
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1989

A Proposed Design for a Rapid Prototyping Language

Luqi; Berzins, V.; Kraemer, B.; White, L.
Naval Postgraduate School

Luqi, V. Berzins, B. Kraemer, and L. White, "A Proposed Design for a Rapid
Prototyping Language", Technical Report NPS 52-89-045, Computer Science
Department, Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65276

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVA[SPOSTGRAOUATE SCHOOL
Monterey, California

A PROPOSED DESIGN FOR A
RAPID PROTOTYPING LANGUAGE

LUQI
VALDIS BERZINS

BERND KRAEMER
LAURA J. WHITE

MARCH 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

Rear Admiral R. C. Austin
Superintendent

NAVAL POSTGRADUATE SCHOOL
Monterey, California

H. Shull
Provost

This report was prepared in conjunction with research conducted for the National Science
Foundation and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by

Reviewed by:

ROBERTB. MCGHEE
Chainnan
Department of Computer Science

LUQI l..;
Assistant Professor
of Computer Science

Released by:

KNEALET.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

RE
1

PORT DOCUMENTATION PAGE

la. REPORT SECURITY ClASSIFICA flON lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIJIUTION / AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited •

..
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

-NPS52-89- 045
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &

Naval Postaraduate School 52 ONR Sponsored Navy Direct Funding
6c. A~DRESS (City, Stdte, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washin~ton, D. c. 20550
Ba. NAME OF FUNDING /SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate Schnnl -i-:~O&MN., Direct Funding
I I r'~ - ~

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO . ACCESSION NO.

Monterey, CA 93943
11. TITLE (Include Security Classification)

A PROPOSED DESIGN FOR A RAPID PROTOTYPING LANGUAGE
(U)

12. PERSONAL AUTHOR(S)

LUQI. VALDIS BERZINS. BERND KRAEMER. LAURA J. WHITE
Ila. TYPE OF REPORT 113b. TIME COVE~EO 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Pro2ress FROM Se.o..t._88_ TO _Mat:. _8.9 1989 March 38 1
16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if neces.sary and identify by block number)

FIELD GROUP SUD-GROUP Computer Aided Software Engineering, Rapid Prototyping,
Speciification, real-time Software, Embedded Systems,
Software Desi2n~ Reusabilitv

19. ABSTRACT (Continue on revNse if necessary and identify by block number)

We propose to develop a new rapid prototyping language (RPL) for a wide range of software
including real-time, parallel, distributed, and knowledge-based systems. RPL is intended
as a tool for aided the development of large Ada systems. Rapid development will be
achieved by a combination of a clear and simple language with a suitable computational
model, graphical design representations, exec~table logical specifications, reusable
software components, automated code generation, and specialized scheduling algorithms.

~

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJ UNCLASSIFIEO/UNUMITEO ltJ SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME Of RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I £le. OFFICE SYMBOL.

LUOI &OA-~&~-?71~ ~?l.n

DD FORM 1473, 84 MAR 83 APR edition may be used until e,chausted.
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE
* u.s. OHer11m1111 ,,11111111 Olflci, lttl-101•1

1
4.

UNCT.ASSTFTF.D
........... - ..

,_
A PROPOSED DESIGN FOR A

RAPID PROTOTYPING LANGUAGE

Luqi
V aldis Berzins
Bernd Kraemer

Laura White

Rapid Prototyping Research Group
Computer Science Department

Naval Postgraduate School
Monterey, California 93943

May 1989

ABSTRACT

We propose to develop a new rapid prototyping language (RPL) for a wide range
of software, including real-time, parallel, distributed, and knowledge-based sys­
tems. RPL is intended as a tool for aided the development of large Ada systems.
Rapid development will be achieved by a combination of a clear and simple
language with a suitable computational model, graphical design representations,
executable logical specifications, reusable software components, automated code
$eneratio11, and specialized scheduling algorithms.

1

CONTENTS

1. Introduction
2. Technical Approach
2.1. Basic Semantic Concepts of RPL
2.1.1. Prototype Building Blocks
2.1.2. RPL Component Specifications
2.1.3. RPL Prototype Architecture
2.1.4. Controlling and Adjusting Prototype Behavior
2.1.5. User Interface Support
2.2. Computational Model
2.3. Relationship to Requirements
2.3 .1. Concepts and Range of Application
2.3.2. AI-Related Programming
2.3.3. Parallel and Distributed Systems
2.3.4. Automatic Checking
2.3.5. Flexibility and Reuse
2.3.6. Formal Methods
2.3.7. Speed of Development
2.3.8. Real-Time Systems
2.3 .9. Transfonnation to Implementation
2.4. Tool Support
2.4.1. Designer Interface
2.4.2. Execution Support
2.4.3. Verification System
2.5. Example
2.6. RPL Technical Criteria
3. RPL Development Issues
3 .1. Computer facilities
3.2. RPL Development Organization
4. Bibliography

1

1
2
2
2
3
4
4
5
6
7
7
7
8
8
10
11
11
12
12
12
13
14
14
14
15
16
16
16"
24

1. Introduction

We propose a rapid prototyping language (RPL) for a wide range of software,
including real-time, parallel, distributed, and knowledge-based systems.

The Naval Postgraduate School provides a unique environment for RPL design with
faculty, fully funded graduate students, and military instructors who have been techni­
cally trained and are familiar with DoD application areas. The RPL design proposal has
the full support of the superintendent and all levels of administration at NPS.

RPL will benefit from much previous work in rapid prototyping, specification
languages, and CASE tools, which are described in more than 50 theses, 60 papers and
100 reports produced by our group. Previous work in design and implementation of for­
mal specification languages includes an event model based language SPEC [9], an actor
model based language MSG [4], a Petri net based language SEGRAS (31], and a proto­
typing system description language PSDL (33] and its computer aided prototyping sys­
tem CAPS (39].

RPL aids the designer of embedded systems and compensates for some of the prob­
lems of Ada. The semantic concepts of RPL support specification and design of real­
time embedded and knowledge based· systems. RPL prototypes can represent software
systems executable on parallel and distributed architectures. RPL is the basis for an
integrated tool set supporting iterative prototyping of complex software systems
[33, 35, 58]. .

Key features of RPL are its:

- simplicity and clarity via high level abstractions and graphical notations
- integration of designs, specifications, and requirements to support evolution
- expressive executable subset
- support for modular construction and decomposition of large scale designs
- amenability to formal analysis and verification
- representations for hard and soft real time constraints

Key features of the tool set which will accompany RPL are:

- graphical designer interface
- prototyping database with reusable software components
- automatic Ada code generation from RPL designs
- execution and dynamic debugging support
- optimization and transformation to final implementation
- systematic documentation and version control facilities
- formal analysis, testing, proofs of correctness and consistency

An overview of the technical approach for the development of RPL is described in
section 2. Section 3 describes the RPL development plan which includes the organiza­
tion, technical criteria and the development schedule. Section 4 describes the previous
related experience of the key personnel who will be closely involved in the design of
RPL.

1

2. Technical Approach

RPL combines second-onter logic specifications supporting verification with an
augmented dataftow representation for design and interconnection of prototype com­
ponents. The design graph is augmented with special pre/post conditions to express
real-time constraints and adjust component behavior to each application context [44].
Execution is based on automatically generating code for combining reusable software
components or simulating component behavior via the executable subset of the
specification logic. Real-time constraints are guaranteed by automatically constructed
schedules. Verification is based on a proof system for the logic, which provides a
simplified treatment of parallelism due to the atomic execution semantics of RPL
modules. Iterative modifications of prototypes are supported by localized information in
RPL and its computational model, component behavior modification via logical con­
straints, and facilities of the tool set for code and design reuse, requirements tracing, and
static analysis. The logic and the proposed computational model provide the basis for
integrating these facilities into a coherent language and tool structure.

The proposed rapid prototyping language RPL aids rapid construction, evaluation,
and adaptation of prototype designs via a clear and simple syntax, support for abstrac­
tions, reusable software components, and an integrated system of supporting software
tools. Our approach to speeding up the process is based on flexible prefabricated
software components.

2.1. Basic Semantic Concepts of RPL
A RPL prototype consists of modules communicating via data streams. Modules

and data streams are collectively called components. RPL provides specifications, graph­
ical interconnections, constraints for adapting and controlling prototype behavior, and
data format definitions.

2.1.1. Prototype Building Blocks

Modules are classified as functions, state machines, and types, all of which can be
generic. Every module has a black-box specification and a realization. Modules can be
realized using four different mechanisms:

(1) retrieval and adaptation of reusable software components,

(2) decomposition into more primitive modules,

(3) simulation of specifications, and

(4) custom implementation in a programming language.

Streams represent both local and long haul communication links between modules.
Streams participating in cycles represent state components of state machines, and can be
used to model persistent data storage. A stream can carry instances of any designated
abstract data type. Exceptions and hardware interrupts are represented as instances of a
pre-defined data type. Abstract data types can be either immutable or mutable. Instances
of immutable types are constants. Instances of mutable types have internal states, and
can be used to represent prototypes with dynamically created components.

2

2.1.2. RPL Component Specifications

RPL specifications consist of a form and an optional behavior. The form identifies
the operations and the information flows, and is required for execution. The behavior
specifies the intended meaning of the module and is needed for verification or simulation.
Behavioral specifications are expressed in a typed second order logic with two dis­
tinguished executable subsets: 1st order equational Hom clauses and 2nd order condi­
tional equations. These subsets can be executed via interfaces to existing languages
[25, 60].

The second order logic supports description and analysis of generic modules with
type and function parameters. Second order quantifiers are used mostly to express and
prove general properties of the reusable generic modules in the prototyping database.
Designs implementable directly in Ada have static declarations for all instances of gener­
ics. Such designs do not include an interpreter for symbolic simulations. This class of
designs covers most applications except for dynamically reconfigurable systems (54] and
certain AI computations. Correctness proofs use second order quantifiers to adapt the
general specifications of the generics to the particular instances used in the design by
substituting the actual generic parameters for universally quantified type and function
parameters.

An example of the use of second order logic in specifications is shown in Fig. 1.
The generic reduction operator has a second order specification, which is used to derive a
first order specification for a particular instance of the generic. In the example, d and f
are generic type and function parameters. Generic actual parameters are shown in"[]".
Existing theorem proving systems can be applied to subsets of the logic (12], and the
parts of the system that must be verified can be specified in subsets of the logic amenable
to available theorem proving tools.

(a) Generic Specifications for Reduce

All d: type, f: function[(d, d), d], x: d, s: sequence[d]
reduce[f](insert(x, s)) = f(x, reduce[fJ(s))

All d: type, f: function[(d, d), d], x: d
reduce[f](insert(x, nil)) = x

(b) Instantiated Specification for sum= reduce[plus], d = real

ALL x: real, s: sequence[real] sum(insert(x, s)) = plus(x, sum(s))
ALL x: real sum(insert(x, nil)) = x

Fig. 1 Example of a Second Order Specification

3

Second order logic has been avoided previously because there are no complete
proof systems. Since the standard proof systems for first order logic are sound for second
order logic, all first order proofs are feasible, and some second order theorems can be
established using the same proof systems. The incompleteness of these systems does not
affect their practical use in verification because termination and many other program pro­
perties of practical significance are undecidable in the general case.

RPL component specifications support: verification, fault location by monitoring
preconditions and postconditions during prototype execution, computer-aided retrieval
and composition of reusable components [37], simulation of prototype modules before
they are implemented, and software evolution [41, 57].

2.1.3. RPL Prototype Architecture
RPL graphical interconnection facilities support large scale prototyping via

hierarchical decomposition of prototypes. Decomposition is used to express and verify
the structure of a software design, and to gain efficiency by using different mechanisms
for implementing different pans of the system. This allows the use of existing efficient
software components in conjunction with less efficient simulations of pans without avail­
able implementations.

Interconnection structures can be represented using icons and arrows on a graphical
display to help designers visualize proposed designs. Such graphical network representa­
tions are familiar to software developers and are widely recognized as easy to use. We
propose to extend icon and arrow representations with optional generic parameters and
constraints. Generic graphs can be used to express interconnections in systems contain­
ing many instances of a generic module, as illustrated in Fig. 2. Concise descriptions of
complex interconnection patterns such as trees, butterfly networks, hypercubes, etc. can
be given graphically via subranges and recursion.

2.1.4. Controlling and Adjusting Prototype Behavior

The behavior of modules and data streams is adjusted to the context in which they
are used by constraints. Constraints acting as preconditions are called guard constrain-rs
and those acting as postconditions are called completion constrain-rs.

Module constraints - Guard constraints determine the execution conditions for a
module, which can depend on the current absolute time, the length of time the data has
been in the data stream, the length of time since the last execution of the module, and
properties of data values in input data streams [7]. Applications of guard constraints for
modules include representing maximum execution rates and demons. Completion con­
straints determine when and how the results of a component must be delivered to the rest
of the prototype. This mechanism can selectively block, delay, or transform outputs, and
can represent timed aborts, maximum response times, safety checks, and exception han­
dling.

Stream Constraints - The constraints associated with data streams detennine the
properties of the communications protocol. Guard constraints on data streams affect the
conditions under which data values can be put into a stream or read from a· stream.
Applications of guard constraints for streams include representing bandwidth constraints,
communications delays, first-in/first-out ordering constraints, and limits on storage

4

capacity. Stream completion constraints can represent the conditions under which data
values are removed from a stream. These conditions can depend on read and write
operations on streams. ·

Guaranteed Service and Overload Resolution - RPL supports the concepts of criti­
cal and non-critical components for expressing overload resolution policies, especially in
the context of real-time systems. Critical modules must terminate with results that meet
their postconditions, while non-critical modules must meet their postconditions if they
terminate. Thus critical modules carry a guarantee of service, while non-critical modules
do not. Critical modules with time bounds have hard real-time constraints: the system
must guarantee completion by the deadline. Non-critical modules with time bounds have
soft real-time constraints: they must be aborted if they cannot be completed by the dead­
line. Streams are also critical or non-critical. Critical streams must guarantee delivery of
data within specified constraints, while non-critical streams must meet constraints only if
data can be delivered. Non-critical streams with time bounds must discard data if it can­
not be delivered on time. Critical streams can represent stable storage in fault tolerant
distributed systems [32]. Non-critical components can have priorities, which determine
which module executions and data transmissions are delayed if there are not sufficient
resources to meet all constraints.

2.1.5. User Interface Support

The data format definitions of RPL are used to define text formats and graphical
icons for instances of abstract data types. The data definition facilities of RPL are based
on attribute grammar technology [45]. Defined text formats are used to represent con­
stant expressions and to define input/output formats for abstract data types. Output for­
mats can only be defined if the type has a distinguished set of primitive constructor
operations, e.g. cons and nil in lisp, along with corresponding domain test operations, e.g.
listp and null in lisp, and partial inverse operations, e.g. car and cdr in lisp. Instances of
the formats defined via this facility can be used for:

(1) entering and displaying text representations for abstract input types of inter­
preters or compilers for special purpose languages;

(2) defining visual gauges for monitoring or animating prototype execution;

(3) specifying initial values for RPL data streams. This suppons initializing special
databases, such as knowledge bases. An expert system can be represented by a
graph in which the entire knowledge base is passed as a'value in a data stream;

(4) specifying actual parameters for generic reusable components. Reusable com­
ponents can have complex options, such as a generic syntax-directed editor that
talces an attribute grammar as a parameter.

Lack of support for compact input/output formats for user defined abstract data
types has been a major weakness of previous languages, and has impeded the develop­
ment of convenient debugging facilities for systems with abstract types.

Guam and completion constraints can be represented in abbreviated forms which
can be chosen from menus, so that the designer does not need to write predicates expli­
citly. RPL supports definitions of abbreviated formats for classes of constraints which
make it easy to specify common constraints by menu selection, pointing to graphical
representations of modules and streams, and entering attribute values in tables [43].

5

These formats define mappings from the menus and tables to logical specifications in an
executable subset of the logic. RPL provides a standard predefined set of constraint for­
mats, and has an open design which allows users to add formats tailored to particular
applications.

2.2. Computational Model
RPL is based on an augmented dataflow model. Each RPL module is conceptually

an independent process, and different modules can potentially be executed conCU1TCntly
on different processors. Modules can interact only via data streams. Data streams can be
shared among modules. The behavior of a module consists of a discrete sequence of
firings, where different firings of a module are independent activities. Each time a
module fires, it reads a sequence of data elements from each of its input streams, and then
writes a sequence of values into each of its output streams. The lengths of the data
sequences on each stream associated with each firing are determined from the conjunc­
tion of the specification of the module and its constraints. These sequences have length
one unless explicitly specified. The time interval associated with each firing begins at the
start of the first read operation from the input data streams, and ends at the completion of
the last write operation on the output streams. The read operations associated with a
module firing are performed as an atomic action, and the write operations are performed
as a separate atomic action.

The conditions under which a module fires are determined by the constraints associ­
ated with the module and the number of processors in the target hardware configuration.
The number of modules firing at any given point in time must be less than or equal to the
number of processors, and is not bounded if the number of processors is not specified.
The conditions under which a module can fire are determined by the guard constraints of
the module. In the absence of guard constraints, a module can fire whenever the required
set of input data values is available. If guard constraints are given, the module can only
fire if data values are available and the guard constraints are satisfied. Critical modules
whose guard constraints are satisfied are guaranteed to be fired eventually. If the
postcondition of a critical module includes a bound on the completion time, then firing of
the module must be completed within the given bound. Computations with critical com­
pletion constraints that require the number of simultaneous firings to exceed the number
of processors are not feasible. If a non-critical module has a postcondition that puts a
bound on the completion time, and there are not enough processing resources to complete
the firing of the non-critical module, then the specified number of input values are read
from each input stream and no output values are produced.

Temporal events in an augmented dataflow computation occur at explicitly defined
points of absolute time, which are often periodic. Data events in an augmented dataflow
computation occur when a set of data values enabling the firing of a module becomes
available. Completion constraints can limit the delay between a temporal event or a data
event at a module and the completion of the next firing of the module. In the absence of
constraints on the firing time, at least one module must start to fire whenever there is a
module that can fire and the number of modules in the process of firing is less than the
number of processors. A non-critical module can fire only if no critical modules can be
fired and no higher priority modules can be fired.

2.3. Relationship to Requirements

The goals for RPL are rapid adaptability, design clarity, verification, and a broad
range of applicability. We assess our approach with respect to these goals below.

2.3.1. Concepts and Range of Application

The concepts of RPL support a broad range of applications. The prototyping
languages PSDL [36] and SSDL, which are based on similar concepts, have been used to
prototype a hyperthennia system [33], a C3I system [42], and an inertial navigation sys­
tem [22]. Experience shows graphical decompositions to be effective for exploring
design alternatives [41]. The specification language Spec [10] which contains a logic
similar to the one proposed for RPL, has been used to specify an airline reservation sys­
tem [9], a fault-tolerant network [11], an inertial navigation system [22], and a software
design database [15]. A related model for distributed computing has been used in the
SEGRAS system to formally specify parallel and distributed computations such as con­
current merge-sort with restricted computation resources, dynamic reconfiguration, and
distributed database management [31].

2.3.2. AI-Related Programming

RPL directly supports rule-based programming via guard constraints and modules
[40]. Beyond the RPL facilities for general parallel and distributed computing, AI­
related programming is supported via the reusable software components and the tools in
the CAPS associated with RPL. The main sources of difficulty in developing an AI­
related program are identifying, representing, and organizing the knowledge to be used
by the application system. Representation and processing of the knowledge can be sup­
ported by suitable modules in the software base [17]. Some examples of the generic
functions, state machines, and types which can be supplied by a software base include
many varieties of inference engines, truth maintenance systems, constraint networks,
inheritance networks, production systems, unification functions, fuzzy and Bayesian
inference functions, equation solvers, term rewrite systems, frames, contexts, assertions,
indexed assertion databases, and semantic nets. The facilities for prototyping special
purpose languages also provide a mechanism to quickly construct and experiment with
flexible interpreters, which provide the ability to simulate facilities that are difficult to
implement directly in Ada, such as creating new types or functions and modifying task
priorities as the system runs.

The data definition facilities of RPL can ease the problems of representing and
organizing the knowledge in a knowledge base by supporting the definition of special
purpose languages for concisely recording and displaying the knowledge. These facili­
ties can also be useful for tailoring generic software components, since many of the more
sophisticated reusable components can have complex generic parameters with lengthy
structured external representations, such as the set of productions in a production system.

The tools in the CAPS should eventually include generic tool generation facilities,
such as translator generators, syntax-directed editor generators [50], and browser genera­
tors, which can be used to create special purpose processors for the external knowledge
representations used by knowledge engineers. We expect RPL and CAPS to be used to
create some of these tools, in a bootstrapping operation. Some of the more advanced
tools for assisting knowledge engineers in organizing a knowledge base should help

7

locate conflicting or overlapping bits of knowledge, construct least common generaliza­
tions [2], and perform meaning-preserving simplification transformations.

2.3.3. Parallel and Distributed Systems

The computational model of RPL is naturally parallel, and provides atomic actions
as primitives. This simplifies design of parallel programs, since concurrent firings of
several RPL modules cannot interfere. Nested atomic transactions are naturally
represented by hierarchical RPL decompositions.

The only source of interference between concurrent activities in RPL is contention
for shared resources such as processing time and data streams. Contention for processors
is addressed by the concepts of critical and non-critical components, and constraints
induced by critical real-time constraints are addressed by the CAPS scheduling tools. All
other resources are represented as instances of abstract types that travel down data
streams.

Mutual exclusion for operations on state machines is ensured in RPL by having only
one data value in the stream representing the state of the machine. More complex syn­
chronization constraints are expressed locally as context constraints of modules and
streams, providing natural representations for distributed designs with no centralized
controllers. ·

It is impossible for two RPL modules to deadlock while seeking exclusive access to
the same set of streams since the computational model ensures all data items required to
fire a module are read in a single atomic action. A set of RPL modules can become per­
manently blocked only if they are waiting for input in a cyclic dependency. Tools for
detecting design errors in this category are described in Section 2.3.4. RPL facilities for
defining the regular interconnection patterns typical of parallel algorithms are discussed
in sections 2.1.3 and 2.3.5.

In distributed computations the communications delays can be large compared to
processing times. RPL stream completion constraints can specify transmission delays.
Fault tolerant designs for distributed systems can be represented in RPL by using critical
streams to indicate which parts of the data in a stream must be kept in stable storage to
enable failed nodes to recover from processor failures.

2.3.4. Automatic Checking

RPL supports automated consistency checking and enor prevention at various lev­
els. The simplest checks are type consistency and interface consistency checks between
the levels of a hierarchical design. Tools for preventing errors by automatically filling in
implied details of a design are anticipated, and some of the simpler facilities have been
demonstrated in the initial CAPS developed for PSDL [52,62]. For example, skeleton
definitions for interfaces of prototype components are generated automatically based on
the information in the interconnection graph one level up, and syntax enors are prevented
by a template-driven syntax-directed editor.

Effective debugging is supported on a conceptual level by the display facilities for
abstract data types. If specifications are expressed in the executable subset of the logic,
then code for monitoring preconditions, postconditions, and invariants can be automati­
cally inserted to instrument the prototype for testing and assistance in fault location. The

8

graphical representations for decompositions also provide a convenient framework for
animations which can allow the designer or customer to watch the system run at reduced
speeds. This capability is useful for demonstrating the prototype to customers. It is espe­
cially helpful for debugging purposes when coupled with a capabilities to run the system
backwards as well as forwards and to display projections of the computation that filter
out lower level events or events that do not match given preconditions. The computa­
tional model supports a simple way to run a computation backwards, by recording timed
traces of the data sequences read from each data stream. Visualizing the behavior of a
prototype in this way helps detect deadlocks and unsafe situations.

An aspect of consistency checking related to parallel and distributed systems is
deadlock detection and prevention. A Petri net representation of the control flow defined
by an RPL decomposition can be generated by simple mechanical means. Verification
conditions for liveness and safety of elementary Petri nets have been generalized for high
level Petri nets in [53]. For a subclass of these nets sufficient and necessary conditions
exist which enable automatic checks by inspecting net elements and their adjacent arcs.
A prototype of a corresponding analysis tool is available for elementary nets and is under
development for high level nets.

Another net-theoretic approach relies on the computation of S- and T-invariants of
high level net models [18]. The existence of such invariants is a sufficient condition for
safety and a restricted form of liveness. The basic idea of this technique is to construct a
matrix that shows the local effect of each transition to each state elements of the net and
then solve a linear, homogeneous equational system for this matrix. The solutions of this
system can be transformed into logic formulas which describe the desired invariance pro­
perties. Bounds on buffer sizes useful for optimization can also be determined.

An aspect of consistency checking related to real-time systems is timing feasibility.
Static checking for timing constraints that are not realizable even with an unbounded
number of processors can be realized by a tool for checking longest paths at the design
level. Corresponding tools at the assembly language level are needed to verify maximum
execution times for reusable software components relative to particular compilers and
target architectures.

The feasibility of meeting the hard real-time constraints with a limited number of
processors is checked by constructing a schedule, which can also be used for prototype
execution. The initial CAPS for PSDL does this using a heuristic method for a single
processor [24, 49]. An optimal polynomial time algorithm for the one-processor case can
be constructed based on the approach of [55]. Constructing optimal schedules for the
multiprocessor case is NP hard, and hence can only be done for small designs. A linear
time heuristic method with good success rates for finding feasible schedules for multiple
processors can be based on [51].

Real-time constraints for expert systems are difficult to supply at a high level For
example, the amount of time required for a single logical inference step depends on the
size of the input assertion. Thus bounds on the worst case sizes of the input assertions,
and bounds on the number of rules that must be applied to reach a conclusion in the worst
case are needed to guarantee responses within hard real-time constraints. Such bounds
need not exist at all, since many classes of inference problems that are undecidable in the
general case, and they can be very difficult to derive if they do exist The special cases
likely to be tractable are expert systems with fixed sets of rules which are designed to

9

answer fixed sets of questions. Such systems can be analyzed mechanically via exhaus­
tive graph search algorithms, but the analysis can be very time consuming.

2.3.S. Flexibility and Reuse

RPL supports flexibility via component constraints, which make it easy to make
small changes to the behavior of a prototype, and via its high level computational model,
which provides a clear and simple view of the prototype design, befom it has been com­
plicated by optimizations and programming level details.

The associated CAPS supports software flexibility by automatically generating
many of the details needed for execution, and by providing automated retrieval of reus­
able components from the prototype database. Such retrievals are based on the
specifications of the required components. This retrieval is made feasible by fast approx­
imate methods to narrow down the search space, using standardized forms (34] of the
specifications as search keys and a special database organization [26, 39]. Limited logi­
cal inference methods and knowledge-based techniques are used to adapt and combine
components that provide partial matches to the required specifications (37].

Another aspect of reuse is generic module interconnection patterns. Nontrivial
interconnection patterns can be defined using recursive graphs, as illustrated by the sim­
ple pipeline structure shown in Fig. 2. The pair of graphs comprising the recursive
definition are shown in (a). Generic actual parameters of generic software modules and
generic interconnection patterns are shown in"[]". In general, a generic interconnection
pattern represents a parameterized family of interconnection graphs of different sizes,
which contain many instances of a small number of generic components. A particular
design will use an instance of a generic interconnection pattern whose size and prototype
component names are given as actual parameters, as shown in (b). This facility is espe­
cially useful in defining designs for special purpose parallel algorithms, which often

(a) Generic Pipeline Definitions

P[O,n] P[k+1,n]

xi __ 1• y x I ...j n[k+ 1] I ...j P[k,n]

(b) An Instance of a Generic Plpellne

P[3,node]

x ~ node[3] J--.1 node[2] J--.1 node[1] I • y

Fig. 2 Generic Pipeline Interconnection

10

,

consist of large numbers of identical nodes connected in regular patterns.

2.3.6. Formal Methods
The main type of verification associated with RPL is proving that a proposed inter­

connection of specified components will realize a specified behavior. This is
significantly simpler than verifying code in a programming language because component
behavior is already expressed in logic.

The theoretical foundations of verifying sequential systems are well known and
have been turned into powerful support systems (19, 23]. Theorem proving techniques for
mechanically generating proofs in first-order predicate logic will apply to specifications
written in that sublanguage. Verification for parallel systems has been poorly understood
until recently. The computational model for RPL has been carefully designed to make
verification of parallel systems simple. The key property of the semantics of RPL is that
firing a module is an atomic action. This prevents interference between parallel activi­
ties, reducing parallelism to sequential non-determinism. This allows proving safety pro­
perties by techniques developed for non-deterministic sequential programs.

Liveness properties in parallel systems depend on fair scheduling assumptions. A
type of fair scheduling corresponding to the treatment of critical modules in RPL is jus­
tice, which ensures that each module will have a chance to fire infinitely many times. A
complete 1 proof system based on the atomic action property and the justice assumption is
given in[21], using temporal first-order logic. This system can prove both safety and
liveness properties, and can easily be adapted to the critical modules of RPL, since these
satisfy the justice assumption, provided that the termination of each critical module can
be proved in isolation.

Non-critical modules do not satisfy the justice assumption, since they may starve
under permanent overload conditions, where all of the available processing resources are
needed for critical and higher priority modules. Thus liveness properties cannot be
guaranteed for non-critical modules, and the E-rule of [21] does not apply to them. The
other rules can be used to prove safety properties of non-critical modules. Streams
without explicit constraints have the semantics of ordinary variables, and match the proof
rules directly. Streams with constraints must be modeled as additional modules in
verification.

The distinction between critical and non-critical modules is essential for the design
of real-time systems, and cannot be captured by semantic models for parallel computa­
tion based on unmodified versions of the original Unity model [13], which imposes a
blanket justice assumption.

2.3. 7. Speed of Development

The graphical representations of RPL can make it easier for designers without a
high degree of training to use the system. The learning curve is further reduced by an
open design which supports alternative graphical icons and language formats to adapt the
appearance of designs to the symbols common in particular applications.

1Relatiw to the compldalc:11 of Ille underlying ftnt order logic.

11 •

2.3.8. Real-Time Systems

The semantic concepts described in Section 2.1.4 support real-time constraints
directly. Specifications for reusable software components include maximum execution
times. The context constraints for the components in a decomposition can specify upper
and lower bounds on response times and triggering rates, and can directly represent both
periodic and data driven computations. The distinction between critical and non-critical
modules identifies which activities must have pre-allocated resources sufficient for worst
case operating conditions, while priorities and soft real-time constraints (see Section
2.1.4) provide clear and simple mechanisms for formulating system responses to over­
load conditions without interfering with scheduling considerations for critical modules.
The language is designed to support automatic construction of schedules by the CAPS.
Sampled data streams (data replaced by write) provide the means for modeling asynchro­
nous communication and dataftow streams (fifo, data removed by read) provide the
means for modeling synchronous communication. These mechanisms provide a close
match to common design concepts used in embedded real-time systems. Since RPL
operations are atomic and independent2 except for brief stream operations at the begin­
ning and end of each firing, they can be scheduled preemptively by automatic pro­
cedures. This avoids the need for the manual effort currently expended on partitioning
logical tasks into fragments of sizes suitable for constructing tight schedules.

2.3.9. Transformation to Implementation
RPL supports the computer-aided transformation of prototypes into production

quality implementations (Ada code for the target architectures) via automatic generation
of interconnection code and schedules by the CAPS tools. Optimization transformations
are guided by design-level pragmas, which contain high-level optimization advice. For
example, an important optimization is in-place updating for streams representing state
components with complex structures, such as databases. This optimization modifies a
part of the data structure in place, rather than creating a whole new data structure to put
into the output stream. The optimization is guided by the designer because it is valid
only if the data instance can be contained in at most one data stream at a time. Manual
parts of the process include creating Ada implementations for modules that are simulated
from the black-box specifications or are implemented in other programming languages in
the prototype version of the system. An optimization that can be performed without
designer guidance is code merging. Code merging eliminates data stream operations
between two modules by combining them into a single module. This optimization can be
performed whenever both modules can be scheduled to fire consecutively on the same
processor.

2.4. Tool Support
The design of the proposed prototyping language RPL is influenced by the need to

support a computer-aided prototyping system (CAPS). This section discusses the aspects
of CAPS that affect the design of RPL. An overview of the structure of CAPS is shown
in Fig. 3. CAPS will be implemented as an integrated, interactive environment that

2Prorided that critical modulea avoid sharing instances m data type• whole in1tanee1 baw internal •tare••

12

.... ~

..
3 Graphloal

Editor

4 aynlu
lreoted Editor

I Theorem
Prover

e Rewrite
8yatem•

1 1 Dpaalo
1 O atallo

8oh1duler

I Languqe
Tranalalor

I Trp•
· Cheoker

The designs and the rHults of feasibility studlH of tool• 1·12
are given In references I 52, (15, 22), 59, 50, 28, 34, 17,
27, (48, 1}, (24, 49, 47}, 16, 62 J respectively.

Fig. 3 CAPS Structure

supports all activities involved in creating, modifying, analyzing, managing, and docu­
menting prototypes, their proofs, and executions. All software objects are stored in an
prototyping database which keeps track of their development history and provides a com­
mon interface and communication medium to the environment tools.

2.4.1. Designer Interface
The designer interface of CAPS uses a bitmap display ·and combines a display­

oriented text editor with a graphic editor, multiple windows, menus, and mouse input To
help beginners learn RPL by doing, the editor supports template editing, while experi­
enced designers may use their favorite text editor which interacts with a syntax-directed
parser to check syntactic correctness of specification fragments and insert them into the
database. The graphic editor extends the syntax-directed editing paradigm to the graphi­
cal data flow notation of RPL. The database keeps track of both logical constraints and
geometrical representations of data flow graphs. The interface provides computer aid for
retrieving reusable software components [37] and maintains the link between the proto­
type design and the requirements. The debugger provides animation facilities for
displaying the activity of the prototype in terms of the graphical design representation.

13

2.4.2. Execution Support

The RPL execution support system reduces prototyping effort by automatically gen­
erating Ada code and schedules which enforce timing behavior [38). This enables RPL
to support development of large and embedded Ada programs directly and easily. The
RPL execution support system consists of a translator, a specification interpreter, a static
scheduler [47], and a dynamic scheduler.

The translator generates code binding together the components of a hierarchically
structured prototype design. The components can be reusable Ada modules extracted
from the software base, simulations generated from the logical specifications, or hand
crafted code. The main functions of the RPL translator are to implement data streams,
constraints, and interfaces to components implemented in programming languages such
as Ada. An initial version of such a translator has been developed [1,48].

The specification interpreter translates an executable subset of the specification
language into a program that simulates the specified component. Two versions are anti­
cipated, based on equation solving via narrowing [25] for expressive power and on func­
tional programming [60] for better efficiency.

The static scheduler allocates time slots for critical modules with hard real-time
constraints. If the allocation succeeds, all modules are guaranteed to meet their deadlines
even with worst-case execution times. An initial version of the static scheduler has been
developed [24, 49].

The dynamic scheduler invokes modules without hard real-time constraints in the
time slots not used by the static scheduler. The dynamic scheduler together with the
debugging system allows the designer to control and examine the execution of the proto­
type [16, 62].

2.4.3. Verification System

For verifying the consistency of a specification and the correctness of a hierarchical
decomposition, CAPS will include a theorem prover which provides powerful heuristics
for generating first order proofs and supporting formal reasoning (56]. The built-in
heuristics guide the designer in searching the proof and defining intermediate proof steps.
Efficient evaluation mechanisms such as pattern matching, graph reduction, or term
rewriting can be used to simplify the proof of theorems using expressions of the execut­
able sublanguage of RPL. The detailed design and implementation of the theorem prover
will be guided by previous work in the verification area [12, 23].

To verify liveness and safety properties, the augmented dataftow model underlying
design is mechanically transformed into formulas of a first order temporal logic. The
theorem prover can be applied to these temporal logic formulas to construct liveness and
safety proofs.

A prototyping database containing verified reusable components will significantly
speed up system verification. In such a case only the correctness of the high level inter­
connections must be proved explicitly.

2.5. Example
An example of a simple design for an aircraft control system is shown in Fig. 4.

This example illustrates the use of a dataftow decomposition to describe a system with a

14

r

Tracks Track Plane (1 .. 2
Plane
Colllslon
Wamlng

Resolutlon

Function State Machine Type Operation

Fig. 4 Simplified Aircraft Control System

variable number of prototype components, and shows that our design representation can
handle systems with dynamic configurations, even though the graphical design represen­
tations are fixed. There are a variable number of instances of the mutable _type "plane",
which are kept in the state component of the machine "track_resolution". The "plane"
type is a software representation of physical airplanes which keeps track of current
courses and positions and handles radio transmissions between the aircraft control system
and the physical airplanes. Instances of the type are created and destroyed as the physi­
cal airplanes enter and leave the range of the radar system. Two instances of the "plane"
type are sent to the node "plane.collision_ warning" when the aircraft control system
needs to interact with the airplanes to correct a collision course. The node
"plane.collision_ warning" represents a primitive operation of the type "plane".

2.6. RPL Technical Criteria

ISSUES

Executability
1. Executability of substantial RPL subset
2. Non-executable superset for specification support

Major Language Characteristics
3. Clarity of expression
4. Conceptual sparseness of design
5. Amenability to formal analysis
6. Ability to address programming-in-the-large
7. Ability to separate concerns of performance/function
8. Conventionality of notation

Major Language Features
9. Support for concurrency
10. Ability to support rule-based programming style
11. Suitability for description of parallel

and distributed algorithms and systems
12. Support for time-constraine.d execution
13. Rich type system with user defined types

15

RELEVANT
PRIORITY SECTIONS

+++ 2.1.2
++ 2.1.2

+++ 2.1, 2.3.5, 2.5
+++ 2.1.3, 2.1.5
+++ 2.1.2, 2.3.6
+++ 2.1.1, 2.1.3
++ 2.1, 2.3.4, 2.5
++ 2.1.2, 2.1.3, 2.5

+++ 2.3.3
+++ 23.2
++ 2.1.3, 2.1.4, 2.2, 2.3.3

++ 2.1.4
++ 21.2

Major Implementation Concerns
14. Insttumentability, debuggability
15. Open architecture, modular implementation
16. Amenability to optimization
17. Separability of concrete and abstract syntax

Major Environment Concerns
18. Componentwise interoperability with Ada
19. Meshing with architecture trends in advanced

software environments
20. Potential to support hypermedia interfaces
21. Interoperability with Common Lisp

Process Goals
22. Conttibution to reusability and design capture
23. Support for exploratory development of prototypes

3. RPL Development ~ues

3.1. Computer facilities

+++
++
++
+

+++
++

++
+

++
++

2.3.4, 2.4.2
2.1.3, 2.3.2, 2.3.4, 2.3.S, 2.4
2.4
2.1,2.2

2.3.9, 2.4.2
2.4

2.·3.S
2.1.2, 2.3.S

The Software Engineering Lab at NPS supplies a Sun 3/160 server with a 2.3 GB
disk capacity, connected to a network of four more Sun servers for the effort. The project
will also have access to the computing facilities of the Computer Science Department.
The department has several professional staff members for supporting the hardware and
software facilities. ·

3.2. RPL Development Organization

Faculty at Computer Science Department, Naval Postgraduate School

Prof. Luqi, Principal Investigator
Prof. V aldis Berzins, Associate Professor
Prof. Bernd Kraemer, Research Professor
Prof. Murat Tanik, Research Professor
Prof. M. Nelson, J. Yurchak, R. Griffin, Military Instructors

Students Working on Theses Related to RPL Design

R. Steigerwald, G. Guglielmo, Ph.D. Students
L. White, I. Mostov, F. Palazzo, J. Cervantes, Master's Students

Technical Consultants

Prof. John Guttag, CS Lab, MIT, Specification Languages
Prof. Wayne Richter, Mathematics, University of Minnesota, Logic
Prof. Ben Rosen, CS Dept., University of Minnesota, Optimiz.ation
Prof. Amiram Yehudai, CS Dept., University of Maryland
& Tel Aviv University, Israel, Transformations

16

4. Bibliography

1. C. Altizer, "Implementation of a Language Translator for a Computer Aided
Prototyping System'', M. S. Thesis, Computer Science, Naval Postgraduate
School, Monterey, CA, Dec. 1988.

2. G. Arango, I. Baxter, P. Freeman and C. Pidgeon, "TMM: Software Maintenance
by Transformation", IEEE Software 3, 3 (May 1986), 27-39.

3. D. Beebe, ''Design and Implementation of a Syntax-Directed Editor for the Spec
Language'', M. S. Thesis, Computer Science, Naval Postgraduate School,
Monterey, CA, June 1989.

4. V. Berzins and M. Gray, "Analysis and Design in MSG.84: Formalizing
Functional Specifications'', IEEE Trans. on Software Eng. SE-11, 8 (Aug. 1985),
657-670.

5. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software
Development", Comm. of the ACM 29, 5 (May 1986), 402-415.

6. V. Berzins and Luqi, The Semantics of Inheritance in Spec, Computer Science,
Naval Postgraduate School, 1987. NPS 52-87-032.

7. V. Berzins and Luqi, "Semantics of a Real-Time Language", in Proceedings of
the Real-Time Systems Symposium, IEEE Computer Society, Huntsville, AL, Dec.
1988, 106-110.

8. V. Berzins, "The Design of Software Interfaces in Spec", in Proceedings of the
International Conference on Computer Languages, Miami, Oct. 1988, 266-270.

9. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated
Approach to Software Development using Ada, Addison-Wesley, 1989.

10. V. Berzins and Luqi, "Specifying Large Software Systems in Spec", IEEE
Software, to appear 1989. Also NPS 52-87-033, Computer Science Department,
Naval Postgraduate School.

11. V. Berzins and R. Kopas, "Specification of a Robust Network", NPS Tech. Rep.
052-89-034, Computer Science Depanment, Naval Postgraduate School, 1989.

12. R. Boyer and J. Moore, A Computational Logic Handbook, Academic Press, 1988.

13. K. Chandy and J. Misra, Parallel Program Design, Addison Wesley, Reading,
MA, 1988.

14. M. Christ-Neumann, B. Kraemer, H. H. Nieters and H. W. Schmidt, "The
GRASPIN Environment on the Lisp Machine - User's Guide'', GRASPIN
Technical Paper GMD37/1, GMD, SanJctAugustin, Mar 1989.

15. B. Douglas, '' A Conceptual Design of a Design Database for the Computer Aided
Prototyping System", M.S. Thesis, Computer Science Department, Naval

24

Postgraduate School, 1989.

16. S. Eaton, '' An Implementation Design of A Dynamic Scheduler for a Computer
Aided Prototyping System'', M. S. Thesis, Computer Science, Naval Postgraduate
School, Monterey, CA, March 1988.

17. D. Galik, ''A Conceptual Design of a Software Base Management System for the
Computer Aided Prototyping System", M. S. Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, Dec. 1988.

18. H. Genrich and K. Lautenbach, "S-Invariance in Predicate-Transition Nets", in
Applications and Theory of Petri Nets, A. Pagnoni and G. Rozenberg (editor),
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo,, 1983,, 98-111.

19. S. Gerhart, D. Musser, D. Thompson and D. B. etc., "An Overview of Affirm: A
Specification and Verification System", in IFIP 80, Ed. S. Lovington, Nonh­
Holland Publishing Company, 1980.

20. H. Gerlach and W. Sommer, "The Rewrite-Rule-Laboratory of the GRASPIN
Environment'', GRASPIN Technical Paper KAI30/2, GMD, Sankt Augustin, Feb
1989.

21. R. Gerth and A. Pnueli, "Rooting Unity", in Proceedings fifth International
Workshop on Software Specification and Design, Pittsburgh, PA, May, 1989, 11-
19.

22. H. Guenterberg, "Case Study on Rapid Software Prototyping and Automatic
Software Generation: An Inertial Navigation System'', M.S. Thesis, Computer
Science Department, Naval Postgraduate School, 1989.

23. F. W. Henke, J. S. Crow, R. Lee, J.M. Rushby and R. A. Whitehurst, "EHDM
Verification Environment: An Overview", in Proceedings of the 11th National
Computer Security Conference, (not listed), Baltimore, 1988.

24. D. Janson, ''A static Scheduler for Hard Real-Time Constraints in the Computer
Aided Prototyping System,', M. S. Thesis, Computer Science, Naval Postgraduate
School, Monterey, CA, March 1988.

25. B. Jayaraman and G. Gupta, "EqL: The Language and its Implementation", IEEE
Trans. on Software Eng. 15, 6 (June 1989), 771-779.

26. M. Ketabchi, ''On The Management of Computer Aided Design Databases'', Ph.
D. Thesis, University of Minnesota, 1985.

27. R. Kopas, ''The Design and Implementation of a Specification Language Type
Checker", M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey,
CA, June 1989.

28. B. Kraemer, "SEGRAS - a Fonnal Language Combining Petri Nets and Abstract
Data Types for Specifying Distributed Systems'', in Proceedings of 9th
International Conference on Software Engineering, March 1987, 116-125.

29. B. Kraemer, "A Son of Polymorphism in an Algebraic Specification Language",
in Proc. of Joint CWI-GMD-Inria Workshop, GMD, Karlsruhe, Apr 1989.

30. B. Kraemer and H. W. Schmidt, ''Object-Oriented Development of Integrated
Programming Environments with ASDL", IEEE Software, Jan 1989.

25

31. B. Kraemer, Concepts, Syntax and Semantics of SEGRAS - A Specification
Language/or Distributed Systems, Oldenbourg Verlag,, Muenchen-Wien, 1989.

32. B. Liskov, "Distributed Programming in Argus", Communications of the ACM 31,
3 (March 1988), 300-312.

33. Luqi, "Rapid Prototyping for Large Software System Design", Ph. D. Thesis,
University of Minnesota, 1986.

34. Luqi, Normalized Specifications for Identifying Reusable Software, Proc. of the
ACM-IEEE 1987 Fall Joint Computer Conference, Dallas, Texas, October 1987.

35. Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems", IEEE Software,
Sep. 1988, 25-36.

36. Luqi, V. Berzins and R. Yeh, ''A Prototyping Language for Real-Time Software'',
IEEE Trans. on Software Eng., October, 1988, 1409-1423.

37. Luqi, ''Knowledge Base Support for Rapid Prototyping'', IEEE Expert 3, 4 (Nov.
1988), 9-18.

38. Luqi and V. Berzins, "Execution of a High Level Real-Time Language", in
Proceedings of the Real-Time Systems Symposium, IEEE Computer Society,
Huntsville, AL, Dec. 1988, 69-76.

39. Luqi and M. Ketabchi, ''A Computer Aided Prototyping System'', IEEE Software
5, 2 (March 1988), 66-72.

40. Luqi, ''Rapid Prototyping Language for Expert Systems'', IEEE Expert, Summer
1989.

41. Luqi, "Software Evolution via Rapid Prototyping", IEEE Computer, May 1989.

42. Luqi, "A Software Prototype of the Message Processor in a Navy C31 Station -
Modeling and Specification of Hard Real-Time Systems in PSDL' ', Technical
Report NPS 52-89-015, Computer Science Department, Naval Postgraduate
School, 1989.

43. Luqi and P. Barnes, "Graphical Support for Reducing Information Overload in
Rapid Prototyping", Technical Report NPS 52-89-016, Computer Science
Department, Naval Postgraduate School, 1989.

44. Luqi, ''Handling Timing Constraints in Rapid Prototyping", in Proceedings of the
22nd Annual Hawaii International Conference on System Sciences, IEEE
Computer Society, Jan. 1989, 417-424.

45. Luqi, ''Automatic Translation of Prototyping Data and Knowledge'', to appear in
Journal of Data and Knowledge Engineering, 1989.

46. Luqi and Y. Lee, ''Interactive Control of Prototyping Process'', in Proceedings
COMPSAC89, Orlando, Florida, Sep. 1989.

47. L. Marlowe, "A Scheduler for Critical Timing Constraints", M. S. Thesis,
Computer Science, Naval Postgraduate School, Monterey, CA, Dec. 1988.

48. C. Moffitt, ''Development of a Language Translator for a Computer Aided
Prototyping System'', M. S. Thesis, Computer Science, Naval Postgraduate
School, Monterey, CA, March 1988.

49. J. O'Hern, "A Conceptual Design of a Static Scheduler for Hard Real-Time
Systems'', M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey,
CA, March 1988.

50. S. Porter, "Design of a Syntax Directed Editor for PSDL", M. S. Thesis,
Computer Science, Naval Postgraduate School, Monterey, CA, Dec. 1988.

51. K. Ramamritham, J. Stankovic and P. Shiah, "O(n) Scheduling Algorithms for
Real-Time Multiprocessor Systems", in Proc. International Conference on
Parallel Processing Systems, Aug. 1989.

52. H. Raum, "Design and Implementation of an Expert User Interface for the
Computer Aided Prototyping System", M. S. Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, Dec. 1988.

53. H. W. Schmidt, Specification and Correct Implementation of Non-Sequential
Systems Combining Abstract Data Types and Petri Nets, Oldenbourg Verlag,,
Muenchen-Wien, 1989.

54. E. Shibayama, ''How to Invent Distributed Implementation Schemes of an
Object-Based Concurrent Language - A Transformational Approach'', in Proc.
OOPSLA '88, Sep. 1988, 297-305.

55. J. Sidney and G. Steiner, "Optimal Sequencing by Modular Decomposition:
Polynomial Algorithms", Operations Research 34, 4 (July 1986), 606-612.

56. D. Smith, "Reasoning by Cases and the Formation of Conditional Programs",
Technical Report KES.U.85.4, Kestrel Institute, Palo Alto, CA, 1985.

57. D. Smith, ''Top-Down Synthesis of Divide-and-Conquer Algorithms'', Artificial
Intelligence 27, 1 (Feb. 1985), 43-96.

58. W. Swartout and R. Balzer, ''On The Inevitable Intertwining of Specification and
Implementation'', Comm. of the ACM 25, 7 (July 1982), 438-440.

59. R. Thorstenson, '' A Graphical Editor for the Computer Aided Prototyping
System", M. S. Thesis, Computer Science, Naval Postgraduate School, Monterey,
CA, Dec. 1988.

60. D. Turner, ''Miranda: A Non-Strict Functional Language with Polymorphic
Types", in Functional Programming Languages and Computer Architectures, vol.
201 , Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985, 1-16. Lecture
Notes in Computer Science.

61. J. Weigand, ''Design and Implementation of a Pretty Printer for the Functional
Specification Language Spec'', M. S. Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, June 1988.

62. M. Wood, "Run-Time Support for Rapid Prototyping", M.S. Thesis, Computer
Science Department, Naval Postgraduate School, Dec. 1988.

27

INITIAL DISTRillUTION LIST

1. Defense Technical lnfom,ation Center 2
Cameron S talion
Alexandria, Virginia 22304-6145

2. Library, Code 0142 4
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code _1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&Al)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense
Attn. w!r. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

•

..

.. _________ ... , .. _ --·--•-··--

l 0. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

11. Nalional Science Foundation
Attn. Dr. William Wulf
Washinglon, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Tom l{eenan
Washington, D.C. 20550

13. National Science Foundation
Director, PYI Program
Alln. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research
Computer Science Division, Code 1133
Alln. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 121 l ,
J\t tn: Or. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology
Computer Science Department
Aun. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 7 527 5

18. Editor-in-Chief, IEEE Soflwnre
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

20. University of Maryland 1
College of Business Management
Tydings Hall, Room 0 137
Attn. Dr. Alan Hevner
Col Iege Park, Maryland 207 42

21. University of California at Berkeley
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C.V. Rama~oorthy
Berkeley, Califomia 94720

22. University of California at Los Angeles 1
School of Engineering and Applied Science
Computer Science Department
Atu1. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland
Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 20742

24. University of Maryland 1
Computer Science Department
Attn. Dr. N. Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute
Attn. Dr. C. Green
180 l Page rytill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology 1
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

28. University of Minnesota
Computer Science Department
136 Lind Hall
207 Church Street SE
Attn. Dr. Fox
Minneapolis, Minnes~ta 55455

29. International Software Systems Inc. 1
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC 1
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759 .)

i
i

3 l. Carnegie Mellon University ·1 i
I

Software Engineering Institute . !
Department of Computer Science ·
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center 1
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

33. The Ohio State University 1
Department of Computer and Infom1ation Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois 1
Department of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign, Illinois 61801

35. University of Massachusetts 1
Department of Computer and Information Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts 0 1003

36. University of Pittsburgh
Department of Computer Science
Attn. Dr. A Ifs Berztiss
Pittsburgh, Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

..

38. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

40. Defense Advanced Research Projects Agency (DARPA) I
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA) 1
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. M CC A I Laboratory 1
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF I
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. University of Maryland

Attn. Dr. Basili
Computer Science Department
College Park, MD 20742

...

~ -

47. University of California at San Diego I
Depanment of Computer Science

f Attn. Dr. William Howden ~

La Jolla, California 92093 i
48. University of California at Irvine t

. ~-Department of Computer and Infom,ation Science ~

Attn. Dr. Nancy Levenson l Irvine, California 92717 r

49. University of California at Irvine
Department of Computer and lnfonmition Science r.
Attn. Dr. L. Osterweil ·,
Irvine, California 92717

50. University of Colorado at Boulder
;

'
Department of Computer Science
Attn. Dr. Lloyd Fosdick ;

Boulder, Colorado 80309-0430

51. Santa Clara University I
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center 1
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Ponland, Oregon 97005

53. Dr. Wolf gang Halang I
Bayer AG
Ingenieurbereich Progessleittechnik
D-4047
Donnagen, West Gem,any

54. Dr. Bernd Kraemer 1
GMO Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai I.
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

..

..

____ .-.. ~ "' ,--,1,1>••• ••f,.•-... -•, •••-T ,'."",.. , •-·•--., ... - ...

56. Dr. Robert M. Dalzer
USC-Information Sci~nces Institute
4676 Admiralty Way
Suite 100 l
Marina dcl Ray, California 90292-6695

57. U.S. Air f-orcc Systems Commnnd
Rome Air Development Center
RADC/COE
Attn. tvlr. Samuel A. DiNitto, Jr.
Griffis Air Force Dase, New Y 01-k" I 3,14 J-5700

58. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE

59

60

61

Attn. Mr. William E. R1.epka
Griffis Air rorce Base, New York I)tl41-5700

LuQi
Code 52Lq
Computer Science Department,
Naval Postgraduate School
Monterey, CA 93943-5100

Steve Huseth

Honeywell Systems &. Research Center
3660 Technology Dr
Mels 1 MN 55418

Research Administration
Code: 012
Naval Postgraduate School
'Monterey, CA 93940

100

1

1

