also add any optional control constraints. 

The storeProperty command is used to store both the implementation 

section and the graphic record. The cat command in between sets up the file 

ddb.in for the storage. 
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The last command in the script, createNodes takes the files of the form: 

NewNode.XX, that were created in the UI for each new operator defined in the 

the DFD, and creates a node in the DDB with the createChildNode command. 

The executable file createNodes must load the file ddb.in with the new operator 

name, parent operator name and the partial specification, in N ewN ode .XX, for 

each new operator before executing the createChildNode command. 

D. FUTURE IMPLEMENTATION. 

There are two aspects to the future implementation of the User Interface. 

The first is implementation of the designed features of the system. As the 

individual components are completely implemented the UI will need to be 

expanded to provide all the features of the system to the user. After all the 

logical considerations of the interface are fully tested, the second part of the 

implementation can begin. 

The second phase is more directly involved with the Human Factors 

Engineering of the system. Presently the major considerations are what the 

system does, what information is to be passed and which tool should be invoked 

next. The follow on work should be more involved with how the information is 

presented to and received from the user. The use of a more graphic interface 

with a response via the mouse, would be more compatible with the primarily 

graphic input of the system. 
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V. CONCLUSIONS 

The goal of this thesis · was to determine the requirements of a user interface 

for CAPS and to design such an interface. This expert interface will help · 

transform CAPS from a collection of software engining tools, into ·a usable 

system for rapid prototyping. 

A. FEASIBILITY ISSUES. 

The work done in this thesis demonstrates that a user interface that supports 

the construction, execution and modification of an executable prototype can be 

produced. First the requirements of interface were defined. These included data 

entry, data protection, communication between elements and sequence control. A 

design of an interface that could support these requirements was then produced. 

Key aspects were tested and the implementation outlined. 

This interface, along with the demonstration of the feasibility of most of the 

components of CAPS, has shown that the system can be built. The next step is to 

demonstrate that this prototyping effort can aide in the production of real-time 

embedded systems. It must be shown that CAPS can construct and execute these 

prototypes quickly with minimum user training. 

B. BENEFITS OF THE STUDY 

The primary benefit of the work done on the user interface is the 

advancement of CAPS. CAPS has demonstrated the potential for significant time 

and cost savings in the production of these real-time system. If the user interface 

can be powerful and friendly enough to promote the users interest in the system 

then -CAPS will be more readily used. 
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A secondary benefit of this research is in the area of user interfaces for other 

systems. Other software engineering tools might be able to utilize some of the 

aspects of the CAPS user interface. A tool that uses both graphical and textual 

data entry and display could utilize the same type of control of data consistency 

between the two views. The use of the Bourne shell scripts might a be a useful 

model for some other system as well. 

C. RECOMMENDATIONS. 

There are three recommendations for the improvement of CAPS. These 

recommendations include the addition of two new areas of work to the system 

and a change in the primary method of data entry. 

1. Primary Data Entry. 

The original design of CAPS called for the majority of the data entry to 

be done in the SOE. As the system has been developed, the GE has proven to be 

the primary tool for the entry of new data. The DFD is the first place where the 

new operators and data streams are defined in PSDL. The UI already uses the 

information from the GE to produce the partial spec~fication of the newly 

constructed operators and the data stream declaration. Currently the GE only 

names data streams and the type must be added in the SDE. The inclusion of 

types in the GE, and in the link statements, would eliminate the need to return to 

the SDE to complete the specifications and data stream lists. 

2. Prototype Modification. 

A method of prototype modification must be provided. A modification 

mode that not only allows changes to the prototype, but provides the same 

assurances of valid PSDL prototypes as the construction mode is required. Until 
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this modification subsystem is in place, the rapid debugging of the prototype will 

not be possible. 

3. Execution Monitoring. 

The current design of CAPS does not include a means of monitoring the 

execution of the prototype. Some means of producing both a trace and a view of 

the execution of the prototype would greatly improve the ability to debug and 

verify the prototype's performance. The ability to trace a problem in the 

execution to one of the original requirements would aid in the validation or 

modification of these requirements. 

D. APPLICATION OF CAPS IN THE DEPARTMENT OF DEFENSE 
AND THE DEPARTMENT OF THE NAVY. 

The substantial investment in real-time embedded systems in DOD and DON 

points out the tremendous need for a tool such as CAPS. Since CAPS produces 

an executable prototype in Ada® that can be used to test the design of a software 

system before coding. MIL-H-48655B calls for requirements analysis, functional 

specification and verification before the actual coding of the system [Ref. 19]. 

Rapid Prototyping supports this objective. All embedded systems in DOD are to 

be written in Ada®, so it seems that CAPS is the tool that best supports the 

production of real-time embedded systems. Although CAPS is not yet a complete 

system, it does hold promise as an important tool for software engineering in 

DOD and DON. 

There is much interest in the rapid development and acquisition of software 

for tactical systems in the Navy, as shown in OPNA VNOTE 5000. This 

instruction outlines a method for accelerated acquisition of tactical systems 

through the use of existing, "off the shelf" hardware and rapidly produced 
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developmental software[Ref. 20]. The production of this software could be 

accelerated through the use of a software tool like CAPS. 

Rapid prototyping has demonstrated a potential to be one possible solutions to 

the inherent problems of producing large real-time systems with traditional 

software engineering methodologies. CAPS shows promise as a practical 

software engineering tool. 
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APPENDIX A. PSDL GRAMMAR 

Start= psdl 
psdl = {component} 
component = data_type I operator 

data_type = "type"id type_spec type_impl 
operator= "operator"id operator_spec operator_impl 
type_spec = "specification" [type_decl] { "operator" id operator_spec} 

[functionality] "end" 
type_impl = "implementation" "ada" id" {"text"}" 

I "implementation" type_name {"operator" id operator_impl} 
"end" 
operator_spec = "specification" {interface} [functionality] "end" 
operator_impl = "implementation" "ada" id"{" text"}" 

I "implementation" psdl_impl 
type_decl = id_list ":" type_name {"," id_list ":" type_name} 
functionality= lkeywords] [informal_desc] [formal_desc] 
psdl_impl = data_flow _diagram [streams] [timers] [control_constraints] 

[informal_desc] "end" 
type_name = id"[" type_decl "]" 

I id 
interface = attribute [reqmts_trace] 
id_list = id { "," id } 
keywords = "keywords" id_list 
informal_desc = "description" " {" text "}" 
formal_desc = "axioms" " {" text "}" 
data_flow _diagram = "graph" {link} 
streams = "data stream" type_decl 
timers = "timer" id_list 

attribute = generic_param 
I input 
I output 
I states 
I exceptions 
I timing_info 

generic_param = "generic" type_decl 
input = "input" type_decl 
output= "output" type_decJ 
states= "states" type_decl "initially" expression_list 
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exceptions= "exceptions" id_list 
timing_info = ["maximum execution time" time] 

["minimum calling period" time] 
["maximum response time" time] 

reqmts_trace = "by requirements" id_list 
link= id "." id l":" time] "->" id 
control_constraints = "control constraints" { constraint} 
constraint = "operator" id 

["triggered" [trigger] ["if" predicate] [reqmts_trace]] 
["period" time [reqmts_trace]] 
["finish within" time [reqmts_trace]] 
{ constraint_options} 

trigger= "by all" id_list 
I "by some" id_list 

constraint_options = "output" id_list "if" predicate [reqmts_trace] 
I "exception" id ["if" predicate] [reqmts_trace] 
I timer_op id ["if" predicate] [reqmts_trace] 

timer_op = "read timer" 
I "reset timer" 
I "start timer" 
I "stop timer" 

expression_list = expression ( "," expression) 
time = integer [unit] 
unit= "ms" I "sec" I "tnin" I "hours" 
expression = constant 

I id 
I type_name "." id "(" expression_list ")" 

predicate = relation ( bool_op relation} 
relation = simple_expression 

I simple_expression rel_op simple_expression 
simple_expression = [sign] integer [unit] 

I [sign] real 
I ["not"J id 
I string 
I ["not"] "(" predicate ")" 

I l "not" J boolean_constant 
bool_op = "and" I "or" 
rel_op = "<" I "<=" I ">" I ">=" I "-" I "/=" "·" 
real = integer "." integer 
integer = digit (digit} 
boolean_constant = "true" I "false" 
numeric_constant = real I integer 
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constant = numeric_constant I boolean_constant 
sign= "+" I "-" 
char = any printable character except "}" 
digit = "O .. 9" 
letter = "a .. z" I "A .. Z" I "_" 
alpha_numeric = letter I digit 
id = letter ( a] pha_numeric} 
string=""" (char} "'"' 
text = (char} 
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APPENDIX B. BRAIN TUMOR TREATMENT SYSTEM 

EXAMPLE 

OPERA TOR Brain_tumor_treatment_system 
SPECIFICATION 

INPUT patient_chart: medical_history, 
treatment_switch : boolean 

OUTPUT treatment_finished: boolean 
STATES temperature: real INITIALLY 37 .0 

DESCRIPTION {This is an English description of the operator ) 
END 
IMPLEMENTATION 
GRAPH temperature.EXTERNAL--> hyperthermia_system 

patient_chart.EXTERNAL--> hyperthermia_system 
treatment_switch.EXTERNAL --> hyperthermia_system 
treatment_power.hyperthermia_system --> simulated_patient 
treatmen t_finished .hyperthermia_system --> EXTERNAL 
temperature.simulated_patient --> hyperthermia_system 

DAT A STREAM treatment_power : real 
CONTROL CONSTRAINTS 

OPERATOR hyperthermia_system 
PERIOD 200 ms BY REQUIREMENTS shutdown 

OPERATOR simulated_patient 
PERIOD 200 ms 

DESCRIPTION { some text about it) 
END 

OPERATOR hyperthermia_system 
SPECIFICATION 

INPUT temperature:real, 
patient_chart:medical_history, 
treatment_switch: boolean 

OUTPUT treatment_power: real, 
treatmen t_fin ished: boolean 

MAXIMUM EXECUTION TIME 100 ms 
BY REQUIREMENTS temperature_tolerance 

MAXIMUM RESPONSE TIME 300 ms 
BY REQUIREMENTS shutdown 

KEYWORDS medical_equipment, 
-· temperature_control, 
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hyperthermia, 
brain_tumors 

DESCRIPTION { } 
END 

IMPLEMENTATION 
GRAPH temperature.EXTERNAL --> start_up 

temperature.EXTERNAL --> maintain 
patient_chart.EXTERNAL --> start_up 
treatment_switch.EXTERNAL --> safety _control 
estimated_power.start_up --> safety _control 
estimated_power .maintain -->safety _control 
treatmen t_finished .maintain --> safety _control 
treatment_finished.start_up --> safety _control 
treatment_power.safety _control --> EXTERNAL 

DATA STREAM estimated_power: real 
TIMER treatment_time 
CONTROL CONSTRAINTS 

OPERATOR start_up 
TRIGGERED IF -42.4 > temperature 
BY REQUIREMENTS maximum_temperature 

STOP TIMER treatment_time 
RESET TIMER treatment_time IF temperature <= 37 .0 

OPERA TOR maintain 
TRIGGERED by all temperature, treatment_time 

IF temperature >= 42.4 
BY REQUIREMENTS maximum_temperature 

OUTPUT treatment_finished IF treatment_time >= 45 min 
BY REQUIREMENTS treatment_time 
START TIMER treatment_time 

BY REQUIREMENTS treatment_time, 
temperature_tolerance 

END 

OPERA TOR start_up 
SPECIFICATION 

INPUT patient_chart: medical_history, 
temperature: real 

OUTPUT estimated_power: real, 
treatment_finished: boolean 

EXCEPTIONS errl, err2, err3 
BY REQUIREMENTS temperature_tolerance 
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DESCRIPTION { } 
END 
IMPLEMENTATION Ada start_up 

OPERATOR maintain 
SPECIFICATION 

INPUT temperature: real 
OUTPUT estimated_power: real, 

treatment_finished: boolean 
MAXIMUM EXECUTION TIME 90 ms 

BY REQUIREMENTS temperature_tolerance 
DESCRIPTION { } 

END 
IMPLEMENTATION Ada maintain 
OPERA TOR safety _control 
SPECIFICATION 

INPUT treatment_switch, 
treatmen t_finished: boo lean, 
estimated_power: real 

OUTPUT treatment_power: real 
BY REQUIREMENTS shutdown 

MAXIMUM EXECUTION TIME 10 ms 
BY REQUIREMENTS temperature_tolerance 

DESCRIPTION ( } 
END 
IMPLEMENTATION Ada safety _control 
OPERA TOR simulated_patient 
SPECIFICATION 

INPUT treatment_power: real 
OUTPUT temperature : real 
DESCRIPTION { } 

END 
IMPLEMENTATION ADA simulated_patient 
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APPENDIX C. PASCAL PROGRAM nodes.11 

program CreateNodes (input,output); 
const (* Global Constants *) 

'· 
' 

. d '' peno = . ; 
colon=':'; 
arrow='-'; 
blank=' '; 
EXTERNAL = 'EXTERNAL 

(* 72 blanks *) 
type 

string80 = packed array [0 .. 79] of char; 
DataPtr = "DataType; 
DataType = record 

Name: string80; 
Link: DataPtr; 
end; (* DataType *) 

OperPtr = "Operator; 
Operator = record 

OpName: string80; 
lnputList: DataPtr; 
InListTail: DataPtr; 
OutputList: DataPtr; 
OutListTail: DataPtr; 
StateList: DataPtr; 
StateListTail: DataPtr; 
MET: string80; 
Link: OperPtr; 
end; (* Operator *) 

var 
OpHead: OperPtr; 
OpTail: OperPtr; 
DataHead: DataPtr; 
Data Tail: DataPtr; 

(* Node for Linked List of Nodes *) 

(* Node of Linked List of Operators *) 
(* Operator Name *) 
(* Head Pointer to Input List *) 
(* Tail Pointer to Input List *) 
(* Head Pointer to Output List *) 
(* Tail Pointer to Output List *) 
(* Head Pointer to State List *) 
(* Tail Pointer to State List *) 
(* Maximum Execution Time *) 

(* Head of Operator List *) 
(* Tail of Operator List *) 
(* Head of Data List *) 
(* Tail of Data List *) 

(*-----------------------------------------------------*) 
procedure ReadToken(delimeter:char; 

var token:string80); 
(* Reads PSDL Link statements from standard input, one token at *) 

·· (* a time. Delimeters are: period, colon, arrow and End of Line *) 
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var 
ndx:integer; 
ch: char; 

begin 
ndx := O; 
read(ch); 

(* initialize *) 

while (ch <> delimeter) and (not eoln) do 
begin 
token[ ndxj := ch; 
read(ch); 
ndx := ndx + 1; 
end; (* while*) 

if eoln then token[ndx] := ch; 
if delimeter = arrow then 

begin 
read(ch); read(ch); 
end; (* if*) 

if eoln then readln; 
end; (* ReadToken *) 

(* Gets token character by character *) 
(* until delimeter or eoln *) 

(* Gets last character *) 
(*before end of line *) 

(* remove rest of arrow *) 

(* resets line *) 

(*----------------------------------------------------*) 

procedure ReadOperMet(var Operl, Met: string80); 
(* Reads PSDL Link statements from standard input, one token at *) 
(* a time. Determines Operator! and Maximum Execution Time *) 

var 
ndx:integer; 
ch: char; 

begin 
ndx := O; 
read(ch); 

(* initialize *) 

while (ch<> colon) and (ch<> arrow) do 
begin 
Operl [ndx] := ch; 
read(ch); 
ndx := ndx + 1; 
end; (* while*) 

if ch = colon then 
begin 
ndx := O; 
read(ch); 
while ch<> arrow do 

begin 

(* Gets token character by character *) 
(* until delimeter or eoln *) 

(* end of line *) 
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Met[ndx] := ch; 
read(ch); 
ndx := ndx + 1; 
end; (* while*) 

end; (*if*) 
read(ch); read(ch); 

end; (* ReadOperMet*) 

(* Gets token by character *) 
(* until delimeter or eoln *) 

(* remove rest of arrow *) 

(*----------------------------------------------------*) 
function OpSearch (Head: OperPtr; 

Target: string80): OperPtr; 
(* Searches Operator List for Target string, returns pointer *) 
(* to target if found, otherwise NIL *) 

begin 
if Head = nil then 

OpSearch := nil (* empty list *) 
else if Head".OpName = Target then 

OpSearch := Head (* target found *) 
else 

OpSearch := OpSearch(Head".Link, Target); 
end; 

(*----------------------------------------------------*) 
procedure Op Add ( var Head: OperPtr; 

var Tail: OperPtr; 
Target: string80); 

(* Adds new Operator to end of linked list*) 
var 

p: OperPtr; 
begin 

if Head = nil then 
begin 
new(p); 
Head:= p; 
Tail:= p; 
p".OpName := Target; 
p".InputList := nil; 
p".lnListTail := nil; 
p".OutputList := nil; 
p".OutListTail := nil; 
p" .Link := nil; 
end (*if*) 

else 
begin 

- new(p); 
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(* temp pointer *) 

(* List is empty *) 

(* Create new head node *) 

(* Initialize new list *) 

(* List not empty *) 

(* Add new node after tail *) 



TailA.Link := p; 
Tail := TailA.Link; 
pA.OpName := Target; 
pAJnputList := nil; 
pAJnListTail := nil; 
pA.OutputList := nil; 
pA.OutListTail := nil; 
pA.StateList := nil; 
pA.StateListTail := nil; 
pA.Link := nil; 
end (* else *) 

end; (* OpAdd *) 

(* Initialize new lists *) 

(*----------------------------------------------------*) 

function Search (Head: DataPtr; 
Target: string80): DataPtr; 

(* Searches Data Listfor Target string, returns pointer *) 
(* to target if found, otherwise NIL *) 

begin 
if Head = nil then 

Search := nil (* empty list *) 
else if Head A.Name = Target then 

Search := Head (* target found *) 
else 

Search := Search(HeadA.Link, Target); 
end; (* Search *) 

(*---------------------------------------------------*) 
procedure Add (var Head: DataPtr; 

var Tail: DataPtr; 
Target: string80); 

(* Adds new Data to end of linked lists *) 
var 

p: DataPtr; 
begin 

if Head = nil then 
begin 
new(p); 
Head:= p; 
Tail:= p; 
pA.Name := Target; 
pA.Link := nil; 

end (*if*) 
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(* Temp pointer *) 

(* List is empty *) 

(* Create new node *) 

(* Initialize new lists *) 



else (* List not empty *) 
begin 
new(p ); (* Add new node after tail *) 
Tail''.Link := p; 
Tail := Tail".Link; 
p".Name := Target; (* Initialize new lists *) 
p".Link := nil; 
end (* else *) 

end; (* OpAdd *) 
(*-----------------------------------------------------*) 

procedure LoadDataStructure(var OpHead, OpTail: OperPtr; 
var DataHead, DataTail: DataPtr); 

(* Loads tokens into Data Structures *) 
var 

Current: OperPtr; (* Temp pointer *) 
(* PSDL Tokens *) Data, Met: string80; 

Operl, Oper2: string80; 
begin 

Data := blank; 
Operl := blank; 
Met := blank; 
Oper2 := blank; 
while not eof do 

begin 
ReadToken(period,Data); 
ReadOperMet(Operl ,Met); 
ReadToken(' ',Oper2); 

(* Initialize Strings *) 

(* Get tokens *) 

if Operl <> EXTERNAL then (* Keyword EXTERNAL is not *) 
begin (* an Operator *) 
Current:= OpSearch(OpHead,Operl); 
if Current = nil then 

begin (* Add Operator 1 *) 
OpAdd(OpHead,OpTail,Operl); 
Current:= OpSearch(OpHead,Operl); 
end; (*if*) 

Current" .MET := Met; (* Enter Maximun Execution Time *) 
(* Add Data to Operators Output List *) 

if Operl = Oper2 then 
begin 
if Search(Current".StateList,Data) = nil then 

Add(Current".StateList,Current".StateListTail, 
Data); 

end 
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else 
if Search(CurrentA.OutputList,Data) = nil then 

Add(CurrentA.OutputList,CurrentA .OutListTail, 
Data); 

end; (* if*) 
if Oper2 <> EXTERNAL then (* Keyword EXTERNAL is not *) 

begin (* an Operator *) 
Current := OpSearch(OpHead,Oper2); 
if Current = nil then 

begin (* Add Operator 2 *) 
OpAdd(OpHead,OpTail,Oper2); 
Current := OpSearch(OpHead,Oper2); 
end; (* if*) 

(* Add Data to Operators Input List *) 
if Operl = Oper2 then 

begin 
if Search(CurrentA.StateList,Data) = nil then 

Add(CurrentA.StateList,CurrentA.StateListTail, 
Data); 

end 
else 

if Search(CurrentAJnputList,Data) = nil then 
Add(CurrentA.JnputList,CurrentAJnListTail, 

Data); 
end; (* if*) 

(* Enter new internal Data Streams in Data List *) 
if ((Operl <> EXTERNAL) and (Oper2 <> EXTERNAL)) and 

(Operl <> Oper2) then 
if Search(Datal-Iead,Data) = nil then 

Add(DataHead,DataTail,Data); 
Data := blank; (* Reset Strings *) 
Operl := blank; 
Met := blank; 
Oper2 := blank; 
end (* while *) 

end; (* LoadDataStructure *) 
(*-----------------------------------------------------*) 

procedure WriteString(var File:text; Str: string80); 
var 

ndx: integer; 
begin 

ndx := O; 
-while Str[ndx] <>' 'do 
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begin 
write(File,Str[ndx]); 
ndx := ndx + 1; 
end; (* while *) 

end; (* WriteString *) 
(*-----------------------------------------------------*) 

procedure MakePSDL(Head: OperPtr); 
(* Generates partial PSDL Specification for each new Operator *) 
(* in the Graphical decomposition *) 

type 
stringl0 = packed array [0 .. 9J of char; 

var 
Current: OperPtr; (* Temp pointers *) 
InTemp: DataPtr; 
OutTemp: DataPtr; 
StateTemp: DataPtr; 
OutFile: text; 
NodeName: stringl0; (* Unix file name*) 

begin 
Current := Head; 
NodeName := 'NewNode.01 '; (* First file name *) 
while Current<> nil do 

begin 
rewrite(OutFile,NodeName); (* Create new file*) 

(* output PSDL *) 
write(OutFile,'OPERATOR '); 
WriteString(OutFile,Current" .OpN ame ); 
writeln(OutFile ); 
writeln(OutFile ); 
writeln(OutFile,'SPECIFICA TION'); 
writeln(OutFile ); 
InTemp := Current".lnputList; 
if InTemp <> nil then (* Generate Input list *) 

begin 
write(OutFile,'INPUT '); 
WriteString(OutFile,InTemp" .Name); 
writeln(OutFile ); 
In Temp := In Temp" .Link; 
while lnTemp <> nil do 

begin 
write(OutFile,' '); 
W ri teS tring( Ou tFile,I n Temp" .Name); 
writeln(OutFile ); 
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In Temp := In Temp" .Link; 
end; (* while *) 

writeln(OutFile ); 
end; (* if*) 

OutTemp := Current".OutputList; 
if OutTemp <> nil then 

begin (* Generate Output list *) 
write(OutFile,'OUTPUT '); 

WriteString(OutFile,OutTemp".Name); 
writeln(OutFile ); 
OutTemp := OutTemp" .Link; 
while OutTemp <> nil do 

begin 
write(OutFile,' '); 
WriteString(OutFile,OutTemp".Name); 
writeln(OutFile ); 
OutTemp := OutTemp".Link; 
end; (* while *) 

writeln(OutFile ); 
end; (* if*) 

StateTemp := Current".StateList; 
if StateTemp <> nil then 

begin (* Generate State list *) 
write(OutFile,'ST ATE '); 

WriteString(OutFile,StateTemp".Name); 
writeln(OutFile ); 
StateTemp := StateTemp".Link; 
while StateTemp <> nil do 

begin 
write(OutFile,' '); 
WriteString(OutFile,StateTemp".Name); 
writeln(OutFile ); 
StateTemp := StateTemp".Link; 
end; (* while *) 

writeln(OutFile ); 
end; (* if*) 

write(OutFile,'MAXIMUM EXECUTION TIME '); 
WriteString(OutFile,Current".ME'T'); 
writeln(OutFile ); 
writeln(OutFile ); 
Current := Current".Link; 

(* Dynamically create new file name *) 
- if N odeN amel 9 j = '9' then 
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... 

begin 
NodeName[9] := 'O'; 

NodeName[8] := succ(NodeName[8]); 
end (*if*) 

else 
NodeName[9] := succ(NodeName[9]); 

end; (* while *) 
end; (* MakePSDL *) 

(*---------------------------------------------*) 
procedure MakeDataStream (Head: DataPtr); 

(* Generate PSDL Data Stream *) 
var 

Temp: DataPtr; 
Outfile: text; 

begin 
rewrite(Outfile,'psdl.ds'); 
writeln(Outfile ); 
if Head <> nil then 

begin 
Temp := Head; 
write(Outfile,'DATA STREAM '); 
WriteString(Outfile, TempA .Name); 
writeln(Outfile ); 
Temp:= TempA.Link; 

while Temp <> nil do 
begin 
write(Outfile,' '); 
WriteString(Outfile,TempA.Name); 
writeln(Outfile ); 
Temp := TempA.Link; 
end; (* while *) 

writeln(Outfile ); 
end; (*if*) 

end; (* MakeDataStream *) 
(*--------------------------------------------------------*) 
begin (* main *) 

LoadDataStructure(OpHead, OpTail, DataHead, DataTail); 
MakePSDL(OpHead); 
MakeDataStream(DataHead); 

end. (* main *) 
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APPENDIX D. INPUT AND OUTPUT LINK ANALYZER 

LINK STATEMENTS 
ab.ape: 1 0s-->bee 
ac.ape: 10s-->cat 
bc.bee:20s-->cat 
b.cat:30s-->EXTERNAL 
state.cat:30s-->cat 
cd.cat:30s-->dog 
a.EXTERNAL-->ape 
de.dog: 1 0s-->cat 

NEWLY CREATED NODES 

NewNode.01: 
OPERATOR ape 
SPECIFICATION 
INPUT a 
OUTPUT ab 

ac 
MAXIMUM EXECUTION TIME 10s 

NewNode.02: 
OPERA TOR bee 
SPECIFICATION 
INPUT ab 
OUTPUT be 
MAXIMUM EXECUTION TIME 20s 

NewNode.03: 
OPERA TOR cat 
SPECIFICATION 
INPUTac 

be 
de 

OUTPUTb 
cd 

STATE state 
MAXIMUM EXECUTION TIME 30 
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NewNode.04: 
OPERATOR dog 
SPECIFICATION 
INPUTcd 
OUTPUT de 
MAXIMUM EXECUTION TIME 10s 

Data Stream part for OPERA TOR top: 
DATA STREAM ab 

ac 
be 
cd 
de 
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APPENDIX E. BOURNE SHELL SCRIPTS 

CONSTRUCT SCRIPT: 

while test-s node.list do 
getChoice 
cat choice spec >> ddb.in 
getProperty 
SDE ddb.out 
mv ddb.out psdl.spec 
cat ddb.in psdl.spec >> temp · 
mv temp ddb.in 
storeProperty 
Software_Base 
if test-s SB_out then 

echo "Software Search Complete - implementation found" 
addlmpl 

else 
echo "Software Search Complete - no match found" 
echo "Do you want to decompose, y or n." 
read x 

fi 
done 

if test $x = y then 
GE 

else 
adaEditor 
addAdalmpl 

fi 

echo "Construction Complete" 

GRAPHIC EDITOR SCRIPT: 

get_inputs 
graph 
nodes < graph.links 
cat graph.links psdl.ds >> psdl.imp 
cat choice Imp Graph psdl.imp >> ddb.in 
SDE ddb.in 
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storeProperty 
cat Graphic graph.pie >> ddb.in 
storeProperty 
createN odes 

.,· 
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