
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1988

An Introduction to the Specification Language Spec

Berzins, V.; Luqi
Naval Postgraduate School

V. Berzins and Luqi, "An Introduction to the Specification Language Spec", Technical
Report NPS 52- 88-031, Computer Science Department, Naval Postgraduate School, 1988.
https://hdl.handle.net/10945/65283

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

,.

NAVAL
1

POSTGRAOUATE SCHOOL
Monterey, California

AN INTRODUCTION TO THE SPECIFICATION LANGUAGE SPEC

Valdis Berzins

Luqi

September 1988

Approved for public release; distribution is unlimited.

Prepared for:

Navel Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, .California

Rear Admiral R. C. Austin
Superintendent

H.Shull
Provost

The work reported herein was supported in part by the National Science Foundation
and the Naval Postgraduate School Research Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

ROBERT B. MCGHEE
Chairman
Department of Computer Science

LUQih
Assistant Professor
of Computer Science

Released by:

KNEALE T . .ffittf:t~tbb
Dean of Information
and Policy Science

_ ..

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION / AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER($)
. -. NPS52-88-031

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a . NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) National Science Foundation

52
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA. 93943
Washington DC 20550

Sa. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Naval Postgraduate School O&MN, direct funding
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Monterey, CA. 93943
11 . TITLE (Include Security Classification)

AN INTRODUCTION TO THE SPECIFICATION LANGUAGE SPEC (U)

12. PERSONAL AUTHOR($)
BERZINS, Valdis, LUQI

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE ·oF REPORT (Yea,, Month, Day) 115. PAGE COUNT

Progress FROM R7 /10 TO AA/og 1988. Sept 35
16. SUPPLEMENTARY NOTATION

17 .. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP specification, rapid prototyping, computer aided software
engineering, real-time embedded system, ada, software
desi~n

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper presents a language for giving black-box specifications in the early stages of
software design. This language is suitable for describing parallel programs, distributed
systems, and real-time constraints. The underlying computational model combines temporal
events with message passing to support descriptions of bothe active and reactive systems.
The Features of the language, especially those important for large scale design, are
presented by means of examples •

. .

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

Iii UNCLASSIFIED/UNLIMITED [ii SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Luqi (408)646-2735 52Lq
DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete ~ U.S. Government Printing Office: 1986-606•243

UNCLASSIFIED

.- -

An Introduction to the Specification Language Spec

Va/dis Berzins

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

This paper presents a language for giving black-box specifications in the early stages of software
design. This language is suitable for describing parallel programs, distributed systems, and real­
time constraints. The underlying computational model combines temporal events with message
passing to support descriptions of both active and reactive systems. The features of the language,
especially those important for large scale design, are presented by means of examples.

1. Introduction

The early stages of software development are concerned with building conceptual models of the

problem domain and the proposed software system. These processes are critical for the development of

large systems because the usefulness of such systems is limited by their conceptual complexity, and

because errors in the early stages are substantially more expensive to correct if they are discovered at the

end of the development effort rather than at the beginning. Conceptual complexity can be controlled via

careful use of abstractions [3] while errors can be reduced by applying computer-aided design tools at the

early stages [6]. Formal specifications are needed to apply these techniques effectively and to support

rigorous reasoning about the consequences of a specification. Such a capability is essential for producing

reliable software products with predictable properties.

Abstractions must have precise black-box descriptions to enable them to be used and understood

independently from the details of any particular mechanism for realizing them. This allows users to be

imulated from implementation details, and designers and maintainers considering a given level of the

implementation to be insulated from details at lower levels. The black-box description of each abstraction

• . must b_e explicitly recorded because the definer of the abstraction and its users must agree on its expected

behavior to avoid errors. Informal descriptions are inadequate for this pwpose because they are often

ambiguous, requiring direct communication between the users and the definer when the need for

clarifications is discovered. In large projects this can become a significant drain on the definer's time, and

1

can lead to serious problems for the users of the abstraction after its definer has left the project. Such prob­

lems are most apparent in the maintenance phase.

Automated analysis and checking is needed for large systems because manual checking is too unreli­

able and requires too much time. Software tools are most effective for checking an aspect of a notation if

that aspect has been explicitly and unambiguously defined [5]. Specifications with a completely defined

syntax and semantics are needed to support computer-aided design tools capable of detecting an appreci­

able fraction of the errors occurring at the early stages development.

At the current state of the art different kinds of notations are needed for expressing specifications and

programs. Programming languages such as Ada are not well suited for writing black-box specifications

because they have been designed for describing the algorithms and data structures realizing a module

rather than the behavior a module presents at its interface. Specification languages are also not well suited

for describing programs because they have not been designed to specify internal data structures and algo­

rithms, and current compilers are not capable of producing efficient implementations from unrestricted

black-box specifications without considerable guidance from a programmer on choosing those internal

details.

Formal specifications can be used in a computer-aided software engineering enviromnent for quality

assurance and synthesis. In addition to enabling early checks on the consistency of a proposed design,

specifications are needed for describing the intended behavior of a software system for any quality

assurance activity relating the actual behavior of a system to the intended behavior. This includes both

testing and correctness proofs. Formal specifications have long been recognized as a necessary part of

developing a proof of correctness. However, current practice emphasizes testing rather than correctness

proofs in large scale software development because developing computer-checked proofs of correctness is

expensive and requires specialized training and sophisticated software tools. Since large numbers of test

cases are needed to achieve reliability for large systems, an important application of formal specifications

is automatic classification of test results. A test oracle is a program that detennines whether the results of

running a test case represent an instance of correct behavior or a failure. Generating executable test oracles

from fonnal specifications is much easier than generating efficient implementations. The availability of a

test oracle enables randomly generated test cases to be executed and evaluated in large numbers without

2

... .

human inteIVention, allowing more thorough testing than manual classification of test results.

Spec is a fonnal specification language for software systems. The language is primarily designed for

representing black-box specifications, and it bas a subset suitable for describing domain models [6].

Domain models are developed in the initial stages of requirements analysis, and seIVe to define the types of

objects in a problem domain along with their properties. Spec can be used together with other notations for

recording goals and constraints in the requirements analysis phase. Black-box specifications are used in the

functional specification stage of software development for defining external interfaces of a proposed sys­

tem, and in the architectural design stage for defining internal interfaces of a proposed system. Spec can be

be used together with any programming language for describing the internal structure of modules during

detailed design and implementation. The use of Spec together with Ada for this purpose is described in [6].

A survey of previous work on fonnal specifications can be found in [8]. Much of the work on fonnal

specifications has focused on the problem of proving the correctness of programs, and has addressed prob­

lems encountered in small scale programming. Spec has been intended primarily for supporting the use of

abstractions in the design of software systems, and has been designed to apply to large scale systems. Spec

has evolved from an earlier specification language [2] and a rapid prototyping language for the design of

large real-time systems [12), guided by extensive classroom experience in using fonnal specifications in

multi-person projects [3]. The most important advances over the earlier specification language are the

integration of time into the underlying model, the incorporation of an inheritance mechanism, and the

separation of granularity and control state considerations from the event-level interfaces of a module. The

Spec language is suitable for specifying parallel, distributed, or time sensitive systems as well as cooven­

tional systems.

Spec differs from algebraic specification languages such as Larch [9] because it is based on models

rather than theories. While it is feasible to write Spec axioms in the conditional equation fonn commonly

used in algebraic approaches, the use of conceptual models and axioms of other fonns can sometimes lead

to simpler specifications. The restricted fonn of Larch is helpful for supporting automated tools for pro­

gram verification, while the expressiveness of Spec is useful in developing large scale designs. Larch pro­

vides general purpose facilities for defining immutable data types along with a framework for adding an

implementation-language dependent layer for defining state changes and concrete interfaces, motivated by

3

the premise that interfaces involving state changes are inherently dependent on the implementation

language. Spec is based on the premise that interfaces with state changes, exceptions, concurrent interac­

tions, and time dependencies can all be specified independently of implementation language, and that the

definition of a language dependent concrete interface is a matter of packaging rather than semantics. This

reflects the difference between the prescriptive nature of specifications used as a design tool and the

descriptive nature of specifications used primarily to prove properties about systems.

Model based approaches such as VDM (7) have a few similarities to Spec. However, Spec has been

designed to handle systems with a wide range of features, e.g. concurrency and time dependent constraints,

while VDM is primarily intended for specifying sequential systems [8].

Spec is based on the event model of computation, and uses predicate logic to define the desired

behavior of modules independently of their internal structure. The most important features of this language

are constructs for localizing information, controlling the sharing of specification concepts, supporting re­

use of specification components, defining granularity of concurrent actions, and specifying timing con­

straints. Spec supports reuse of abstractions via inheritance and generic modules. Spec supports the

specification of large systems via black-box descriptions, abstractions, import/export controls for defined

concepts, and inheritance.

2. The Event Model

The Spec language uses the event model to define the black-box behavior of software modules. In

the event model, computatiom are described in terms of modules, messages, events, and alarms. A module

is an active black box that interacts with other modules only by sending and receiving messages. A mes­

sage is a data packet that is sent from one module to another. An event occurs when a message is received

by a module at a particular instant of time. An alarm defines an imtant of time at a module.

Modules can be used to model external systems such as users and peripheral hardware devices, as

well as software components. Modules have no visible internal structure. The behavior of a module is

specified by describing its interface, which consists of the set of stimuli recognized by the module and the

associated responses. A stimulus is an event, and the response is the set of events directly triggered by the

stimulus. The events in the response consist of the anivals of the messages sent out by the module because

4

of the stimulus. State changes triggered by a stimulus are manifested in responses to future stimuli. The

response of a module to a message is influenced only by the sequence and arrival times of the messages

received by the module since it was created. This means there is no action at a distance: all interactions

must involve explicit message transmissions. This restriction fonnalizes the requirement that each module

must correspond to an independent abstraction, since it implies the behavior of a module can be influenced

only via the operations provided by its interface.

Messages can be used to model user commands, system responses, and interactions between internal

subsystems. Messages represent abstract interactions that can be realized in a wide variety of ways, includ­

ing procedure call, return from a procedure, Ada rendezvous, coroutine invocation, external 1/0, assign­

ments to non-local variables, hardware interrupts, and exceptions. Each message has a condition, a name, a

sequence of zero or more data values, and an origin. The condition has the value normal for messages

representing normal interactions, and the value exception for messages representing abnormal interactions

such as exceptions. The name of a message identifies the service requested by a normal message or the

exception condition announced by an exception message. The data values represent either inputs or results,

and may be present for any kind of message. The origin of a message is the event or alarm that caused the

message to be sent. The origin records causal relationships in a computation history, and is used to identify

destinations of reply messages in the Spec language.

Events are used to record and describe the behavior of a system. Each event consists of a module, a

message, and a time, and is uniquely identified by these three properties. The time records the instant at

which the module accepted the message. Events at the same module happen one at a time, and occur in a

well-defined sequence. Events can be classified as reactive or temporal, depending on whether the origin

of the message that arrived in the event is an event or an alarm. Reactive events represent responses to

external stimuli, while temporal events represented actions initiated by the module based on the absolute

time. Temporal events can be used to represent both regularly scheduled actions and actions initiated at

unpredictable intervals by independent agents such as human users.

A reactive event in an airline reservation system is illustrated in Pig. 1. The event El is the stimulus

causing the response event E2. El represents the arrival of a find_flights command from the travel agent at

the airline reservation system. E2 represents the arrival of the message flights_3 at the travel agent module.

5

✓

.;
fl

?
.&J
:...
K:
JJ

2': ' ~

:E
z:
tt
,&J

>
:;
l!)

~

~

0
LIJ
u
:)

0
0
a:
Q.
I'-'
a:

(a) Stimulus El: find flights ..._ airline time= Monday 11:32:45.333

(b) Response E2: flights_3

(c) Message flights_3:

reservation
system

travel
agent

time= Monday 11:32:48.428

(name: flights,
condition: normal,
data: found_flights = {fl, f2},
origin: El)

Fig. 1 A Reactive Event

This message contains the set of found flights, and is identified as a response to the command arriving in

the event El via the origin attribute of the message. The set of events {El, E2} represents a fragment of a

computation history for the airline reservation system.

A temporal event is illustrated in Fig. 2. The alann Al defines the time at which the weekly run for

generating paychecks is enabled at the payroll system. The temporal event E3 occurs when the

Generate_Paychecks message is received by the payroll system, representing the instant when the process

of generating paycheck actually starts. The scheduling delay between the alann Al and the event E3 can

(a) Alann Al: (module: payroll_system,
time: Friday 8:00:00.000)

(b) Event E3: Generate_Paychecks payroll
system

(c) Event E4: Paychecks ~ Printer I

time= Friday 8:01:37.893

time= Friday 9:23:32.248

Fig. 2 A Temporal Event

6

be constrained by the specification, and in the extreme case could be required to have zero length. 'lbe

reactive event E4 occurs when the paychecks actually arrive at the printer. At this level of modeling the set

of paychecks is treated as a single unit that arrives at an instant of time. In actuality printing is an extended

process. The time required to print the checks is not distinguished from message transmission delay at this

level of modeling, so that the arrival of the set of paychecks corresponds to the imtant when the printing

job is completed.

Alanns represent points in time when temporal events are triggered. Each alann consists of a

module, a message, and a time. An alann causes the module to send the message to itself at the given time.

A temporal event happens when the message arrives at the module, which can happen at or after the time

the message was sent. Alarms serve as reference points for specifying constraints on scheduling delays for

temporal events. Each module has a clock which measures local physical time. The model uses local phy­

sical time to support specifications of events that must happen at given absolute times (e.g. at 3am every

Sunday). The time of an event or alann is determined using the clock of 1he module at which the event

occurs.

The event model is an extension of Hewitt's actor model, which is summarized and surveyed in [1].

The event model, like the actor model, is based on message passing and assumes a reliable buffered asyn­

chronous communications system. All interactions between modules are explicit and are described in

tenns of a unifonn communication mechanism. We have used buffered asynchronous communication

rather than the unbuffered synchronous communication of Hoare' s communicating sequential process

model [10) because synchronous communication is difficult to implement in distributed systems, and we

did not want to require the overhead of synchronized communication in cases where it is not needed. Syn­

chronized communication can be readily expressed in tenns of asynchronous communication using ack­

nowledge messages in cases where it is semantically necessary. Another difficulty with unbuffered syn­

chronous communication is that recursive communications patterns necessarily lead to deadlocks [1].

Both the event model and the actor model are designed for describing concurrent and distributed

processes, with sequential or centralized processes are special cases. The event model extends the actor

model by introducing temporal events, a quantitative treatment of time, and atomic multi-event transac­

tions. 1bese features are important for describing real-time systems and distributed systems with multiple

7

communications protocols that must be protected from interference. Spec notation differs from the scripts

used in actor programming languages because it describes behavior using preconditions and postconditions

rather than algorithms for producing output messages.

3. The Relation between Spec and the Event Model

The basic building blocks in Spec are modules and messages. 1be Spec language assumes message

transmission is reliable, which meam every message sent eventually arrives at its destination. Constraints

on transmission delays can be specified explicitly, and messages without such constraints can have arbi­

trarily long and unpredictable transmission delays.

The event model and the Spec language admit nondeterminism due to partially specified communica­

tion delays or partially specified responses. Complete specifications admit only deterministic behavior. In

Spec it is possible to specify that a response must be detenninistic (repeatable) without completely specify­

ing the other properties of the response.

Each module has the potential of acting independently, so that there is natural concurrency in a sys­

tem consisting of many modules. Modules can be used to model concurrent and distributed systems, as

well as systems consisting of a single sequential process. The event model helps to expose the parallelism

inherent in a problem, since a stimulus can have a set of unordered responses occurring at different loca­

tions. Since events happen instantaneously and the response of a module is not sensitive to anything but

the sequence of events at the module, the event model implies concurrent interactions cannot interfere with

each other at the level of individual events. Atomic transactions can be used to specify constraints on the

order in which a module can accept events. 1bis capability is useful for defining systems with modes in

which only subsets of the system commands are available, and for specifying synchronization comttaints

involving chains of events in distributed systems. Atomic transactions must be used with care, because

they can interact with each other or with timing constraints to produce unsatisfiable specifications.

Deadlocks are a well known example of such situations.

The rest of this section briefly describes how the semantics of Spec can be defined in tenns of the

event model via computation histories. A computation history consists of a set of alanns and a set of

events. A specification determines the set of legal computation histories for a system. 1be set of legal

8

computation histories is deterntined via a set generative constraints and a set of restrictive constraints

derived from the specification. A generative constraint says every legal computation history must contain

events or alarnts with given properties, while a restrictive constraint says every event or alarnt in a legal

computation history must satisfy a given property.

The generative constraints of a specification are derived from the event definitions in the

specification. Every event definition detennines a set of pairs containing a precondition and a postcondi­

tion. For each event E satisfying a precondition of a reactive event there must be an event in the history

which satisfies the corresponding postcondition and whose origin is E. For each alarnt A satisfying a

precondition of a temporal event there must be an event in the history which satisfies the corresponding

postcondition and whose origin is A. The origin of an event is the same as the origin of the message that

arrived in the event. An alarnt must occur at a module for each time that satisfies the precondition of a

temporal event at the module.

The restrictive constraints of a specification are derived from the definitions of the atomic transac­

tions associated with each module. An atomic transaction restricts the order of events at a module. There

are also restrictive constraints to ensure all of the events at a module occur at distinct times and every event

has an origin that precedes the event and corresponds to an event specification. The detailed derivations of

the generative and restrictive constraints for Spec are beyond the scope of this paper.

4. Specifying Software using Spec

The Spec language provides a means for specifying the behavior of three different types of modules:

functions, machines, and types. There are also three different types of messages distinguished in Spec:

nonnal messages, exceptions, and generatots. These types of modules and messages fornt a simple set of

primitives sufficient to describe all common varieties of software components. 1be properties of these

kinds of modules and messages are described below, with examples of each.

It is useful to classify modules as mutable or immutable because immutable modules are easier to

analyze and are subject to fewer restrictions when used in an implementation. A module is mutable if the

response of the module to at least one message can be affected by previous messages it has received, and is

immutable otherwise. Mutable modules behave as if they had internal states or memory, while the

9

behavior of immutable modules is independent of the past Immutable modules can be shared by the

implementations of two separate processes without any risk of interference, and can be replicated without

changing their semantics, while mutable modules cannot be. The distinction between mutable and immut­

able modules is a property of the behavior of a module rather than a property of its internal structure. It is

possible to implement immutable modules using mutable components if the components are properly pro­

tected against unintended interactions.

In Spec, all functiom are immutable modules. Machines are intended to be mutable, although Spec

does prevent the specification of trivial machines which are immutable because they have only a single

state. Types can be either mutable or immutable in Spec, and both kinds are useful in practice.

4.1. Functions

The response of a fum .. 1ion module is influenced only by the most recent stimulus, so that function

modules do not exhibit internal memory. Completely specified function modules calculate single-valued

functions in the mathematical sense, while incompletely specified function modules can exhibit nondeter­

ministic behavior. An example of a specification for a square_root function is shown below.

FUNCTION square_root {precision: real} WHERE precision> 0.0

MESSAGE(x: real)
WHEN x >= 0.0 -- label: positive

REPL Y(y: real)
WHERE y >= 0.0 & approximates(y • y, x)

OTIIBRWISE REPLY EXCEPTION imaginary _square_root
-- label: negative

CONCEPT approximates(rl r2: real)
- True if r 1 is a sufficiently accurate approximation of r2.
-- The precision is relative rather than absolute.

V ALUE(b: boolean)
WHERE b <=> abs((rl - r2) / r2) <= precision

END

The basic unit in a Spec description specifies required responses to a stimulus. The keyword MESSAGE

introduces the description of a stimulus recognized by a module, which consists of an incoming message.

A message can have a name and zero or more fonnal arguments representing input values. Message names

are used to distinguish different types of stimuli, corresponding to requests for different services. Most

function modules provide a single service, and are usually designed to accept anonymous messages, i.e.

messages whose name is the null string. The square_root function accepts anonymous messages

10

containing a single real number denoted by the fonnal argument x. The Spec language requires the types

of all data values to be declared to allow type consistency checks. This does not impose any restrictions on

the designer because Spec has union types, and types can have subtypes. There is a univemal type called

any which is the union of all other types and can be used to write untyped specifications and express gen­

eral laws. A mature specification environment for supporting the use of the Spec language is expected to

have type inferencing capabilities for automatically filling in and maintaining type declarations in the cases

where they can be detennined from the context.

The response of a module to a message can be defined with several cases introduced by WHEN

clauses. The example illustrates such a case analysis with two cases, one corresponding to a nonnal

response and the other to an exception. The predicate after each WHEN is a precondition, describing the

conditions under which the associated response must be triggered by an incoming message with a given

name and condition. The preconditions in each WHEN statement are stated independently, so that the

order of the WHEN statements does not matter.

OTHERWISE is an abbreviation for the case where none of the other WHEN statements apply. In

the example the OTHERWISE means the same thing as WHEN x < 0.0. In the Spec language each series

of WHEN statements must be tenninated by an OTHERWISE, to make sure all cases are covered If a

case is to be left undefined, the designer must say so explicitly.

A REPLY describes the message sent back in response to a stimulus. 1be reply is sent to the module

originating the message acting as the stimulus, which can be detennined from the implicit origin attribute

of the message. A stimulus can have only a single REPLY, corresponding to the call/return interface con­

vention followed by most subprograms. A REPLY can have zero or more data components associated with

it, representing output data values that are all delivered at the same time. In the example the reply for the

nonnal case has no name and a single data component, while the reply for the exceptional case has a name

but no data components. If REPLY is followed by EXCEPTION then the condition of the reply message is

exception, representing an exceptional event, and otherwise the condition of the reply message is normal,

representing a nonnal response. EXCEPTION can also appear after MESSAGE in the specification of an

exception handler, indicating that the stimulus must be an exception condition.

11

)
.I
)
)
)
)
C: ..
.I
C:

An outgoing message such as a REPLY can have a WHERE clause, which describes a postcondition

that must be satisfied by the outgoing message. The WHERE keyword is followed by a statement in predi­

cate logic describing the required relation between the contents of the message .that was received and the

contents of the reply message. This predicate states how to recognize a correct result, but it does not

specify how to compute the required output. In the example the nonnal reply must contain a positive value

whose square is approximately equal to the input. 1bis provides sufficient infonnation to distinguish

correct outputs from incorrect ones, but does not give any hint about how to implement the required func­

tion. This is desired when specifying black-box behavior. In later stages of design the black-box

specification can be augmented with annotations containing implementation advice, such as the name of an

algorithm for realizing.the module.

The behavior of a module can be summarized in a stimulus-response diagram for review purposes.

Such a diagram for the square_root module is shown in Fig. 3. Toe diagram shows the incoming and out­

going messages for each case of the response. The responses have been labeled with mnemonic names

derived from the comments. Nonnal messages are shown using solid arrows while exception messages are

shown using dotted arrows. Responses involving state changes are shown as squares, while responses

without state changes are shown as circles. In this case there are no state changes, so all nodes are round.

_ _ ll!!_a~ _square_root

Fig. 3 Stimulus-Response Diagram for Square _Root

12

A CONCEPT in Spec introduces a new predicate symbol, a new function symbol, a new constant

symbol, or a new type symbol, and defines the intended properties of the new symbol. Concepts represent

abstractions which are needed to explain the behavior of a system but do not represent parts of the system

being specified. In the example the concept approximates defines the intended meaning of "sufficiently

accurate approximation" in terms of the generic parameter predsion. Some notion of approximation is

needed to specify a practical square root function because it is not possible to implement exact square roots

using machine arithmetic. In this case the size of the acceptable interval is defined relative to the size of

the input value rather than as an absolute constant. The generic parameter allows a single definition for a

square root module to be adapted to many applications with different precision requirements. Introducing

an explicitly defined concept modularizes the specification. This helps simplify the postcondition and sup­

ports stepwise refinement and localization of infonnation. 'lbe definition of a concept can be delayed or

left as an informal comment when the concept is identified and the postcondition is developed.

4.2. Machines

A machine is a module with an internal state, i.e. machines are mutable modules. An example of a

machine representing a simplified inventory control system for a warehouse is shown below.

MACIIlNE inventory
-- assumes that shipping and supplier are other modules.

ST A IB(stock: map { item, integer})
INVARIANT ALL(i: item :: stock[i] >= 0)
INITIALLY ALL(i: item :: stock[i] = 0)

MESSAGE receive(i: item, q: integer)
- Process a shipment from a supplier.

WHENq>0
TRANSmON stock = bind(i, •stock[i] + q, stock)

-- Delayed responses to backorders are not shown here.
OTIIERWISE REPLY EXCEPTION empty _shipment

~SAGE ordel(io: item, qo: integer)
- Process an order from a customer.

WHEN 0 < qo <= stock[io]
SEND ship(is: item, qs: integer) TO shipping
WHERE is = io, qs = qo

TRANSmON •stock = bind(i, stock[i] + q, stock)
WHEN O < qo > stock[io]

SEND ship(is: item, qs: integer) TO shipping
WHERE is = io, qs = stock[io]

SEND back_ordel(ib: item, qb: integer) TO supplier
WHERE ib = io, qb + qs = qo

TRANSmON stock= bind(io, 0, •stock)

13

,,
i,;

!
t::
LI
>
)
.?

OTIIERWISE REPLY EXCEPTION empty _order
END

A data flow diagram showing the context for this system is shown in Fig. 4. The behavior of a machine is

described in terms of a conceptual model of its state, which serves to summarize the aspects of previous

messages received by the machine that can influence its future behavior. States are localized: the state of a

machine can change only at an event in which the machine receives a message. Conceptual models are

described in tenns of a finite set of state variables, whose types are declared after the keyword STATE. In

the example there is just one state variable, stock, whose value is a map from items to integers. Map is a

generic pre-defined type in Spec. A map is a function with a finite range which can have an unlimited

number of elements. The formal parameters from and to represent the types of the elements in the domain

and range of the map, respectively. The notation stock[i] is a shorthand for the map operation fetch(stock,

i) which denotes the value of the map stock at the domain element i. In the example stock[i] represents the

quantity of the item i on hand in the current state of the inventory. The map overwrite operation bind pro­

duces a new map that differs from the old one at a single point, as described by the equation

bind(x, y, m)[z] = if z = x then y else m[z].

customer

'
·,

empty _order supplier

shipping

Fig. 4 Data Flow Diagram for Inventory

14

. -.

The description of a conceptual model includes invariants and initialization constraints. Invariants

are restrictions on the set of meaningful states which appear after the keyword INV ARIANI'. Initialization

constraints are restrictions on the initial state which appear after the keyword INITIALLY. Invariants must

be satisfied in all reachable states, while initialization restrictions must be satisfied only in the first state. In

the example the invariant says that the quantity on hand must be non-negative for every item at all times,

and the initialization constraint says there are no items in stock at the beginning.

State changes are described by predicates after the keyword TRANSmON. In such statements, a

state variable x refers to the value of the x component of the conceptual model for the current state (just

after the arrival of the stimulus), while the expression •x refers to the value of x in the previous state (just

before the arrival of the stimulus). The transitions in the example are equations rather than assignment

statements. Equations can describe the transition either forwards or backwards in time, whichever is

simpler (cf. the first two transitions in the example). The first transition in the example increases the

amount of the item i on hand to reflect the arrival of an incoming shipment, while the second transition

decreases the amount of the item i on hand to reflect the departure of an outgoing shipment. The •x nota­

tion can only be used in TRANSmONS and in WHERE clauses describing the output in tenns of the new

state. The Spec language follows the convention that state variables of a machine or instance variables of

an abstract data type do not change unless the variable is explicitly mentioned in a TRANSmON clause.

Messages sent to destinations other than the origin of the incoming message are described using

SEND instead of REPLY. A SEND statement means that a message satisfying the description must be sent

to the specified module. SEND statements are useful for describing distributed systems with a pipeline

structure. There can be more than one SEND statement in the description of a response to cover the case

where several messages must be sent to different destinations. In such cases the outgoing messages can be

sent out concurrently or one at a time in any order, without waiting for any responses. The inventory

example shows such a multiple response for the order message, in the case where there are not enough

items on hand to fill the order completely. In this case there are two messages in the response, one of

which goes to the module shipping, representing the shipping department, and the other of which goes to

the module supplier, representing the supplier for the items in the warehouse. The first message represents

a request to send out a partial shipment, while the second message represents a backorder for the items in

15

the unfilled part of the order.

4.3. Types

A type module defines an abstract data type. An abstract data type consists of a value set and a set of

primitive operations involving the value set. The elements of the value set are called the instances of the

type. In the event model, a type module manages the value set of an abstract data type, creating all of the

values of the type and perfonning all of the primitive operations on those values. Each message accepted

by the type module corresponds to one of the operations of the abstract data type. The messages of a type

module usually have names, since abstract data types usually provide more than one operation.

Recall that modules are mutable if and only if they have internal states. Both immutable and mutable

types are useful in practice, and both can be specified using Spec. The value set of an immutable type is

fixed, and the properties of the individual instances of the type cannot be changed. A mutable type can

have operations that modify the value set or change the properties of existing instances. In particular, mut­

able types can have operations which create new instances or modify existing instances.

The difference between mutable and immutable types becomes most apparent when an instance of a

type is shared by several program variables. Mutating operations affect all of the variables denoting the

modified instance of the type. Mutable types must be used with care because shared instances of mutable

types can introduce hidden interactions between modules. All of the components of the conceptual

representation in the specificati.oo of a machine or type should be instances of immutable types to ensure

that only independent abstractions are specified.

Each instance of a mutable type has a pennanent identity, which remains fixed despite arbittary

changes to the properties of the instance. A mutating operation without a REPLY changes the properties of

an instance and does not affect the identity of the instance bound to any program variable. In contrast, an

assignment to a program variable affects the identity of the instance bound to the variable without affecting

the properties of either the instance bound to the variable in the old state or the instance bound to the vari­

able in the new state. The choice between a function with a returned value and a procedure with an output

variable for realizing an operation with an output value is a matter of packaging which has no effect on

whether the operation can mutate instances of a data type, and subprograms with output variables can be

16

\ .

used to implement operations of both mutable and immutable types.

An example of a specification for an immutable abstract data type is shown below.

TYPE rational
INHERIT equality (rational}
MODEL(num den: integer)
INVARIANT ALL(r: rational :: r.den -= 0)

MESSAGE ratio(num den: integer)
WHENden-=0

REPL Y(r: rational)
WHERE r.num = num, r.den = den

OTIIERWISE REPLY EXCEPTION zero_denominator

MESSAGE add(x y: rational) OPERATOR+
REPL Y(r: rational)
WHERE r.num = x.num • y.den + y.num • x.den,

r.den = x.den • y .den

MESSAGE multiply(x y: rational) OPERA TOR *
REPL Y(r: rational)
WHERE r.num = x.num • y.num, r.den = x.clen • y.den

MESSAGE equal(x y: rational) OPERATOR =
REPL Y(b: boolean)
WHERE b <=> (x.num • y .den = y .num • x.clen)

END

Data types have conceptual models, which are used to visualize and describe the instances of the

type. The conceptual model is used to specify the behavior of a type, and forms the mental picture of the

type for the programmers who use the operatiom of the type. The conceptual model is chosen for clarity,

and is usually different than the data structure used in the implementation. In case the data type must be

re-implemented to improve perfonnance, the data structure used in the implementation will change, but the

conceptual model will not. 1be conceptual model consists of a finite set of components called instance

variables. The types of the instance variables are declared after the keyword MODEL. In the example

there are two instance variables, nwn and den, corresponding to the numerator and denominator of a frac­

tion representing a rational number.

Bach instance of the type can be represented as a tuple containing the values of the instance vari­

ables. Restrictions on the components of the model are described in the INVARIANT. The INVARIANT

is a predicate that must be true for all meaningful conceptual representations.

17

Io the example we are using the standard mathematical model for rational numbers. The invariant

must exclude pairs with zero denominators, because the interpretation of the pairs as ratios does not make

sense in that case. The infix operator "-=" represents the standard "not_equal" operation associated with

the integer type, which is specified in the pre-defined type library associated with the Spec language [6]. It

is not necessary for there to be a 1 : 1 correspondence between conceptual representations and values of the

abstract data type, although in cases without such a correspondence the model is not fully abstract and

some extra care must be taken in defining the operations to avoid unintended nondetenninism. Our exam­

ple does not have unique conceptual representations, because the pairs (1, 2), (2, 4), and (-1, -2) all

represent the same rational number. This lack of uniqueness is reflected in the equal operation, where

equality on rationals is defined in terms of equality on integers. It is incorrect to say that two rationals are

equal if and only if corresponding components are equal unless the invariant is strong enough to give

unique conceptual representations. Since the standard interpretation of equality is a single-valued predi­

cate, and hence deterministic, we must ensure the operation is defined to give the same result for all valid

conceptual representations of any fixed pair of rational numbers. Some additional restrictions that would

make make the conceptual representation unique in the example are that the denominator must be strictly

positive and that the fractions must be reduced to lowest terms.

The invariant on the conceptual representation should be adjusted to make the descriptions of the

operations as simple as possible. The invariant on the conceptual representation does not involve the

implementation data structure and does not restrict the designer's choice of implementations. The invari­

ants on the implementation data structures are often much more complicated than the conceptual invariants,

because implementation invariants often determine efficiency. Most knowledge about data structures is

really about the art of choosing implementation invariants that enable efficient algorithms.

Inside the module defining an abstract data type, predicates describing the effects of the operatiom

can be written in tenns of the conceptual representation. Inside the module defining an abstract type

instances of the type can be described as if they were tuples containing the components specified in the

MODEL. The notation x.y can be used to refer to the y component of the conceptual representation for the

abstract data value x. The specifications of other modules may describe the instances of abstract types only

in tenns of the MESSAG& it provides and the CONCEPTs it EXPORTs.

18

It is sometimes convenient to express complicated conditions as lists of independent constraints. 'Ibe

predicates after INVARIANf, WHEN, and WHERE can be lists of expressions separated by commas. A

list of statements is true if and only if all of the statements in the list are true individually, so that in this

context a comma means the same thing as &. The comma has a lower precedence than all of the other

operators, so that it can be used to separate statements at the top level without need for parentheses.

The INHERIT keyword introduces a list of modules to be inherited. In the example the standard pro­

perties of the equality operator, such as reflexivity, transitivity, and symmetry, are inherited from the

predefined Spec module equality{t}, along with a not_equal operation with the standard relationship to the

equal operation. The inherited definitions are combined with the explicitly given ones. If an operation

with a given name is both inherited and explicitly defined, then the constraints introduced by both

definitions must be satisfied simultaneously. The semantics of inheritance in Spec is described in more

detail in [4]. Inheritance is used to avoid repeating standard definitions, and is useful for ensuring con­

sistent treatment of standard concepts such as equality across a large number of components. Such a facil­

ity can be important for specifying uniformity constraints for the interfaces in different subsystems of very

large software systems.

The OPERATOR keyword introduces special infix notations for user-defined operations a., a con­

venience to the designer. These infix operators must be chosen from a fixed set of operator symbols with

pre-defined operator precedences. In the example the standanl symbols for addition (+), multiplication (*),

and equality (=) are introduced in this fashion. These symbols can only be associated with binary opera­

tions and are inteipreted according to the OPERA TOR declarations only when they appear a., binary infix

operators. The • symbol always refers to values in the previous state when it appears as a unary prefix

operator (e.g. in Spec TRANSmON clauses).

Spec provides facilities for specifying mutable types because they are used for efficiency reasons in

internal interfaces of many systems. We recommend avoiding mutable types in user interfaces. An exam­

ple of a definition for a mutable type is shown below.

TYPE queue { t: type}
INHERIT mutable (queue (t} }

--Inherit definitions of the concepts "new" and "defined".
MODEL(e: sequence{tJ)
-- The front of the queue is at the right end.

19

INVARIANT true
-- Any sequence is a valid model for a queue.

MESSAGE create
-- A newly created empty queue.

REPLY(q: queue { t}) WHERE q.e = []
TRANSITION new(q)

MESSAGBenqueue(x: t,q: queue{t})
- Add x to the back of the queue.

TRANSIDON q.e = append([x], •q.e)

MESSAGE dequeue(q: queue{t})
-- Remove and return the front element of the queue.

WHEN not_empty(q)
REPLY(x: t)
TRANSffiON *q.e = append(q.e, [x])

OTIIERWISE REPLY EXCEPTION queue_underflow

MESSAGE not_empty(q: queue{t})
-- True if q is not empty.

REPL Y(b: boolean) WHERE b <=> (q.e -= [])
END

In mutable types the instances of the type have internal states, and operations are provided for changing the

internal states of the instances. TRANSffiON clauses are allowed in types as well as machines. A type is

mutable if and only if it has a non-trivial TRANSffiON clause (i.e. a TRANSmON that implies •x -= x

for some component x). Mutating operations, such as enqueue in the example above, are described using

TRANSffiON clauses.

Object identity is an important issue for mutable types because all of the program variables bound to

the same mutable object will be affected if a state changing operation is applied to the object. In the exam­

ple the create operation is specified to return a newly created instance of the type queue (t} via the predi­

cate new. A newly created object is guaranteed to be distinct from all objects defined in the previous state.

The concept new is not part of the Spec language, but it is provided by the predefined generic module mut­

able whose instances can be inherited by any mutable type. 1bis is illustrated in the example, which inher­

its the module mutable{queue{t)). The definition of this standard generic module is shown below.

DEFINITION mutable (t: type}

CONCEPI' new(x: t)
V ALUE(b: boolean)
WHERE b <=> x IN t & "'(x IN •t),

-- An object is new if it belongs to the type in the current state
-- and it did not belong to the type in the previous state.

ALL(a c: t :: new(a) & c IN •t => id(a)-= id(c))

20

-- A new object is distinct from any object existing in the previous state.

CONCEPT id(x: t)
V ALUE(n: oat)
WHERE ALL(y z: t :: id(y) = id(z) => y = z),

ALL(y: t :: id(y) = id(*y))
-- Every object has a permanent unique identifier.

END

This is an example of a definition module. Definition modules can contain only concept definitiom, and

are used for providing convenient access to widely shared concepts. 1be effect of inheriting a definition

module is the same as importing all of the concepts defined in that module.

4.4. Generators

A generator is a message that generates a sequence of values one at a time. An example of a

specification for a generator is shown below.

FUNCTION primes
IMPORT prime FROM oat
IMPORT sorted FROM sequence {oat}

MESSAGE(limit: oat)
GENERATE(s: sequence{nat})
WHERE increasing_order(s),

ALL(i: oat :: i IN s <=> 1 <= i <= limit & prime(i))

CONCEPT increasing_order(s: sequence {oat})
V ALUE(b: boolean)
WHERE b <=> sorted{less_or_equal@nat}(s)

END

The "@" is used in Spec to determine the type of an overloaded operator or constant in places where it is

not clear from the context. The GENERA TE keyword means the same thing as a REPLY except that the

result is a sequence whose elements are delivered one at a time rather than all at once. This means that the

elements will be generated one at a time, and processed incrementally, rather than being generated all at

once and returned in a single data structure containing all of the elements, as would be the case for a

REPLY of type sequence. In a program a generator is used to control a data driven loop. Generators can

also be used in specifications of other modules, for example to define the range of a quantified variable.

Generators are interpreted as sequence-valued functiom when they appear in specifications. 1be distinc­

tion between GENERA TE and REPLY corresponds to the choice of whether to represent a sequence as a

time series or as a data structure.

21

Any message with a GENERATE is a generator, so that generators can be defined as operations of

an abstract data type or a machine. Generators are important in this context because they can be used to

provide an efficient way to scan all of the elements of an abstract collection without exposing the data

structure used to implement the collection. Generators are used most often in the internal interfaces of

software systems.

5. Features for Specifying Large Systems

This section discusses some features of the Spec language that make it appropriate for specifying

large systems. The most important requirements for supporting large scale design are the ability to localize

information, the ability to isolate the details relevant for a single pmpose, and the ability to mechanically

detect interactions between different parts of the system. Spec addresses these issues via modules, con­

cepts, atomic transactions, and inheritance. The underlying event model is designed to make interactions

between modules explicit and easy to describe. The application of Spec concepts, atomic transactions, and

inheritance to the design of large systems is discussed in this section. An example illustrating the develop­

ment of a complete system using Spec and a more detailed description of the language can be found in [6].

5.1. Concepts

A facility for introducing named concepts with explicit definitions and interfaces is important for

organizing and simplifying descriptions of complex software systems. It is not a good idea to express a

complicated constraint as a single very long expression in predicate logic, just as it is not a good idea to

implement a large system as a single monolithic program: the result is too difficult for people to under­

stand. Concepts have the same purpose in a specification language that subprograms do in a programming

language, namely to provide a mechanism for orderly decomposition.

Concepts in the Spec language correspond to abstractions needed to explain or describe the behavior

of a system, and are distinguished from system components that realire that behavior. Concepts are impor­

tant for structuring complex fonnal specifications into bite-sized parts that can be understood without

undue effort. Specifications in predicate logic can be relatively easy to follow if they are expressed using

primitives at a level of abstraction close to that of system being specified. Spec concepts can be used to

write fonnal specifications whose structure matches that of the infonnal explanations given by people.

22

• I

Concepts are building blocks for explaining and understanding a system or problem domain. The

process of analyzing and designing large systems for particular problem domaim can be simplified by

building up libraries of concepts relevant to the domain. A notation such as Spec is needed to allow such a

library to be consttucted. 1be existence of such a library would raise the level at which a designer can

work, by matching the primitives available to the problem domain. This provides a means for tailoring a

standard language to many different application areas.

Concepts can also be used to mix fonnal and infonnal specifications. by providing a fonnal

definition of a precondition, postcondition, invariant, or transition in tenns of some concepts, writing

definition skeletons for the concepts without fonnal definition bodies, and giving informal descriptions for

the concepts as comments. 1be fonnal definitions of the concepts can be filled in later, when the design

has stabilized, or can be left out entirely if the details are not critical. The ability to mix fonnal and infor­

mal specifications in a disciplined manner can be important in practical projects with tight schedules. The

most important place for formality and precision is in the most difficult or complicated parts of the system,

because these are most likely to be misunderstood. Infonnal descriptions are often adequate for the well

understood parts of the systems.

Concepts are also important for explaining and testing the behavior of modules, and should be

reflected in reference manuals and test oracles as well as in the fonnal specifications. Concepts represent

properties of the software that are needed to describe or test the intended behavior of the software system.

Concepts are delivered to the customer in the manuals explaining how the system is supposed to operate,

where they may be explained less fonnally than in the functional specifications and architectural design.

Concepts do not normally represent components of the code to be delivered, although it may be useful to

implement them for testing purposes.

Concepts are immutable, and cannot inttoduce any run-time interactions between different parts of

the system. Shared concepts can introduce conceptual dependencies between different parts of a large

software system. Such dependencies can become important when the system evolves, and some of the sys­

tem concepts are redefined. It is important to record and trace such dependencies to aid in estimating the

impact of a proposed change and to identify the parts of the system that must be redesigned or reimple­

mented.

23

In Spec every concept is attached to some module, and is local to that module unless it is exported or

inherited. Only concepts can be exported. If a concept is exported, then it can be explicitly imported by

other modules and used in their definitions. The export/nnport mechanism is used to record logical depen­

dencies between modules, so that mechanical aid can be provided for tracing the impact of a proposed

change to a definition. This is very important for analyzing and maintaining large systems.

Making concepts local by default avoids the need for maintaining globally unique names for con­

cepts, and simplifies the designer's view of the system by limiting the names visible in a specification

module to just those that are needed. Requiring non-local concepts to be imported explicitly avoids ambi­

guity and eliminates the possibility of surprises caused by implicit scoping rules. The mechanism is

intended to be used in the context of a computer-aided specification system with tools for displaying

definitions of concepts without reganl for whether they are local or imported, for retrieving library con­

cepts, for inserting import links by pointing to intended choices, and for locating all modules affected by a

change to a given concept.

5.2. Atomic Transactions

An atomic transaction specifies constraints on the order in which a module will accept messages.

Spec allows the specifications of such constraints to be separated from the specifications of the responses to

individual messages. This simplifies the design of distributed systems by separating granularity considera­

tions from local views of module behavior. Some granularity considerations are mutual exclusion and

waiting for expected events. For example, modules with interactive transactions involving multiple mes­

sages may need to keep transactions involving different users from overlapping to prevent interference.

Another example is a protected bounded buffer data type, which delays read operations as long as the

buffer remains empty and delays write operations as long as the buffer remains full.

Atomic transactions can also be used to specify the behavior of complex systems with modes, where

different subsets of the system commands are available in each mode. The separation of granularity con­

straints from behavior makes it easier to ensure that the semantics of each command is the same in all

modes where the command is available. We believe such a restriction is necessary to enable people to use

complex systems with multiple modes.

24

. .

I I

Atomic transactions can be defined in Spec using conditional guards, alternative choices, sequencing,

repetition, and recursion. The facilities are described in detail and illustrated with examples in [6].

5.3. Views and Inheritance

Inheritance is useful in designing large systems. The Spec language bas an inheritance mechanism

which can support re-using common specification fragments, specifying constraints common to the inter­

faces of many modules, and providing incremental views of a system. The first two uses of inheritance

were illustrated in section 4.3 in the context of sharing the definition of the concept of a newly created data

value and in providing a standard inteipretation of equality operations for many different data types. Stan­

dard interpretations for messages that can be inherited by many different modules provide a means of

achieving uniformity in large systems, which is important for making them easier to use, understand, and

design.

Inheritance also provides a mechanism for combining incremental views of a system. 1bis allows

the definition of a system to be organized in many smaller pieces that provide just the information needed

for a given puipose. For example, the interface of a system to each class of users can be a separate view of

the system, and each view can be specified as a distinct piece of Spec text. This makes it easier to partition

the work of specifying a large system, because the views corresponding to different interfaces can be

developed by different designers or different teams. A total picture of the system is formed by expanding

the definition of a module that inherits all of the individual views. Such an expansion can be done mechan­

ically, and the resulting combined specification can be subjected to global consistency checks to provide

early indications of coordination problems in team design efforts.

Inheritance can also be used to support design by stepwise refinement, by making the structure of the

specification correspond to the structure of the refinements. This is especially useful for separating the user

view of a system from the implementor's view. 1be implementor's view can be a separate specification

unit that inherits the information in the user's view. Keeping the two views in two clearly identifiable text

units makes it easier to keep track of which details are visible to the users and which are not. This makes it

easier to write user manuals, because the infonnation that should be reflected by the manual is easier to

identify. Such an application of the inheritance mechanism is illustrated in [6]. The same idea can be used

25

to represent the specifications for a series of releases of a system in a way that clearly reflects the changes

from one release to the next.

The Spec inheritance mechanism and the rules for combining different versions of messages and

concepts inherited from multiple parents are described in more detail in [4].

6. Time

Time appears in Spec in two contexts: temporal events and timing constraints. Temporal events in

software systems usually represent regularly scheduled activities, such as generating paychecks, perfonn­

ing monitoring and control functions in embedded systems, or compacting disk space. The two contexts

are related because temporal events are often subject to real-time deadlines, as in the first two of the three

examples mentioned above. Triggering conditions for temporal events are defined in Spec via predicates

involving the current absolute time, while the associated responses are specified in the same way as

responses to reactive events. Examples of specifications for temporal events can be found in [6].

Timing constraints are specified as predicates involving the delay and the period associated with a

message. The delay is the length of the time interval between the origin event or alarm associated with a

message and the event where the message arrives. The period associated with a message is the length of

the time interval between the event where the message arrives and the previous event where a message of

the same type arrived at the same module, or to the beginning of the computation history if there was no

such previous event. Restrictions on the delay constrain the performance of the system, and usually appear

in the postcondition of a message, while restrictions on the period constrain the behavior of the system's

environment, and usually appear in the precondition of a message. Timing constraints can be associated

with atomic transactions as well as with individual messages.

The current local time of a module refers to physical time at the current location of the module.

Some care is required in comparing times at different locations because the local clocks of different

modules cannot be precisely synchronized with each other. This is most clearly apparent for disttibuted

systems that span multiple time zones. Another consideration stems from the special theory of relativity,

which states that the difference in the readings of two clocks at different locations depends on the motion

of the observer. This implies a set of clocks cannot be precisely synchronized unless all of the clocks have

26

i •

• 1

fixed positions relative to each other, and even in that c~ they will appear to be synchronized only to

observers that are not moving with respect to the clocks. However, the effects of motion are negligibly

small in most practical situations.

One consequences of this lack of synchronization are that the order of occurrence of two events can­

not be determined by simply comparing the local times of the events, This problem can be solved in princi­

ple by applying a transformation to each of the local clock, to convert them to readings from a clock in a

standard location (e.g. Greenwich mean time). If the effects of motion on time can be ignored, then the

resulting ordering is guaranteed to be consistent with the orderings observed by any physical means outside

the software system.

Another consequence of the lack of synchronization of the clocks in different modules is that mes­

sage delays cannot be calculated by taking the difference between their times of occurrence. A transfonna­

tion to convert times to readings from a standard clock will also solve this problem in principle. However,

any practical scheme for reading remote clocks or synchronizing clocks at different locations involves mes­

sages with finite delays that are not completely predictable. While message delays can be specified in

theory, such delays can be measured only approximately unless the origin and destination of the message

are at the same location. The limitation on the accuracy with which hardware clocks at separated locations

can be synchronized in practice using signals appreciably slower than the speed of light is analyzed in [11].

7. Conclusions

Spec is a specification language with a broad range of applications. The language is primarily

intended for recording black box interface specifications in the early stages of design. The main advance

over previous languages is the integration of facilities for supporting the design of large scale systems with

provisions for specifying distributed systems and real-time constraints. 1be facilities for supporting large

scale design include an underlying semantic model that limits non-local interactions, a syntax that localizes

design decisions in the specification text and allows factoring of independent concerns into separate units, a

facility for explicitly recording conceptual dependencies, and an inheritance mechanism for supporting

views and incremental specification.

27

The Spec language was designed to support a software development paradigm that uses abstractions

for simplifying complex systems and computer-aided design tools for detecting or preventing errors at the

early stages of software development. This approach uses predicate logic to achieve black-box descrip­

tions for the behavior of complex systems. 1bis represents a fundamental difference from more classical

approaches that use data flow diagrams as the primary specification tool. Data flow diagrams are typically

used to record problem decompositions which do not have any behavioral descriptions for the bubbles

except at the lowest levels of detail. Thus detailed questions about system behavior can only be answered

by expanding the deco~position to the lowest level of detail. This can be a problem in very large systems

because there are a huge number of bubbles at the lowest level, and the descriptions of those bubbles are

expressed in terms of low-level details somewhat removed from what the user will see. The classical

approach does not scale up to very large systems because it does not support self-contained abstractions,

and does not provide a means for describing behavior precisely without introducing a maze of detail. The

Spec language avoids functional decompositions, and instead partitions the specification according to the

structure of interactions visible to the users. Low level details are suppressed without sacrificing precision

by inttoducing abstractions with explicitly defined properties. Spec also provides facilities for defining a

concept hierarchy which allows predicates to describe intended behavior at a high level, while providing

concrete and precise definitions of abstract concepts in terms of more specific ones at many levels of detail.

This structure can be used to answer many questions without expanding to the lowest level of detail, and

supports the use of stepwise refinement for analysis, specification, and design.

The Spec language has been used to specify an airline reservation system [6]. Earlier versions of the

language have been used to develop and enhance systems such as a text editor, a test support system for

Pascal, a project management support system, and an electronic mail system in the context of classroom

team projects with up to 15 people working for 20 weeks. Our experience has shown that it is sufficiently

powerful to allow the specification of many kinds of software systems, and sufficiently flexible to allow

software designers to express their thoughts without forcing them into a restrictive framework. We

discovered that such specifications significantly reduced the need for verbal communication during the

implementation phase, and that it was possible to design major extensions to a system by examining only

the specification of the original architectural design, without access to the code implementing the specified

.28

r •

• .i

• I

. .

modules.

The Spec language is sufficiently fonnal to support mechanical processing. Some tools for

computer-aided design of software that are currently under investigation are syntax-directed editors,

display generators, consistency checkers, design completion tools, test case generators, prototype genera­

tors. and tools for synthesizing partial implementations,

1. G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press,

Cambridge, MA, 1987.

2. V. Berzins and M. Gray, "Analysis and Design in MSG.84: Fonnalizing Functional Specifications",

IEEE Trans. on Software Eng. SE-11, 8 (Aug. 1985), 657-670.

3. V. Berzins, M. Gray and D. Naumann, "Abstraction-Based Software Development", Comm. of the

ACM 29, 5 (May 1986), 402-415.

4. V. Berzins and Luqi, The Semantics of Inheritance in Spec, Computer Science, Naval Postgraduate

School, 1987. NPS 52-87-032.

5. V. Berzins and Luqi, "Languages for Specification, Design and Prototyping", in Handbook of

Computer-Aided Software Engineering, Van Nostrand Reinhold, 1988.

6. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated Approach to Software

Development using Ada, Addison-Wesley, 1988.

7. D. Bjoemer and C. Jones, Formal Specificanon and Software Development, Prentice Hall,

Englewood Cliffs, NJ, 1982.

8. B. Cohen, W. T. Harwood and M. I. Jackson, The Specification of Complex Systems, Addison

Wesley, Reading, MA, 1986.

9. J. V. Guttag and J. J. Homing, "Report on the Larch Shared Language", Science of Computer

Programming 6 (1986), 103-134.

10. C. A. R. Hoare, "Notes on Communicating Sequential Processes", Oxford University Computing

Laboratory Technical Monograph PRG-33, Aug. 1983.

29

11. L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System", Comm. of the

ACM 21, 7 (July 1978), 558-565.

12. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", IEEE Trans. on

Software Eng., October, 1988.

30

f •

Initial Distribution List

. ..

• r Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations 2
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations 2
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command 1
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research 1
Office of the Chief of Naval Research
Attn. _CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center 1
NAVCO~NIT Washington
Washington, D.C. 20363-5100

' . Space and Naval Warfare Systems Command 1
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

Ada Joint Program Office 1
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

.. ,

Naval Sea Systems Command 1 • . Attn: CAPT Joel Crandall
National Center =f/=2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense 1
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center 1
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation 1
Division of Computer and Computation Research
Washington, D.C. 20550

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

. ,
.• .

..

' \

