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Software Evolution via Prototyping 

Luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

ABSTRACT 

Rapid prototyping is widely accepted as an alternative methodology for software 
development. The problems of software maintenance are magnified in rapid pro­
totyping because prototypes are subject to frequent and repeated changes. The 
concepts and mechanisms presented in this paper support such changes in rapid 
prototyping based on component specifications. We discuss the following impor­
tant issues for software evolution via prototyping: ( 1) explicit interactions 
between prototype components for easily determining the impact of a proposed 
change, (2) requirements tracing facilities for identifying the parts of a prototype 
affected by a proposed requirements change, (3) structured system construction 
by maximizing reusability of software components, and (4) the use of 
specifications in retrieving, composing, and adapting reusable components in 
minimizing effort for code analysis and modification in software maintenance. 
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1. Introduction 

Software evolution is a most important issue in software development because 

changes to existing systems account for more than half of the total software cost. Evolu­

tion corresponds to the maintenance phase in traditional software life cycle, and consists 

of the process of firming up the requirements and adapting the software system to main­

tain the correspondence between the two. It is difficult to eliminate this expensive pro­

cess because later phases of development often bring more knowledge and more insight 

into the problem domain and the properties of the intended system to the designers and 

customers, but the need for some types of changes can be reduced [ 12]. Software sys­

tems are changed for the following reasons: 

Requirements errors 

The developers have incorrectly understood the requirements and have produced a 

system that does not meet user needs. 

Implementation errors 

A faulty design or implementation does not correspond to the specification. 

Phased delivery 

A partial implementation has been delivered because the customer cannot wait until 

a complete implementation is available. 

User education 

Customer requirements have changed because experience with the current version 

of the system has changed their perception of how computers can be used to solve 

their problems. 
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New situations 

Changes in the environment of the system have introduced new requirements. 

Examples of such changes are new external systems, new policies, new technolo­

gies, and new competitive pressures. 

Prototyping can help reduce the need for unplanned changes by stabilizing the 

requirements before a significant amount of effort has been invested in implementation. 

A key problem in large scale software development is the need for communication 

between people with different areas of expertise. Typically customers know much more 

about the problem domain than they do about programming, while the programmers 

know much more about programming than they do about the customer's problems. Both 

the problem domain and the programming domain have many specialized concepts and 

terms, many of which are unfamiliar to people who are not experts on the domain. The 

requirements for the proposed software system are influenced by constraints from both 

the problem domain and the programming domain that cannot be completely understood 

without knowledge of specialized concepts from both domains. Requirements are 

difficult to construct and validate because usually there is no single person who under­

stands all of the constraints on the proposed system. This is especially evident in large 

systems with hard real-time constraints, since the requirements for such systems are gen­

erally very difficult to understand or describe. 

A prototype is a concrete executable model of selected aspects of the proposed sys­

tem. Prototypes are valuable aids in requirements analysis because they can be used to 

demonstrate the behavior of the proposed system in a form that can be readily understood 

by all concerned parties. Prototypes can help customers visualize and test consequences 
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of their requirements and provide an effective basis for communication between the cus­

tomers and the requirements analysts. The process of constructing a prototype also helps 

the analysts to determine what questions they need to ask to construct a conceptual model 

of the problem domain that is sufficiently complete to be used in designing the proposed 

system. 

Prototyping can help reduce maintenance costs primarily by reducing requirements 

errors, so that fewer changes to the software are needed. This applies both to the original 

formulation of the system and for evolutionary changes sparked by user education or new 

situations. Phased delivery has traditional been the main mechanism for inducing 

requirements changes due to user education. Extensive exercising of a prototype by a 

group of users can trigger some of the requirements changes due to this effect before the 

production version of the system has been produced. This can alleviate wasted design 

effort, which is one of the main problems with phased delivery. Phased delivery is usu­

ally accomplished by developing a design for the whole system, and then choosing a sub­

set for implementation and delivery in the first release. If the requirements changes due 

to user education are severe, the design for the rest of the system can be invalidated 

before it is ever implemented. 

Prototyping can also help reduce implementation errors. The prototype can allow 

more extensive testing of a system by providing a means for evaluating test results. The 

output of the production code can be mechanically compared to the corresponding output 

of the prototype, thus allowing more test cases to be examined without increasing the 

amount of human effort involved. The prototype can also be used by implementors to 

resolve questions about the intended behavior of the system in particular cases. This can 
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reduce the incidence of errors caused by programmers making plausible but unfounded 

assumptions about unspecified cases. Such assumptions are often needed in traditional 

software development because specifications are incomplete and schedule pressures do 

not allow queries to the customer about every minor detail of system behavior. Imple­

mentation errors can also be reduced by systematic development techniques supported by 

formal methods and automated tools [ 1]. 

For large systems, every adjustment to the requirements has to be recorded and 

incorporated into the system specifications, as well as the architecture and the implemen­

tation. A systematic way to reduce the extraordinary effort required for software mainte­

nance is to manage the changes in the system needed to reflect adjustments to the 

requirements at the specification level rather than the implementation level. We can 

view these two aspects of software maintenance in a unified way if we can mechanically 

transfonn specifications into code. While mechanical transformations from black-box 

specifications into production quality code is not practical at the current time, computer­

aided generation of prototype implementations is both feasible and useful [3]. 

1.1. The Prototyping Life Cycle 

The traditional software life cycle consists of a series of phases which yield runn­

able software only late in the process. One view of the traditional life cycle is illustrated 

in Fig. 1. A major problem with the traditional approach is that there is no guarantee the 

resulting product will reliably solve the customer's problem. Often users will be able to 

indicate the true requirements only by observing the operation of the system, and the 

traditional life cycle yields executable programs late in the process, when too much 

money has already been spent and there is no time left to recover from requirements 
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Fig. 1 Traditional Software Life Cycle 

When this traditional life cycle approach is applied to hard real-time or embedded 

systems, the potential for inconsistencies increases. One of the major differences 

between a real-time system and a conventional computer system is the required precision 
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and accuracy of the application software. The response time of each individual operation 

may be a significant aspect of the associated requirements, especially for operations 

whose pmpose is to maintain the state of some external system within a specified region, 

as is common in embedded software systems. In hard real-time systems response times 

are a critical determining factor in the accuracy of the software. These response times, or 

deadlines, must be met or the system will fail to function correctly, with potentially 

catastrophic consequences. For example, as part of a larger computer system, the 

requirements for an embedded system can incorporate stringent real-time constraints, 

parallel processing on multiple computers, and a high degree of reliability. These 

requirements will often exceed the intellectual capacity of a single software engineer, 

requiring several individuals working independently on different segments of the system. 

In such cases the requirements can be very difficult to understand. 

Current research suggests a revised software development life cycle, which consists 

of two phases, rapid prototyping and automatic program generation [8]. This prototyp­

ing life cycle is an alternative to the traditional life cycle which has been proposed to 

alleviate problems stemming from incorrect requirements, especially when designing 

hard real-time systems. Although current capabilities preclude completely automatic 

program generation, the required software tools and capabilities do exist for computer­

aided rapid prototyping. As a software methodology, rapid prototyping provides the user 

and designer with a fast, efficient and easy-to-use stepwise process. When utilized dur­

ing the early stages of the development life cycle, rapid prototyping aJlows validation of 

the requirements, specifications and initial design before valuable time and effort are 

expended on implementation software. Fig. 2 graphically describes this methodology as 

a feedback loop [8]. Rapid prototyping initially establishes an iterative process between 
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Fig. 2 Prototyping Life Cycle 

the user and the designer to concurrently define specifications and requirements for the 

time critical aspects of the envisioned system. The designer then constructs a model or 

prototype of the system in a high-level, prototype description language. This prototype is 

a partial representation of the system, including only those critical attributes necessary 
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for meeting user requirements, and is used as an aid in analysis and design rather than as 

production software. During demonstrations of the prototype, the user validates the 

prototype's actual behavior against its expected behavior [9]. If the prototype fails to 

execute properly or to meet any critical timing constraints, the user identifies required 

modifications and redefines the critical specifications and requirements. This process 

continues until the user determines that the prototype successfully meets the time critical 

aspects of the envisioned system. Following this validation, the designer uses the vali­

dated requirements as a basis for the design of the production software. 

Computer-aided rapid prototyping further refines the efficiency and accuracy of this 

new methodology. While utilizing the same iterative approach, computer-aided rapid 

prototyping relies on software tools which assist the designer in constructing and execut­

ing the prototype. We have designed a computer-aided prototyping system (CAPS) to 

provide an integrated set of tools to support prototyping of complex software systems 

which may include hard real-time constraints [7]. These tools operate on the prototyping 

language PSDL (Prototype System Description Language) (10]. This language has been 

designed to support the needs of rapid prototyping by providing a high level description 

of the system which can be used to demonstrate the behavior of the prototype by means 

of the above software tools. Since requirements are especially difficult to define for large 

systems with hard real-time constraints, PSDL has been designed to apply to such sys­

tems. 

Prototyping is an iterative process which depends on the ability to rapidly adjust the 

behavior of the prototype based on feedback from the customer or user. The problems of 

software maintenance are magnified in rapid prototyping because prototypes are subject 
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to frequent and repeated changes. The goal of the prototyping life cycle is to shift a siz­

able part of the initial maintenance activity from the production software to the proto­

type. The potential benefits to be gained from prototyping depend critically on the ability 

to modify the behavior of the prototype with substantially less effort than that required to 

modify the production software. The purpose of PSDL and the associated software tools 

is to provide this ability. The mechanisms by which this is achieved are described below. 

1.2. Mechanisms to Support Modifications 

The prototyping language PSDL approaches the requirement to support frequent 

design modifications by means of the following subgoals. 

Modularity 

The language must make it easy for the system designer to create a prototype with a 

high degree of module independence and to preserve its good modularity properties 

across many modifications. 

Simplicity 

The language should be simple and easy to use. 

Reuse 

The language should be suitable for specifying the retrieval of reusable modules 

from a software base. 

Adaptability 

The language should support small modifications to the behavior of a module 

without the need to examine its implementation. 
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Abstraction 

The language should support a set of abstractions suitable for describing complex 

software systems with real-time constraints. 

Traceability 

The language should support requirements tracing. 

Good modularity is essential for achieving ease of modification. An experimental 

study shows that many of the problems with correctly performing software modifications 

are due to interactions between widely separated pieces of code [4]. Locality of informa­

tion was an important design goal of PSDL. The underlying computational model was 

chosen to make all interactions between components explicit. This model supports a sys­

tem decomposition criterion that combines data flow and control flow considerations [8]. 

PSDL is simple and easy to use because it contains a small number of powerful con­

structs. Designs are described in PSDL as networks of operators connected by data 

streams. Such networks can be represented as dataflow diagrams augmented with timing 

and control constraints. The user interface uses the diagrams to provide a convenient 

means for presenting the system structure to the designer. The operators in the network 

can be either functions or state machines. The data streams can carry exception condi­

tions in addition to values of arbitrary abstract data types. 

PSDL supports reusable components by means of black-box specifications suitable 

for retrieving modules from a software base. The specification part of a PSDL com­

ponent contains several attributes which describe the intetface and behavior of the com­

ponent. These attributes can be used to automatically generate a unifonn specification 

for the reusable component [6]. These uniform specifications are used both for retrieval 
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of reusable components and for organizing the software base. 

PSDL supports small modifications to modules by means of control constraints. 

Control constraints can be used to impose preconditions on the execution of a module, to 

add filters to the output of a module, to suppress or raise exceptions in specified condi­

tions, and to control timers. These facilities allow small modifications to the behavior of 

a module which do not involve the internal implementation of the module. 

PSDL provides abstractions suitable for describing large systems and real-time con­

straints. These include the non-procedural control constraints mentioned above, timing 

constraints, timers, functional abstractions, and data abstractions. Timing constraints can 

be used to associate hard real-time constraints with operators. Examples of timing con­

straints include the maximum execution time, the maximum response time, and the 

minimum calling period. Timing constraints implicitly determine when operators with 

hard real-time constraints will be executed. This simplifies the designer's view of the 

prototype by removing explicit scheduling considerations from the design of the proto­

type system. Timers are used to control aspects of behavior that depend on the duration 

of particular system states or classes of system states. Timers allow static descriptions of 

durational timing constraints, allowing the designer to ignore the operational details 

involved in their implementation. A rich set of functional and data abstractions are pro­

vided by the pre-defined part of the software base. The designer can define additional 

functional and data abstractions, either by adding them to the software base or by 

defining them in terms of more primitive abstractions using PSDL. 

PSDL supports requirements tracing by means of a construct for declaring the 

requirements associated with each part of the prototype. Requirements tracing is impor-
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tant because the prototype must be adapted to the changing perceptions of the require­

ments resulting from demonstrations of prototype behavior. The links between each 

requirement and the parts of the prototype realizing the requirement are used to deter­

mine which parts of the prototype must be modified when a requirement is changed or 

dropped. In order to prevent the structure of the design from being corrupted by multiple 

modifications, it is impo11ant to remove parts of the code that are no longer supported by 

an updated set of requirements. This cannot be done safely unless the correspondence 

between the requirements and the code is recorded and kept up to date. In situations 

where this correspondence is not maintained, each change to the system results in the 

addition of new code, without the removal of any old code. Such a process leads to 

increasingly complex systems that eventually escape from human control, making remo­

val of old code essential for systems that will be changed many times. The facilities for 

recording requirements trace information in PSDL are used by software tools in CAPS to 

provide automated aid in maintaining and using this information. 

1.3. Benefits of Prototyping 

Prototyping allows an appreciable part of the maintenance activity to be carried out 

in tenns of the prototype rather than in terms of the production code for the intended sys­

tem. This is useful because the prototype description is significantly simpler than the 

production code, is expressed in a notation tailored to support modifications, and the 

software tools in the computer-aided prototyping environment can be used to help carry 

out the required modifications. 

Rapid prototyping is also a useful tool in feasibility studies, for reducing project 

risks and estimating costs. Prototypes of critical subsystems or difficult parts of a com-
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plicated system can significantly increase the confidence that the system can be built 

before large amounts of effort and expense are committed to the project. Rapid prototyp­

ing helps in estimating costs, since the cost of the intended system is usually proportional 

to the cost of the prototype. The experiences gained in applying rapid prototyping to spe­

cial applications, eg. database design, the metaprogramming method and others, have 

substantiated the expected cost relationships between the prototype and the completed 

system [5]. A prototype can also be used to specify a well modularized skeleton design 

for the intended system and to validate the important attributes of the intended system, 

eg. timing constraints, input and output formats, or interfaces between modules. 

2. Computer-Aided Prototyping System 

The main software tools in the computer-aided prototyping system are shown in 

Fig. 3. These tools communicate by means of the PSDL language, which serves to 

integrate the tools and provide a uniform conceptual framework for the prototype 

designer. 

User 
Interface 

Software 
Database 
System 

Fig. 3 l\tain Software Tools in CAPS 
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The user interlace consists of a syntax-directed editor with graphics capabilities, an 

expert system for communicating with end-users, a browser, and a debugger. The editor 

enables convenient entry of PSDL descriptions into the system while preventing syntax 

errors. It also provides support for displaying graphical summary views of the prototype, 

maintaining the requirements trace, and locating parts of the prototype design related to 

particular requirements or data streams. The expert system provides a paraphrasing 

capability which generates English text from PSDL descriptions, to allow end-users to 

directly examine the prototype without the need for familiarity with PSDL. The browser 

allows the designer to interact with the software database. In particular the browser pro­

vides facilities for retrieving and examining reusable components stored in the software 

database system. The debugger allows the designer to interact with the execution support 

system. In particular, the debugger provides facilities for initiating execution of the pro­

totype, displaying results or trace information, and gathering statistics about prototype 

behavior and perfonnance. 

The software database system consists of a design database, a software base, a 

software design-management system, and a rewrite subsystem. The design database con­

tains the PSDL prototype descriptions for each software development project using 

CAPS. The software base contains PSDL descriptions and code for all available reusable 

software components. The software design-management system is responsible for 

managing and retrieving the versions, refinements, and alternatives of the prototypes in 

the design database and the reusable components in the software base. The rewrite sub­

system translates PSDL specifications into a normalized fo1m that is used by the design­

management system for retrieving reusable components from the software base [6]. 
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The PSDL execution support system contains a translator, static scheduler, and a 

dynamic scheduler [9]. The translator generates code binding together the reusable com­

ponents extracted from the software base. Its main functions are to implement data 

streams, control constraints, and timers. The static scheduler allocates time slots for 

operators with real-time constraints before execution begins. ff the allocation succeeds, 

all operators are guaranteed to meet their deadlines even with worst-case execution 

times. The dynamic scheduler invokes operators without real-time constraints in the time 

slots not used by the operators with real-time constraints as execution proceeds. 

3. Using CAPS for Maintenance 

If the prototyping process is carried out manually, the associated benefits are limited 

because it talces too much effort. CAPS can increase the leverage of the prototyping stra­

tegy by reducing the effort that must be spent by the designer in producing and adapting 

a prototype to perceived user needs. This section describes how the facilities provided 

by CAPS can be used to assist in the maintenance activities involved in the prototyping 

process. 

In the prototyping life cycle shown in Fig. 2, the maintenance activity for the proto­

type starts after the cycle has been carried out once: the analysts have determined the ini­

tial requirements by talking to the customers, constructed an initial prototype, and 

demonstrated it to the customer, who finds some aspects of the prototype's behavior 

unacceptable and requests some modifications. The process of demonstrating the proto­

type is aided by the user interface, which has facilities for presenting the results of proto­

type execution to the customer and for guiding the choice of which aspects of the proto­

type to demonstrate. The latter function is accomplished by an embedded expert system 
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containing heuristics for exercising prototypes and a facility for recording test case cov­

erage information. The analysts use customer feedback about the behavior of the proto­

type to modify or refine the requirements, which are maintained as a tree of subgoals. 

The incremental change leading to the new version of the requirements is entered into the 

system. At this point the facilities provided by CAPS are used to adapt the prototype to 

the new requirements. 

The user interface helps the prototype design team identify the tasks that have to be 

carried out to update the prototype. The user interface maintains a list of unresolved new 

requirements and a list of unresolved modified requirements. Whenever a member of the 

design team is ready for a new task, the system presents the lists and lets the designer 

pick an item to resolve. If a modified requirement is chosen, the interface returns a list of 

modules previously supporting the requirement, and lets the designer check them off as 

they are adapted or determined to be still valid. The effort required to do this task coor­

dination is minimized by presenting the lists as menus, and allowing the designer to pick 

items by means of a pointing device. Choosing an item results in a summary view of the 

module, which can be browsed and updated as required. 

The user interface speeds up the process of adapting the prototype by 

( 1) Helping to coordinate tasks perfonned by a team of designers, 

(2) Helping to focus the designer's attention on the information relevant to a task, 

(3) Providing summary views of the system or selected components. and 

( 4) Locating all potentially relevant pruts of the prototype. 

The components of the software database actively contribute to the process of 

adapting the prototype to new requirements. The software design-management system 
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helps to maintain the design history and to locate relevant reusable software components. 

The design history consists of the relationship between each version of the requirements 

and the corresponding versions of parts of the prototype. This information is useful 

because sometimes the customer will retreat to previous versions of the requirements. 

Situations in which this may happen include cases where the customer gives up on an 

ambitious requirement in response to cost or perfonnance estimates resulting from exam­

ination of the prototype. In such cases parts of the requirements are returned to previous 

configurations, and the system can help to restore the corresponding parts of the proto­

type to their previous configurations. 

The design database also provides concurrency control functions which allow multi­

ple designers to update the parts of the prototype without risk of unintentional interfer­

ence. In the interests of minimizing delay, the design database will not lock out access to 

any part of the design, even while the design is being updated. Instead, the system will 

allow the previous version of the component to be examined, with a warning that a new 

version is currently in preparation. The system will provide information about the reason 

the component is being modified (i.e. some particular new or modified requirement) on 

request. 

The software base provides reusable software components matching given PSDL 

specifications. In the PSDL prototyping method [8] modules are realized by three main 

mechanisms: 

(1) Retrieval of a suitable component from the softwase base. The software base 

should contain flexible generic modules, whose parameters are detennined as 

patt of the retrieval process. It also should contain rules for matching a 
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specification by means of a composite operator, which is realized by a network of 

operators, at least one of which must be an available reusable component [11] . 

The retrieval mechanism is therefore capable of performing some routine aspects 

of bottom-up design, freeing the designer from the need to be familiar with all of 

the reusable components in the software base. 

(2) Decomposition of the component into a network of simpler components. This is 

done by the designer if the component cannot be retrieved directly from the 

software base, and the component is sufficiently complex to have a useful decom­

position into simpler parts. The designer is responsible for top-down design 

activities such as inventing new abstractions. Each of the identified parts is 

specified in PSDL and realized by the same set of mechanisms, applied recur­

sively. 

(3) Direct implementation in a programming language. This is done by the designer 

if the component cannot be retrieved directly from the software base, and the 

component does not have a useful decomposition into simpler parts. This should 

be infrequent if the software base is mature, containing the results of prototyping 

many other systems in the same problem domain. 

The execution support system helps to speed up design changes by providing a 

localized view of the processes in the prototype and by analyzing its timing properties. 

These features are especially important for prototyping real-time systems. At the pro­

gramming language level, implementations of real-time systems are difficult to under­

stand because the instructions of several logically independent processes must often be 

interleaved to meet the timing constraints [2]. PSDL presents a view to the designer in 
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which logically distinct processes are represented as separate independent components. 

The PSDL execution support system contains a translator which mechanically transforms 

this independent representation into the corresponding programming language represen­

tation, adding the necessary interleaving in a fashion transparent to the designer. 

The timing properties of a real-time system are analyzed by the static scheduler. If 

the static scheduler succeeds in constructing a schedule, then the operators in the 

schedule are guaranteed to meet their timing constraints even under worst case operating 

conditions. In case the static scheduler fails to find a valid schedule, it provides diagnos­

tic infonnation useful for determining the cause of the difficulty and whether or not the 

difficulty can be resolved by adding more processors [9]. These functions are important 

because the timing constraints in complex systems can have complicated interactions that 

can be very difficult to analyze manually. 

The prototyping language PSDL is the vehicle for carrying a powerful set of con­

cepts useful for modeling complex systems and for providing a uniform framework for 

representing prototypes and software components which is common to all of the tools. 

PSDL also helps the designer achieve good modularity and allows the descriptions of 

small modifications to component behavior to be separated from the potentially complex 

implementations of those components. 

Good modularity means the prototype should be realized by a set of independent 

modules with narrow and explicitly specified interfaces. PSDL supports this concept via 

operators and data streams. An important property of the language i~ that two distinct 

operators can communicate or affect each other's behavior only by means of the data 

streams explicitly connecting them, either directly or indirectly. This locality property is 
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important for maintenance because it allows the set of modules that can potentially 

interact with a given module to be determined via a simple mechanical analysis of the 

data flow network, allowing the software tools to guarantee that all aspects of a proposed 

change have been covered. It also encourages designs containing an independent com­

ponent for each major design decision. Such designs are easier to modify because the 

information required to change a design decision is localized in one region of the code. 

The locality property is embodied by the PSDL scoping rules and mechanically 

enforced. The implementation of an operator can only refer to the explicitly declared 

input and output streams of the operator and to data streams local to the implementation 

of the operator. Implementations of operators representing state machines may contain 

closed loops consisting of local data streams. 

PSDL supports small modifications to the behavior of a component by means of 

control constraints. This mechanism can be used to adapt the behavior of a prototype to 

make a small change without examining the internal implementation of the affected com­

ponent. For example, a common kind of problem discovered in the demonstration of a 

prototype is that a given operator has the intended behavior most of the time but not 

always. The PSDL control constraints governing conditional execution of operators are 

useful in such a case. A control constraint in the form of an input guard predicate can be 

added in such a case, where the guard predicate describes the circumstances in which the 

execution of the operator will produce the intended result, and serves to disable the exe­

cution of the operator in cases where it would not produce the correct result. This allows 

the addition of another operator for producing the correct output in the remaining cases, 

controlled by a complementary guard predicate. Another example is a case where an 
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operator is discovered to have an inappropriate response to ill-fonned inputs. The PSDL 

control constraints governing conditional outputs or exceptions are useful in such a case. 

Such control constraints introduces an output guard predicate, which serves to disable the 

output of the operator if it does not satisfy the predicate, or an exception triggering predi­

cate, which produces an exception instead of the value computed by the operator. Output 

guard predicates can be used to filter out inappropriate responses in cases where no 

response is needed. In particular, they can be used to disable exceptions raised by imple­

mentations of components if the conditions reported by the exception do not require any 

action on the part of the prototype. Exception triggering predicates can be used to trigger 

exceptions when incorrect outputs have been computed, or to rename exceptions pro­

duced by the implementation of a module to other conditions meaningful at a higher 

level. Triggering an exception is useful because it allows a new module to be added for 

handling the exception, again without affecting the implementation of the original com­

ponent. Renaming exceptions is useful for repairing inappropriate error messages. For 

example, in the context of an operating system, a process_table_overflow condition 

might be translated into a "machine_busy" condition to convert an internal view of a 

failure in tenns of the implementation to an external view meaningful to the users of the 

prototyped system. An exception triggering predicate is used instead of an input guard 

predicate in cases where the condition to be checked depends on the output values of the 

operator in addition to its inputs values. 

4. Conclusions 

The effort required for supporting the evolution of a software system can be reduced 

via prototyping. Prototyping can be used to stabilize the requirements for either an initial 
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software development project or a proposed enhancement to an existing system. Espe­

cially for systems with complex requirements, such as large or embedded real-time sys­

tems, human communication is ineffective without the feedback provided by demonstra­

tions of proposed system behavior. An iterative process involving modifications to per­

ceived requirements and proposed system behavior is needed to arrive at a common 

understanding of the proposed system by the customer and the developer. It is more cost 

effective to use a prototype rather than production quality code to provide the demonstra­

tions of proposed system behavior because prototypes are simpler and easier to modify 

than production quality implementations. 

The effectiveness of prototyping is limited if it must be carried out manually. A 

high level language, a systematic prototyping method, and an integrated set of 

computer-aided prototyping tools are important for realizing the potential benefits of pro­

totyping. The prototyping effort is also aided by a powerful set of abstractions appropri­

ate for a problem domain, especially if these abstractions are embodied in a set of reus­

able software components. Effort can be saved in the long run by building up a 

comprehensive library of such components for an application area, especially if more 

than one software system must be developed for the same problem domain, which is 

often the case. 

A typical software system evolves in a long series of repairs and enhancements, in 

response to the discovery of faults and to changes in user requirements. Most useful sys­

tems are too large to be maintained by just one person. leading to the need for coordinat­

ing the concurrent efforts of a group of people. Enhancements to software systems must 

often be developed concurrently even though they are not independent. Sometimes the 
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designers talk to each other as they proceed, and adjust their designs to make sure they 

are compatible. In other cases, the designs are developed independently, and then are 

merged at the end, with both designers examining each other's code and making adjust­

ments as needed. Manual methods for merging enhancements are inadequate because 

they are slow and error prone. Automatic methods for merging enhancements are 

needed. To be useful, such methods should provide some assurances that the results are 

correct, or else locate potential inconsistencies. 

A better understanding of the software merging problem and better computer aided 

design tools enabled by that understanding are important because the bulk of the cost of a 

software system is due to enhancements and repairs. Coordinating the efforts of many 

people working on the same software system is difficult and expensive, and a design style 

that allows people to work more independently and uses automatic merging of indepen­

dent enhancements should reduce communication and coordination problems. 

The ability to easily swap in different alternative choices for an aspect of the 

behavior of a system would also be useful in using a prototype to aid in determining user 

requirements. Automated merging would make it practical to customize software pro­

ducts for each user's needs by picking options from a multiple choice menu, as is com­

monly done for automotive products now. Such an approach would make software sys­

tems more flexible and make it less critical to get the requirements right the first time. It 

would also make it easier to design and maintain a family of software products intended 

to exist in a variety of configurations. 
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