
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1989

Software Analysis and Testing through Prototyping

Luqi; Kraemer, B.; Berzins, V.
Naval Postgraduate School

Luqi, B. Kraemer, and V. Berzins, "Software Analysis and Testing through
Prototyping'', Technical Report NPS 52-89-044, Computer Science Department,
Naval Postgraduate School, 1989.
https://hdl.handle.net/10945/65282

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

1v..1

NPS52-89-044

NAVAL POSTGRADUATE SCHOOL
Monterey, Cal ifo rn ia

SOFTWARE ANALYSIS AND TESTING THROUGH PROTOTYPING

LUQI
BERND KRAEMER
VALDIS BERZINS

MARCH 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, CA 93943

Rear Admiral R. C. Austin
Superintendent

NAVAL POSTGRADUATE SCHOOL
Monterey, Calif omia

H. Shull
Provost

This report was prepared in conjunction with research conducted for the National Science
Foundation and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQI
Assistant Professor
of Computer Science

Released by:

KNEALET.

and Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

RE
1

PORT DOCUMENTATION PAGE

la. REPORT SECURllY CLASSIFICAflON 1b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION/AVAILA0ILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-89- 044
.Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable) National Science Foundation &

Naval Postgraduate School 52 ONR Sponsored Navy Direct Funding
.6c. ADDRESS (City, Stdte, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, D. C. 20550
Sa. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate Srhool j O&MN, Direct Funding
.. ~

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO . ACCESSION NO.

Monterey, CA 93943
11. TITLE (Include Security Classification)

SOFTWARE ANALYSIS AND TESTING THROUGH PROTOTYPING (U)

12. PERSONAL AUTHOR($)

LUOI. BERND KRAEMER. VALOIS BERZINS
13a. TYPE OF REPORT 113b. TIME COVE~ED 114 . . DATE OF REPORT (Year, Month, Day) 11S. PAGE COUNT

Progress FROM Sen_t___BB._ TO _Mac. _89 1989 M::1rch 19
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 10. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

FIELD GROUP SUD-GROUP Computer Aided Software Engineering, Rapid Prototyping,.
Specification, real-time Software, Embedded Systems,
Software Design, Reusability

19. ABSTRACT (Continue on reverie if neceisary and identify by block number)
Prototyping is such a complementary approach, which allows many of the traditional kinds
of software analysis and testing to be applied at earlier stages. The prototyping process
helps to establish relatively static concepts of correctness, which can be used as· a
meaningful basis for later verification efforts. The execution of software prototypes is
similar to traditional validation, except that the developer is explicitly concerned with
the length of time during which the proposed system will continue to meet customer needs,
rather than just ensuring the system will meet currently perceived needs. This paper also
discusses three levels of analysis and testing that are important for real-time systems in
rapid prototyping.

, 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJUNCLASSIFIEO/UNUMITED I() SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 1 ~lc. OFFICE SYMBOL

LUOI L.nR-£,L,.,;_7Jl'i ';?l.n

DD FORM 1473, 84 MAR 83 APR edition may be used until e,chausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete fl U.S. Governmenl P'rlnllnt OUlct1 ltll-lOl0 Jt.

UNCT.ASSTFTF.D

Software Analysis and Testing through Prototyping

Luqi
B. Kraemer
V. Berzins

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

Prototyping is such a complementary approach, which allows many of the
traditional kinds of software analysis and testing to be applied at earlier stages.
The prototyping process helps to establish relatively static concepts of correct
ness, which can be used as a meaningful basis for later verification efforts. The
execution of software prototypes is similar to traditional validation, except that
the developer is explicitly concerned with the length of time during which the
proposed system will continue to meet customer needs, rather than just ensuring
the system will meet currently perceived needs. This paper also discusses three
levels of analysis and testing that are in1portant for real-time systems in rapid pro
totyping.

1. Introduction

Robustness, reliability, and correctness of operation are quality aspects of software

products that gain increasing importance. This is particularly true for critical systems

whose malfunction may result in loss of hwnan life, compromise of national security, or

massive loss of property [3]. Software components of hard real-time systems often are

among this class of critical system as they typically control production processes, tran

sport systems, communication systems, chemical or power plants, etc.

The techniques for certifying such properties range from formal program

verification and software testing to formal and infonnal analysis techniques (2, 5) such as

1

data flow analysis, loop invariant detection, deadlock detection, software inspection,

documentation evaluation, and walkthroughs. Overview infonnation and references to

verification can be found in Software Engineering Notes, August 1985, infonnation about

current approaches to testing are surveyed in [4], and other validation techniques are

reported in [l] and IEEE Software, May 1989. All of these techniques have their specific

merits but also show limitations which require using a combination of validation and

verification techniques for building quality software.

Testing has a long tradition in programming and software engineering. 1be tradi

tional approach to software development, however, suffers from the fact that the results

of testing operational code become available close to the end of the development process,

so that design errors detected during system testing require an immense redesign and

reimplementation effort, and are likely to cause project delays if they occur. Thus an

effective quality assurance strategy should combine testing with other approaches that

can detect requirements and design errors earlier in the cycle, when they are less expen

sive to correct and have less external impact on the project. Prototyping is such a. com

plementary approach, which allows many of the the traditional kinds of software testing

to be applied at earlier stages.

2. The Role of Prototyping in System Validation

The faults in software systems with the largest impact are requirements and

specification errors, since such errors tend to affect large portions of the system and can

be very expensive to correct. Requirements are often uncertain at the early stages,

because the customers do not have a complete ,understanding of their problems or how

proposed software systems will affect their daily operations and their understanding of

2

the application domain. Experience with a software system usually changes the custo

mers' perceptions of their problems, and opens up new possibilities which lead to new

requirements. This makes the customer's problem a moving target. Educating customers

and developers about the problem is as much a part of the process as building a system,

so that the traditional concepts of what constitutes an en-or do not quite match the reality

of the early parts of the development process: a system that is "correct" at one point in

time may become "incorrect" later without any changes in system behavior.

The purpose of the iterative prototyping process illustrated below is to help stabilize

the effects of a proposed system on the customer's perceptions and requirements before

the system is constructed on a full scale.

+--------------+ +-----------+
I determine I requirements I construct I
I requirements 1------------------>1 prototype I
+--------------+ +-----------+

A I
I requirements adjustment I prototype
I I

+--------------+ V +----------------+
I demonstrate l<------------------------+-->1 system I
I prototype 1---------------------------->1 implementation I
+--------------+ requirements OK +--------·-------+

This process helps to establish relatively static concepts of correctness, which can be

used as a meaningful basis for later verification efforts. The goal of prototyping is simi

lar to traditional validation, except that the developer is explicitly concerned with the

length of time during which the proposed system will continue to meet customer needs,

rather than just ensuring the system will meet currently perceived needs. Automated

tools are necessary to carry out this process with reasonable speed and cost (1, 6].

3

3. Multiple Levels of Analysis and Testing

There are at least three levels of analysis and testing that are important for real-time

systems at the prototyping stage:

(1) Checking whether proposed timing requirements are sufficient to meet the higher

level functional requirements that motivate the timing requirements. Common

examples of such functional requirements include ensuring that software esti

mates of the state of a real world system are maintained to a given accuracy, or

that the state of the real-world system is controlled to remain within some desir

able region. A concrete example is an aircraft control system, whose pwpose is

to prevent mid-air collisions. Testing is essential for this part of the problem,

because it involves the relationship between a formally described abstract object

(the software prototype) and an informally described concrete object (the physi

cal system to be controlled). Analysis of formal models of the software and

interacting physical systems should be coupled with testing to check the

correspondence between the fonnal models and the real world.

(2) Checking whether a proposed design meets its requirements, given that the indi

vidual components meet their specifications. Most large software systems are

designed using modular decompositions. The essential question at the design

stage is: will a proposed design work correctly if the implementations of the

specified subcomponents arc carried out with perfect accuracy? A specification

based prototyping approach can help answer this question before much effort has

been spent on the detailed implementation of the components. This part of the

problem is subject to formal verification techniques, which are easier than prov-

4

ing correctness of low level code, because only the correspondence between two

sets of specifications in the same language is at issue.

(3) Checking whether a component meets its specifications and timing constraints.

This process can be addressed at the prototyping stage by testing and instrumen

tation that monitors the behavior of an executing prototype with respect to its

specifications. This part of the problem has both symbolic and testing aspects,

particularly with respect to the real-time behavior of the proposed implementa

tion, which again depends to some extent on the physical properties of the

hardware systems involved in the implementation. To establish some confidence

that a proposed system will provide guaranteed service within a deadline, the

interactions between the software with users, hardware, and other physical com

ponents must be tested.

4. How It Can Be Done

We propose a rapid prototyping approach comprising a language, called RPL, (8)

and an integrated tool set supporting iterative prototyping of complex software systems

(6, 7, 10). RPL covers a wide range of applications, including real-time, parallel, distri

buted, and knowledge-based systems. It combines second-or~r logic specifications sup

porting verification with an augmented dataflow representation for design and intercon

nection of prototype components. The design graph is augmented with special pre/post

conditions to express real-time constraints and adjust component behavior to each appli

cation context (9). Execution is based on automatically generating code which links

reusable software components or simulates component behavior via an executable subset

of the specification logic. Real-time constraints are guaranteed by automatically con-

5

structed schedules. Iterative modifications of prototypes are supported by localized

infonnation in RPL and its computational model, component behavior modification via

logical constraints, and facilities of the tool set for code and design reuse, requirements

tracing, and static analysis. The logic and the proposed computational model provide the

basis for integrating these facilities into a coherent language and tool structure. Among

others the tool set will support execution and dynamic debugging, optimization and

transformation to final implementation, as well as fonnal analysis and proofs of correct

ness.

The prototyping approach allows requirements and desirable features of the

intended system to be clarified while the system is incrementally implemented by map

ping designs to reusable and executable software components. Design alternatives can

be evaluated by observing the behavior of prototypes under real-time conditions. Test

data generation is simplified due to the the separation of concerns emphasized by RPL

and its formal semantics. Predicted performance can be verified by executing the proto

type under real-time conditions reflecting best and worst case assumptions. In particular,

static analysis can be combined with testing to verify the assumptions of the timing pro

perties of the software components on which the design is based, with special attention to

the paths with the longest expected execution times. This can lead to gieater confidence

by decoupling the empirical estimation of the execution times for individual machine

instructions from the static analysis which determines the sequence of insttuctions along

the longest execution path.

'

5. Conclusion

The interaction between testing and prototyping should be explored from several

points of view. Since prototypes are embedded in a computer-aided prototyping system

for execution, they provide a greater degree of flexibility, observability, and control than

a production implementation, enabling new testing techniques that check some of the

critical decisions made in the early stages of software development, and provide a means

for coupling testing with simplified fonnal analysis with respect to high level

specifications. As in Monte Carlo simulations, the use of partial formal analysis to

reduce the variability of the unknown aspects of the problem can lead to more accurate

conclusions based on fewer test cases. Demonstrations to customers also provide a

means for using testing techniques to do requirements validation, and provide error

detection and location earlier in the development process, when it can have a much larger

beneficial effect. These possibilities open up a new and important area for future

research and development.

1. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated

Approach to Software Development using Ada, Addison-Wesley, 1989.

2. M. Christ-Neumann, B. Kraemer, ff. H. Nieters and H. W. Schmidt, "The

GRASPIN Environment on the Lisp Machine - User's Guide'', ORASPIN

Technical Paper GMD37 /1, GMD, Sankt Augustin, Mar 1989.

3. J. Goguen, ''OBJ as a Theorem Prover with Applications to Hardware

Verification'', SRI-CSL-88-4R2, SRI International, Menlo Parle, California,

August 1988 :

.,

4. W. Howden, Functional Program Testing and Analysis, McGraw-Hill, New York,

1987.

5. B. Kraemer, Concepts, Syntax and Semantics of SEGRAS - A Specification

Language for Distributed Systems, Oldenbourg Verlag,, Muenchen-Wien, 1989.

6. Luqi, "Rapid Prototyping for Large Software System Design", Ph. D. Thesis,

University of Minnesota, 1986.

7. Luqi and V. Berzins, ''Rapidly Prototyping Real-Time Systems'', IEEE Software,

Sep. 1988, 25-36.

8. Luqi, V. Berzins, B. Kraemer and L. White, "A Proposed Design for a Rapid

Prototyping Language", NPS52-89-45, Computer Science Department, Naval

Postgraduate School, 1989.

9. Luqi, '' Handling Timing Constraints in Rapid Prototyping'', in Proceedings of the

22nd Annual Hawaii International Conference on System Sciences, IEEE

Computer Society, Jan. 1989, 417-424.

10. W. Swartout and R. Balzer, "On The Inevitable Intertwining of Specification and

Implementation'', Comm. of the ACM 25, 1 (July 1982), 438-440.

8

r . , ,. '

INITIAL DISTRIDUTION LIST

1. Defense Technical lnfom,ation Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research_.
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office
OUSDRE(R&A TI
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

2

2 · ~

1

1

1

1

1

1

:c
1'11 ,,
:::0
C
C
C n
1'11
C

. ,.
-4
Ci)
0
<
"' ::a
z
3:
"' z
-4

"')<
"'D

"' z

10. Navy Ocean System Center
Aun. Linwood Sutton, Code 423
San Diego, California 92152-500

11. National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Tom l{eenan
Washington, D.C. 20550

13. National Science Foundation
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research '
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 121.l .
Attn: Dr. James Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

17. Southern Methodist University
Computer Science Department
Aun. Dr. Murat Tanik
Dallas, Texas 75275

· 1 s. Editor-in-Chief, IEEE Software
Attn. Dr. Ted Lewis
Oregon Stale University
Computer Science Department
Corvallis, Oregon 97331

19. University of Texas at Austin
Computer Science Department
Attn. Dr. Al Mok
Austin, Texas 78712

1

l

::c
111 ,,
::0
C
C
(?:
n
111
C
)i
-4
(j)
0
< .,,
::0
z
~
111 z
-4 .,,
)< ,,
.ffl

...,

20. University of Maryland
College of Business Management
Tydings Hall, · Room 0 137
Attn. Dr. Alan Hevner
College Park, Maryland 20742

21. University of Califomia at Berkeley
Department of Electrical Engineering and Computer Science
Computer Science Division - · ·
Attn. Dr. C.V. Ramamoorthy
Berkeley, <;:alifom_~a ·94720

22. University of California at Los Angeles
School of Engineering and Applied Science
Computer Science Department
Attn. Dr. Daniel Berry
Los Angeles, California 90024

23. University of Maryland '

Computer Science Department
Attn. Dr. Y. H. Chu
College Park, Maryland 207 42

24. University of Maryland
Computer Science Department

· Attn. Dr. N. Roussapoulos
College Park, Maryland 207 42

25. Kestrel Institute
Attn. Dr. C. Green
1801 Page fytill Road
Palo Alto, California 94304

26. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. B. Liskov
Cambridge, Massachusetts 02139

27. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

28. University of Minnesota
Computer Science Department
136 Lind Hall ·
207 Church Street SE
Attn. Dr. Fox
Mi~neapolis, Minnesota 55455

•

II

•• - ✓-:"" - .. --·-· ~

1

1

I

1

1

1

1 :0
ITI
"'D
:u
0
C
C
n
ITI
C
)i
-t
c.,
0
<
ITI
:u
z
i:
ITI
z
-t
Ill
)< .,,
ITI .,

... ... - ... _

29. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

30. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

31. Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha
Pittsburgh, Pennsylvania 15260

32. IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko
P.O. Box 704 '

Yorktown Heights, New York 10598

33. The Ohio State University
Department of Computer and Information Science
Attn. Dr. Ming Liu
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

34. University of Illinois
Departmer:it of Computer Science
Attn. Dr. Jane W. S. Liu
Urbana Champaign, lllinois 61801

35. University of Massachusetts
Department of Computer and Infom1ation Science
Attn. Dr. John A. Stankovic
Amherst, Massachusetts O 1003

36. University of Pittsburgh
Department of Computer Science
Attn. Dr. Alfs Berztiss
Pittsburgh; Pennsylvania 15260

37. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

1

1

1

1

1

1

1

::0
fl'I
"D
:u
C
C
C: n

• fl'I
C

.~
- G,

0
-<
fl'I
:u z
3:
fl'I z
-I
I'll
)< .,,
~

; .

38. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
.Arlington, Virginia 22209-2308

39. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlingto~, Virginia 22209-2308

40~ Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

41. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic TechQology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

42. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

43. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 2209-2308

44. MCC AI Laboratory
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

45. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

46. University of Maryland
Attn. Dr. Basili
Computer Science Department
College Park, MD 207 42

- •• >t

1

I

1

1

1

I

::t
rr:
"'D
~
C
C
C
0
"1
C
>
-f

Gl
0
<
"1
::a z
~
"1 z
-f
"1
)< .,,
11"1

.• u ,u

47. University of California at San Diego
Depanment of Computer Science
Attn. Dr. William Howden
La Jolla, California 92093

48. University of California at Irvine
Depanment of Computer and lnfonnation Science

· Attn. Dr. Nancy Levenson
Irvine, California · 92717

49 . . University of California at Irvine .
Department of Computer and Information Science
Attn. Dr. L. Osterweil
Irvine, California 92717

..

50. University of Colorado at Boulder
Department of Computer Science
Attn. Dr. Lloyd Fosdick
Boulder, Colorado 80309-0430

51. Santa Clara University
Department of Electrical Engineering and Computer Science
Attn. Dr. M. Ketabchi
Santa Clara, California 95053

52. Oregon Graduate Center
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

53. Dr. Wolf gang Halang
Bayer AG
In gen ieurbereich Progesslei ttech nik
D-4047
Donnagen, West Gern1any

54. Dr. Bernd Kraemer
GMD Postfach 1240
Schloss Birlinghaven
D-5205
Sankt Augustin 1, West Germany

55. Dr. Aimram Yuhudai
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

1

l

1

1

1

I

1

:t
l'li
"C
:t
C
C
C

~ n
11'1
C
~
-t
Ci)
0
<
11'1
::u z
~
11'1 z
-t
11'1
)<
:!

56. Or. Robert M. Dalzer
· USC-Information Sci~nccs Institute
4676 Admiralty Wny
Suite 100 l
Marina dcl Ray, California 90292-6695

57. U.S. Air Poree Systems Command
Rome Air Development Center
RADC/COE
Attn. fvlr. Snmuel A. Di Nitto, Jr.
Griffis Air Force Base, New York· 13,14 J-5700

58. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air force Base, New York 13441-5700

59
LuQi 100

Code 52Lq
Computer Science Department ,
Naval Postgraduate School
Monterey, CA 93943-5100

60 Steve Huseth 1
Honeywell Systems &. Research Center
3660 Technology Dr
Meis, MN 55418

61 Research Administration 1
Code: 012
Naval Postgraduate School
'M<:>nterey, CA 93940

