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ABSTRACT 

We propose to develop a new rapid prototyping language (RPL) for a wide range 
of software, including real-time, parallel, distributed, and knowledge-based sys­
tems. RPL is intended as a tool for aided the development of large Ada systems. 
Rapid development will be achieved by a combination of a clear and simple 
language with a suitable computational model, graphical design representations, 
executable logical specifications, reusable software components, automated code 
$eneratio11, and specialized scheduling algorithms. 
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1. Introduction 

We propose a rapid prototyping language (RPL) for a wide range of software, 
including real-time, parallel, distributed, and knowledge-based systems. 

The Naval Postgraduate School provides a unique environment for RPL design with 
faculty, fully funded graduate students, and military instructors who have been techni­
cally trained and are familiar with DoD application areas. The RPL design proposal has 
the full support of the superintendent and all levels of administration at NPS. 

RPL will benefit from much previous work in rapid prototyping, specification 
languages, and CASE tools, which are described in more than 50 theses, 60 papers and 
100 reports produced by our group. Previous work in design and implementation of for­
mal specification languages includes an event model based language SPEC [9], an actor 
model based language MSG [4], a Petri net based language SEGRAS (31], and a proto­
typing system description language PSDL (33] and its computer aided prototyping sys­
tem CAPS (39]. 

RPL aids the designer of embedded systems and compensates for some of the prob­
lems of Ada. The semantic concepts of RPL support specification and design of real­
time embedded and knowledge based· systems. RPL prototypes can represent software 
systems executable on parallel and distributed architectures. RPL is the basis for an 
integrated tool set supporting iterative prototyping of complex software systems 
[33, 35, 58]. . 

Key features of RPL are its: 

- simplicity and clarity via high level abstractions and graphical notations 
- integration of designs, specifications, and requirements to support evolution 
- expressive executable subset 
- support for modular construction and decomposition of large scale designs 
- amenability to formal analysis and verification 
- representations for hard and soft real time constraints 

Key features of the tool set which will accompany RPL are: 

- graphical designer interface 
- prototyping database with reusable software components 
- automatic Ada code generation from RPL designs 
- execution and dynamic debugging support 
- optimization and transformation to final implementation 
- systematic documentation and version control facilities 
- formal analysis, testing, proofs of correctness and consistency 

An overview of the technical approach for the development of RPL is described in 
section 2. Section 3 describes the RPL development plan which includes the organiza­
tion, technical criteria and the development schedule. Section 4 describes the previous 
related experience of the key personnel who will be closely involved in the design of 
RPL. 

1 



2. Technical Approach 

RPL combines second-onter logic specifications supporting verification with an 
augmented dataftow representation for design and interconnection of prototype com­
ponents. The design graph is augmented with special pre/post conditions to express 
real-time constraints and adjust component behavior to each application context [44]. 
Execution is based on automatically generating code for combining reusable software 
components or simulating component behavior via the executable subset of the 
specification logic. Real-time constraints are guaranteed by automatically constructed 
schedules. Verification is based on a proof system for the logic, which provides a 
simplified treatment of parallelism due to the atomic execution semantics of RPL 
modules. Iterative modifications of prototypes are supported by localized information in 
RPL and its computational model, component behavior modification via logical con­
straints, and facilities of the tool set for code and design reuse, requirements tracing, and 
static analysis. The logic and the proposed computational model provide the basis for 
integrating these facilities into a coherent language and tool structure. 

The proposed rapid prototyping language RPL aids rapid construction, evaluation, 
and adaptation of prototype designs via a clear and simple syntax, support for abstrac­
tions, reusable software components, and an integrated system of supporting software 
tools. Our approach to speeding up the process is based on flexible prefabricated 
software components. 

2.1. Basic Semantic Concepts of RPL 
A RPL prototype consists of modules communicating via data streams. Modules 

and data streams are collectively called components. RPL provides specifications, graph­
ical interconnections, constraints for adapting and controlling prototype behavior, and 
data format definitions. 

2.1.1. Prototype Building Blocks 

Modules are classified as functions, state machines, and types, all of which can be 
generic. Every module has a black-box specification and a realization. Modules can be 
realized using four different mechanisms: 

(1) retrieval and adaptation of reusable software components, 

(2) decomposition into more primitive modules, 

(3) simulation of specifications, and 

( 4) custom implementation in a programming language. 

Streams represent both local and long haul communication links between modules. 
Streams participating in cycles represent state components of state machines, and can be 
used to model persistent data storage. A stream can carry instances of any designated 
abstract data type. Exceptions and hardware interrupts are represented as instances of a 
pre-defined data type. Abstract data types can be either immutable or mutable. Instances 
of immutable types are constants. Instances of mutable types have internal states, and 
can be used to represent prototypes with dynamically created components. 
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2.1.2. RPL Component Specifications 

RPL specifications consist of a form and an optional behavior. The form identifies 
the operations and the information flows, and is required for execution. The behavior 
specifies the intended meaning of the module and is needed for verification or simulation. 
Behavioral specifications are expressed in a typed second order logic with two dis­
tinguished executable subsets: 1st order equational Hom clauses and 2nd order condi­
tional equations. These subsets can be executed via interfaces to existing languages 
[25, 60]. 

The second order logic supports description and analysis of generic modules with 
type and function parameters. Second order quantifiers are used mostly to express and 
prove general properties of the reusable generic modules in the prototyping database. 
Designs implementable directly in Ada have static declarations for all instances of gener­
ics. Such designs do not include an interpreter for symbolic simulations. This class of 
designs covers most applications except for dynamically reconfigurable systems (54] and 
certain AI computations. Correctness proofs use second order quantifiers to adapt the 
general specifications of the generics to the particular instances used in the design by 
substituting the actual generic parameters for universally quantified type and function 
parameters. 

An example of the use of second order logic in specifications is shown in Fig. 1. 
The generic reduction operator has a second order specification, which is used to derive a 
first order specification for a particular instance of the generic. In the example, d and f 
are generic type and function parameters. Generic actual parameters are shown in"[]". 
Existing theorem proving systems can be applied to subsets of the logic (12], and the 
parts of the system that must be verified can be specified in subsets of the logic amenable 
to available theorem proving tools. 

(a) Generic Specifications for Reduce 

All d: type, f: function[(d, d), d], x: d, s: sequence[d] 
reduce[f](insert(x, s)) = f(x, reduce[fJ(s)) 

All d: type, f: function[(d, d), d], x: d 
reduce[f](insert(x, nil)) = x 

(b) Instantiated Specification for sum= reduce[plus], d = real 

ALL x: real, s: sequence[real] sum(insert(x, s)) = plus(x, sum(s)) 
ALL x: real sum(insert(x, nil)) = x 

Fig. 1 Example of a Second Order Specification 

3 



Second order logic has been avoided previously because there are no complete 
proof systems. Since the standard proof systems for first order logic are sound for second 
order logic, all first order proofs are feasible, and some second order theorems can be 
established using the same proof systems. The incompleteness of these systems does not 
affect their practical use in verification because termination and many other program pro­
perties of practical significance are undecidable in the general case. 

RPL component specifications support: verification, fault location by monitoring 
preconditions and postconditions during prototype execution, computer-aided retrieval 
and composition of reusable components [37], simulation of prototype modules before 
they are implemented, and software evolution [41, 57]. 

2.1.3. RPL Prototype Architecture 
RPL graphical interconnection facilities support large scale prototyping via 

hierarchical decomposition of prototypes. Decomposition is used to express and verify 
the structure of a software design, and to gain efficiency by using different mechanisms 
for implementing different pans of the system. This allows the use of existing efficient 
software components in conjunction with less efficient simulations of pans without avail­
able implementations. 

Interconnection structures can be represented using icons and arrows on a graphical 
display to help designers visualize proposed designs. Such graphical network representa­
tions are familiar to software developers and are widely recognized as easy to use. We 
propose to extend icon and arrow representations with optional generic parameters and 
constraints. Generic graphs can be used to express interconnections in systems contain­
ing many instances of a generic module, as illustrated in Fig. 2. Concise descriptions of 
complex interconnection patterns such as trees, butterfly networks, hypercubes, etc. can 
be given graphically via subranges and recursion. 

2.1.4. Controlling and Adjusting Prototype Behavior 

The behavior of modules and data streams is adjusted to the context in which they 
are used by constraints. Constraints acting as preconditions are called guard constrain-rs 
and those acting as postconditions are called completion constrain-rs. 

Module constraints - Guard constraints determine the execution conditions for a 
module, which can depend on the current absolute time, the length of time the data has 
been in the data stream, the length of time since the last execution of the module, and 
properties of data values in input data streams [7]. Applications of guard constraints for 
modules include representing maximum execution rates and demons. Completion con­
straints determine when and how the results of a component must be delivered to the rest 
of the prototype. This mechanism can selectively block, delay, or transform outputs, and 
can represent timed aborts, maximum response times, safety checks, and exception han­
dling. 

Stream Constraints - The constraints associated with data streams detennine the 
properties of the communications protocol. Guard constraints on data streams affect the 
conditions under which data values can be put into a stream or read from a· stream. 
Applications of guard constraints for streams include representing bandwidth constraints, 
communications delays, first-in/first-out ordering constraints, and limits on storage 
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capacity. Stream completion constraints can represent the conditions under which data 
values are removed from a stream. These conditions can depend on read and write 
operations on streams. · 

Guaranteed Service and Overload Resolution - RPL supports the concepts of criti­
cal and non-critical components for expressing overload resolution policies, especially in 
the context of real-time systems. Critical modules must terminate with results that meet 
their postconditions, while non-critical modules must meet their postconditions if they 
terminate. Thus critical modules carry a guarantee of service, while non-critical modules 
do not. Critical modules with time bounds have hard real-time constraints: the system 
must guarantee completion by the deadline. Non-critical modules with time bounds have 
soft real-time constraints: they must be aborted if they cannot be completed by the dead­
line. Streams are also critical or non-critical. Critical streams must guarantee delivery of 
data within specified constraints, while non-critical streams must meet constraints only if 
data can be delivered. Non-critical streams with time bounds must discard data if it can­
not be delivered on time. Critical streams can represent stable storage in fault tolerant 
distributed systems [32]. Non-critical components can have priorities, which determine 
which module executions and data transmissions are delayed if there are not sufficient 
resources to meet all constraints. 

2.1.5. User Interface Support 

The data format definitions of RPL are used to define text formats and graphical 
icons for instances of abstract data types. The data definition facilities of RPL are based 
on attribute grammar technology [ 45]. Defined text formats are used to represent con­
stant expressions and to define input/output formats for abstract data types. Output for­
mats can only be defined if the type has a distinguished set of primitive constructor 
operations, e.g. cons and nil in lisp, along with corresponding domain test operations, e.g. 
listp and null in lisp, and partial inverse operations, e.g. car and cdr in lisp. Instances of 
the formats defined via this facility can be used for: 

(1) entering and displaying text representations for abstract input types of inter­
preters or compilers for special purpose languages; 

(2) defining visual gauges for monitoring or animating prototype execution; 

(3) specifying initial values for RPL data streams. This suppons initializing special 
databases, such as knowledge bases. An expert system can be represented by a 
graph in which the entire knowledge base is passed as a'value in a data stream; 

( 4) specifying actual parameters for generic reusable components. Reusable com­
ponents can have complex options, such as a generic syntax-directed editor that 
talces an attribute grammar as a parameter. 

Lack of support for compact input/output formats for user defined abstract data 
types has been a major weakness of previous languages, and has impeded the develop­
ment of convenient debugging facilities for systems with abstract types. 

Guam and completion constraints can be represented in abbreviated forms which 
can be chosen from menus, so that the designer does not need to write predicates expli­
citly. RPL supports definitions of abbreviated formats for classes of constraints which 
make it easy to specify common constraints by menu selection, pointing to graphical 
representations of modules and streams, and entering attribute values in tables [43]. 
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These formats define mappings from the menus and tables to logical specifications in an 
executable subset of the logic. RPL provides a standard predefined set of constraint for­
mats, and has an open design which allows users to add formats tailored to particular 
applications. 

2.2. Computational Model 
RPL is based on an augmented dataflow model. Each RPL module is conceptually 

an independent process, and different modules can potentially be executed conCU1TCntly 
on different processors. Modules can interact only via data streams. Data streams can be 
shared among modules. The behavior of a module consists of a discrete sequence of 
firings, where different firings of a module are independent activities. Each time a 
module fires, it reads a sequence of data elements from each of its input streams, and then 
writes a sequence of values into each of its output streams. The lengths of the data 
sequences on each stream associated with each firing are determined from the conjunc­
tion of the specification of the module and its constraints. These sequences have length 
one unless explicitly specified. The time interval associated with each firing begins at the 
start of the first read operation from the input data streams, and ends at the completion of 
the last write operation on the output streams. The read operations associated with a 
module firing are performed as an atomic action, and the write operations are performed 
as a separate atomic action. 

The conditions under which a module fires are determined by the constraints associ­
ated with the module and the number of processors in the target hardware configuration. 
The number of modules firing at any given point in time must be less than or equal to the 
number of processors, and is not bounded if the number of processors is not specified. 
The conditions under which a module can fire are determined by the guard constraints of 
the module. In the absence of guard constraints, a module can fire whenever the required 
set of input data values is available. If guard constraints are given, the module can only 
fire if data values are available and the guard constraints are satisfied. Critical modules 
whose guard constraints are satisfied are guaranteed to be fired eventually. If the 
postcondition of a critical module includes a bound on the completion time, then firing of 
the module must be completed within the given bound. Computations with critical com­
pletion constraints that require the number of simultaneous firings to exceed the number 
of processors are not feasible. If a non-critical module has a postcondition that puts a 
bound on the completion time, and there are not enough processing resources to complete 
the firing of the non-critical module, then the specified number of input values are read 
from each input stream and no output values are produced. 

Temporal events in an augmented dataflow computation occur at explicitly defined 
points of absolute time, which are often periodic. Data events in an augmented dataflow 
computation occur when a set of data values enabling the firing of a module becomes 
available. Completion constraints can limit the delay between a temporal event or a data 
event at a module and the completion of the next firing of the module. In the absence of 
constraints on the firing time, at least one module must start to fire whenever there is a 
module that can fire and the number of modules in the process of firing is less than the 
number of processors. A non-critical module can fire only if no critical modules can be 
fired and no higher priority modules can be fired. 



2.3. Relationship to Requirements 

The goals for RPL are rapid adaptability, design clarity, verification, and a broad 
range of applicability. We assess our approach with respect to these goals below. 

2.3.1. Concepts and Range of Application 

The concepts of RPL support a broad range of applications. The prototyping 
languages PSDL [36] and SSDL, which are based on similar concepts, have been used to 
prototype a hyperthennia system [33], a C3I system [42], and an inertial navigation sys­
tem [22]. Experience shows graphical decompositions to be effective for exploring 
design alternatives [41]. The specification language Spec [10] which contains a logic 
similar to the one proposed for RPL, has been used to specify an airline reservation sys­
tem [9], a fault-tolerant network [11], an inertial navigation system [22], and a software 
design database [15]. A related model for distributed computing has been used in the 
SEGRAS system to formally specify parallel and distributed computations such as con­
current merge-sort with restricted computation resources, dynamic reconfiguration, and 
distributed database management [31]. 

2.3.2. AI-Related Programming 

RPL directly supports rule-based programming via guard constraints and modules 
[ 40]. Beyond the RPL facilities for general parallel and distributed computing, AI­
related programming is supported via the reusable software components and the tools in 
the CAPS associated with RPL. The main sources of difficulty in developing an AI­
related program are identifying, representing, and organizing the knowledge to be used 
by the application system. Representation and processing of the knowledge can be sup­
ported by suitable modules in the software base [17]. Some examples of the generic 
functions, state machines, and types which can be supplied by a software base include 
many varieties of inference engines, truth maintenance systems, constraint networks, 
inheritance networks, production systems, unification functions, fuzzy and Bayesian 
inference functions, equation solvers, term rewrite systems, frames, contexts, assertions, 
indexed assertion databases, and semantic nets. The facilities for prototyping special 
purpose languages also provide a mechanism to quickly construct and experiment with 
flexible interpreters, which provide the ability to simulate facilities that are difficult to 
implement directly in Ada, such as creating new types or functions and modifying task 
priorities as the system runs. 

The data definition facilities of RPL can ease the problems of representing and 
organizing the knowledge in a knowledge base by supporting the definition of special 
purpose languages for concisely recording and displaying the knowledge. These facili­
ties can also be useful for tailoring generic software components, since many of the more 
sophisticated reusable components can have complex generic parameters with lengthy 
structured external representations, such as the set of productions in a production system. 

The tools in the CAPS should eventually include generic tool generation facilities, 
such as translator generators, syntax-directed editor generators [50], and browser genera­
tors, which can be used to create special purpose processors for the external knowledge 
representations used by knowledge engineers. We expect RPL and CAPS to be used to 
create some of these tools, in a bootstrapping operation. Some of the more advanced 
tools for assisting knowledge engineers in organizing a knowledge base should help 
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locate conflicting or overlapping bits of knowledge, construct least common generaliza­
tions [2], and perform meaning-preserving simplification transformations. 

2.3.3. Parallel and Distributed Systems 

The computational model of RPL is naturally parallel, and provides atomic actions 
as primitives. This simplifies design of parallel programs, since concurrent firings of 
several RPL modules cannot interfere. Nested atomic transactions are naturally 
represented by hierarchical RPL decompositions. 

The only source of interference between concurrent activities in RPL is contention 
for shared resources such as processing time and data streams. Contention for processors 
is addressed by the concepts of critical and non-critical components, and constraints 
induced by critical real-time constraints are addressed by the CAPS scheduling tools. All 
other resources are represented as instances of abstract types that travel down data 
streams. 

Mutual exclusion for operations on state machines is ensured in RPL by having only 
one data value in the stream representing the state of the machine. More complex syn­
chronization constraints are expressed locally as context constraints of modules and 
streams, providing natural representations for distributed designs with no centralized 
controllers. · 

It is impossible for two RPL modules to deadlock while seeking exclusive access to 
the same set of streams since the computational model ensures all data items required to 
fire a module are read in a single atomic action. A set of RPL modules can become per­
manently blocked only if they are waiting for input in a cyclic dependency. Tools for 
detecting design errors in this category are described in Section 2.3.4. RPL facilities for 
defining the regular interconnection patterns typical of parallel algorithms are discussed 
in sections 2.1.3 and 2.3.5. 

In distributed computations the communications delays can be large compared to 
processing times. RPL stream completion constraints can specify transmission delays. 
Fault tolerant designs for distributed systems can be represented in RPL by using critical 
streams to indicate which parts of the data in a stream must be kept in stable storage to 
enable failed nodes to recover from processor failures. 

2.3.4. Automatic Checking 

RPL supports automated consistency checking and enor prevention at various lev­
els. The simplest checks are type consistency and interface consistency checks between 
the levels of a hierarchical design. Tools for preventing errors by automatically filling in 
implied details of a design are anticipated, and some of the simpler facilities have been 
demonstrated in the initial CAPS developed for PSDL [52,62]. For example, skeleton 
definitions for interfaces of prototype components are generated automatically based on 
the information in the interconnection graph one level up, and syntax enors are prevented 
by a template-driven syntax-directed editor. 

Effective debugging is supported on a conceptual level by the display facilities for 
abstract data types. If specifications are expressed in the executable subset of the logic, 
then code for monitoring preconditions, postconditions, and invariants can be automati­
cally inserted to instrument the prototype for testing and assistance in fault location. The 
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graphical representations for decompositions also provide a convenient framework for 
animations which can allow the designer or customer to watch the system run at reduced 
speeds. This capability is useful for demonstrating the prototype to customers. It is espe­
cially helpful for debugging purposes when coupled with a capabilities to run the system 
backwards as well as forwards and to display projections of the computation that filter 
out lower level events or events that do not match given preconditions. The computa­
tional model supports a simple way to run a computation backwards, by recording timed 
traces of the data sequences read from each data stream. Visualizing the behavior of a 
prototype in this way helps detect deadlocks and unsafe situations. 

An aspect of consistency checking related to parallel and distributed systems is 
deadlock detection and prevention. A Petri net representation of the control flow defined 
by an RPL decomposition can be generated by simple mechanical means. Verification 
conditions for liveness and safety of elementary Petri nets have been generalized for high 
level Petri nets in [53]. For a subclass of these nets sufficient and necessary conditions 
exist which enable automatic checks by inspecting net elements and their adjacent arcs. 
A prototype of a corresponding analysis tool is available for elementary nets and is under 
development for high level nets. 

Another net-theoretic approach relies on the computation of S- and T-invariants of 
high level net models [ 18]. The existence of such invariants is a sufficient condition for 
safety and a restricted form of liveness. The basic idea of this technique is to construct a 
matrix that shows the local effect of each transition to each state elements of the net and 
then solve a linear, homogeneous equational system for this matrix. The solutions of this 
system can be transformed into logic formulas which describe the desired invariance pro­
perties. Bounds on buffer sizes useful for optimization can also be determined. 

An aspect of consistency checking related to real-time systems is timing feasibility. 
Static checking for timing constraints that are not realizable even with an unbounded 
number of processors can be realized by a tool for checking longest paths at the design 
level. Corresponding tools at the assembly language level are needed to verify maximum 
execution times for reusable software components relative to particular compilers and 
target architectures. 

The feasibility of meeting the hard real-time constraints with a limited number of 
processors is checked by constructing a schedule, which can also be used for prototype 
execution. The initial CAPS for PSDL does this using a heuristic method for a single 
processor [24, 49]. An optimal polynomial time algorithm for the one-processor case can 
be constructed based on the approach of [55]. Constructing optimal schedules for the 
multiprocessor case is NP hard, and hence can only be done for small designs. A linear 
time heuristic method with good success rates for finding feasible schedules for multiple 
processors can be based on [51 ]. 

Real-time constraints for expert systems are difficult to supply at a high level For 
example, the amount of time required for a single logical inference step depends on the 
size of the input assertion. Thus bounds on the worst case sizes of the input assertions, 
and bounds on the number of rules that must be applied to reach a conclusion in the worst 
case are needed to guarantee responses within hard real-time constraints. Such bounds 
need not exist at all, since many classes of inference problems that are undecidable in the 
general case, and they can be very difficult to derive if they do exist The special cases 
likely to be tractable are expert systems with fixed sets of rules which are designed to 
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answer fixed sets of questions. Such systems can be analyzed mechanically via exhaus­
tive graph search algorithms, but the analysis can be very time consuming. 

2.3.S. Flexibility and Reuse 

RPL supports flexibility via component constraints, which make it easy to make 
small changes to the behavior of a prototype, and via its high level computational model, 
which provides a clear and simple view of the prototype design, befom it has been com­
plicated by optimizations and programming level details. 

The associated CAPS supports software flexibility by automatically generating 
many of the details needed for execution, and by providing automated retrieval of reus­
able components from the prototype database. Such retrievals are based on the 
specifications of the required components. This retrieval is made feasible by fast approx­
imate methods to narrow down the search space, using standardized forms (34] of the 
specifications as search keys and a special database organization [26, 39]. Limited logi­
cal inference methods and knowledge-based techniques are used to adapt and combine 
components that provide partial matches to the required specifications (37]. 

Another aspect of reuse is generic module interconnection patterns. Nontrivial 
interconnection patterns can be defined using recursive graphs, as illustrated by the sim­
ple pipeline structure shown in Fig. 2. The pair of graphs comprising the recursive 
definition are shown in (a). Generic actual parameters of generic software modules and 
generic interconnection patterns are shown in"[]". In general, a generic interconnection 
pattern represents a parameterized family of interconnection graphs of different sizes, 
which contain many instances of a small number of generic components. A particular 
design will use an instance of a generic interconnection pattern whose size and prototype 
component names are given as actual parameters, as shown in (b ). This facility is espe­
cially useful in defining designs for special purpose parallel algorithms, which often 

(a) Generic Pipeline Definitions 

P[O,n] P[k+1,n] 

xi __ 1• y x I ...j n[k+ 1] I ...j P[k,n] 

(b) An Instance of a Generic Plpellne 

P[3,node] 

x ~ node[3] J--.1 node[2] J--.1 node[1] I • y 

Fig. 2 Generic Pipeline Interconnection 
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consist of large numbers of identical nodes connected in regular patterns. 

2.3.6. Formal Methods 
The main type of verification associated with RPL is proving that a proposed inter­

connection of specified components will realize a specified behavior. This is 
significantly simpler than verifying code in a programming language because component 
behavior is already expressed in logic. 

The theoretical foundations of verifying sequential systems are well known and 
have been turned into powerful support systems (19, 23]. Theorem proving techniques for 
mechanically generating proofs in first-order predicate logic will apply to specifications 
written in that sublanguage. Verification for parallel systems has been poorly understood 
until recently. The computational model for RPL has been carefully designed to make 
verification of parallel systems simple. The key property of the semantics of RPL is that 
firing a module is an atomic action. This prevents interference between parallel activi­
ties, reducing parallelism to sequential non-determinism. This allows proving safety pro­
perties by techniques developed for non-deterministic sequential programs. 

Liveness properties in parallel systems depend on fair scheduling assumptions. A 
type of fair scheduling corresponding to the treatment of critical modules in RPL is jus­
tice, which ensures that each module will have a chance to fire infinitely many times. A 
complete 1 proof system based on the atomic action property and the justice assumption is 
given in[21], using temporal first-order logic. This system can prove both safety and 
liveness properties, and can easily be adapted to the critical modules of RPL, since these 
satisfy the justice assumption, provided that the termination of each critical module can 
be proved in isolation. 

Non-critical modules do not satisfy the justice assumption, since they may starve 
under permanent overload conditions, where all of the available processing resources are 
needed for critical and higher priority modules. Thus liveness properties cannot be 
guaranteed for non-critical modules, and the E-rule of [21] does not apply to them. The 
other rules can be used to prove safety properties of non-critical modules. Streams 
without explicit constraints have the semantics of ordinary variables, and match the proof 
rules directly. Streams with constraints must be modeled as additional modules in 
verification. 

The distinction between critical and non-critical modules is essential for the design 
of real-time systems, and cannot be captured by semantic models for parallel computa­
tion based on unmodified versions of the original Unity model [13], which imposes a 
blanket justice assumption. 

2.3. 7. Speed of Development 

The graphical representations of RPL can make it easier for designers without a 
high degree of training to use the system. The learning curve is further reduced by an 
open design which supports alternative graphical icons and language formats to adapt the 
appearance of designs to the symbols common in particular applications. 

1Relatiw to the compldalc:11 of Ille underlying ftnt order logic. 
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2.3.8. Real-Time Systems 

The semantic concepts described in Section 2.1.4 support real-time constraints 
directly. Specifications for reusable software components include maximum execution 
times. The context constraints for the components in a decomposition can specify upper 
and lower bounds on response times and triggering rates, and can directly represent both 
periodic and data driven computations. The distinction between critical and non-critical 
modules identifies which activities must have pre-allocated resources sufficient for worst 
case operating conditions, while priorities and soft real-time constraints (see Section 
2.1.4) provide clear and simple mechanisms for formulating system responses to over­
load conditions without interfering with scheduling considerations for critical modules. 
The language is designed to support automatic construction of schedules by the CAPS. 
Sampled data streams (data replaced by write) provide the means for modeling asynchro­
nous communication and dataftow streams (fifo, data removed by read) provide the 
means for modeling synchronous communication. These mechanisms provide a close 
match to common design concepts used in embedded real-time systems. Since RPL 
operations are atomic and independent2 except for brief stream operations at the begin­
ning and end of each firing, they can be scheduled preemptively by automatic pro­
cedures. This avoids the need for the manual effort currently expended on partitioning 
logical tasks into fragments of sizes suitable for constructing tight schedules. 

2.3.9. Transformation to Implementation 
RPL supports the computer-aided transformation of prototypes into production 

quality implementations (Ada code for the target architectures) via automatic generation 
of interconnection code and schedules by the CAPS tools. Optimization transformations 
are guided by design-level pragmas, which contain high-level optimization advice. For 
example, an important optimization is in-place updating for streams representing state 
components with complex structures, such as databases. This optimization modifies a 
part of the data structure in place, rather than creating a whole new data structure to put 
into the output stream. The optimization is guided by the designer because it is valid 
only if the data instance can be contained in at most one data stream at a time. Manual 
parts of the process include creating Ada implementations for modules that are simulated 
from the black-box specifications or are implemented in other programming languages in 
the prototype version of the system. An optimization that can be performed without 
designer guidance is code merging. Code merging eliminates data stream operations 
between two modules by combining them into a single module. This optimization can be 
performed whenever both modules can be scheduled to fire consecutively on the same 
processor. 

2.4. Tool Support 
The design of the proposed prototyping language RPL is influenced by the need to 

support a computer-aided prototyping system (CAPS). This section discusses the aspects 
of CAPS that affect the design of RPL. An overview of the structure of CAPS is shown 
in Fig. 3. CAPS will be implemented as an integrated, interactive environment that 

2Prorided that critical modulea avoid sharing instances m data type• whole in1tanee1 baw internal •tare•• 
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Fig. 3 CAPS Structure 

supports all activities involved in creating, modifying, analyzing, managing, and docu­
menting prototypes, their proofs, and executions. All software objects are stored in an 
prototyping database which keeps track of their development history and provides a com­
mon interface and communication medium to the environment tools. 

2.4.1. Designer Interface 
The designer interface of CAPS uses a bitmap display ·and combines a display­

oriented text editor with a graphic editor, multiple windows, menus, and mouse input To 
help beginners learn RPL by doing, the editor supports template editing, while experi­
enced designers may use their favorite text editor which interacts with a syntax-directed 
parser to check syntactic correctness of specification fragments and insert them into the 
database. The graphic editor extends the syntax-directed editing paradigm to the graphi­
cal data flow notation of RPL. The database keeps track of both logical constraints and 
geometrical representations of data flow graphs. The interface provides computer aid for 
retrieving reusable software components [37] and maintains the link between the proto­
type design and the requirements. The debugger provides animation facilities for 
displaying the activity of the prototype in terms of the graphical design representation. 
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2.4.2. Execution Support 

The RPL execution support system reduces prototyping effort by automatically gen­
erating Ada code and schedules which enforce timing behavior [38). This enables RPL 
to support development of large and embedded Ada programs directly and easily. The 
RPL execution support system consists of a translator, a specification interpreter, a static 
scheduler [47], and a dynamic scheduler. 

The translator generates code binding together the components of a hierarchically 
structured prototype design. The components can be reusable Ada modules extracted 
from the software base, simulations generated from the logical specifications, or hand 
crafted code. The main functions of the RPL translator are to implement data streams, 
constraints, and interfaces to components implemented in programming languages such 
as Ada. An initial version of such a translator has been developed [1,48]. 

The specification interpreter translates an executable subset of the specification 
language into a program that simulates the specified component. Two versions are anti­
cipated, based on equation solving via narrowing [25] for expressive power and on func­
tional programming [ 60] for better efficiency. 

The static scheduler allocates time slots for critical modules with hard real-time 
constraints. If the allocation succeeds, all modules are guaranteed to meet their deadlines 
even with worst-case execution times. An initial version of the static scheduler has been 
developed [24, 49]. 

The dynamic scheduler invokes modules without hard real-time constraints in the 
time slots not used by the static scheduler. The dynamic scheduler together with the 
debugging system allows the designer to control and examine the execution of the proto­
type [16, 62]. 

2.4.3. Verification System 

For verifying the consistency of a specification and the correctness of a hierarchical 
decomposition, CAPS will include a theorem prover which provides powerful heuristics 
for generating first order proofs and supporting formal reasoning (56]. The built-in 
heuristics guide the designer in searching the proof and defining intermediate proof steps. 
Efficient evaluation mechanisms such as pattern matching, graph reduction, or term 
rewriting can be used to simplify the proof of theorems using expressions of the execut­
able sublanguage of RPL. The detailed design and implementation of the theorem prover 
will be guided by previous work in the verification area [12, 23]. 

To verify liveness and safety properties, the augmented dataftow model underlying 
design is mechanically transformed into formulas of a first order temporal logic. The 
theorem prover can be applied to these temporal logic formulas to construct liveness and 
safety proofs. 

A prototyping database containing verified reusable components will significantly 
speed up system verification. In such a case only the correctness of the high level inter­
connections must be proved explicitly. 

2.5. Example 
An example of a simple design for an aircraft control system is shown in Fig. 4. 

This example illustrates the use of a dataftow decomposition to describe a system with a 
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Fig. 4 Simplified Aircraft Control System 

variable number of prototype components, and shows that our design representation can 
handle systems with dynamic configurations, even though the graphical design represen­
tations are fixed. There are a variable number of instances of the mutable _type "plane", 
which are kept in the state component of the machine "track_resolution". The "plane" 
type is a software representation of physical airplanes which keeps track of current 
courses and positions and handles radio transmissions between the aircraft control system 
and the physical airplanes. Instances of the type are created and destroyed as the physi­
cal airplanes enter and leave the range of the radar system. Two instances of the "plane" 
type are sent to the node "plane.collision_ warning" when the aircraft control system 
needs to interact with the airplanes to correct a collision course. The node 
"plane.collision_ warning" represents a primitive operation of the type "plane". 

2.6. RPL Technical Criteria 

ISSUES 

Executability 
1. Executability of substantial RPL subset 
2. Non-executable superset for specification support 

Major Language Characteristics 
3. Clarity of expression 
4. Conceptual sparseness of design 
5. Amenability to formal analysis 
6. Ability to address programming-in-the-large 
7. Ability to separate concerns of performance/function 
8. Conventionality of notation 

Major Language Features 
9. Support for concurrency 
10. Ability to support rule-based programming style 
11. Suitability for description of parallel 

and distributed algorithms and systems 
12. Support for time-constraine.d execution 
13. Rich type system with user defined types 
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RELEVANT 
PRIORITY SECTIONS 

+++ 2.1.2 
++ 2.1.2 

+++ 2.1, 2.3.5, 2.5 
+++ 2.1.3, 2.1.5 
+++ 2.1.2, 2.3.6 
+++ 2.1.1, 2.1.3 
++ 2.1, 2.3.4, 2.5 
++ 2.1.2, 2.1.3, 2.5 

+++ 2.3.3 
+++ 23.2 
++ 2.1.3, 2.1.4, 2.2, 2.3.3 

++ 2.1.4 
++ 21.2 



Major Implementation Concerns 
14. Insttumentability, debuggability 
15. Open architecture, modular implementation 
16. Amenability to optimization 
17. Separability of concrete and abstract syntax 

Major Environment Concerns 
18. Componentwise interoperability with Ada 
19. Meshing with architecture trends in advanced 

software environments 
20. Potential to support hypermedia interfaces 
21. Interoperability with Common Lisp 

Process Goals 
22. Conttibution to reusability and design capture 
23. Support for exploratory development of prototypes 

3. RPL Development ~ues 

3.1. Computer facilities 

+++ 
++ 
++ 
+ 

+++ 
++ 

++ 
+ 

++ 
++ 

2.3.4, 2.4.2 
2.1.3, 2.3.2, 2.3.4, 2.3.S, 2.4 
2.4 
2.1,2.2 

2.3.9, 2.4.2 
2.4 

2.·3.S 
2.1.2, 2.3.S 

The Software Engineering Lab at NPS supplies a Sun 3/160 server with a 2.3 GB 
disk capacity, connected to a network of four more Sun servers for the effort. The project 
will also have access to the computing facilities of the Computer Science Department. 
The department has several professional staff members for supporting the hardware and 
software facilities. · 

3.2. RPL Development Organization 

Faculty at Computer Science Department, Naval Postgraduate School 

Prof. Luqi, Principal Investigator 
Prof. V aldis Berzins, Associate Professor 
Prof. Bernd Kraemer, Research Professor 
Prof. Murat Tanik, Research Professor 
Prof. M. Nelson, J. Yurchak, R. Griffin, Military Instructors 

Students Working on Theses Related to RPL Design 

R. Steigerwald, G. Guglielmo, Ph.D. Students 
L. White, I. Mostov, F. Palazzo, J. Cervantes, Master's Students 

Technical Consultants 

Prof. John Guttag, CS Lab, MIT, Specification Languages 
Prof. Wayne Richter, Mathematics, University of Minnesota, Logic 
Prof. Ben Rosen, CS Dept., University of Minnesota, Optimiz.ation 
Prof. Amiram Yehudai, CS Dept., University of Maryland 
& Tel Aviv University, Israel, Transformations 
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