
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1989

Multi-Level Software Analysis and Testing in
Evolutionary Software Development

Luqi
Naval Postgraduate School

Luqi, "Multi-Level Software Analysis and Testing in Evolutionary Software
Development", Technical Report NPS 52-89-056, Computer Science Department,
Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65277

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

1/ Multi-Level Software Analysis and Testing in Evolutionary Software Development

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

This paper presents a view of research directions in multi-level software analysis and testing.
Software analysis is needed at different levels of the development process. Appropriate research
goals are identified for exploring software analysis at each of lhese levels in onler to produce good
quality software at reduced cost.

1. Introduction

The goals of software analysis and testing are to measure essential software proper­
ties and to enable development of software systems with specified ranges for those pro­
perties. Reliability of software products is gaining increasing importance, particularly
for systems whose malfunction may result in loss of human life, compromise of national
security, or massive loss. of property. Software properties related to reliability include
constraints on functional behavior, timing, and storage space. Software maintenance is
also a major concern because it typically accounts for more than half the cost of a
software system. Software properties related to maintenance include the subset of a
software system affected by a proposed change, the effects of a software modification on
a given reliability property, and invariant relationships among members of a family of
software systems.

Classical approaches to reliability are based on the assumption of an imperfect
software development process, and hence focus on detecting errors and measuring relia­
bility properties of software products. More recently proposed approaches explore spe­
cial types of computer-aided software development processes which can guarantee the
resulting software products are free of particular classes of errors via properties of the
fonnalized development process. Research on software analysis and testing should
address processes for achieving desired prope1ties of software products as well as
methods for measuring those properties.

2. Levels of Software Analysis and Testing

Different types of software analysis and testing are appropriate at different stages of
software development, as summarized in Fig. 1.

2.1. Requirements Level

The requirements level established the goals for a proposed system and formulates
models of the problem and the expected environment of the proposed system.

1

Level

Requirements

Specification

Design

Coding

Evolution

Type of Analysis and Testing

consistency: truth maintenance
model validation: simulation and proof
subgoal verification: prototyping and proof

adequacy: prototyping, operational scenarios
consistency: type and domain checking
safety: proofs
validation: paraphrasing, views, simplification

verification: proof of decomposition
liveness: deadlock and starvation checking
robustness: impact of degraded hardware
design for testing: control and observation
performance: complexity analysis
feasibility: satisfiability proofs

synthesis: meaning-preserving transformations
perfonnanc~: tin1e and space analysis
liveness: proof of (clean) tennination
real-time: analysis of scheduling methods
generic units: analysis of component families
error detection: complete test sets
error location: weakest preconditions

change impact: symbolic differences
restructuring: meaning-preserving transformations

Fig. 1 Types of Software Analysis and Testing

An important aspect of requirements analysis is achieving and maintaining con­
sistency as the analysts discover and record the requirements. A promising approach to
this problem is providing automated support for calculating and maintaining derived pro­
perties and consequences of the requirements, and for tracing dependencies to determine
the causes of conflicts and inconsistencies. Better algorithms for this process and primi­
tives suitable for expressing and effectively maintaining dependencies in software
requirements should be investigated.

Another aspect of requirements analysis is modeling the environment of a proposed
system. Especially for embedded software systems, an accurate fonnal characterization
of the system to be controlled is essential for assessing the effectiveness of the control
software. The environment of such a system must often be simulated or otherwise

2

fonnally analyzed to enable safe and meaningful testing or analysis of the embedded
software system. Systematic methods for validating and testing the formal models of the
environment against the properties of the actual physical systems they represent are
needed. Both analytical and experimental methods should be explored to establish that
the fonnal environment models used in other software analysis and testing activities are
adequate representations of reality.

Many critical software systems are embedded systems, which means that the
software is part of a larger system. Tims an essential part of checking the adequacy of
the requirements for the software is checking that any system meeting the requirements
will be sufficient to meet the requirements for the larger system in its intended opera­
tional context. Hard real-time constraints in an embedded system are often motivated by
the requirement to control the larger system to ensure it remains within a given range of
operating states. For example, the cycle rate of an auto-pilot must be sufficiently high to
ensure that the airplane remains within a given radius of its planned position at all times.
At the current time, lower level requirement~ are usually formulated based on past
experience and informal guidelines rather than on systematic derivations or verification
procedures with respect to the higher level requirements. Both formal and experimental
methods for systematically establishing such properties are needed. Required supporting
technology for this process includes computer-aided construction of prototypes.

2.2. Specification Level ·

The specification level is concerned with defining the interface of a proposed sys­
tem, both at the functional and the command representation levels.

The primary measure of the adequacy of a specified interface is whether it will meet
the needs of the user. This question is best addressed by experimental rather than analyt­
ical techniques because it addresses the problem of checking the correspondence between
a fonnalized specification and the actual and informal needs of the users. One way of
approaching this problem is via prototyping and operational scenarios. Operational
scenarios are common tasks in the customer's problem domain, expressed in the user's
terms. Such scenarios serve as test cases for the specifications, whose purpose is to
determine whether a proposed interface is adequate for carrying out all of the tasks the
users will have to perform. Such a test passes if the facilities provided by the proposed
system interface can be combined to carry out the tasks in tl1e operational scenario, and
provide a systematic means for exercising a prototype in a demonstration to the users.
Systematic methods for deriving sets of scenarios from a requirements document, cover­
age criteria, and experimental evaluation of the effects of such coverage criteria on
change requests to the affected interfaces during system maintenance should be investi­
gated.

A related concern is validating a formal specification, to ensure that it correctly cap­
tures the intentions of the users. While this is an informal process, it can be aided by for­
malized and automatable procedures. Some of the processes involved are paraphrasing,
projection, and simplification. Paraphrasing is the process of transfonning a formal
specification into a fonn that a user can w1derstand, while preserving its meaning. Pro­
jection is the process of extracting the parts of a specification relevant to a particular user
or task, while hiding other details. Simplification is the process of transfonning a fonnal
specification into a simpler form with an equivalent meaning. These three processes can

3

be combined to help users selectively review formal specifications using representations
they can understand. The research questions in this area concern certifying the transfor­
mations to ensure they preserve the meaning of the specification and experimentally
evaluating the effectiveness of different representations for communicating with
untrained users.

Consistency of a specification is another common concern, especially for large and
complex systems. Since consistency is a property of a formal document, it can be
addressed by analytical techniques. Some aspects of consistency checking that need
further development are type and domain consistency checking. Type checking at the
specification level is more difficult than the corresponding problem at the code level
because types can have subtypes defined by semantic considerations. Domain checking
is the process of ensuring that partial functions or predicates are used only within their
domain of definition, and that partially defined generic units are instantiated only with
actual parameters in their respective domains of definition. Logical inference capabilities
are necessary for both of these kinds of specification analysis.

Another concern with formal specifications is checking safety properties. For
example, past research projects have been concerned with whether a proposed operating
systems kernel satisfied certain security properties, such as the .impossibility of transmit­
ting classified information from a process with a high security classification to an unau­
thorized process. The goals of safety analysis procedures are to identify cases where the
specifications allow behaviors violating the safety properties, or to certify that no such
cases exist. Systematic procedures for this process are needed because the connection
between a formal specification and a safety property can be quite inQirect and can require
extensive reasoning and analysis to establish.

2.3. Design Level
The design level is concerned with the decomposition of a problem into a hierarchi­

cal structure of independent modules. Such a decomposition consists of interconnection
infonnation and formal specifications for the components.

The primary reliability property of a decomposition structure is whether it will
correctly realize the specification at the next higher level. This problem is subject to
mathematical proof techniques. The problem is easier to solve than the general proof of
correctness problem at the code level because the module interconnection language is
can be considerably simpler than a programming language. Most of the analysis can be
carried out at the specification level, since the problem is to check whether a given com­
bination of specified components will satisfy the required properties of the composite.
Research questions in this area involve the best choice of interconnection primitives to
support effective and efficient inference procedures.

Another type of property of interest for parallel and distributed systems is liveness.
Techniques for checking for potential deadlock or starvation conditions in such a design
are des.ired. Such techniques can be based on the combination of fast graph algorithms
with satisfiability checking for paths leading to potential problems. The main research
questions are finding efficient special purpose analysis techniques that can address
semantic issues which are neglected by classical Petri net techniques or involve infinite
graphs if encoded as standard Petri nets.

4

An important class of analysis involves the effects of degraded hardware on the pro­
perties of a design, relative to a mapping of software components to hardware com­
ponents. This kind of analysis is essential for achieving reliable fault tolerant systems,
especially those with distributed implementations. In addition to certifying that proposed
configurations realize given degrees of fault tolerance, automatic derivation of the
implied constraints on allocation of software functions to hardware units is desirable.

Automated assessment or augmentation of a design for supporting testing is another
issue at the design level. Facilities for control and observation of closed modules such as
abstract data types and machines are needed to support testing. Guidelines for what attri­
butes of a system need to be controlled or monitored for effective testing must be
developed, along with automated techniques for generating the code that realizes the con­
trol and monitoring functions to be added during testing. Such an investigation should be
coupled with an analysis of the impact of the additional code on time and space require­
ments, and techniques for automatically compensating for their effects in checking tim­
ing and space constraints.

Evaluation of a design for time and space performance is another kind of software
analysis that has potential importance. Automated support for classical complexity
analysis is needed, along with estimates for the ranges of input sizes and constant factors
detennined by classes of algorithms.

A final consideration is satisfiability. The satisfiability of a specification can be
established if an implementation can be produced and certified to be correct. However, it

' would be useful to determine whether it is possible to satisfy a given specification before
the implementation is attempted, and in cases where it is not, to characterize the set of
inputs for which the specification is impossible to meet. Analytical techniques for con­
stmcting weakest infeasible preconditions characterizing this set of inputs should be
explored.

2.4. Code Level

The best way to achieve quality is to systematically prevent errors. Automatable
methods for synthesis of efficient code from formal specifications via meaning­
preserving transformations should be investigated. Of particular interest are systems that
can choose transformations without explicit human guidance, or with guidance from gen­
eral declarative advice that can be formulated without explicit reference to the details of
the current state of the derivation and does not require explicit human interaction during
the derivation process.

Accurate perfonnance analysis requires detailed code and knowledge about proper­
ties of a particular compiler and target machine. Generic table driven methods for per­
fonning such analysis, and for relating design-level properties of abstract algorithms to
detailed properties of actual machine-level implementations and compiler opt.unizations
is needed to accurately certify correctness of programs with hard real-time and real-space
constraints. Research problems in this area include fonnal modeling of implementation­
specific properties and constraints in ways that can be combined with implementation­
independent analyses of abstract programs.

Another problem is certification of clean tennination. Tius problem gains new
dimensions in parallel and distributed systems, where tennination can be influenced by

5

scheduling properties and hardware failures. Research questions include models and
techniques for analyzing programs in these domains.

Analysis of real-time systems includes analysis of scheduling methods to determine
whether a proposed scheduling discipline will meet specified deadlines under all possible
operating conditions. Research questions in this area have flexible scheduling methods,
the effects of shared resources, overload resolution policies, and remote communications
as major concerns.

The problem of certifying generic code units or families of related programs gen­
erated by meta-programming schemes is a major concern in systems for managing reus­
able software. A software component is most effectively re-used if it is flexible and can
be adapted to many needs. Such a component often corresponds to a family of related
program units with an unbounded nwnber of elements. The problems of testing and
analyzing the reliability of such program families is an important research question.

Classical testing approaches need more foundational work on the construction of
complete test sets. A complete test set is a set of test cases which is guaranteed to detect
any error in a particular well-defined class of errors. More work is needed on the con­
struction of finite complete test sets, an on characterizing the set of faults whose absence

·· is guaranteed by successful execution of the test set. Such work should include
automated techniques for constructing the required test oracles from the formal
specifications of the code to be tested.

An aspect of code analysis of great practical importance is error location. One
approach to this problem is to derive weakest preconditions for suspected pieces of code,
to characterize the space of inputs for which the code fails.

2.5. Evolution Aspects
Software maintenance is acknowledged to be more difficult and error prone than the

initial development. An important kind of software analysis for this part of software
development is characterization of the effects of a change to a software system. Sym­
bolic representations for the parts of the input space and the output space of a program
affected by a given change to the code are useful for testing and evaluating a
modification for conformance with the expected results. Computer-aided identification
of the parts of a specification affected by a given requirements change, the parts of a
design affected by a given specification change, and the parts of the code affected by a
given design change are also important areas for research.

When changing a software system, it is often necessary to reverse an earlier design
decision while preserving the later ones. Automated construction and application of
meaning-preserving transformations that accomplish this is an important research prob­
lem.

3. Conclusion
Advances in software analysis and testing are essential for realizing trusted software

systems. Work in this area should be expanded beyond the traditional domain of testing
code in a programming language to include software products at all stages of develop­
ment, from requirements analysis to system evolution. Further work on testing at the
code level is also needed, to enable finn conclusions to be drawn from finite sets of test

6

cases constructed by definite and effective methods. Software analysis techniques
addressing properties of parallel, distributed, real-time, and knowledge-based systems
should be explored as well as those for sequential systems. Well founded and mechaniz­
able analysis techniques are needed for meta-programming and program transformation
systems as well as for individual software products.

7

DISTRIBUTION LIST

(1) Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

(2) Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

(3) Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

(4) Director of Research Administration 1
Attn: Prof. Howard
Code 012
Naval Postgraduate School
Monterey, CA 93943

(5) Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

(6) Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217

(7) Naval Postgraduate School 100
Code 52Lq
Computer Science Department
Monterey, CA 93943

1

