
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1988

Software Evolution Via Prototyping

Luqi
Naval Postgraduate School

Luqi, "Software Evolution Via Prototyping", Technical Report NPS 52-88-039,
Computer Science Department, Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65281

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

_,,-.
) .

NIVlr POSTGRADUATE SCHOOL
Monterey, California

SOFTWARE EVOLUTION VIA PROTOTYPING

Luqi

September 1988

Approved for public release; distribution is unlimited.

Prepared for :

Navel Postgraduate School
Monterey~ CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

The work reported herein was supported in part by the National Science Foundation
and the Naval Postgraduate School Research Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQ~
Assistant Professor
of Computer Science

Released by:

and Policy Science

SECURITY CLASSIFICATION OF tHIS PAGE

REPORT DOCUMENTATION PAGE
1a . REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRl,BUTION I AVAILABILITY OF REPORT

.r Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

'}. PERFORMING ORGANIZATION REPORT NUMBER($) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-88-039
6a. NAME OF PERFORMING ORGANIZATION 66 OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 National Science Foundation
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterev. CA. 93943 Washington DC 20550
Sa. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School
O&MN, Direct funding

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

Monterey, CA. 93943
11 . TITLE (Include Security Classification)

SOFTWARE EVOLUTION VIA PROTOTYPING (U)
12. PERSONAL AUTHOR($)

LUQI
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Progress FROM_ 87 /10 TO 88/09 1988 Sept 30

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP specification, rapid prototyping, computer aided software
engineering, real-time embedded system, ada, software
design

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Rapid prototyping is widely accepted as an alternative methodology for software deveolp-
ment. The problems of software maintenance are magnified in rapid prototyping because
prototypes are subject to frequent and repeated changes. The concepts and mechanisms
presented in this paper support such changes in rapid prototyping based on component
specifications. We discuss the following important issues for software evolution via
prototyping: (1) explicit interactions between prototype components for easily deter-
mining the impact of a proposed change, (2) requirements tracing facilities for identifying
the parts of a prototype affected by a proposed requirements change, (3) 3tructured sys-
tern construction by maximizing reusability of software components, and (4) the use of
specifications in retrieving, composing, and adapting reusable components in minimizing
effort for code analysis and modification in software maintenance.

20 . DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION
(ii UNCLASSIFIED/UNLIMITED [i SAME AS RPT . • DTIC USERS UNCLASSIFIED

22a . NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Luqi (408)646-2735 52Lq
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete ~ U.S. Government Printing Office: 198 6-606-243

UNCLASSIFIED

Software Evolution via Prototyping

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

Rapid prototyping is widely accepted as an alternative methodology for software
development. The problems of software maintenance are magnified in rapid pro­
totyping because prototypes are subject to frequent and repeated changes. The
concepts and mechanisms presented in this paper support such changes in rapid
prototyping based on component specifications. We discuss the following impor­
tant issues for software evolution via prototyping: (1) explicit interactions
between prototype components for easily determining the impact of a proposed
change, (2) requirements tracing facilities for identifying the parts of a prototype
affected by a proposed requirements change, (3) structured system construction
by maximizing reusability of software components, and (4) the use of
specifications in retrieving, composing, and adapting reusable components in
minimizing effort for code analysis and modification in software maintenance.

1

1. Introduction

Software evolution is a most important issue in software development because

changes to existing systems account for more than half of the total software cost. Evolu­

tion corresponds to the maintenance phase in traditional software life cycle, and consists

of the process of firming up the requirements and adapting the software system to main­

tain the correspondence between the two. It is difficult to eliminate this expensive pro­

cess because later phases of development often bring more knowledge and more insight

into the problem domain and the properties of the intended system to the designers and

customers, but the need for some types of changes can be reduced [12]. Software sys­

tems are changed for the following reasons:

Requirements errors

The developers have incorrectly understood the requirements and have produced a

system that does not meet user needs.

Implementation errors

A faulty design or implementation does not correspond to the specification.

Phased delivery

A partial implementation has been delivered because the customer cannot wait until

a complete implementation is available.

User education

Customer requirements have changed because experience with the current version

of the system has changed their perception of how computers can be used to solve

their problems.

2

New situations

Changes in the environment of the system have introduced new requirements.

Examples of such changes are new external systems, new policies, new technolo­

gies, and new competitive pressures.

Prototyping can help reduce the need for unplanned changes by stabilizing the

requirements before a significant amount of effort has been invested in implementation.

A key problem in large scale software development is the need for communication

between people with different areas of expertise. Typically customers know much more

about the problem domain than they do about programming, while the programmers

know much more about programming than they do about the customer's problems. Both

the problem domain and the programming domain have many specialized concepts and

terms, many of which are unfamiliar to people who are not experts on the domain. The

requirements for the proposed software system are influenced by constraints from both

the problem domain and the programming domain that cannot be completely understood

without knowledge of specialized concepts from both domains. Requirements are

difficult to construct and validate because usually there is no single person who under­

stands all of the constraints on the proposed system. This is especially evident in large

systems with hard real-time constraints, since the requirements for such systems are gen­

erally very difficult to understand or describe.

A prototype is a concrete executable model of selected aspects of the proposed sys­

tem. Prototypes are valuable aids in requirements analysis because they can be used to

demonstrate the behavior of the proposed system in a form that can be readily understood

by all concerned parties. Prototypes can help customers visualize and test consequences

3

of their requirements and provide an effective basis for communication between the cus­

tomers and the requirements analysts. The process of constructing a prototype also helps

the analysts to determine what questions they need to ask to construct a conceptual model

of the problem domain that is sufficiently complete to be used in designing the proposed

system.

Prototyping can help reduce maintenance costs primarily by reducing requirements

errors, so that fewer changes to the software are needed. This applies both to the original

formulation of the system and for evolutionary changes sparked by user education or new

situations. Phased delivery has traditional been the main mechanism for inducing

requirements changes due to user education. Extensive exercising of a prototype by a

group of users can trigger some of the requirements changes due to this effect before the

production version of the system has been produced. This can alleviate wasted design

effort, which is one of the main problems with phased delivery. Phased delivery is usu­

ally accomplished by developing a design for the whole system, and then choosing a sub­

set for implementation and delivery in the first release. If the requirements changes due

to user education are severe, the design for the rest of the system can be invalidated

before it is ever implemented.

Prototyping can also help reduce implementation errors. The prototype can allow

more extensive testing of a system by providing a means for evaluating test results. The

output of the production code can be mechanically compared to the corresponding output

of the prototype, thus allowing more test cases to be examined without increasing the

amount of human effort involved. The prototype can also be used by implementors to

resolve questions about the intended behavior of the system in particular cases. This can

4

reduce the incidence of errors caused by programmers making plausible but unfounded

assumptions about unspecified cases. Such assumptions are often needed in traditional

software development because specifications are incomplete and schedule pressures do

not allow queries to the customer about every minor detail of system behavior. Imple­

mentation errors can also be reduced by systematic development techniques supported by

formal methods and automated tools [1].

For large systems, every adjustment to the requirements has to be recorded and

incorporated into the system specifications, as well as the architecture and the implemen­

tation. A systematic way to reduce the extraordinary effort required for software mainte­

nance is to manage the changes in the system needed to reflect adjustments to the

requirements at the specification level rather than the implementation level. We can

view these two aspects of software maintenance in a unified way if we can mechanically

transfonn specifications into code. While mechanical transformations from black-box

specifications into production quality code is not practical at the current time, computer­

aided generation of prototype implementations is both feasible and useful [3].

1.1. The Prototyping Life Cycle

The traditional software life cycle consists of a series of phases which yield runn­

able software only late in the process. One view of the traditional life cycle is illustrated

in Fig. 1. A major problem with the traditional approach is that there is no guarantee the

resulting product will reliably solve the customer's problem. Often users will be able to

indicate the true requirements only by observing the operation of the system, and the

traditional life cycle yields executable programs late in the process, when too much

money has already been spent and there is no time left to recover from requirements

5

errors.

Reouirements
Ana1ys1s

Functional
S0ac1t1ca11ons

Architectural
Design

I •
I
•

Implementation

I •
Testing

:va:l.iat,on
a!"'ld
i;eoa,r

Fig. 1 Traditional Software Life Cycle

When this traditional life cycle approach is applied to hard real-time or embedded

systems, the potential for inconsistencies increases. One of the major differences

between a real-time system and a conventional computer system is the required precision

6

and accuracy of the application software. The response time of each individual operation

may be a significant aspect of the associated requirements, especially for operations

whose pmpose is to maintain the state of some external system within a specified region,

as is common in embedded software systems. In hard real-time systems response times

are a critical determining factor in the accuracy of the software. These response times, or

deadlines, must be met or the system will fail to function correctly, with potentially

catastrophic consequences. For example, as part of a larger computer system, the

requirements for an embedded system can incorporate stringent real-time constraints,

parallel processing on multiple computers, and a high degree of reliability. These

requirements will often exceed the intellectual capacity of a single software engineer,

requiring several individuals working independently on different segments of the system.

In such cases the requirements can be very difficult to understand.

Current research suggests a revised software development life cycle, which consists

of two phases, rapid prototyping and automatic program generation [8]. This prototyp­

ing life cycle is an alternative to the traditional life cycle which has been proposed to

alleviate problems stemming from incorrect requirements, especially when designing

hard real-time systems. Although current capabilities preclude completely automatic

program generation, the required software tools and capabilities do exist for computer­

aided rapid prototyping. As a software methodology, rapid prototyping provides the user

and designer with a fast, efficient and easy-to-use stepwise process. When utilized dur­

ing the early stages of the development life cycle, rapid prototyping aJlows validation of

the requirements, specifications and initial design before valuable time and effort are

expended on implementation software. Fig. 2 graphically describes this methodology as

a feedback loop [8]. Rapid prototyping initially establishes an iterative process between

7

DETERnlHE
REOUIREffEHTS

REOUIRED
IIOOIFICA­

TIONS

"

y

URLJDRTED
RE.QUIAEnENTS

SYSTEn
IMPLEMEHTRTION

R£0UlhEnEn1"S CONSTRUCT
PROTOTYPE

EXECUTABLE
PROTOTVPE

DEMOHSTRRTE
PROTOYTPE

Fig. 2 Prototyping Life Cycle

the user and the designer to concurrently define specifications and requirements for the

time critical aspects of the envisioned system. The designer then constructs a model or

prototype of the system in a high-level, prototype description language. This prototype is

a partial representation of the system, including only those critical attributes necessary

8

for meeting user requirements, and is used as an aid in analysis and design rather than as

production software. During demonstrations of the prototype, the user validates the

prototype's actual behavior against its expected behavior [9]. If the prototype fails to

execute properly or to meet any critical timing constraints, the user identifies required

modifications and redefines the critical specifications and requirements. This process

continues until the user determines that the prototype successfully meets the time critical

aspects of the envisioned system. Following this validation, the designer uses the vali­

dated requirements as a basis for the design of the production software.

Computer-aided rapid prototyping further refines the efficiency and accuracy of this

new methodology. While utilizing the same iterative approach, computer-aided rapid

prototyping relies on software tools which assist the designer in constructing and execut­

ing the prototype. We have designed a computer-aided prototyping system (CAPS) to

provide an integrated set of tools to support prototyping of complex software systems

which may include hard real-time constraints [7]. These tools operate on the prototyping

language PSDL (Prototype System Description Language) (10]. This language has been

designed to support the needs of rapid prototyping by providing a high level description

of the system which can be used to demonstrate the behavior of the prototype by means

of the above software tools. Since requirements are especially difficult to define for large

systems with hard real-time constraints, PSDL has been designed to apply to such sys­

tems.

Prototyping is an iterative process which depends on the ability to rapidly adjust the

behavior of the prototype based on feedback from the customer or user. The problems of

software maintenance are magnified in rapid prototyping because prototypes are subject

9

to frequent and repeated changes. The goal of the prototyping life cycle is to shift a siz­

able part of the initial maintenance activity from the production software to the proto­

type. The potential benefits to be gained from prototyping depend critically on the ability

to modify the behavior of the prototype with substantially less effort than that required to

modify the production software. The purpose of PSDL and the associated software tools

is to provide this ability. The mechanisms by which this is achieved are described below.

1.2. Mechanisms to Support Modifications

The prototyping language PSDL approaches the requirement to support frequent

design modifications by means of the following subgoals.

Modularity

The language must make it easy for the system designer to create a prototype with a

high degree of module independence and to preserve its good modularity properties

across many modifications.

Simplicity

The language should be simple and easy to use.

Reuse

The language should be suitable for specifying the retrieval of reusable modules

from a software base.

Adaptability

The language should support small modifications to the behavior of a module

without the need to examine its implementation.

10

Abstraction

The language should support a set of abstractions suitable for describing complex

software systems with real-time constraints.

Traceability

The language should support requirements tracing.

Good modularity is essential for achieving ease of modification. An experimental

study shows that many of the problems with correctly performing software modifications

are due to interactions between widely separated pieces of code [4]. Locality of informa­

tion was an important design goal of PSDL. The underlying computational model was

chosen to make all interactions between components explicit. This model supports a sys­

tem decomposition criterion that combines data flow and control flow considerations [8].

PSDL is simple and easy to use because it contains a small number of powerful con­

structs. Designs are described in PSDL as networks of operators connected by data

streams. Such networks can be represented as dataflow diagrams augmented with timing

and control constraints. The user interface uses the diagrams to provide a convenient

means for presenting the system structure to the designer. The operators in the network

can be either functions or state machines. The data streams can carry exception condi­

tions in addition to values of arbitrary abstract data types.

PSDL supports reusable components by means of black-box specifications suitable

for retrieving modules from a software base. The specification part of a PSDL com­

ponent contains several attributes which describe the intetface and behavior of the com­

ponent. These attributes can be used to automatically generate a unifonn specification

for the reusable component [6]. These uniform specifications are used both for retrieval

11

of reusable components and for organizing the software base.

PSDL supports small modifications to modules by means of control constraints.

Control constraints can be used to impose preconditions on the execution of a module, to

add filters to the output of a module, to suppress or raise exceptions in specified condi­

tions, and to control timers. These facilities allow small modifications to the behavior of

a module which do not involve the internal implementation of the module.

PSDL provides abstractions suitable for describing large systems and real-time con­

straints. These include the non-procedural control constraints mentioned above, timing

constraints, timers, functional abstractions, and data abstractions. Timing constraints can

be used to associate hard real-time constraints with operators. Examples of timing con­

straints include the maximum execution time, the maximum response time, and the

minimum calling period. Timing constraints implicitly determine when operators with

hard real-time constraints will be executed. This simplifies the designer's view of the

prototype by removing explicit scheduling considerations from the design of the proto­

type system. Timers are used to control aspects of behavior that depend on the duration

of particular system states or classes of system states. Timers allow static descriptions of

durational timing constraints, allowing the designer to ignore the operational details

involved in their implementation. A rich set of functional and data abstractions are pro­

vided by the pre-defined part of the software base. The designer can define additional

functional and data abstractions, either by adding them to the software base or by

defining them in terms of more primitive abstractions using PSDL.

PSDL supports requirements tracing by means of a construct for declaring the

requirements associated with each part of the prototype. Requirements tracing is impor-

12

tant because the prototype must be adapted to the changing perceptions of the require­

ments resulting from demonstrations of prototype behavior. The links between each

requirement and the parts of the prototype realizing the requirement are used to deter­

mine which parts of the prototype must be modified when a requirement is changed or

dropped. In order to prevent the structure of the design from being corrupted by multiple

modifications, it is impo11ant to remove parts of the code that are no longer supported by

an updated set of requirements. This cannot be done safely unless the correspondence

between the requirements and the code is recorded and kept up to date. In situations

where this correspondence is not maintained, each change to the system results in the

addition of new code, without the removal of any old code. Such a process leads to

increasingly complex systems that eventually escape from human control, making remo­

val of old code essential for systems that will be changed many times. The facilities for

recording requirements trace information in PSDL are used by software tools in CAPS to

provide automated aid in maintaining and using this information.

1.3. Benefits of Prototyping

Prototyping allows an appreciable part of the maintenance activity to be carried out

in tenns of the prototype rather than in terms of the production code for the intended sys­

tem. This is useful because the prototype description is significantly simpler than the

production code, is expressed in a notation tailored to support modifications, and the

software tools in the computer-aided prototyping environment can be used to help carry

out the required modifications.

Rapid prototyping is also a useful tool in feasibility studies, for reducing project

risks and estimating costs. Prototypes of critical subsystems or difficult parts of a com-

13

plicated system can significantly increase the confidence that the system can be built

before large amounts of effort and expense are committed to the project. Rapid prototyp­

ing helps in estimating costs, since the cost of the intended system is usually proportional

to the cost of the prototype. The experiences gained in applying rapid prototyping to spe­

cial applications, eg. database design, the metaprogramming method and others, have

substantiated the expected cost relationships between the prototype and the completed

system [5]. A prototype can also be used to specify a well modularized skeleton design

for the intended system and to validate the important attributes of the intended system,

eg. timing constraints, input and output formats, or interfaces between modules.

2. Computer-Aided Prototyping System

The main software tools in the computer-aided prototyping system are shown in

Fig. 3. These tools communicate by means of the PSDL language, which serves to

integrate the tools and provide a uniform conceptual framework for the prototype

designer.

User
Interface

Software
Database
System

Fig. 3 l\tain Software Tools in CAPS

14

Execution
Support
System

The user interlace consists of a syntax-directed editor with graphics capabilities, an

expert system for communicating with end-users, a browser, and a debugger. The editor

enables convenient entry of PSDL descriptions into the system while preventing syntax

errors. It also provides support for displaying graphical summary views of the prototype,

maintaining the requirements trace, and locating parts of the prototype design related to

particular requirements or data streams. The expert system provides a paraphrasing

capability which generates English text from PSDL descriptions, to allow end-users to

directly examine the prototype without the need for familiarity with PSDL. The browser

allows the designer to interact with the software database. In particular the browser pro­

vides facilities for retrieving and examining reusable components stored in the software

database system. The debugger allows the designer to interact with the execution support

system. In particular, the debugger provides facilities for initiating execution of the pro­

totype, displaying results or trace information, and gathering statistics about prototype

behavior and perfonnance.

The software database system consists of a design database, a software base, a

software design-management system, and a rewrite subsystem. The design database con­

tains the PSDL prototype descriptions for each software development project using

CAPS. The software base contains PSDL descriptions and code for all available reusable

software components. The software design-management system is responsible for

managing and retrieving the versions, refinements, and alternatives of the prototypes in

the design database and the reusable components in the software base. The rewrite sub­

system translates PSDL specifications into a normalized fo1m that is used by the design­

management system for retrieving reusable components from the software base [6].

15

The PSDL execution support system contains a translator, static scheduler, and a

dynamic scheduler [9]. The translator generates code binding together the reusable com­

ponents extracted from the software base. Its main functions are to implement data

streams, control constraints, and timers. The static scheduler allocates time slots for

operators with real-time constraints before execution begins. ff the allocation succeeds,

all operators are guaranteed to meet their deadlines even with worst-case execution

times. The dynamic scheduler invokes operators without real-time constraints in the time

slots not used by the operators with real-time constraints as execution proceeds.

3. Using CAPS for Maintenance

If the prototyping process is carried out manually, the associated benefits are limited

because it talces too much effort. CAPS can increase the leverage of the prototyping stra­

tegy by reducing the effort that must be spent by the designer in producing and adapting

a prototype to perceived user needs. This section describes how the facilities provided

by CAPS can be used to assist in the maintenance activities involved in the prototyping

process.

In the prototyping life cycle shown in Fig. 2, the maintenance activity for the proto­

type starts after the cycle has been carried out once: the analysts have determined the ini­

tial requirements by talking to the customers, constructed an initial prototype, and

demonstrated it to the customer, who finds some aspects of the prototype's behavior

unacceptable and requests some modifications. The process of demonstrating the proto­

type is aided by the user interface, which has facilities for presenting the results of proto­

type execution to the customer and for guiding the choice of which aspects of the proto­

type to demonstrate. The latter function is accomplished by an embedded expert system

16

containing heuristics for exercising prototypes and a facility for recording test case cov­

erage information. The analysts use customer feedback about the behavior of the proto­

type to modify or refine the requirements, which are maintained as a tree of subgoals.

The incremental change leading to the new version of the requirements is entered into the

system. At this point the facilities provided by CAPS are used to adapt the prototype to

the new requirements.

The user interface helps the prototype design team identify the tasks that have to be

carried out to update the prototype. The user interface maintains a list of unresolved new

requirements and a list of unresolved modified requirements. Whenever a member of the

design team is ready for a new task, the system presents the lists and lets the designer

pick an item to resolve. If a modified requirement is chosen, the interface returns a list of

modules previously supporting the requirement, and lets the designer check them off as

they are adapted or determined to be still valid. The effort required to do this task coor­

dination is minimized by presenting the lists as menus, and allowing the designer to pick

items by means of a pointing device. Choosing an item results in a summary view of the

module, which can be browsed and updated as required.

The user interface speeds up the process of adapting the prototype by

(1) Helping to coordinate tasks perfonned by a team of designers,

(2) Helping to focus the designer's attention on the information relevant to a task,

(3) Providing summary views of the system or selected components. and

(4) Locating all potentially relevant pruts of the prototype.

The components of the software database actively contribute to the process of

adapting the prototype to new requirements. The software design-management system

17

helps to maintain the design history and to locate relevant reusable software components.

The design history consists of the relationship between each version of the requirements

and the corresponding versions of parts of the prototype. This information is useful

because sometimes the customer will retreat to previous versions of the requirements.

Situations in which this may happen include cases where the customer gives up on an

ambitious requirement in response to cost or perfonnance estimates resulting from exam­

ination of the prototype. In such cases parts of the requirements are returned to previous

configurations, and the system can help to restore the corresponding parts of the proto­

type to their previous configurations.

The design database also provides concurrency control functions which allow multi­

ple designers to update the parts of the prototype without risk of unintentional interfer­

ence. In the interests of minimizing delay, the design database will not lock out access to

any part of the design, even while the design is being updated. Instead, the system will

allow the previous version of the component to be examined, with a warning that a new

version is currently in preparation. The system will provide information about the reason

the component is being modified (i.e. some particular new or modified requirement) on

request.

The software base provides reusable software components matching given PSDL

specifications. In the PSDL prototyping method [8] modules are realized by three main

mechanisms:

(1) Retrieval of a suitable component from the softwase base. The software base

should contain flexible generic modules, whose parameters are detennined as

patt of the retrieval process. It also should contain rules for matching a

18

..

specification by means of a composite operator, which is realized by a network of

operators, at least one of which must be an available reusable component [11] .

The retrieval mechanism is therefore capable of performing some routine aspects

of bottom-up design, freeing the designer from the need to be familiar with all of

the reusable components in the software base.

(2) Decomposition of the component into a network of simpler components. This is

done by the designer if the component cannot be retrieved directly from the

software base, and the component is sufficiently complex to have a useful decom­

position into simpler parts. The designer is responsible for top-down design

activities such as inventing new abstractions. Each of the identified parts is

specified in PSDL and realized by the same set of mechanisms, applied recur­

sively.

(3) Direct implementation in a programming language. This is done by the designer

if the component cannot be retrieved directly from the software base, and the

component does not have a useful decomposition into simpler parts. This should

be infrequent if the software base is mature, containing the results of prototyping

many other systems in the same problem domain.

The execution support system helps to speed up design changes by providing a

localized view of the processes in the prototype and by analyzing its timing properties.

These features are especially important for prototyping real-time systems. At the pro­

gramming language level, implementations of real-time systems are difficult to under­

stand because the instructions of several logically independent processes must often be

interleaved to meet the timing constraints [2]. PSDL presents a view to the designer in

19

which logically distinct processes are represented as separate independent components.

The PSDL execution support system contains a translator which mechanically transforms

this independent representation into the corresponding programming language represen­

tation, adding the necessary interleaving in a fashion transparent to the designer.

The timing properties of a real-time system are analyzed by the static scheduler. If

the static scheduler succeeds in constructing a schedule, then the operators in the

schedule are guaranteed to meet their timing constraints even under worst case operating

conditions. In case the static scheduler fails to find a valid schedule, it provides diagnos­

tic infonnation useful for determining the cause of the difficulty and whether or not the

difficulty can be resolved by adding more processors [9]. These functions are important

because the timing constraints in complex systems can have complicated interactions that

can be very difficult to analyze manually.

The prototyping language PSDL is the vehicle for carrying a powerful set of con­

cepts useful for modeling complex systems and for providing a uniform framework for

representing prototypes and software components which is common to all of the tools.

PSDL also helps the designer achieve good modularity and allows the descriptions of

small modifications to component behavior to be separated from the potentially complex

implementations of those components.

Good modularity means the prototype should be realized by a set of independent

modules with narrow and explicitly specified interfaces. PSDL supports this concept via

operators and data streams. An important property of the language i~ that two distinct

operators can communicate or affect each other's behavior only by means of the data

streams explicitly connecting them, either directly or indirectly. This locality property is

20

..

important for maintenance because it allows the set of modules that can potentially

interact with a given module to be determined via a simple mechanical analysis of the

data flow network, allowing the software tools to guarantee that all aspects of a proposed

change have been covered. It also encourages designs containing an independent com­

ponent for each major design decision. Such designs are easier to modify because the

information required to change a design decision is localized in one region of the code.

The locality property is embodied by the PSDL scoping rules and mechanically

enforced. The implementation of an operator can only refer to the explicitly declared

input and output streams of the operator and to data streams local to the implementation

of the operator. Implementations of operators representing state machines may contain

closed loops consisting of local data streams.

PSDL supports small modifications to the behavior of a component by means of

control constraints. This mechanism can be used to adapt the behavior of a prototype to

make a small change without examining the internal implementation of the affected com­

ponent. For example, a common kind of problem discovered in the demonstration of a

prototype is that a given operator has the intended behavior most of the time but not

always. The PSDL control constraints governing conditional execution of operators are

useful in such a case. A control constraint in the form of an input guard predicate can be

added in such a case, where the guard predicate describes the circumstances in which the

execution of the operator will produce the intended result, and serves to disable the exe­

cution of the operator in cases where it would not produce the correct result. This allows

the addition of another operator for producing the correct output in the remaining cases,

controlled by a complementary guard predicate. Another example is a case where an

21

operator is discovered to have an inappropriate response to ill-fonned inputs. The PSDL

control constraints governing conditional outputs or exceptions are useful in such a case.

Such control constraints introduces an output guard predicate, which serves to disable the

output of the operator if it does not satisfy the predicate, or an exception triggering predi­

cate, which produces an exception instead of the value computed by the operator. Output

guard predicates can be used to filter out inappropriate responses in cases where no

response is needed. In particular, they can be used to disable exceptions raised by imple­

mentations of components if the conditions reported by the exception do not require any

action on the part of the prototype. Exception triggering predicates can be used to trigger

exceptions when incorrect outputs have been computed, or to rename exceptions pro­

duced by the implementation of a module to other conditions meaningful at a higher

level. Triggering an exception is useful because it allows a new module to be added for

handling the exception, again without affecting the implementation of the original com­

ponent. Renaming exceptions is useful for repairing inappropriate error messages. For

example, in the context of an operating system, a process_table_overflow condition

might be translated into a "machine_busy" condition to convert an internal view of a

failure in tenns of the implementation to an external view meaningful to the users of the

prototyped system. An exception triggering predicate is used instead of an input guard

predicate in cases where the condition to be checked depends on the output values of the

operator in addition to its inputs values.

4. Conclusions

The effort required for supporting the evolution of a software system can be reduced

via prototyping. Prototyping can be used to stabilize the requirements for either an initial

22

software development project or a proposed enhancement to an existing system. Espe­

cially for systems with complex requirements, such as large or embedded real-time sys­

tems, human communication is ineffective without the feedback provided by demonstra­

tions of proposed system behavior. An iterative process involving modifications to per­

ceived requirements and proposed system behavior is needed to arrive at a common

understanding of the proposed system by the customer and the developer. It is more cost

effective to use a prototype rather than production quality code to provide the demonstra­

tions of proposed system behavior because prototypes are simpler and easier to modify

than production quality implementations.

The effectiveness of prototyping is limited if it must be carried out manually. A

high level language, a systematic prototyping method, and an integrated set of

computer-aided prototyping tools are important for realizing the potential benefits of pro­

totyping. The prototyping effort is also aided by a powerful set of abstractions appropri­

ate for a problem domain, especially if these abstractions are embodied in a set of reus­

able software components. Effort can be saved in the long run by building up a

comprehensive library of such components for an application area, especially if more

than one software system must be developed for the same problem domain, which is

often the case.

A typical software system evolves in a long series of repairs and enhancements, in

response to the discovery of faults and to changes in user requirements. Most useful sys­

tems are too large to be maintained by just one person. leading to the need for coordinat­

ing the concurrent efforts of a group of people. Enhancements to software systems must

often be developed concurrently even though they are not independent. Sometimes the

23

designers talk to each other as they proceed, and adjust their designs to make sure they

are compatible. In other cases, the designs are developed independently, and then are

merged at the end, with both designers examining each other's code and making adjust­

ments as needed. Manual methods for merging enhancements are inadequate because

they are slow and error prone. Automatic methods for merging enhancements are

needed. To be useful, such methods should provide some assurances that the results are

correct, or else locate potential inconsistencies.

A better understanding of the software merging problem and better computer aided

design tools enabled by that understanding are important because the bulk of the cost of a

software system is due to enhancements and repairs. Coordinating the efforts of many

people working on the same software system is difficult and expensive, and a design style

that allows people to work more independently and uses automatic merging of indepen­

dent enhancements should reduce communication and coordination problems.

The ability to easily swap in different alternative choices for an aspect of the

behavior of a system would also be useful in using a prototype to aid in determining user

requirements. Automated merging would make it practical to customize software pro­

ducts for each user's needs by picking options from a multiple choice menu, as is com­

monly done for automotive products now. Such an approach would make software sys­

tems more flexible and make it less critical to get the requirements right the first time. It

would also make it easier to design and maintain a family of software products intended

to exist in a variety of configurations.

1. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated

Approach to Software Development using Ada, Addison-Wesley, 1988.

24

2.

3.

S. Faulk and D. Pamas, "On Synchronization in Hard-Real-Time Systems",

Comm. of the ACM 31, 3 (Mar. 1988), 274-187.

P. Freeman, '' A Conceptual Analysis of the Draco Approach to Constructing

Software Systems'', IEEE Trans. on Software Eng. SE-13, 1 (July 1987), 830-844.

4. S. Letovsky and E. Soloway, "Delocalized Plans and Program Comprehension",

IEEE Software 3, 3 (May 1986), 41-49.

5. L. Levy, "A Metaprogramming Method and Its Economic Justification", IEEE

Trans. on Software Eng. SE-12, 2 (Feb. 1986), 272-277.

6. Luqi, Normalized Specifications for Identifying Reusable Software, Proc. of the

ACM-IEEE 1987 Fall Joint Computer Conference, Dallas, Texas, October 1987.

7. Luqi and M. Ketabchi, '' A Computer Aided Prototyping System'', IEEE Software

5, 2 (March 1988), 66-72.

8. Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems", IEEE Software,

Sep. 1988, 25-36.

9. Luqi and V. Berzins, '' Execution of a High Level Real-Time Language'', in Proc.

of th.e Real-Time Systems Symposium, Dec. 1988.

10. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software",

IEEE Trans. on Software Eng., October, 1988.

11. Luqi, "Knowledge Base Support for Rapid Prototyping", IEEE Expert, Nov.

1988.

12. R. Yeh and T. Welch, "Software Evolution: Forging a Paradigm", in Proc. Fall

Joint Computer Conference, ACM and IEEE Computer Society, Oct. 1987, 10-12.

25

;

...

Initial Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center
NAVCO~NIT Washington
Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

2

2

1

2

2

2

1

1

1

1

Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

Naval Sea Systems Command
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation
Division of Computer and Computation Research
Washington, D.C. 20550

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

1

1

1

1

1

1

1

150

.,.

