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Software Analysis and Testing through Prototyping 

Luqi 
B. Kraemer 
V. Berzins 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

ABSTRACT 

Prototyping is such a complementary approach, which allows many of the 
traditional kinds of software analysis and testing to be applied at earlier stages. 
The prototyping process helps to establish relatively static concepts of correct
ness, which can be used as a meaningful basis for later verification efforts. The 
execution of software prototypes is similar to traditional validation, except that 
the developer is explicitly concerned with the length of time during which the 
proposed system will continue to meet customer needs, rather than just ensuring 
the system will meet currently perceived needs. This paper also discusses three 
levels of analysis and testing that are in1portant for real-time systems in rapid pro
totyping. 

1. Introduction 

Robustness, reliability, and correctness of operation are quality aspects of software 

products that gain increasing importance. This is particularly true for critical systems 

whose malfunction may result in loss of hwnan life, compromise of national security, or 

massive loss of property [3]. Software components of hard real-time systems often are 

among this class of critical system as they typically control production processes, tran

sport systems, communication systems, chemical or power plants, etc. 

The techniques for certifying such properties range from formal program 

verification and software testing to formal and infonnal analysis techniques (2, 5) such as 
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data flow analysis, loop invariant detection, deadlock detection, software inspection, 

documentation evaluation, and walkthroughs. Overview infonnation and references to 

verification can be found in Software Engineering Notes, August 1985, infonnation about 

current approaches to testing are surveyed in [4], and other validation techniques are 

reported in [l] and IEEE Software, May 1989. All of these techniques have their specific 

merits but also show limitations which require using a combination of validation and 

verification techniques for building quality software. 

Testing has a long tradition in programming and software engineering. 1be tradi

tional approach to software development, however, suffers from the fact that the results 

of testing operational code become available close to the end of the development process, 

so that design errors detected during system testing require an immense redesign and 

reimplementation effort, and are likely to cause project delays if they occur. Thus an 

effective quality assurance strategy should combine testing with other approaches that 

can detect requirements and design errors earlier in the cycle, when they are less expen

sive to correct and have less external impact on the project. Prototyping is such a. com

plementary approach, which allows many of the the traditional kinds of software testing 

to be applied at earlier stages. 

2. The Role of Prototyping in System Validation 

The faults in software systems with the largest impact are requirements and 

specification errors, since such errors tend to affect large portions of the system and can 

be very expensive to correct. Requirements are often uncertain at the early stages, 

because the customers do not have a complete ,understanding of their problems or how 

proposed software systems will affect their daily operations and their understanding of 
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the application domain. Experience with a software system usually changes the custo

mers' perceptions of their problems, and opens up new possibilities which lead to new 

requirements. This makes the customer's problem a moving target. Educating customers 

and developers about the problem is as much a part of the process as building a system, 

so that the traditional concepts of what constitutes an en-or do not quite match the reality 

of the early parts of the development process: a system that is "correct" at one point in 

time may become "incorrect" later without any changes in system behavior. 

The purpose of the iterative prototyping process illustrated below is to help stabilize 

the effects of a proposed system on the customer's perceptions and requirements before 

the system is constructed on a full scale. 

+--------------+ +-----------+ 
I determine I requirements I construct I 
I requirements 1------------------>1 prototype I 
+--------------+ +-----------+ 

A I 
I requirements adjustment I prototype 
I I 

+--------------+ V +----------------+ 
I demonstrate l<------------------------+-->1 system I 
I prototype 1---------------------------->1 implementation I 
+--------------+ requirements OK +--------·-------+ 

This process helps to establish relatively static concepts of correctness, which can be 

used as a meaningful basis for later verification efforts. The goal of prototyping is simi

lar to traditional validation, except that the developer is explicitly concerned with the 

length of time during which the proposed system will continue to meet customer needs, 

rather than just ensuring the system will meet currently perceived needs. Automated 

tools are necessary to carry out this process with reasonable speed and cost (1, 6]. 
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3. Multiple Levels of Analysis and Testing 

There are at least three levels of analysis and testing that are important for real-time 

systems at the prototyping stage: 

( 1) Checking whether proposed timing requirements are sufficient to meet the higher 

level functional requirements that motivate the timing requirements. Common 

examples of such functional requirements include ensuring that software esti

mates of the state of a real world system are maintained to a given accuracy, or 

that the state of the real-world system is controlled to remain within some desir

able region. A concrete example is an aircraft control system, whose pwpose is 

to prevent mid-air collisions. Testing is essential for this part of the problem, 

because it involves the relationship between a formally described abstract object 

(the software prototype) and an informally described concrete object (the physi

cal system to be controlled). Analysis of formal models of the software and 

interacting physical systems should be coupled with testing to check the 

correspondence between the fonnal models and the real world. 

(2) Checking whether a proposed design meets its requirements, given that the indi

vidual components meet their specifications. Most large software systems are 

designed using modular decompositions. The essential question at the design 

stage is: will a proposed design work correctly if the implementations of the 

specified subcomponents arc carried out with perfect accuracy? A specification

based prototyping approach can help answer this question before much effort has 

been spent on the detailed implementation of the components. This part of the 

problem is subject to formal verification techniques, which are easier than prov-
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ing correctness of low level code, because only the correspondence between two 

sets of specifications in the same language is at issue. 

(3) Checking whether a component meets its specifications and timing constraints. 

This process can be addressed at the prototyping stage by testing and instrumen

tation that monitors the behavior of an executing prototype with respect to its 

specifications. This part of the problem has both symbolic and testing aspects, 

particularly with respect to the real-time behavior of the proposed implementa

tion, which again depends to some extent on the physical properties of the 

hardware systems involved in the implementation. To establish some confidence 

that a proposed system will provide guaranteed service within a deadline, the 

interactions between the software with users, hardware, and other physical com

ponents must be tested. 

4. How It Can Be Done 

We propose a rapid prototyping approach comprising a language, called RPL, (8) 

and an integrated tool set supporting iterative prototyping of complex software systems 

(6, 7, 10). RPL covers a wide range of applications, including real-time, parallel, distri

buted, and knowledge-based systems. It combines second-or~r logic specifications sup

porting verification with an augmented dataflow representation for design and intercon

nection of prototype components. The design graph is augmented with special pre/post 

conditions to express real-time constraints and adjust component behavior to each appli

cation context (9). Execution is based on automatically generating code which links 

reusable software components or simulates component behavior via an executable subset 

of the specification logic. Real-time constraints are guaranteed by automatically con-
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structed schedules. Iterative modifications of prototypes are supported by localized 

infonnation in RPL and its computational model, component behavior modification via 

logical constraints, and facilities of the tool set for code and design reuse, requirements 

tracing, and static analysis. The logic and the proposed computational model provide the 

basis for integrating these facilities into a coherent language and tool structure. Among 

others the tool set will support execution and dynamic debugging, optimization and 

transformation to final implementation, as well as fonnal analysis and proofs of correct

ness. 

The prototyping approach allows requirements and desirable features of the 

intended system to be clarified while the system is incrementally implemented by map

ping designs to reusable and executable software components. Design alternatives can 

be evaluated by observing the behavior of prototypes under real-time conditions. Test 

data generation is simplified due to the the separation of concerns emphasized by RPL 

and its formal semantics. Predicted performance can be verified by executing the proto

type under real-time conditions reflecting best and worst case assumptions. In particular, 

static analysis can be combined with testing to verify the assumptions of the timing pro

perties of the software components on which the design is based, with special attention to 

the paths with the longest expected execution times. This can lead to gieater confidence 

by decoupling the empirical estimation of the execution times for individual machine 

instructions from the static analysis which determines the sequence of insttuctions along 

the longest execution path. 
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5. Conclusion 

The interaction between testing and prototyping should be explored from several 

points of view. Since prototypes are embedded in a computer-aided prototyping system 

for execution, they provide a greater degree of flexibility, observability, and control than 

a production implementation, enabling new testing techniques that check some of the 

critical decisions made in the early stages of software development, and provide a means 

for coupling testing with simplified fonnal analysis with respect to high level 

specifications. As in Monte Carlo simulations, the use of partial formal analysis to 

reduce the variability of the unknown aspects of the problem can lead to more accurate 

conclusions based on fewer test cases. Demonstrations to customers also provide a 

means for using testing techniques to do requirements validation, and provide error 

detection and location earlier in the development process, when it can have a much larger 

beneficial effect. These possibilities open up a new and important area for future 

research and development. 
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