
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1988

Languages for Specification, Design, and Prototyping

Berzins, V.; Luqi
Naval Postgraduate School

V. Berzins and Luqi, "Languages for Specification, Design, and Prototyping",
Technical Report NPS 52- 88-038, Computer Science Department, Naval
Postgraduate School, 1988.
https://hdl.handle.net/10945/65280

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

-~

., .

NPS52-88-038

NAVAL POSTGRADUATE SCHOOL
Monterey, California

LANGUAGES FOR SPECIFICATION, DESIGN, AND PROTOTYPING

Valdis Berzins

Luqi

September 1988
Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

The work reported herein was supported in part by the National Science Foundation
and the Naval Postgraduate School Research Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LU
Assistant Professor
of Computer Science

Released by:

KNEALE T. J.V.m~~ttb-b
Dean of Information
and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER($)

NPS52-88-038
Ga. NAME OF PERFORMING ORGANIZATION Gb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 National Science Foundation
Ge. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA. 93943 Washington, DC 20550
Ba. NAME OF FUNDING/ SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School O&MN, Direct Funding
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Monterey, CA. 93943
11 . TITLE (Include Security Classification)

LANGUAGES FOR SPECIFICATION, DESIGN, AND PROTOTYPING (U)
12. PERSONAL AUTHOR(S)

BERZINS, Valdis, LUQI
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Annual FROM 87 /09 TO 88/08 1988, Sept 73
16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer aided software engineering, rapid prototyping,
specification, real-time software, embedded systems, soft-
ware design, reusability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is about specificaiton, design and prototyping languages supporting new
paradigms for software development. The languages used in the Computer Aided Software
Engineering paradigms differ from the ones in traditional software development because
of the need for supporting a higher level of automation at the early stages of software
development. Analysis and comparisons among these languages are discussed in detail in
this report •

•

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

~ UNCLASSIFIED/UNLIMITED [ii SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Luqi (408) 646-2735 S?T,n

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 'tr U.S. Government Printing Office: 1986-606-243

UNCLASSIFIED

•

..

. ..

·-

Languages for Specification, Design, and Prototyping1

Valdis Berzins

Luqi

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

This report is about specification, design, and prototyping languages supporting new

paradigms for software development. The languages used in the new CASE paradigms

differ from the languages used in traditional software development because of the need

for supporting a higher level of automation at the early stages. The traditional software

life cycle consists of a series of phases sometimes called requirements analysis, func

tional specification, architectural design, module design, implementation, testing, and

evolution (Fig. 1). The result of each phase is a document serving as the starting point

for the next phase, or an error report requiring reconsideration of the earlier phases.

Traditionally the phases before .implementation have been carried out largely by manual

processes, and the resulting documents have been expressed in informal notations. The

implementation phase produces a document expressed in a programming language. Pro

gramming languages are formal notations that can be processed by a variety of

automated tools, such as compilers, static analyzers, debuggers, execution profilers, etc.

Most of the computer-aided design in traditional software development environments is

1This research was supported in part by the National Science Foundation under grant number CCR.-8710737.

1

requirements analysis
\,

i. functional specification
\,
-~---...architectural design

\,
-. module design

\.,
-~-~implementation

\,
.. testing

\,
_..evolution

Fig. 1 Traditional Software Life Cycle

applied in the implementation and later phases.

A formal language is a notation with a clearly defined syntax and semantics. For

mal languages are critical components of a CASE environment because they are needed

to achieve significant levels of computer-aided design with currently feasible technolo

gies. Automated tools are capable of detecting structure in a notation only if the struc

ture has been formally defined, and responding to aspects of its meaning only if the

meaning of the aspect has been formally defined. The tools applicable to informal nota

tions usually treat them as uninterpreted text strings, which limits the tools to bookkeep

ing functions such as version control. Notations with a formally defined syntax but an

informal semantics can support tools sensitive to the structure of the syntax, such as

pretty printers and syntax-directed editors. If both the syntax and semantics of a special

purpose language have been fixed and clearly defined, it becomes possible to create

2

.. ·

.•

....
automated tools for analysis, transformation, or execution of the aspects of the software

system captured by the language and its conceptual model.

The new software development paradigms are a response to problems with tradi

tional development methods, which take a large effort to produce systems that do not

meet the customer's needs very well. These problems are caused largely by labor inten

sive tasks at the early stages of the development. Currently there are several ways to

approach the problem. One approach is to automate some of the tasks in the early stages

of the traditional life cycle. Examples of this approach are work on executable

specification languages and formal verification. Another CASE approach introduces the

prototyping software life cycle.

A software prototype is an executable model or a pilot version of a proposed sys

tem. A prototype is usually a partial representation of the proposed system, used as an

aid in requirements analysis and system design through an iterative process of negotia

tion between the systems analyst and the customer. The construction activity leading to

such a prototype is called prototyping. The customer describes the requirements, while

the analyst interprets them and builds a prototype. The analyst then demonstrates the

execution of the prototype to the customer. The requirements are adjusted based on feed

back from the customer and the prototype is modified accordingly until both the custo

mer and the analyst agree on the requirements. This process is illustrated in Fig. 2.

Formal languages for the specification, design, and prototyping of software systems

• · are needed to support the new CASE paradigms, since they involve computer-aided

analysis and design from the earliest stages of software development. In the new para

digm, the goals and required behavior of the intended system are negotiated in the con-

3

:

determine Requirements_ construct -
Requirements Prototype

~ I

Requirements ~, Prototype
Adjustments

demonstrate --- System -
Prototype Implementation

OK

Fig. 2 The Prototyping Life Cycle

text of a computer-aided analysis of the customer's problem.

A CASE environment with knowledge-based assistants for each phase of develop

ment starting with requirements analysis is an example of this approach. The computer

aided aspects of the process include completeness and consistency checking, displaying

descriptions of the system from various viewpoints, demonstrations of prototypes, con

currency and configuration control for the design data, and information retrieval func

tions. The CASE tools in such an environment depend on each other, and must be

integrated together to meet this goal. Such integration depends both on formal languages

and emerging technologies for managing engineering databases [27-29, 38].

4

•

The purpose of a specification language is to record a specification. A specification

is a black-box description of the behavior of a software system or one of its components.

A black-box description explains the behavior of a software component in terms of the

data that crosses the boundary of the box, without mentioning the mechanism inside the

box. A specification language should allow simple abstract descriptions of complex

behaviors that can be easily understood by people and mechanically analyzed.

The purpose of a design language is to record a design. A design is a glass-box

description of a software system or component. A glass-box description gives the

decomposition of a component into lower level components and defines their intercon

nections in terms of both data and control. A design language should allow simple

abstract descriptions of system structure that can be easily understood by people and

mechanically analyzed.

The purpose of a prototyping language is to define an executable model of a system,

using both black-box and glass-box descriptions. Some meta-programming and func

tional programming languages have similar properties. However, a prototyping language

has no obligation to give detailed algorithms for all components of the system as long as

it is descriptive and executable. Prototyping languages and programming languages have

different evaluation criteria: a prototyping language is optimized to allow an analyst to

create and modify a working system as quickly as possible, while a programming

language is optimized to allow a programmer to produce a time and space efficient

implementation. A prototyping language supports simple and abstract system descrip

tions, locality of information, reuse, and adaptability at the expense of execution

efficiency. A prototyping language should have facilities for recording specification and

5

design information, subject to the constraint that the final product must be executable.

The difference between specification and design languages is the difference

between interface and mechanism: a specification says what is to be done, and a design

says how to do it. An important purpose of specification and design languages is to serve

as a precise medium of communication between the members of a development team

working on a large system. The evaluation criterion for both specification and design

languages is the ability to support simple, concise, and humanly understandable descrip

tions of complex behavior. It is useful for specification and design languages to be exe

cutable, but simplicity of expression takes precedence when the two considerations

conflict. It is important to be able to determine the properties of a specification and to

certify that a design realizes a specification. Execution can help attain these goals, but it

is not the only way to do so, and it is not necessarily the most effective way.

Prototyping languages are used in requirements analysis for the purpose of require

ments validation via early demonstrations to the customer. They are also useful for

evaluating competing design alternatives, validation of system structure, and feasibility

studies. Prototypes can be used to demonstrate the feasibility of real-time constraints and

to record and test interfaces and interconnections. Specification languages are used for

recording external interfaces in the functional specification stage and for recording inter

nal interfaces during architectural design at the highest levels of abstraction. They are

also used in verifying the correctness and completeness of a design or implementation.

Design languages are used for recording conventions and interconnections during archi

tectural design and module design.

., .

...
It is useful to briefly examine the history of language development, because the ter-

minology for describing languages has been changing dramatically along with implemen-

tation technology. Originally any compiled programming language was a very high level

language. As systems became more complex, the meaning of the term shifted towards

design languages which can describe system structure without introducing low level

implementation details and generalized components that can be adapted to many dif

ferent situations. Eventually technology improved to the point where programming

languages could support abstraction and generalization (e.g. Ada and Smalltalk). Sys

tems became even larger, and the meaning of the term shifted again, towards languages

describing what a system is supposed to do, without specifying how the system is to

accomplish its goals. Technology is advancing to the point where some of the languages

in these categories are getting to be executable as well (e.g. Prolog, Refine and PSDL).

The concept of a very high level language is a moving target that depends on the current

state of compiler technology and the speed, memory capacity, and cost of available

hardware.

This report presents languages for specification, design, and prototyping. We dis

cuss these classes of languages one at a time to simplify the presentation. Many of the

existing languages for software development described in the literature combine aspects

from several of these categories. We describe the characteristic properties and restric

tions for the languages in each category, examine ways to use the languages, and com

pare them with other kinds of languages. This report is limited to general purpose

languages that can span a range of applications.

7

1. Specification Languages

The purpose of a specification language is to describe the interfaces of a software

system or component. Specification languages are used for formulation, analysis, com

munication, and retrieval. A specification language provides a set of concepts and nota

tions which allow the analyst or designer to formulate an interface for a system or com

ponent. Notations are important for inventing large systems because people are limited

in the number of items they can consider at the same time. Considering each aspect of

such a system in isolation and recording the result before proceeding to the next is a com

mon way of overcoming this limitation. The language used is important because it

influences the analyst's thinking and determines which things are easy to express, and

which are impossible or impractically difficult. A specification language should help the

analyst to construct a simpler conceptual model for the intended system and to establish

and maintain its conceptual integrity.

A formal specification language allows the proposed interface to be analyzed with

respect to many different kinds of properties. At a structural level, the language can be

used to help the analyst organize her thoughts and to determine which pieces of informa

tion are still missing. At a semantic level, the language can be used to determine many

properties of the description and the behavior of the proposed intetf ace. Examples of

such properties include type consistency, correctness of a particular response for a partic

ular input, the set of correct responses for a particular input, freedom from deadlock for

multi.step protocols, coverage of all possible input values, satisfiability, uniqueness of

outputs, and consistency with a proposed design. None of these semantic properties can

be determined without a precise specification.

8

The specification language is a medium for communication between the analysts,

the development team, and the customers. The specification~ often form part of the con

tract agreement governing a development project, and act as a primary source of infor

mation about what the designers and implementors are supposed to accomplish. Large

systems involve many people over a long period of time. In large organizations oral

communication is ineffective, and decisions have to be written down and circulated.

Written specifications avoid the need for repeating the same information to different

audiences, getting everyone together at the same time, or relying on imperfect human

memories. The information in the specification is also the basis for customer review,

although it may be necessary to paraphrase the information [25, 52] and to provide sum

maries and simplified views.

Specifications also have an important role in retrieving reusable software com

ponents. To find an existing component that can perform a given task, it is necessary to

describe the required behavior and match it to descriptions of the behavior of existing

components. For large component libraries this is a major task that can benefit from

mechanical assistance [37, 38], suggesting reusable components should be stored with

formal specifications. The CASE tool performing this function is known as a software

base management system [55].

The primary benefits of using a formal specification language are precision and the

potential for automation, which lead to better software products. The consequences of

not using a formal specification language are miscommunication, a manual working

style, and software that is hard to use and understand. Miscommunication is caused by

ambiguity and incompleteness, which allow the author of a document to have a different

interpretation than the readers of the document. Miscommunication leads to system

faults. A manual working style leads to larger numbers of faults because people make

more random errors than programs do and people do not have enough time and patience

to do exhaustive error checking. Since informal languages do not guide the analysts'

thinking or support simplifying transformations very well, systems developed without a

formal specification language are often more complex than they have to be.

A specification language should have the following properties:

Precision

Each statement in the language should have a single well defined meaning.

Abstractness

It should be possible to completely define interface behavior without considering

mechanisms and low level details.

Expressiveness

The language should allow brief descriptions of common system behaviors which

are understandable as they stand. Abbreviations that must be expanded before they

can be understood are not expressive in this sense. In addition to existing, the brief

descriptions must be constructible by people in a natural way.

Simplicity

The rules describing the meaning of the language should be simple, without excep

tions or interactions between multiple components. This is important both for ease

of learning and ease of automation. It is also important to avoid misunderstandings,

because situations where extensive reasoning is required to determine the meaning

of a statement provide opportunities for people to make errors of interpretation.

10

Locality

The language should support localized description units with limited interactions

and the dependencies between the units should be mechanically detectable. This

reduces the amount of information needed to understand or modify a given aspect of

a specification to a humanly manageable level, and supports mechanical aid in

assembling and displaying the information needed for a single specification step.

Tractability

It should be possible to implement a wide variety of automated aids for analyzing,

transforming, and implementing subsets of the specification language. While the

subsets of the language that can be handled by the tools should be as large as possi

ble, it may not be possible to cover the entire language without compromising the

abstractness and expressiveness of the language.

Adaptability

The language should support the description of general purpose components and the

adaptation of those components to particular situations. Generic modules and inher

itance mechanisms are two well known ways to support adaptability.

Specification languages are designed for CASE paradigms following the traditional

software life cycle. A specification language is used in functional specification to define

external interfaces of the system and in architectural design to define internal interfaces

of the system.

The relation between requirements and specifications is controversial, and there has

been no clear agreement on the distinction between the two [30]. We have found the fol

lowing formulation useful.

11

A specification defines a set of disjoint interfaces. Formally, an interface is a predi

cate on a subset of the possible observable behaviors of a system indicating which

behaviors are acceptable and which are not.

Requirements consist of behavioral goals for the system and constraints on its

development. The constraints include limits on schedule and budget. Formally, a goal is

a function from interfaces to a set of utility values. In the simplest case the utility set can

consist of two values, acceptable and not acceptable, in which case goals become predi

cates on interfaces. This corresponds to the view of a goal as an acceptance test, which

does not completely capture current practice in requirements analysis. It is more realistic

to view the utility set as an ordered interval of values which indicate the relative useful

ness of different interfaces. This corresponds to the view of a goal as an objective func

tion in an optimization problem.

From this point of view, requirements analysis is the process of determining the

constraints and the objective function, while functional specification is the process of

solving the optimization problem. The solution to the optimization problem is an inter

face, represented in the specification language.

In current practice the developers have only informal and approximate descriptions

of the goals, which are used to guide intuitive design tradeoff decisions producing an

approximate solution to the optimization problem. Requirements analysis and functional

specification often overlap in time, because the design tradeoff decisions being made

require more information about some aspects of the goals, in the form of more accurate

approximate descriptions. It is a matter of research whether this optimization process can

be usefully automated and whether classical results from optimization theory can be

12

applied. One of the difficulties is calculating accurate estimates of the budget and

schedule needed to implement a particular interface or class of interfaces. Another is that

the descriptions of the goals available at any given time are incomplete and uncertain.

A validation step is required to demonstrate that the proposed interface resulting

from the functional specification effort meets the real needs of the customer, given that it

optimizes the formal model of the constraints and goals resulting from requirements

analysis. This step is needed because of the uncertainty associated with the fonnal

model, which is usually incompletely understood by the customer. To carry out the vali

dation step, it is necessary to demonstrate the characteristics of the proposed interface to

the customer. Since most interfaces are capable of infinitely many concrete behaviors

such demonstrations are inherently incomplete, with statistical rather than an absolute

conclusions.

The relation between specifications and programs is more traditional. A program

determines a set of algorithms and data structures to be used to calculate the responses of

a software system or component. The correctness of a program with respect to a given

interface can be demonstrated by showing that all possible behaviors of the proposed

mechanism are acceptable with respect to the interface (proof of correctness), and it can

be refuted by exhibiting a particular behavior of the mechanism that is not acceptable

with respect to the interface (testing). The specification also tells the programmer and

the program generation tools what they are supposed to accomplish (implementation). In

the current state of CASE technology, it is reasonable to expect that implementation will

not be entirely manual or entirely automatic, but the result of the cooperation between

skilled programmers and a set of computer-aided design tools. This imposes a dual bur-

13

den on specification languages: the need for effective communication with both people

and programs.

Specification languages are used in specification-based software design [7]. The

goal of architectural design is to decompose a system into a set of simpler modules.

Specification languages are used to define the interfaces of these modules. Decomposi

tion into simpler tasks is necessary for implementing large systems whether the design is

created by people or CASE tools. Precise specifications are needed to guide implementa

tion, especially if the process is to be computer-assisted.

There has been increasing interest in executable specification languages, motivated

by two main considerations:

(1) automated prototyping for validating requirements and specifications, and

(2) automated implementation of production quality software.

The main distinction between the two versions of the problem is that the first version

relaxes performance constraints while the second does not. If the specification language

is strong enough to be interesting, both versions of the problem are algorithmically

unsolvable in the general case. The practical impact of an "executable" specification

language can be judged by considering the expressiveness of the entire language, the

expressiveness of its executable subset, and the relative difficulty of transforming simple

but non-executable specifications into executable equivalents.

Many specification languages use some form of predicate logic for describing the

constraints and properties of input and output of a black box in the system independently

of the algorithms and data structures used for calculating the outputs of the box. This has

both advantages and disadvantages. Quantifiers are convenient to use because they allow

14

many problems to be specified in a simple, compact, and natural way. This allows the

systems specifier to work at the black box level, concentrating on behavior of a system

rather than the mechanisms of implementing the system. Quantifiers can also lead to

implementation difficulties. Specification languages that include unrestricted integers

and quantifiers can specify functions that are not computable. Such functions are impos

sible to implement perfectly, since any partially correct implementation will have some

input values for which execution will fail to terminate even though the specified function

has a well defined value. An implementation is partially correct if it never produces an

output that conflicts with the specification. While a plausible response to this difficulty is

that customers will not specify non-computable functions in practical projects, there are

related difficulties that are less easily avoided.

Consider a function with an output y subject to the following specification.

if for all(x: integer :: f(x) = g(x)) then y = 0 else y = 1

This is an example of a conditional with a universal quantifier in the test predicate, in the

syntax of Spec 87. The output y is to be zero if the functions f and g have the same value

for all integer arguments and one otherwise. Any compiler that can handle all

specifications of this form solves the equivalence problem for recursive functions, which

is well known to be undecidable. According to Rice's theorem, examples of

specification forms with this property are plentiful [48]. This means any specification

compiler will have many specifications for which compilation will fail to terminate or

will produce an implementation that either produces incorrect results or fails to terminate

for some inputs. An example of the first case is an implementation strategy where the

compiler tries to both prove the theorems "f = g" and "f ':/! g" in parallel, producing the

15

constant O or the constant 1 as an implementation if the corresponding goal succeeds and

taking forever to compile if it cannot decide. An example of the second case is an imple

mentation strategy where the compiler produces a program that tries the equivalence off

and g on particular integers until it discovers a difference and produces a 1, and fails to

terminate if there are no differences.

Neither of the above alternatives is very appealing. More practical approaches

either impose a time limit and report failures for compilations that are too difficult, or

restrict the specification language to forms that can be successfully compiled. The

second alternative is less attractive because it is difficult to impose syntactic restrictions

that will guarantee successful compilation without damaging the abstractness, expres

siveness, and simplicity of the specification language. Under the first alternative the

designer can initially work with the simplest formulation, and later help the specification

compiler over difficult spots by adding annotations or giving interactive advice. The

annotations can be removed in a mechanically produced summary view when the

specifications are used for communication rather than execution, thus regaining the initial

simplicity.

One well established category of specification languages is based on heterogeneous

algebras. Some of the specification languages in this category include Larch [19, 20] and

Clear [8]. The languages in this class are geared towards specifying abstract data types,

and many of them support correctness proofs for programs written using the data types

[45]. In algebraic approach data types are specified by giving axioms for the primitive

operations of the type in the form of conditional equations. By adding restrictions on the

form of the axioms, algebraic specifications can be made executable [12, 17].

16

One set of restrictions that will suffice to make a set of algebraic specifications exe

cutable is the following:

(1) The axioms must be orientable so that the right hand side of each equation is

strictly less than the left hand side with respect to some well founded ordering on

symbolic terms.

(2) The oriented axioms must be confluent [22].

(3) The set of axioms must be sufficiently complete [17].

(4) The left hand side of each axiom must contain at least one instance of a construc-

tor operation.

These conditions allow the axioms to be treated as rewrite rules. The first condition

ensures that all rewrite sequences terminate, so that each expression has a normal form.

The second condition ensures that the result of a rewrite sequence is independent of the

order in which the axioms are applied, so that all equivalent expressions have the same

normal form. The Knuth-Bendix algorithm can be used to check for confluence and to

transform some sets of axioms without the property into equivalent sets with the property

[22]. The third condition ensures every non-constructor operation applied to variable

free terms is provably equivalent to a constant of another type with respect to the axioms.

An operation is a constructor if its range is the type being defined. Since a constant of

another type contains no constructor operations, it must be in normal form, and since the

normal form is unique, all rewrite sequences for a non-constructor expression must result

in a constant. This ensures that all variable free terms of other types can be evaluated by

applying the rewrite rules.

17

An example of an algebraic specification with these properties is given below.

type set[t]
emptyO: set[t]
add(t, set[t]): set[t]
in(t, set[t]): boolean
subset(set[t], set[t]): boolean
equal(set[t], set[t]): boolean

axioms
in(x, empty)= false
in(x, add(y, s)) = equal(x, y) or in(x, s)
subset(empty, s) = true
subset(add(x, sl), s2) = in(x, s2) and subset(sl, s2)
equal(sl, s2) = subset(sl, s2) and subset(s2, sl)

end

The free variables in each equation are implicitly universally quantified. Equations in

this form are equivalent to recursive definitions of the non-constructor operations, if

values of the type are represented as symbolic expressions in terms of the constructor

operations. Consequently, writing specifications in the restricted form is much like pro

gram.ming. Sometimes it is necessary to introduce auxiliary operations to define the

operations we are really interested in [42]. In the example, it is difficult to define the

"equal" operation on sets in terms of the "in" operation without introducing an auxiliary

operation such as "subset". If the problem does not require a "subset" operation, then

introducing one complicates the specification by adding unnecessary details.

Another approach to specifications is based on logic and the event model. Some

languages in this class are MSG 84 [4] and Spec 87 [6, 7]. This approach uses predicate

logic to define the responses to an event, where an event consists of the arrival of a mes

sage at an interface boundary. The major emphasis of these languages has been on

abstractness and expressiveness. Both MSG 84 and Spec 87 have facilities for defining

functions, state machines, and iterators as well as abstract data types. Experience in a

18

series of software engineering courses [5] indicates that MSG 84 is useful in practice on

software developments of appreciable size (five people teams working twenty weeks).

The languages support consistency checking of many kinds, and tools for automating the

checking are under investigation.

Spec 87 is more advanced than MSG 84 with respect to expressiveness and simpli

city. An example of a Spec 87 fragment defining the equal operation on sets is shown

below.

MESSAGE equal(sl s2: set{t})
REPLY (b: boolean)
WHERE b <=> FOR ALL(x: t :: in(x, sl) <=> in(x, s2))

This says two sets are equal if they have the same elements. This definition is simpler

than the corresponding algebraic definition, since three axioms have been replaced by

one and the auxiliary concept "subset" has been eliminated. This axiom cannot be

expressed in the conditional equation form used by the algebraic techniques because its

prenex normal form contains an existential quantifier, and the conditional equation form

admits only universal quantifiers. The definition is not executable as it stands because

the bound variable x ranges over a potentially infinite type t, but it is subject to the fol

lowing meaning-preserving transformations.

WHERE b <=> FOR ALL(x: t :: in(x, sl) => in(x, s2))
& FOR ALL(y: t :: in(y, s2) => in(y, sl))

WHERE b <=> FOR ALL(x: t SUCH THAT in(x, sl) :: in(x, s2))
& FOR ALL(y: t SUCH THAT in(y, s2) :: in(y, sl))

The first transformation expands the equivalence into a conjunction of two implications,

and decouples the universal quantifiers on the two conjuncts. The second transformation

turns the implications into restricted range quantifications. The resulting specification is

19

executable by enumeration because the bound variables x and y have been restricted to

finite sets. Informally, the transformed specification says two sets are equal if all of the

elements of the first are contained in the second and vice versa.

The Gist language follows a different approach to specifications [1,24]. Gist is

based on an extended entity-relationship model of a global state, and the behavior of a

system is viewed as a sequence of states. This choice is motivated by the philosophy that

the functions of a proposed system should first be defined in a global model, and should

be allocated to particular internal or external subsystems in a later step. Unlike the

entity-relationship model common in database work [10], the version of the model used

in Gist allows relations with infinitely many tuples. Relationships are treated as predi

cates and are defined using a first order logic with unbounded quantifiers and modal

operators for time references. The behavior of the system can be characterized by state

invariants and demons that can trigger state changes when stated conditions are met. The

language has facilities for introducing boundaries which can be used for creating black

box descriptions. It also allows global references and imperative statements that can be

used to describe mechanisms.

The tools associated with Gist include a paraphraser, which generates English narra

tive texts from the formal specifications [52]. The paraphraser was originally motivated

by the need to support review sessions with customers who could not read the formal

notation. The paraphraser has also been found useful for locating faults, because it

presents the specifications from a different viewpoint than the fonnal text. Both a sym

bolic and a concrete execution tools are under development for subsets of the language.

The symbolic execution facility describes sequences of states resulting from a given

20

situation using predicates, while the concrete execution facility works with particular

data values.

An approach for generating production quality implementations from specifications

is embodied in the Psi project [14, 15, 26], Chi project [16, 50], and the Refine language.

This work has concentrated on ways to automatically implement behavior specified in

first order logic, and on choosing efficient algorithms and data structures for some com

mon general purpose data types, including sets, sequences, Cartesian products, mappings,

and relations. This approach has been influenced by work on implementing the SETL

language [49].

These problems have been attacked by assembling sets of rules for transforming

logical specifications of behavior into algorithm fragments for realizing the behavior.

The work has been done using a wide spectrum language with the capabilities for

describing both specifications and programs. Such a language is needed for the approach

because the transformations produce intermediate results where logical specifications are

mixed with program fragments. A specification becomes executable when it is

transformed into a program without any specification fragments. The goal of efficiency

is pursued by using petformance estimates as a guideline for choosing between data

representations and algorithms in cases where more than one transformation is applicable

[13]. Work on extending the approach to a wider variety of data types is in progress. An

active research direction in this area concerns application of the technology to user

defined abstract data types.

Specification languages are useful for simplifying the conceptual design of large

systems and for certifying the correctness of critical properties of such systems. Many

21

people are working on automating aspects of the process of producing working systems

from formal specifications. Much progress has been made, and it is reasonable to expect

the future work in the area will lead to practical benefits that include higher quality

software and more efficient software development. Progress on increasing the size and

expressive power of the executable subsets of specification languages is possible and use

ful results are expected from future work in this direction.

The most powerful specification languages available should be used in the analysis

and design of large systems to control conceptual complexity. Such specification

languages do not have computable compilation functions, making it unlikely that imple

mentation of large software systems can be completely automated. A more realistic goal

is implementation by creating and refining annotations for high level specifications.

Many practitioners are currently reluctant to accept formal specification languages

because they see extra work: an additional language must be learned and a formal docu

ment must be produced that does not contribute directly to the program they have to

write. They are reluctant to spend much effort on a document that will be produced and

discarded. This will change if a specification can be made automatically executable by

adding pragmas containing only irredundant compiler directives, especially if pragmas

not needed for the easy but tedious parts of the implementation. Other potential paths to

acceptance are automatically producing documentation or automatically generating and

evaluating test data by means of tools based on the specifications. Even if the pragmas

have the effect of choosing between correctness-preserving transformations, testing will

still be needed because the transformations may depend on potentially incorrect assump

tions about the actual operating environment

22

2. Design Languages

The purpose of a design language is to describe the architecture or internal structure

of a software system or component. The architecture of a software system consists of a

hierarchically structured set of components. The description of a system architecture

involves both a design language and a specification language. The design language is

used to define the structure of the hierarchy and to describe the interconnections between

the components. The specification language is used to define the interface of each com

ponent.

The difference between a design and a program is the difference between a plan and

a finished product: a design records the early decisions that determine an implementation

strategy, while a program contains all the details necessary to get an efficiently execut

able system. The primary goal of a design is documentation rather than execution.

Designs should describe justifications, assumptions, and conventions as well as algo

rithms and data structures.

Design languages are used for formulation, communication, analysis, and planning.

A concise and powerful notation is important for inventing, recording, and communicat

ing designs as well as specifications. The design language is an important medium of

communication between the designers, the managers of the project, the implementors,

and the CASE tools supporting implementation. A design language can be analyzed with

respect to many different properties, such as correctness, performance, and development

cost.

Managers are interested in estimating, planning, and tracking a development pro

ject. Each of the software components determines a number of tasks that must be

23

scheduled, such as the design, implementation, and verification of the component. These

tasks must all be identified before accurate estimation, planning, and task assignments

become possible. The managers and the CASE tools for supporting management func

tions are concerned with extracting task descriptions from the system design and estimat

ing the effort required to do each task.

A design language should have the following properties.

Expressiveness

The language should allow brief and natural descriptions of implementation stra

tegies and justifications. The most powerful known control and data structuring

concepts should be included.

Abstractness

It should be possible to determine the essential properties of algorithms, data struc

tures, and subtasks without going into the low level details.

Incompleteness

The language should support descriptions with a controlled degree of incomplete

ness. Details that must be filled in later should be sufficiently clear to be locatable

by a mechanical procedure.

Correspondence

A design language need not be executable, but it should have an executable subset

that can be automatically mapped into the implementation language. The non

executable features should be subject to automatic transformations into the imple

mentatiol! language if augmented by pragmas explaining how to implement them in

each case. There should also be an automatic mapping from the specification

24

language to the design language for generating the interface description part of the

design.

A traditional idea is that design languages should be extensible [31]. This idea

should be re-examined in the context of a CASE paradigm. It is desirable to incorporate

powerful new ideas in control and data structuring as they come along, since new ideas

are rare and it is easier to extend the design language than it is to convert to a new pro

gramming language. However, since CASE tools depend on the language, it is desirable

to limit the frequency of language changes. If a new design language is going to be

designed for the CASE environment, it should include the currently known types of con

structs for defining program objects, with emphasis on those that are powerful enough to

cover open-ended sets of applications. Examples of such mechanisms include user

defined abstract data types, user-defined loop sequencing abstractions, generic modules,

multiple inheritance, parallel loops, atomic transactions, nondeterministic wait (for

responding to the first observed instance of a set of asynchronous events), and demons

(processes activated whenever a specified predicate becomes true). The mechanisms

chosen should be orthogonal or nearly so. Including many variations on a theme can

increase rather than decrease the designer's intellectual burden. A single more general

mechanism should be sought if a language appears to be sprouting a whole family of

similar mechanisms with small variations.

Another traditional justification for extensible design languages is supporting appli

cation specific constructs while allowing the aspects of the design language common to

all applications to be standardized. With the advent of the powerful and flexible mechan

isms listed above, application-specific constructs can be supplied by standard libraries of

25

specialized operations, data types, looping constructs, generic modules, and inheritable

generalized module fragments without changing the design language. The desire to sim

plify the language by dropping the constructs that are not needed in a particular applica

tion is consistent with this approach, and can be supported by tools providing simplified

subset views of the underlying general purpose language. Some subsets of the language

can be certified to have special properties. For example, the CASE tools may know that

the functional subset of the design language is side-effect free, so that unsynchronized

and unprotected concurrent references can be used in the implementation mapping for

the subset language. The remaining advantage in changing the language is to allow the

use of special syntactic forms familiar in an application domain. Such advantages are

cosmetic, and can be provided by preprocessors or structure editors that support multiple

concrete syntactic forms for the same abstract syntax without affecting the structure of

the language as seen by the CASE tools.

Another consequence of the CASE paradigm is that design languages should be for

mal. Informal descriptions can be included as comments, which are not interpreted by

the tools. Informal descriptions have been used in the past for two main purposes: to

support abstraction, and to make it easier to express designs. Abstraction in this context

refers to the ability to capture the essential elements of a design without getting into low

level details. Some formal ways to achieve this capability depend on predicate logic and

on shared community knowledge. For example, a predicate with quantifiers can be used

to describe a complex condition on a data structure serving as the test in a conditional or

loop statement. State changes can be described either by explicitly introducing and

specifying a black-box component for a lower-level component, or by a transition predi

cate, which specifies the relation between the initial and final states of a transition

without describing the details of how to implement the transition. An example of the use

of shared community knowledge is a reference to a "sort" function with a pragma "use

quicksort". In such a case, "sort" refers to a general class of modules described in a

design library, and "quicksort" refers to a specialization of that class with a particular

algorithm known by the designer to have the properties needed in a particular context.

Formal notations are used to gain the advantage of automated processing, possibly

at the expense of some extra effort in formulation. One approach to design has been to

start from natural language descriptions and to transform them into more formal designs.

Such an approach is based on the premise that either detailed natural language descrip

tions of the processes to be performed are already available from the customer, or that the

system designer can sketch an implementation strategy in natural language more quickly

than in more formal notations. The process of transforming the natural language descrip

tions into a formal design language can be partially automated. Some of the more

interesting tools attempt to identify abstractions by locating repeated phrases in the

natural language text and to identify data types and program objects by locating common

noun phrases. A detailed description of this approach and references to related work can

be found in [3].

The idea that designs should be accompanied by justifications is motivated by the

desire to make changes easier when the system must evolve to meet changing require

ments. Some justifications are easiest to record as informal comments, but doing so

implies checking will be done manually, perhaps at a design review meeting. Examples

of some kinds of justifications and conventions that are important to record are precondi

tions, data invariants, loop invariants, bounding functions, and termination orderings.

27

Preconditions are assumptions on the inputs to a module that must be met for a lim

ited implementation to produce correct results. Preconditions in the design usually come

from the specification, because they are black-box properties. However, sometimes

resource constraints motivate the implementors to introduce stronger preconditions in the

design than were originally specified. Such stronger preconditions have to be reflected

back to the specification [47], and the places in the design where the module is used have

to be checked to make sure they respect the stronger precondition, or adjustments must

be made in case they do not. Mechanical aid for such checking is desirable.

Data invariants are restrictions on data structures that must be respected by all pro

grams creating or modifying its instances. Data invariants usually apply to the imple

mentation structures for abstract data types, serving as hidden internal properties

specified in the design of a type module. Many of the well known data structures for

efficiently implementing common data types gain their efficiency from elaborate data

invariants that have been crafted to avoid recomputation of various properties of the data

structure. The data invariants constitute the assumptions shared by the implementations

of all operations of a type. Since they are not local to a single procedure they can be a

vehicle for unwanted interactions, especially for types so large that it is not practical for

the same person to implement the operations. Bugs caused by procedures damaging

invariants are common and are difficult to diagnose based on fault symptoms because

they involve interactions between pieces of code that are separated both spatially and in

execution time. This justifies expending a fair amount of effort on documentation and

checking.

28

Loop invariants are properties of the state variables of a loop that hold both before

and after every execution of the loop body. Many of the more efficient algorithms

depend on carefully constructed loop invariants to achieve their efficiency. While loop

invariants are local to a single procedure, they should also be documented to avoid inad

vertent damage when the code has to be modified due to a requirements change. Loop

invariants as well as data invariants are often difficult to reconstruct from the code, so

that they should be recorded as they are introduced in the design process. This is espe

cially important for implementations of critical functions whose correctness will be sub

ject to correctness proofs, because there are automatic procedures for constructing the

required theorems which will operate without designer interaction if the loop invariants

are given along with the desired preconditions and postconditions.

Bounding functions and termination orderings are justifications for believing that

the loops and recursions in the program will terminate. A bounding function gives an

upper bound on the number of loop iterations still left for given values of the state vari

ables of the loop, or an upper bound on the depth of any remaining recursive calls for

given values of the formal parameters of a recursive subprogram. A terminating program

will strictly reduce the bounding function after each execution of the loop body or upon

each recursive call. Checking the termination of a program becomes easy if the bound

ing functions are given. The bounding functions are also useful for performance

analysis, because they give worst case estimates of the running times. Termination ord

erings are useful for establishing termination in some cases where bounding functions

yielding natural numbers are difficult to construct. The range of a bounding function can

be any well founded set. Some well known termination orderings are the lexicographic

and multiset orderings on sequences. These orderings can be used to construct

29

sequence-valued bounding functions for loops or recursive functions whose progress is

governed by the interaction of several different parameters.

The kinds of justifications described above can be used in the process of formally or

informally verifying the correctness of a design with respect to a given specification.

Other kinds of justifications include priorities for different design goals, such as "optim

ize space".

Design languages are used by experienced and highly skilled people to determine

the overall system architecture and to make the key design decisions. Traditionally the

more mundane decisions have been left up to less experienced and less skillful people.

As CASE technology improves, a larger fraction of the software engineering community

will be concerned with architectural design, which will become less tedious with

mechanical aid, and the routine aspects of programming will be gradually taken over by

automated tools. This trend will be driven by demands for larger and more sophisticated

computer systems.

3. Prototyping Languages

The purpose of a prototyping language is to support rapid prototyping. Rapid proto

typing is a promising approach to evolutionary software design that was proposed in the

early 1980's to solve problems with productivity and reliability in software development

[54]. More specifically, prototyping is a method for constructing executable models of

software systems rapidly. Such models are known as software prototypes.

Prototyping was distinguished from simulation to emphasize that it should be

applied to the early stages of software development and that its goal should be speedily

accomplished by an environment containing state of the art software tools. Simulation

30

can be used at any level, including assembly language. The goal of simulation is usually

to determine the properties of a specific program or system. Rapid prototyping refers to

the activities of constructing software prototypes using CASE design tools at the require

ments analysis, functional specification, and architectural design stages of software

development. The goal of prototyping is to design, tailor, define, test, document and

implement a system (Fig. 3). The prototyping life cycle has two stages, prototyping and

system generation. In the prototyping stage, a prototype version of the system is

designed and repeatedly tested and modified until the customer is satisfied with it In the

system generation stage, the prototype is used to define and document the architecture of

the intended system. The system is implemented by filling in missing details and

reworking key modules as needed to achieve adequate performance. Prototyping is most

useful for systems that are difficult to built directly, quickly, and correctly, such as

software systems with hard real-time constraints and systems large enough to require

design document

test define

modify implement

Fig. 3 The Use of Prototypes for Software Development

31

multiple man-years of design effort.

As shown in Fig. 2, the prototyping process integrates the early stages of the tradi

tional life cycle (Fig. 1) and the evolution stage into the prototyping cycle, which tests

the evolving prototype system through execution. The programming level details of the

system can be completed after the analyst and customer are satisfied with the behavior of

the prototype. The capability for rapid prototyping can best be realized in the context of

a high level prototyping language. A prototyping language should have the properties of

both a specification language and a design language. The algorithmic level characteriz

ing most current programming languages is not appropriate for supporting rapid proto

typing because too many details must be specified. A high level view aids the prototype

developer to cope with the complexity of typical software systems, and supports more

effective computer-aided systems e.g. reasoning from a design data base or retrieving

reusable software components. A prototyping language containing constructs for

expressing descriptions of specifications and designs is crucial as well as an automated

support environment An example of such an environment and the associated prototyp

ing methodology is described in [38] and [35, 39] respectively.

3.1. Requirements for Prototyping Languages

A language for supporting rapid prototyping has different requirements from a gen

eral purpose programming language or a specification language. In addition to being

executable, the language must support the specification of requirements for the system

and functional descriptions for the component modules. Since rapid prototyping involves

many design modifications, the language must make it easy for the system designer to

create a prototype with a high degree of module independence [51], and to preserve its

32

good modularity properties across many modifications. The prototyping language has to

be sufficiently easy to read to serve as design documentation, and also has to be formal

enough for mechanical processing in the rapid prototyping environment

The design of a prototyping language should be motivated by the reasons mentioned

above and by the requirements listed below:

(1) A prototyping language should be executable, so that the customer can observe

the operation of the prototype.

(2) A prototyping language should be simple and easy to use. The language should

be based on a simple computational model and should be integrated with a

computer-aided prototyping method. The language should support a good

designer interface with graphical summary views.

(3) A prototyping language should support hierarchically structured prototypes, to

simplify prototyping of large and complex systems. The descriptions at all levels

of a prototype should be uniform. The underlying computational model should

limit and expose interactions between modules to encourage good decomposi

tions. The language should harmoniously support data abstraction, function

abstraction, and control abstraction.

(4) A prototyping language should apply at both the specification and design levels

to allow the designer to concentrate on designing the prototype without the dis

traction of transforming one notation into another.

(5) A prototyping language should be suitable for specifying the retrieval of reusable

modules from a software base, to avoid creating multiple descriptions of each

module.

33

(6) A prototyping language should support both formal and informal module

specification methods, to allow the designer to work in the style most appropriate

to the problem.

(7) A prototyping language should contain a set of abstractions suitable for the prob

lem area for which the prototyping language is designed, e.g. timing for real-time

and embedded systems.

When looking for a language meeting such a set of requirements, the designer or

analyst may find his choices are limited. It is not hard to convince someone that high

level abstractions and brief and powerful language structures are needed to simplify the

design at a conceptual level. Many requirements specification and conceptual modeling

languages are at a suitable high level, but unfortunately most of them are not executable.

Many of the existing programming languages are too inflexible and too difficult to use.

Many kinds of coupling problems between modules of a system are not preventable in a

programming language because conventional programming languages are required to

execute efficiently on conventional machines. Strong coupling can make a rapid proto

typing effort fail because modifications get progressively more difficult and error prone,

so conventional programming languages cannot be adequate for prototyping. Conse

quently the design of a special purpose language for rapid prototyping has to be con

sidered.

A prototyping language must have the characteristics of a good design language,

because the structure of a prototype must be understandable and easy to modify. Early

design languages [31, 33, 51] were not executable, although more recent work has prom

ise in this direction [9]. Some design languages work at the design and specification lev-

34

els, but are not executable [2]. Other work on executable specifications [34] has taken

the automatic transformation of specifications into running systems as a distant long term

goal, and has concentrated on generating run-time checks from the specifications in the

short run. These approaches are not sufficiently well developed to produce results appli

cable to rapid prototyping in the near future.

Many informal versions of data flow diagrams have been used extensively to model

the data transformation aspects of software systems. Data flow diagrams are easy to

read, revealing the internal structure of a process and the potential parallelism inherent in

a design, making dataflow attractive to designers. A language based on dataflow makes

it easier for a prototyping environment to provide graphical capabilities for displaying

and updating the structure of the prototype. However, data flow diagrams or other infor

mal notations do not provide a unified mechanism to represent the relevant attributes of

software systems and are not sufficient to be executable. A more precise model of a

dataflow computation has been developed in the context of hardware design (11]. Lucid

(53] is a good dataflow based programming language. These models and languages sup

port execution, but not specification and design. These languages are not sufficient for

specification, design and prototyping in a CASE environment, since the requirements are

more complex.

A language supporting both good modularity and good control is needed to support

system decomposition [46]. System decomposition is a central issue in the design of any

large system. Good modularity is a key factor for increasing productivity, since it

reduces the debugging effort for producing a correct executable system, and improves the

understandability, reliability, and maintainability of the developed system. A powerful

35

set of control abstractions are needed for simple glass-box descriptions. These features

are especially important in rapid prototyping.

Each method for decomposing a software system is associated with a family of

computational models. Two well known system decomposition methods are based on

data flow and control flow. The components of a data flow decomposition are indepen

dent sequential processes that communicate via buffered data streams, while the com

ponents of a control flow decomposition are procedures that are called by and return to a

main procedure with a single thread of control. Neither of these decomposition methods

offers both good modularity and good control.

Iwamoto et al [23] suggest circumstances in which each of the two kinds of decom

position is preferable and give some restrictions sufficient to guarantee that the computed

results are independent of scheduling decisions. However, their system is subject to

many confusing restrictions and is not sufficient as a base for a CASE prototyping

environment. They use a data flow decomposition in cases where there is a mismatch

between the structures of the input data stream and the output data stream of an operator,

introducing an intermediate data stream of lower level data elements to resolve the struc

ture clash. They use a control flow decomposition in cases where the data stream forks

into several branches and is rejoined, or where the operators on the branches influence

each other's results by means of state changes, because in these cases a data flow decom

position will result in computations whose results can depend on the unpredictable

behavior of the process scheduler. An example of the first case is a decomposition with a

dispatch operator that recognizes several alternative kinds of inputs and routes them to

the appropriate special purpose operator. A data flow decomposition for such a structure

36

requires extra sequencing information in the data elements to make sure that the result

streams do not get out of order when they are merged, since the relative speeds of

independent processes are not predictable under the usual interpretation of dataftow. An

example of the second case is a transaction with multiple updates to a shared database,

where the final state of the database may depend on the arbitrary order of the updates per

formed by operators on parallel branches of the dataftow graph.

To avoid the problems with data flow decompositions mentioned above we have

developed a new underlying model of computation for PSDL [35, 40], which is based on

dataflow and guarantees that the results of a computation do not depend on undetermined

properties of the schedulers. Control constraints are combined with the dataftow model

to achieve the best modularity with sufficient control information. Dataflow is used to

simplify the interactions between modules, eliminating direct external references and

communication via side effects. The first problem with data flow decompositions men

tioned above does not arise in our model because of a rule in PSDL which says that a

composite operator cannot fire again until all of the internal activity associated with the

previous firing is complete. This rule provides a kind of mutual exclusion that prevents

interference between successive actions by the same operator without preventing con

current execution of the components of a composite operator. The second problem with

data flow decompositions does not arise in PSDL prototypes because there is no impli

citly shared mutable data.

3.2. Execution of Prototyping Languages

There are two approaches to making a prototyping language executable, one based

on meta-programming and the other on executable specifications. The meta-

37

programming approach views the prototyping language as a means for adapting and

interconnecting available software components. The processor for such a language gen

erates the skeleton of an implementation, with empty places for component modules.

These empty places can be filled in with reusable components drawn from a software

base, with stubs for roughly simulating the expected behavior of a module, or by hand

crafted code. The prototyping language PSDL described in section 3.3 uses this

approach.

The executable specification approach uses black-box specifications in the execut

able subset of a specification language for realizing the behavior of a system. For expres

sive notations, this amounts to implementation by enumeration, since this is one of the

few known implementation techniques powerful enough to realize arbitrary computable

specifications. Such techniques can produce slow implementations, even with sophisti

cated approaches such as the one taken in logic programming. The execution mechanism

of a logic based programming language such as Prolog is a symbolic version of enumera

tion. This is more efficient than enumeration by brute force, because each logical step

considers a potentially unbounded class of individuals rather than a single individual.

However, the number of classes to be considered can still be unbounded and is often very

large if the logic program contains only the abstract essence of a specification, without

any extra information to help narrow down the search. Since executable specifications

run slowly without special implementation guidance, this approach must be strengthened

to be applicable to the prototyping of very large systems. One way to strengthen the

approach is to add annotations for speeding up execution to the pure specifications.

Another way is to combine executable specifications with the first approach, and use

them to realize only small and simple components of a larger system in cases where

38

efficient implementations for the components are not already available.

3.3. PSDL: An Example of a Prototyping Language

In this section, the concepts and constructs of the prototyping language PSDL (Pro

totype System Description Language) [40] are used for explaining and analyzing the

design principles for prototyping languages mentioned in sections 3.1 and 3.2. Some

other languages that have been used for rapid prototyping include SETL, Prolog, Refine,

and Kodiyak [21]. These languages are suited for prototyping because they are capable

of executing abstract descriptions of processes.

PSDL supports the prototyping of large systems with hard real-time constraints

[43, 44]. The language is based on a simple computational model that is close to the

designer's view of real-time systems. The model integrates operator, data, and control

abstractio~s (section 3.3.2), and encourages hierarchical decompositions based on both

data flow and control flow. More details are described below.

3.3.1. Computational Model

The PSDL computational model contains operators that communicate via data

streams. Each data stream carries values of a fixed abstract data type [32]. Each data

stream can also contain values of the built-in type "exception". The operators may be

either data driven or periodic. Periodic operators have traditionally been the basis for

most real-time system design, while the importance of data driven operators for real-time

systems is recognized [41].

To provide a small and portable syntax with a clear semantics it is necessary to have

a mathematical model behind the language constructs. Formally the computational

39

model is an augmented graph

G = (V, E, T(v), C(v))

where V is the set of vertices, E is the set of edges, T(v) is the maximum execution time

for each vertex v, and C(v) is the set of control constraints for each vertex v. Each vertex

is an operator and each edge is a data stream. The first three components of the graph are

called the enhanced data flow diagram.

An operator is either a function or a state machine. When an operator fires, it reads

one data object from each of its input streams, and writes at most one data object on each

of its output streams. The output objects produced when a function fires depend only on

the current set of input values. The output values produced when a state machine fires

depend only on the current set of input values and the current values of a finite number of

internal state variables. Operators of these two types are useful for prototyping real-time

systems.

Operators are either atomic or composite. Atomic operators cannot be decomposed

in the PSDL computational model. Composite operators have realizations as data and

control flow networks of lower level operators. If the output of an operator A is an input

to another operator B, then there is an implicit precedence relationship between the two,

which says that A must be scheduled to fire before B. A composite operator whose net

work contains cycles is a state machine. In such a case, one of the data streams in each

cycle is designated as the state variable controlling the feedback loop, and an initial value

is specified for the state variable. State variables serve to break the circular precedence

relationships among the operators which would otherwise be implied by the data flow

relationships.

40

A data stream is a communication link connecting exactly two operators, a pro

ducer and a consumer. Communication links with more than two ends are realized using

copy and merge operators. Each stream carries a sequence of data values. Streams have

the pipeline property: if a and b are two data values in data stream Y and the data value a

is generated by op-1 before the data value b is generated then it is impossible for a to be

delivered to op-2 after b is delivered.

There are two types of data streams - dataflow streams and sampled streams. A

dataflow stream guarantees that none of the data values is lost or replicated, while a sam

pled stream does not make such a guarantee. A data flow stream can be thought of as a

fifo queue, while a sampled stream can be thought of as a cell capable of containing just

one value, which is updated whenever the producer generates a new value. Since real

time systems must often operate within a (small) bounded memory, the finite queue

length imposes a restriction on the relative execution rates of two operators communicat

ing via a dataflow stream. A sampled stream imposes no such constraint, since it can

deliver a value more than once if the consumer demands more values before the producer

has provided a new value, and it can discard the previous value if the producer provides a

new value before the consumer has used the previous one.

Dataflow streams must be used in cases where each data value represents a unique

transaction or request that must be acted on exactly once. For example, the transactions

in a system for electronic funds transfer would be transmitted along a dataflow stream.

Sampled data streams are often used for simulating continuous streams of information,

where only the most recent information is meaningful. For example, an operator that

periodically updates a software estimate of the system state based on sensor readings

41

would use a sampled stream. In PSDL the stream type is determined from the activation

conditions for the consumer operator, rather than being explicitly declared.

3.3.2. Abstractions

Abstractions are an important means for controlling complexity [5], which is espe

cially important in rapid prototyping because a system must appear to be simple to be

built or analyzed quickly. PSDL supports three kinds of abstractions: operator abstrac

tions, data abstractions, and control abstractions.

An operator abstraction is either a functional abstraction or a state machine

abstraction. Both functional and state machine abstractions are supported by the PSDL

constructs for operator abstractions. PSDL operators have two major parts: the SPECIFI

CATION and the IMPLEMENTATION. The specification part contains attributes

describing the form of the interface, the timing characteristics, and both formal and infor

mal descriptions of the observable behavior of the operator. The attributes both specify

the operator and form the basis for retrievals from a reusable component library or

software base. The size and the content of the set of attributes may vary depending on

the specific usage, underlying language, or the type of the modules specified, e.g. GEN

ERIC PARAMETERS, INPUT, OUTPUT, STATES, and EXCEPTIONS.

A PSDL operator corresponds to a state machine abstraction if its specification part

contains a STA TES declaration, otherwise it corresponds to a functional abstraction. The

STA TES declaration gives the types of the state variables and their initial values. The

state variables of a PSDL state machine are local, in the sense that they can be updated

only from inside the machine. This restriction prevents coupling by means of shared

state variables, and is one of the features of PSDL that leads to good modularization. It

42

is also important for making the correctness of distributed implementations independent

of the number of processors.

The implementation part determines whether the operator is atomic or composite.

Atomic operators have a keyword specifying the underlying programming language fol

lowed by the name of the implementation module implementing the operator. Composite

operators have the attributes COMMUNICATION GRAPH, INTERNAL DATA, CON

TROL CONSTRAINTS, and INFORMAL DESCRIPfION.

Data abstractions are an important concept for language design. Data abstractions

decouple the behavior of a data type from its representation. This is especially important

in prototyping because the behavior of the intended system is only partially realized, cap

turing only those aspects important for the purposes of the prototype. The behavior of

the prototype data is also a partial simulation of the data in the intended system, so that

the data representations in the prototype and the intended system are likely to be dif

ferent. Data abstraction allows the data interfaces to be described independently of the

representation of the data, so that the interfaces for the operations on the data can be the

same in the prototype and in the intended system. Aspects of the data not included in the

prototype will be reflected in extra operations on the type, which appear in the intended

system but not in the prototype. It is important to have common interfaces between the

prototype and the intended system because it makes comparisons easier during the vali

dation of the intended system, and because it enables the structure of the prototype

design to be reused in the intended system where appropriate.

All PSDL data types are immutable, so that there can be no implicit communication

via side effects. Both mutable data types and global variables have been excluded from

43

PSDL to help prevent coupling problems in large prototype systems. If many modules

communicate implicitly via a shared data structure or global variable, then it is easy to

inadvertently interfere with a module by making an apparently unrelated change to

another module. Repairing such faults is too time consuming to be tolerated in a rapid

prototyping effort.

The PSDL data types include the immutable subset of the built-in types of the

underlying programming language, user-defined abstract types [18], the special types

time and exception, and the types that can be built using the immutable type constructors

of PSDL. The PSDL type constructors were chosen to provide data modeling facilities

with a small set of semantically independent structures [40]. For example, finite sets,

sequences, tuples, mappings, and relations correspond to the usual mathematical con

cepts.

The definition of an abstract data type in PSDL contains two parts: SPECIFICA

TION and IMPLEMENTATION.

Control abstractions are important for simplifying the design of real-time systems,

because much of the complexity of such systems lies in their control and scheduling

aspects. The control abstractions of PSDL are represented as enhanced data flow

diagrams augmented by a set of control constraints. As a common property of real-time

systems, periodic execution is supported explicitly. The order of execution is only par

tially specified, and is determined from the data flow relations given in the enhanced data

flow diagrams, based on the rule that an operator consuming a data value must not start

until after the operator producing the data value has completed. This constraint applies

only if the operators have the same period or if neither is periodic. If the order of execu-

44

tion for two operators is not determined by this rule, then both can run concurrently if

sufficiently many processors are available. Conditional execution is supported by PSDL

triggering conditions and conditional outputs.

3.3.3. Control Constraints

The control aspect of a PSDL operator is specified implicitly, via control con

straints, rather than giving an explicit control algorithm. There are several aspects to be

specified: whether the operator is PERIODIC or SPORADIC, the triggering condition,

and output guards. The stream types for the data streams in the enhanced data flow

diagram are determined implicitly, based on the triggering conditions.

PSDL supports both periodic and sporadic operators. Periodic operators are trig

gered by the scheduler at approximately regular time intervals. The scheduler has some

leeway: a periodic operator must be scheduled to complete sometime between the begin

ning of each period and a deadline, which defaults to the end of the period. Sporadic

operators are triggered by the arrival of new data values, possibly at irregular time inter

vals.

A PSDL operator is periodic if a period has been specified for it and sporadic other

wise. A period can be specified explicitly, or it can be inherited from a higher level of

decomposition in a hierarchical prototype.

There are two types of data triggers inside PSDL operators.

OPERA TOR p TRIGGERED BY ALL x, y, z

OPERA TOR q TRIGGERED BY SOME a, b

In the first example the operator p is ready to fire whenever new data values have arrived

4S

on all three of the input arcs x, y, and z. This rule is a slightly generalized form of the

natural dataflow firing rule [11], since in PSDL a proper subset of the input arcs can

determine the triggering condition for an operator, without requiring new data on all

input arcs. This kind of data trigger can be used to ensure that the output of the operator

is always based on fresh data for all of the inputs in the list, and can be used to synchron

ize the processing of corresponding input values from several input streams.

In the second example, the operator q fires when any of the inputs a and b gets a

new value. This kind of activation condition guarantees that the output of operator q is

based on the most recent values of the critical inputs a and b mentioned in the activation

condition for q. If q has some other input c, the output of q can be based on old values of

c, since q will not be triggered on a new value of c until after a new value for a or b

arrives. This kind of trigger can be used to keep software estimates of sensor data up to

date.

Every operator must have a period, a data trigger, or both. If a periodic operator has

a data trigger, the operator is conditionally executed with the data trigger serving as an

input guard.

A timer is a special kind of abstract state machine whose behavior is similar to a

stopwatch. Timers are used to record the length of time between events, or the length of

time the system spends in a given state. This facility is needed to express sophisticated

aspects of real-time systems, such as timeouts and minimum refresh rates. The state of a

timer can be modeled as a time value and a boolean run switch. The value of the timer

increases at a fixed rate reflecting the passage of real-time when the run switch is on, and

remains constant when the run switch is off.

There are four primitive operations for interacting with timers: read, start, stop, and

reset. The read operation returns the current value of the timer without affecting the run

switch. The start operation turns the run switch on without affecting the value of the

timer. The stop operation turns the run switch off without affecting the value of the

timer. The reset operation turns the run switch off and sets the value of the timer to zero.

Timers are treated specially in PSDL because they provide a nonlocal means of con

trol for hard real-time systems. The PSDL declaration

TIMERt

creates an instance of the generic state machine described above, with the fixed name t.

The name of a timer can be used like a PSDL input variable, whose value is the result of

the read operation of the timer. The value of a timer can be affected by PSDL control

constraints of the forms

START TIMER t,
STOP TIMER t, and
RESET TIMER t

These control constraints can appear anywhere the name t is visible, with the effect of

invoking the start, stop, and reset operations of the abstract timer t

PSDL supports two kinds of conditionals: conditional execution of an operator and

conditional transmission of an output. These constructs handle the controlled input and

output of an operator.

PSDL operators can have a TRIGGERING CONDmON in addition to or instead of

a data trigger for conditional execution. Two examples of operators with triggering

conditions are shown below.

47

OPERA TOR r TRIGGERED BY SOME x, y IF x: NORMAL AND y: critical

OPERA TOR s TRIGGERED IF x: critical

The first example shows the control constraints of an operator with both a data trigger

and a triggering condition. The operator r fires only when one or both of the inputs x and

y have fresh values, x is a nonnal data value, and y is an exceptional data value with the

exception name "critical". This example illustrates exception handling in PSDL.

The second example shows the control constraints of an operator s with a triggering

condition but no data trigger. In this example s must be a periodic operator with an input

x since sporadic operators must have data triggers, and triggering conditions can only

depend on timers and locally available data. In this case the value of x is tested periodi

cally to see if it is a "critical" exception, and the operator s is fired if that is the case.

Both of these examples illustrate ways of using PSDL operators to serve as exception

handlers.

In general, the triggering condition acts as a guard for the operator. ff the predicate

is satisfied, the operator fires and reads its inputs. If the predicate is not satisfied, the

input values are read from the input data streams without firing the operator. If a

periodic operator has a data trigger or a triggering condition, then the guard predicate is

tested periodically, and if found true, the operator is fired. The guard predicate of an

operator can depend only on the input values to the operator and on the values of timers.

The predicate can make use of the operators of the abstract data types carried by the

input streams, allowing a structure similar to a guarded command, where different opera

tors handle an input depending on some computable properties of the input value.

48

An example of a control constraint specifying a conditional output is shown below.

OPERA TOR t OUTPUT z IF 1 < z AND z < max

The example shows an operator with an output guard, which depends on the input value

max and the output value z.

In general an output guard acts as if the corresponding unconditional output had

been passed through a conditionally executed filtering operator with the same predicate

as a triggering condition. The filtering operator passes the input value to the output

stream unchanged if the predicate evaluates to TRUE. If the predicate evaluates to

FALSE, the filter removes the value from its input stream without affecting its output

stream. An output predicate can depend only on the input values to the operator, the out

put values of the operator, and values of timers.

Output guards are convenient but they do not strictly increase the expressive power

of the language, since they can be simulated by adding an explicit filter operator, at the

cost of some additional output streams to the original operator since the output guard can

depend on the INPUTS of an operator as well as on its outputs.

PSDL exceptions are values of a built in abstract data type called exception. This

type has operations for creating an exception with a given name, for detecting whether a

value is an exception with a given name, and for detecting whether a value is normal (i.e.

belongs to some data type other than exception). PSDL provides a shorthand syntax for

the latter two operations, as illustrated in the following example of a PSDL predicate

x: overflow AND y: NORMAL

which is true if the input value x is the exception value with the name "overflow" and the

input value y is normal, as indicated by the PSDLkeyword "NORMAL".

49

V aloes of type exception can be transmitted along data streams just like values of

the normal type associated with the stream. Exceptions are encoded as data values in

PSDL to decouple the transmission of an exceptional result from the scheduling of the

actions for handling the exception, and to provide a programming language independent

interface between atomic operators. This makes it possible to use atomic operators real

ized in several different programming languages in the same PSDL prototype.

Exceptions can be produced and handled in PSDL. For example, the control con

straint

OPERA TOR f EXCEPTION e IF x > 100

transmits the exception value named e on all output streams of f instead of the values

actually computed by f whenever the input value xis greater than 100. Exceptions can

be handled by operators with triggering conditions selecting only input values of type

exception, as illustrated in a previous example. Exceptions can be suppressed either by a

PSDL output guard of the form

OPERA TOR g OUTPUT Y IF Y: normal

or a PSDL input guard of the form

OPERA TOR h TRIGGERED IF Y: normal.

The data trigger of an operator determines the stream types of its input streams by

the following rules.

(1) If a stream is listed in an ALL data trigger, then it is a dataflow stream.

(2) All streams not constrained by the first rule are sampled strearm.

50

These rules are motivated by the fact that an operator must be executable whenever

its triggering conditions are satisfied. In particular, values of streams that are not men

tioned at all, or are mentioned in SOME data triggers can be demanded at arbitrary times,

which is inconsistent with the fact that dataflow streams cannot allow the consumer to

read more values than the producer has written. Consequently rule (1) captures the most

general situation where dataflow streams make sense.

In the following example, the operator op has the input streams x, y, z and the out

put stream w.

X ---->
input streams y ---->

z ---->

Under the following control constraint

OPERA TOR op TRIGGERED BY ALL x, y

op ----> w output stream

x, y are dataflow streams while z is a sampled stream. Under a different control con

straint

OPERA TOR op TRIGGERED BY SOME x, y

x, y, z are all sampled streams. In either case, the stream type of w is not affected by the

control constraint associated with its producer operator op.

3.3.4. Timing Constraints

Timing constraints are an essential part of specifying real-time systems. The most

basic timing constraints are given in the specification pan of a PSDL module, and consist

of the MAXIMUM EXECUTION TIME, the MAXIMUM RESPONSE TIME, and the

51

MINIMUM CALLING PERIOD. The maximum execution time is an upper bound on

the length of time between the instant when a module begins execution and the instant

when it completes. The maximum execution time is a constraint on the implementation

of a single module, and does not depend on the context in which the module is used.

The last two constraints are important for sporadic operators. The maximum

response time for a sporadic operator is an upper bound on the time between the arrival

of a new data value (or set of data values for operators with the natural dataflow firing

rule) and the time when the last value is put into the output streams of the operator in

response to the arrival of the new data value. The maximum response time for a periodic

operator is an upper bound on the · time between the beginning of a period and the time

when the last value is put into the output streams of that operator during that period. The

maximum response time includes potential scheduling delays, while the maximum exe

cution time does not.

The minimum calling pericxl is a constraint on the environment of a sporadic opera

tor, consisting of a lower bound between the arrival of one set of inputs and the arrival of

the next set. In a PSDL specification every sporadic operator with a maximum response

time constraint must have a corresponding minimum calling pericxl constraint.

3.3.5. Hierarchical Constraints

PSDL operators are defined in a hierarchical structure, which induces some con

sistency constraints on the language. The most fundamental constraints are concerned

with interface consistency. Every input stream of a component of a composite operator

must either be an input of the composite or must be produced by a component of the

composite. Similarly every output stream of a component operator must also be an

52

output stream of the composite operator if it is consumed by an operator that is not a

component of the composite. Every exception pnxluced by the components of a compo

site must also be produced by the composite unless it has been handled inside the compo

site. Each input of a composite operator must be an input of at least one of its com

ponents, and each output of the composite operator must be an output of at least one of

its components. ff the consumer of a data stream is a composite operator, then both the

composite and all of its components consuming the same data stream induce constraints

on the stream type. PSDL timing constraints also impose some consistency requirements

between the various levels of a hierarchical design. The maximum execution time and

the maximum response time of a subnetwork must be no larger than those of the compo

site operator realized by the subnetwork. The minimum calling period of a composite

must be no larger than the minimum calling period of any of its components.

3.3.6. Execution of PSDL Prototypes

The prototyping language PSDL uses the meta-programming approach for execu

tion (see section 3.2). PSDL prototypes are executable if all required information is sup

plied, and the software base contains implementations for all atomic operators and types.

To simplify the design of the PSDL translator, Ada is used for implementing both the

PSDL reusable components in the software base and the PSDL execution support

environment [36]. The PSDL execution support system contains a static scheduler, a

translator, and a dynamic scheduler. The static scheduler produces a static schedule for

the operators with real time constraints. The translator augments the implementations of

the atomic operators and types with code realizing the data streams and activation condi

tions, resulting in a program in the underlying programming language that can be com-

53

piled and executed. Execution is under the control of a dynamic scheduler, which

schedules the operators without real-time constraints and provides facilities for debug

ging and gathering statistics. More details can be found in [35].

4. Conclusions

As compiler and hardware technology improves, the distinctions between prototyp

ing languages, specification languages, design languages, and programming languages

are getting smaller and may eventually disappear. Programming languages are getting

more expressive and more flexible, and are supporting more abstract descriptions of the

processes to be carried out, while specification and design languages are getting to have

larger executable subsets. A prototyping language must have the capabilities of both a

specification and a design language while still remaining executable. In the short run

these four kinds of languages will remain distinct to more effectively support different

classes of powerful CASE tools. Programming languages will support optimizing com

pilers whose main objective is to produce efficient implementations. Specification and

design languages will support CASE tools for requirements analysis and for proving the

correctness of designs and implementations. Prototyping languages will support tools for

prototype demonstrations and implementation planning.

Since the completely automatic and totally correct implementation of powerful

specification languages is an algorithmically unsolvable problem, research on CASE

technology should investigate ways in which people can most effectively guide tools for

computer-aided implementation. A promising approach for applying CASE technology

to rapid prototyping is augmenting abstract specifications with annotations or pragmas

giving hints about ways to implement them. An important problem is finding concepts

54

"

.,.

and notations that can naturally express such information in an abstract and orthogonal

way. Abstractness is desired to simplify the problem of guiding the tools by avoiding as

many details as possible. Orthogonality is desired to avoid repeating information that is

already contained in or implied by the abstract specification. It is desirable to keep the

abstract specification separate or easily mechanically separable from the annotations to

provide simplified views of large system models.

Progress on automatically generating prototypes or efficient implementations from

abstract specifications is going to depend on a knowledge-based approach. The size of

the required knowledge bases depends on the range of problems the language is attempt

ing to address. For this reason, the most powerful systems appearing in the near term

will be those with narrow application areas, because such tools can be built with smaller

knowledge bases. For a general purpose system, the knowledge base will have to include

a large fraction of currently available knowledge about classes of efficient algorithms and

data structures, along with the restrictions on their use and measures of their perfor

mance. This part of the knowledge is known as the software base. Other kinds of

knowledge that may tum out to be necessary include knowledge about ways of adapting

and combining the structures in the software base, properties of the application domain

and properties of the CASE environment.

1. R. Balzer, "A 15 Year Perspective on Automatic Programming", IEEE Trans. on

Software Eng., Nov. 1985.

2. F. W. Beichter, 0. Herzog and H. Petzsch, "SLAN-4 A Software Specification and

Design Language", IEEE Trans. on Software Eng. SE-10, 2 (Mar. 1984), 155-162 .

55

3. D. M. Berry, N. Yavne and M. Yavne, ''Applciation of Program Design Language

Tools to Abbott's Method of Program Design by Informal Natural Language

Descriptions'', to appear in Journal of Software and Systems., .

4. V. Berzins and M. Gray, "Analysis and Design in MSG.84: Formalizing

Functional Specifications'', IEEE Trans. on Software Eng. SE-11, 8 (Aug. 1985),

657-670.

5. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software

Development", Comm. of the ACM 29, 5 (May 1986), 402-415.

6. V. Berzins and Luqi, '' Specifying Large Software Systems in Spec'', submitted to

IEEE Software, 1987. Also NPS 52-87-033, Computer Science Department, Naval

Postgraduate School.

7. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated

Approach to Software Development using Ada, Addison-Wesley, 1988.

8. R. M. Burstall and J. A. Goguen, '' An Informal Introduction to Specifications

using Clear", in The Correctness Problem in Computer Science, Springer Verlag,

New York, 1981, 185-213.

9. T. Cheatham, I. Townley and G. Holloway, A System for Program Refinement,

McGraw-Hill, 1984.

10. P. P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data",

Trans. Database Systems 1, 1 (Mar. 1987), 9-36.

11. J.B. Dennis, G. A. Boughton and C. K. C. Leung, "Building Blocks for Dataflow

Prototypes", in Proc. Seventh Symposium on Computer Architecture, La Baule,

France, May 1980.

12. J. A. Goguen and I. J. Tardo, ''An Introduction to OBJ: A Language for Writing

and Testing Formal Algebraic Specifications'', in Proceedings IEEE Conference

56

on Specifications of Reliable Software,, Apr. 1979, 170-189.

13. A. Goldberg, "Technical Issues for Performance Estimation", in Proc. Second

Annual RADC Knowledge-based Assistant Conference, RADC(COES), Grifiss

AFB, NY, 1987.

14. C. Green, ''The Design of the Psi Program Synthesis System'', in Proceedings of

the Second International Conference on Software Engineering, 1976.

15. C. Green and D. Barstow, "On Program Synthesis Knowledge", Artificial

Intelligence Journal, Nov. 1978.

16. C. Green and S. Westfold, "Knowledge-Based Programming Self-Applied", in

Machine Intelligence, vol. 10, Wiley, 1982.

17. J. V. Guttag, ''The Specification and Application to Programming of Abstract Data

Types", CSRG-59, Ph.D. Thesis, University of Toronto, 1975.

18. J. V. Guttag, E. Horowitz and D.R. Musser, "Abstract Data Types and Software

Validation", Comm. of the ACM 21, 12 (1978), 1048-1064.

19. J. V. Guttag and J. J. Homing, ''A Larch Shared Language Handbook'', Science of

Computer Programming 6 (1986), 135-157.

20. J. V. Guttag and J. J. Homing, "Report on the Larch Shared Language", Science

of Computer Programming 6 (1986), 103-134.

21. R. Herndon and V. Berzins, ''The Realizable Benefits of a Language Prototyping

Language", IEEE Trans. on Software Eng. SE-14, 6 (June 1988), 803-809.

22. G. Huet, ''Confluent Reductions: Abstract Properties and Applications to Term

Rewriting Systems", J. ACM 27, 4 (Oct. 1980), 797-821.

23. K. Iwamoto and 0. Shigo, "Unifying Data Flow and Control Flow Based

Modularization Techniques", in Proceedings of the Fall COMPCON Conference,

IEEE, 1981, 271-277.

57

24. L. Johnson, "Overview of the Knowledge-Based Specification Assistant", in

Proc. Second Annual RADC Knowledge-based Assistant Conference,

RADC(COES), Grifiss AFB, NY, 1987.

25. L. Johnson, ''Turning Ideas into Specifications'', in Proc. Second Annual RADC

Knowledge-based Assistant Conference, RADC(COES), Grifiss AFB, NY, 1987.

26. E. Kant, ''On the Efficient Synthesis of Programs'', Artificial Intelligence Journal,

1983.

27. M. Ketabchi and V. Berzins, ''Generalization Per Category: Theory and

Application", Proc. Int. Conf on Information Systems, 1986. also Tech. Rep. 85-

29, Computer Science Dept., University of Minnesota.

28. M. Ketabchi and V. Berzins, "Modeling and Managing CAD Databases", IEEE

Computer 20, 2 (Feb. 1987), 93-102.

29. M. Ketabchi and V. Berzins, ''Mathematical Model of Composite Objects and its

Application for Organizing Efficient Engineering Data Bases'', IEEE Transactions

on Software Engineering, Jan 1988.

30. J. C. Leite, ''A Survey on Requirements Analysis'', RTP-070, Department of

Information and Computer Science, University of California at Irvine, 1987.

31. R. C. Linger, H. D. Mills and B. I. Witt, Structured Programming: Theory and

Practice, Addison Wesley, Reading, MA, 1979.

32. B. Liskov and S. Zilles, "Programming with Abstract Data Types", Proc. of the

ACM SIGPLAN Notices Conference on Very High Level Languages 9, 4 (Apr.

1974), 50-59.

33. G. Luckenbaugh, ''The Activity List: A Design Construct for Real-Time

Systems'', Master's Thesis, Department of Computer Science, Univ. of Maryland,

1984.

58

34. D. Luckham and F. W. Henke, "An Overview of Anna, a Specification Language

for Ada'', IEEE Software 2, 2 (Mar. 1985), 9-22.

35. Luqi, "Rapid Prototyping for Large Software System Design", Ph. D. Thesis,

University of Minnesota, 1986.

36. Luqi and M. Ketabchi, '' A Computer Aided Prototyping System'', in Proceedings

of ACM First International Workshop on Computer-Aided Software Engineering,

vol. 2 , Cambridge, Massachusetts, May 1987, 722-731.

37. Luqi, Normalized Specifications for Identifying Reusable Software, Proc. of the

ACM-IEEE 1987 Fall Joint Computer Conference, Dallas, Texas, October 1987.

38. Luqi and M. Ketabchi, '' A Computer Aided Prototyping System'', IEEE Software

5, 2 (March 1988), 66-72.

39. Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems", IEEE Software,

Sep. 1988, 25-36.

40. Luqi, V. Berzins and R. Yeh, ''A Prototyping Language for Real-Time Software'',

~EEE Trans. on Software Eng., October, 1988.

41. L. MacLaren, "Evolving Toward Ada in Real Time Systems", Proc. ACM

SIGPLAN Notices Symp. on the Ada Programming Language, Nov. 1980, 146-155.

42. M. E. Majster, "Limits of the 'Algebraic' Specification of Abstract Data Types",

SI GP LAN Notices Notices 12, 10 (1977), 37-42.

43. A. K. Mok, The Design of Real-Time Programming Systems Based on Process

Models, IEEE, 1984.

-. 44. A. K. Mok, ''The Decomposition of Real-Time System Requirements into Process

Models", IEEE Proc. of the 1984 Real Time Systems Symposium, Dec. 1984, 125-

133.

59

45. D. Musser, "Abstract Data Type Specification in the AFFIRM system", IEEE

Trans. on Software Eng. SE-6, 1 (June 1980), 24-31.

46. D. Parnas, ''On the Criteria to be Used in Decomposing a System into Modules'',

Comm. of the ACM 15, 12 (Dec. 1972), 1053-1058.

47. D. L. Parnas and P. C. Clements, "A Rational Design Process: How and Why to

Fake It", IEEE Trans. on Software Eng. SE-12, 2 (Feb. 1986), 251-257.

48. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw

Hill, 1967.

49. E. Schonberg, J. Schwartz and M. Sharir, "An Automatic Technique for the

Selection of Data Representations in SETL Programs'', Trans. Prog. Lang and

Systems 3, 2 (Apr. 1981), 126-143.

50. D. Smith, G. Kotik and S. Westfold, "Research on Knowledge-Based Software

Environments at Kestrel Institute", IEEE Trans. on Software Eng., Nov. 1985.

51. W. Stevens, G. Meyers and L. Constantine, "Structured Design", IBM Systems

Journal 13, 2 (May 1974), 115-139.

52. W. Swartout, "GIST English Generator", in Proceeedings of the National

Conference on Artificial Intelligence, AAAJ., 1982.

53. W.W. Wadge and E. A. Ashcroft, Lucid, the Datajlow Programming Language,

Academic Press, New York, NY, 1985.

54. R. T. Yeh, R. Mittermeir, N. Roussopoulos and J. Reed, "A Programming

Environment Framework Based on Reusability", Proc. Int. Conj. on Data

Engineering, Apr. 1984, 277-280.

55. R. T. Yeh, N. Roussopoulos and B. Chu, "Management of Reusable Software",

Proc. COMPCON, Sep. 1984, 311-320.

60

,.

..

Initial Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR :Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center
NAVCO1\,fMUNIT Washington
Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

2

2

1

2

2

2

1

1

1

1

Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

Naval Sea Systems Command
Attn: CAPT Joel Crandall
National Center =fl: 2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation
Division of Computer and Computation Research
Washington, D.C. 20550

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

1

1

1

1

1

1

1

150

;

