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A recursively feasible and convergent Sequential Convex Programming procedure to solve

non-convex problems with linear equality constraints
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Abstract

A computationally efficient method to solve non-convex programming problems with linear equality constraints is presented. The

proposed method is based on a recursively feasible and descending sequential convex programming procedure proven to converge

to a locally optimal solution. Assuming that the first convex problem in the sequence is feasible, these properties are obtained by

convexifying the non-convex cost and inequality constraints with inner-convex approximations. Additionally, a computationally

efficient method is introduced to obtain inner-convex approximations based on Taylor series expansions. These Taylor-based inner-

convex approximations provide the overall algorithm with a quadratic rate of convergence. The proposed method is capable of

solving problems of practical interest in real-time. This is illustrated with a numerical simulation of an aerial vehicle trajectory

optimization problem on commercial-of-the-shelf embedded computers.

Keywords: convex programming, trajectory optimization

1. Introduction

The ability to solve trajectory optimization problems in real-

time on embedded platforms is of paramount importance to

achieve a high level of autonomy in aerospace applications. To

accomplish this goal, obtaining assurances about an algorithm’s

computational feasibility, tractability, and strict convergence is

a necessity [1]. The growing interest in the computational as-

pects of trajectory optimization has recently crystallized with

the coining of the term Computational Guidance and Control

[2].

Convex optimization paired with solvers based on interior-

point methods enable to solve convex programming problems

to global optimality in polynomial-time [3, 4]. These properties

make convex programming suitable for implementation in real-

time autonomous applications [5, 6, 7].

Many optimization problems can be cast as convex pro-

gramming problems [4]. For example, fixed-final-time trajec-

tory optimization problems of linear systems with convex cost

and inequality constraints form convex programming problems

when discretized [8]. Some problems with apparently non-

convex control constraints can also be cast as convex program-

ming problems thanks to lossless convexification or exact re-

laxation techniques [9, 10, 11, 12, 13, 14]. In trajectory opti-

mization, the use of convex programming techniques has been

remarkably fruitful in the past decade [15]. Some of the areas

where it has been applied include: powered soft-landing [16,

17, 11, 18, 19], time-optimal path following [14, 20, 21], space-

craft proximity maneuvering [22, 23, 24, 25], re-entry guidance

[26, 27, 28], swarm control [29, 30], quadrotor guidance [31],

missile guidance [13], and motion planning [32, 33, 7].

Despite these significant advances, there is a large num-

ber of optimization problems of important practical interest that

cannot be cast as convex programming problems. For example,

problems involving nonlinear systems or problems with non-

convex constraints generally produce non-convex programming

problems. Although a wide range of approaches are available

to solve these non-convex programming problems [34], none

of these provide the same computationally attractive properties

that interior-point methods offer for convex problems. A no-

table exception may be the Lassere’s relaxations [35] and their

variations [36]. Lassere-type relaxations are able to relax non-

convex programming problems, written in terms of polynomi-

als, to semidefinite programming problems. Although promis-

ing, these relaxations dramatically increase the dimensionality

of the problem.

In an attempt to bridge some of the attractive properties

of convex programming to non-convex problems, the sequen-

tial convex programming (SCP) procedure has been proposed

[15]. First developed to solve structural problems [37, 38], this

method has been adopted by the trajectory optimization com-

munity (in addition to previous references see [39, 40, 41, 42,

43, 44]). In an SCP procedure, a convex approximation of

the original non-convex problem is repeatedly solved until con-

vergence. Finding the solution of a non-convex programming

problem is thus reduced to solving a collection of convex—

hence tractable—programming problems.

To obtain the sequence of convex programming problems

that constitute an SCP, the non-convex functions are usually

linearized around the previous iteration’s solution, in what is

known as successive linearization [15, 44]. Linearization-based

SCP procedures can suffer from inadmissible iterates, infeasible

problems, or cost increases between iterations. Trust regions

and penalties can be used to alleviate these problems, and when
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properly applied can result in a convergent SCP procedure with

a superlinear rate of convergence [41, 44].

1.1. Contributions

Here we advance the SCP’s state-of-the-art by making two

critical contributions. First, we present an SCP procedure that

offers guaranteed convergence to a locally optimal solution for

non-convex problems with linear equality constraints. This pro-

cedure is recursively feasible as long as the first convex prob-

lem in the sequence is feasible. Trust regions are not needed

as the solution to the convexified problem is always admissi-

ble. These advantageous properties are obtained when inner-

convex approximations are used [45]. These properties were

first demonstrated by Marks and Wright [45] but they have re-

mained largely unnoticed, and in some cases, independently re-

discovered by the aerospace trajectory optimization community

[25, 30]. Here, we generalize and consolidate previously avail-

able results and highlight how the use of inner-convex approx-

imations prevents inadmissible solutions, infeasible problems,

and cost increases. Additionally, we briefly review the differ-

ent available methods to obtain inner-convex approximations

(namely, sum-of-squares decompositions and regularizations).

Secondly, we introduce a computationally efficient approach

to obtain inner-convex approximations. Our approach is based

on the convexification of the Taylor series expansion of a non-

convex analytic function. These inner-convex approximations

allow the SCP to achieve a locally quadric rate of convergence

under mild conditions. As Taylor series may be infinite and

therefore truncated, we introduce a high-order regularization

approach that allows to truncate the Taylor series and retain the

inner-convex properties.

The combination of a recursively feasible and convergent

SCP with an efficient method to obtain inner-convex approxi-

mations results in an algorithm that is suitable for onboard im-

plementation and real-time use. As each iteration involves solv-

ing a convex programming problem, the time per iteration is

bounded. Then, the recursively feasible aspect allows the SCP

to stop at any iteration and still yield an admissible solution.

Finally, the convergent property ensures that each solution is

better than the last. This properties make the proposed method

particularly attractive for online trajectory optimization on au-

tonomous systems.

1.2. Organization of the paper

The rest of this paper is organized as follows. First, the

class of non-convex problems with linear equality constraints

is introduced in Section 2. Section 3 outlines the generic SCP

procedure. A brief discussion on the successive linearization

approach is included in Section 4. In Section 5 we introduce the

concept of inner-convex approximations and present the recur-

sively feasible and convergent SCP procedure that is obtained

when these approximations are used. In the following Section 6

a brief overview of the existing methods that can be used to

find inner-convex approximations is provided. Then, in Sec-

tion 7 we introduce our method to obtain inner-convex approx-

imations based on the convexification of a Taylor series expan-

sion. Finally, and to illustrate the use of the proposed method,

a numerical simulation example, based on the path-planning of

an aerial vehicle, is provided in Section 8. The results of an

implementation on two different embedded computers are also

provided, substantiating the claim that the proposed method is

suitable for onboard implementation and real-time use.

2. Non-convex programming problems with linear equality

constrains

The focus of this work is directed towards non-convex pro-

gramming problems with linear equality constraints. In canon-

ical form, this class of problems can be written as:

Problem P. Non-convex programming problem with lin-

ear equality constraints

minimize: f0 (x)

subject to: fi (x) ≤ 0, for i = 1 . . . p (P)

hi (x) = 0, for i = 1 . . .q

In this problem, x ∈ Rn is the optimization variable, the equal-

ity constraint functions hi : R
n → R are affine, and the cost

or objective function f0 : R
n → R as well as the inequality

constraint functions fi : Rn → R are non-convex. To simplify

notation, generic non-convex functions are simply denoted by

f : Rn → R in the following.

In general, we call an admissible point of the programming

problem P any point that satisfies the constraints, x ∈ DP, with

DP denoting the problem’s admissible set. The programming

problem is said to be feasible if DP has a non-empty interior

and infeasible ifDP = ∅.

A locally optimal solution of problem P, denoted by x⋆
P

, is

understood as a point where the Karush-Kuhn-Tucker (KKT)

conditions are satisfied [4]:

fi
(

x⋆P

)

≤ 0, for i = 1 . . . p (1a)

hi

(

x⋆P

)

= 0, for i = 1 . . .q (1b)

ν⋆P,i ≥ 0, for i = 1 . . . p (1c)

ν⋆P,i fi
(

x⋆P

)

= 0, for i = 1 . . . p (1d)

∇ f0
(

x⋆P

)

+

p∑

i=1

ν⋆P,i∇ fi
(

x⋆P

)

+

q∑

i=1

µ⋆P,i∇hi

(

x⋆P

)

= 0 (1e)

with ν⋆
P
∈ Rp and µ⋆

P
∈ Rq denoting the optimal dual variables

associated with x⋆
P

. Finally, ∇ f is used to denote the gradient

of a function f .

3. Sequential Convex Programming (SCP) procedure

In a sequential convex programming procedure a locally op-

timal solution to the original non-convex problem P is found by

iteratively solving a convex approximation of the original non-

convex problem. The iterations within the SCP’s sequence are

represented by k ∈ N and the solutions to each of the convex

programs in the sequence are denoted by x(k). The k-th con-

vex programming problem P
(k)
cvx is obtained by convexifying the
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non-convex functions, f , around the previous iteration’s solu-

tion x(k−1).

The notation f
(xe)
cvx is used here to denote a convex approxi-

mation of f around the expansion point xe. For simplicity, the

approximation around the previous iteration’s solution f
(x(k−1))
cvx ,

is simply denoted as f
(k−1)
cvx . With this notation, the convex prob-

lem to be repeatedly solved in an SCP procedure is:

Problem P
(k)
cvx. Convex approximation of problem P around

the previous iteration’s solution x(k−1)

minimize: f
(k−1)

cvx,0
(x)

subject to: f
(k−1)

cvx,i
(x) ≤ 0, for i = 1 . . . p (P

(k)
cvx)

hi (x) = 0, for i = 1 . . .q

The first time problem P
(k)
cvx is solved, k = 1, the problem is

convexified around an initial guess, x(0). The SCP procedure

iteratively solves problem P
(k)
cvx until a stopping criterion is sat-

isfied. For example, when the cost difference between iterates

falls below a certain threshold ǫ ≥ 0, i.e.,

∣
∣
∣ f0
(

x(k−1)

)

− f0
(

x(k)

)∣∣
∣ ≤ ǫ. (2)

4. SCP with successive linearization

A common approach to obtain the convex approximations

f
(xe)
cvx is to linearize f [15],

f (xe)
cvx (x) = f (xe) + δxT∇ f (xe) , (3)

δx = x − xe. (4)

It has been shown that a linearization-based SCP is locally con-

vergent [39]. However, the convergence is not guaranteed out-

side a small neighborhood around the locally optimal solution.

In general, a linearization-based SCP procedure may yield in-

admissible solutions. I.e, the solutions, x(k), when re-evaluated

with the original non-convex functions, f , may violate the in-

equality constraints. Furthermore, the cost may be higher than

the cost from previous iterations, i.e., f0
(

x(k)

)

> f0
(

x(k−1)

)

[46].

This means that it is not known a priori if solving the next con-

vex problem in the sequence will yield a better or even an ad-

missible solution. Additionally, linearizing the cost can lead

to unbounded problems, completely preventing the use of a

linearization-based SCP.

To mitigate these negative effects, trust regions are com-

monly used [47]. Trust regions restrict the solution, x(k), to a

closed bounded convex set, x ∈ T ⊂ R
n, where the lineariza-

tion is expected to be accurate. The heuristic use of trust regions

does not eliminate the possibility of an inadmissible solution or

cost increase. If that solution can be discarded and the same

convex problem re-solved with tighter trust regions, the SCP is

shown to be convergent [41].

4.1. Penalty method to resolve infeasibility

When a convex problem in the sequence is infeasible a penalty

method can be applied in an attempt to gain feasibility [32, 46].

The penalty method consists on turning the infeasible inequality

constraints into parts of the cost function. First, the inequality

fi (x) ≤ 0 is relaxed with a slack variable si,

fi (x) ≤ si, for i = 1 . . . l ≤ p (5a)

si ≥ 0, for i = 1 . . . l ≤ p (5b)

and then, the cost function is augmented as

f0 (x) + κ(k)

l∑

i=1

si, (6)

with κ(k) denoting the penalty’s weight or gain.

The theory of exact penalties [48] states that the constrained

and the penalty-relaxed problems are equivalent as long as κ(k)

is greater than the largest optimal dual variable, ν⋆
P,i

, associated

with the relaxed inequalities. The values of ν⋆
P,i

are unlikely to

be known a priori, which prompts the use of large gains.

The use of penalties is a useful strategy to resolve infeasi-

bilities, and a critical tool to find an admissible solution when

an admissible initial guess is not available. The use of penal-

ties also allows the SCP to proceed. However, the SCP may

converge to an inadmissible point, x(∞) < DP.

5. SCP with inner-convex approximations

If the convex programing problems within the SCP are con-

structed with inner-convex approximations the SCP is recur-

sively feasible, descending, and convergent [45]. No trust re-

gions are required and the solution is always improving as the

cost decreases between iterations.

Inner-convex approximations are those convex approxima-

tions, f
(xe)
cvx , that meet the three following conditions:

f (xe)
cvx (x) ≥ f (x) , (7a)

f (xe)
cvx (xe) = f (xe) , (7b)

∇ f (xe)
cvx (xe) = ∇ f (xe) , (7c)

and additionally, as a convex function, f
(xe)
cvx , must also obey for

τ ∈ [0, 1] [4],

f (xe)
cvx (τx1+ (1−τ) x2)≥τ f (xe)

cvx (x1)+ (1−τ) f (xe)
cvx (x2) . (7d)

For completeness we now introduce the theorem and proof of

the SCP’s recursive feasibility, descent, and convergence, first

credited to Marks and Wright [45].

Theorem 1. An SCP that uses inner-convex approximations,

as defined in Eq. (7), is an infinite descent algorithm, f0
(

x(k)

)

≤

f0
(

x(k−1)

)

, guaranteeing convergence to a locally optimal so-

lution, x(∞) = x⋆
P

, and with all its iterates remaining admis-

sible points of the original non-convex problem, x(k) ∈ DP, as

long as the first convex problem in the sequence P
(1)
cvx is feasible,

D
P

(1)
cvx
, ∅, and as long as the original non-convex problem P

is lower bounded f0 (x) > −∞.

The proof of Theorem 1 is supported by the following two

propositions:
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Proposition 1. The admissible set of the convexified problem

P
(k)
cvx is a subset of the original problem’s P admissible setD

P
(k)
cvx
⊆

DP.

Proof. Invoking Eq. (7a)

fi (x) ≤ f
(k−1)

cvx,i
(x) , for i = 1 . . . p, (8)

shows that if a point x meets the convexified constraints, x ∈

D
P

(k)
cvx

, i.e., f
(k−1)

cvx,i
(x) ≤ 0, it also meets the original non-convex

constraints, i.e., fi (x) ≤ 0, hence x ∈ DP �

Corollary 1. From Proposition 1 it follows that the solution to

the convexified problem P
(k)
cvx is an admissible point of the orig-

inal non-convex problem P: x(k) ∈ DP.

Proposition 2. The convexified problem P
(k)
cvx is feasible if an

admissible point to the original non-convex problem P is used

as the expansion point of the convex approximation, f
(k−1)

cvx,i
.

Proof. Given Eq. (7b), if the expansion point x(k−1) is an admis-

sible point to problem P then, x(k−1) is also an admissible point

to problem P
(k)
cvx, making the convexified problem P

(k)
cvx feasible

as x(k−1) ∈ DP
(k)
cvx
⇒ D

P
(k)
cvx
, ∅ �

Proof (Theorem 1). The corollary of Proposition 1 shows that

if the first convexified problem P
(1)
cvx is feasible then its solution,

x(1), is an admissible point of the original non-convex prob-

lem P. If that first solution, x(1), is used as the expansion point

to obtain the next convexified problem P
(2)
cvx, Proposition 2 en-

sures that this second problem is also feasible. If we continue

to use the previous problem’s solution as the expansion point

to obtain the next convexified problem it follows that all the

following convexified problems P
(k)
cvx are feasible and all their

solutions are admissible points of the original non-convex prob-

lem P, x(k) ∈ DP. Recursive feasibility is then established.

Given Eq. (7a) and (7b),

f0
(

x(k)

)

≤ f
(k−1)

cvx,0

(

x(k)

)

≤ f
(k−1)

cvx,0

(

x(k−1)

)

= f0
(

x(k−1)

)

, (9)

and it is shown that the cost between iterations is non-strictly

decreasing, i.e., making the SCP procedure an infinite descent

algorithm.

As the problem is lower bounded, f0 (x) > −∞, the se-

quence must be convergent:

f
(∞−1)

cvx,0

(

x(∞)

)

= f
(∞)

cvx,0

(

x(∞+1)

)

= f0
(

x(∞)

)

, (10)

x(∞) = x(∞+1). (11)

As x(∞) is the solution to problem P
(∞)
cvx it automatically satis-

fies the KKT conditions for problem P
(∞)
cvx . Then, as x(∞) is an

admissible point of the non-convex problem P it satisfies its

primal feasibility conditions, Eqs (1a) and (1b). Using Eq. (7a)

and (7c) it is shown that

f (∞)
cvx

(

x(∞)

)

= f
(

x(∞)

)

, (12)

∇ f (∞)
cvx

(

x(∞)

)

= ∇ f
(

x(∞)

)

, (13)

and thus x(∞), and its associated optimal dual variables ν(∞), µ(∞),

also meet the dual feasibility, (Eq. 1c) complementary slackness

(Eq. 1d), and stationarity (Eq. 1e) conditions of the non-convex

problem P. This allows to conclude that x(∞) is a locally opti-

mal solution to the non-convex problem P: x(∞) = x⋆
P

�

Two brief remarks are now offered about the proposed SCP. 1)

to ensure that the first convexified problem in the sequence is

feasible, an admissible initial guess, x(0) ∈ DP, can be used

to obtain the first convexified problem. If an admissible ini-

tial guess is not available, then the first problem in the SCP

procedure may be infeasible, even if the original non-convex

problem P is feasible. 2) the SCP procedure is local. The fi-

nal solution potentially depends on the initial guess provided.

Multiple initial guesses can be used to seed multiple SCP pro-

cedures, and eventually select the converged solution with the

lowest cost.

6. Approaches to obtain inner-convex approximations

In the literature we can find several methods to generate

inner-convex approximations. These are briefly reviewed in this

section.

If a function is expressed as the difference of two convex

functions c1 (x) , c2 (x) : Rn → R,

f (x) = c1 (x) − c2 (x) . (14)

an inner-convex approximation can be obtained by linearizing

the concave component, i.e., −c2 (x), as follows:

f (xe)
cvx (x) = c1 (x) − c2 (xe) − δxT∇c2 (xe) . (15)

These difference of convex functions are typically referred to

as d.c., and the resulting SCP obtained when the concave com-

ponent is linearized is known as the convex-concave procedure

[49, 50]. This convex-concave procedure is thus a particular

case of the proposed SCP with inner-convex approximations.

Problem formulations with d.c. functions naturally appear

in many optimization problems [51, 52]. A common example

in trajectory optimization are keep-out zones, which are usu-

ally formulated as concave inequality constraints (i.e., a d.c.

with c1 (x) = 0). Several authors have rediscovered the recur-

sively feasible and convergent properties that an SCP enjoys

when concave inequalities are linearized. [30, 25, 7].

It has been shown that d.c. decompositions exist for any

twice differentiable function f ∈ C2 [53, 54], and several ap-

proaches exists to find them. For example, if f is a polynomial,

a d.c decomposition that is made by convex sum-of-squares

polynomials (sos-convex in the following) can be found [55].

There are infinite sos-convex representations and thus in [55]

different methods to optimize the sos-convex decomposition

for a faster rate of convergence are proposed. Interestingly

enough, finding these optimized sos-convex decompositions is

a semidefinite programming problem (second order cone or lin-

ear programming problem with some additional relaxations)

[55].
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Another approach to find d.c. decompositions is the regu-

larization method [54, 56, 57, 58, 59]. In a regularization, a d.c.

decomposition is obtained by using a sufficiently strong convex

function φ (x) : Rn → R such that

f (x) = φ (x)
︸︷︷︸

c1(x)

− (φ (x) − f (x))
︸           ︷︷           ︸

c2(x)

, for x ∈ T , (16)

is d.c in the trust region T .

If the f function is Lipschitz continuous on x ∈ T , with K

denoting the Lipschitz constant, a d.c. representation of f over

T is

f (x) = K ‖x‖2
︸ ︷︷ ︸

c1(x)

−
(

K ‖x‖2 − f (x)
)

︸             ︷︷             ︸

c2(x)

, for x ∈ T . (17)

Using the same principle, and using the Lipschitz constant

of the Hessian, inner-convex approximations based on higher-

order regularizations are also possible. For example, [60] in-

troduces a cubic regularization that enjoys a quadratic rate of

convergence.

Up to this point, we have shown that inner-convex approx-

imations for d.c. functions are easy to obtain. However, if the

function is not d.c., either a semidefinite program needs to be

solved to obtain a sos-convex decomposition or, for regularization-

based approaches, we need to estimate the Lipschitz constant.

7. Taylor-based inner-convex approximations

A new computationally inexpensive method to obtain an

inner-convex approximation of a non-convex analytic function

is here presented. This approach can be seen as a high order reg-

ularization based on the convexification of the high-order terms

of a Taylor series expansion. With these inner-convex approx-

imations the SCP’s local rate of convergence is superlinear, or

even quadratic when converging to a non-degenerate minima.

To simplify the notation of the high-order terms of the Tay-

lor series let’s use a multi-index notation, with an n-tuple of

natural numbers N, denoted by α [61, Section 1.1]:

α = (α1, α2 . . . αn) , with α j ∈ N (18a)

|α| = α1 + α2 + · · · + αn (18b)

α! = α1!α2! · · ·αn! (18c)

xα = x
α1

1
x
α2

2
· · · xαn

n (18d)

∂α f =
∂|α| f

∂x
α1

1
∂x
α2

2
· · · ∂x

αn
n

(18e)

Using a multi-index notation, the Taylor series of the analytic

function f : Rn → R is written as:

f (x) =

∞∑

|α|=0

∂α f (xe)

α!
δxα. (19)

To obtain an inner-convex approximation of f we propose to

convexify all of the terms corresponding to the derivatives of

second order and higher. The Hessian, H, as a symmetric ma-

trix, can be decomposed in a positive and a negative semi-definite

part [62, Section 7.2]:

H = H
+ + H

− (20)

H
+ � 0, H

− � 0. (21)

The positive semi-definite part is recovered using the matrix of

eigenvaluesΛ and the matrix of eigenvectors W of the Hessian:

H
+ =WΛ

+
W

T , (22)

where Λ+ is the matrix of eigenvalues containing only the pos-

itive ones.

The higher order terms (|α| ≥ 3) of the Taylor series form

homogeneous, polynomial forms

∑

|α|

∂α f (xe)

α!
δxα = Tδxα =

n∑

j1... j|α|=1

T j1... j|α|δx j1 . . . δx j|α| , (23)

with T ∈ Rn×n×···×n denoting a supersymmetric tensor—invariant

under permutation on any of its indices.

If the eigenvalues and eigenvectors of these tensors could

be extracted a similar procedure to the one followed to convex-

ify the Hessian could be pursued. Although the eigenvalues of

tensors can be computed using a sum-of-squares and a semidef-

inite programming approach [63] (showing a connection with

sos-convex decompositions, Lasserre’s relaxations, and non-

convex programming), the computational cost quickly becomes

prohibitive as the order, or number of variables and constraints

grows.

Our proposed approach takes a computational efficient route

and a convex overestimation of the terms of third order or higher,

cvx (Tδxα), is obtained as follows:

cvx (Tδxα) =

n∑

i=1

(∣
∣
∣Tdiag,iδx

|α|

i

∣
∣
∣
+
+ Tcvx,i

∣
∣
∣δx
|α|

i

∣
∣
∣

)

. (24)

The Tdiag,i coefficient is the element of the tensor’s main diago-

nal associated with δxi,

Tdiag,i = Ti,i...i. (25)

As |·|+ denotes the positive part operator, the expression
∣
∣
∣Tdiag,iδx

|α|

i

∣
∣
∣
+

is convex and it is an overestimator of the Tδxα terms associated

with the T tensor’s main diagonal.

The Tcvx,i coefficient is computed as the sum of the absolute

values of all of the coefficients in T associated with δxi (with

the exception of the coefficients in the main diagonal):

Tcvx,i=

n∑

j1... j|α|=1






0 if all j1 . . . j|α| are different than i

0 if all j1 . . . j|α| are equal to i
∣
∣
∣T j1... j|α|

∣
∣
∣ otherwise

(26)

As Tcvx,i ≥ 0 the term Tcvx,i

∣
∣
∣δx
|α|

i

∣
∣
∣ is convex and it follows that

cvx (Tδxα) ≥ Tδxα. (27)
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If the coefficients Tcvx,i and Tdiag,i of a particular order, |α|, are

denoted by T
{|α|}

cvx,i
and T

{|α|}

diag,i
, the proposed inner-convex approx-

imation of f , satisfying the conditions in Eq. (7), is

f (xe)
cvx (x) = f (xe) + δxT∇ f (xe) +

1

2
δxT

H
+ (xe) δx

+

|α|=∞∑

|α|=3

n∑

i=1

(∣
∣
∣
∣T
{|α|}

diag,i
δx
|α|

i

∣
∣
∣
∣

+

+ T
{|α|}

cvx,i

∣
∣
∣δx
|α|

i

∣
∣
∣

)

.

(28)

7.1. Truncating the series

The inclusion of high order terms might need to be trun-

cated as the Taylor series may be infinite or the computational

effort required to compute high-order terms may be too high.

To truncate the series and preserve the inner-convex properties

a high-order regularization can be added as follows,

f (xe)
cvx (x,M) =

truncated at order |α|
︷  ︸︸  ︷

f (xe)
cvx (x) +

M

(|α| + 1)!
‖δx‖|α|+1 , (29)

for M ≥ 0.

If the condition f
(k−1)
cvx

(

x(k),M
)

≥ f
(

x(k)

)

is not met after

solving the convex problem P
(k)
cvx (M), the problem is re-solved

with a new, larger M, i.e., Mnew > Mold. As long as the |α|+1 or-

der derivative of f is Lipschitz continuous the f
(k−1)
cvx

(

x(k),M
)

≥

f
(

x(k)

)

condition will be eventually met by a large-enough M.

Adding the high-order regularization may potentially reduce

the rate of convergence and therefore it is advised to start with

M = 0, only increasing M when strictly required.

This truncation with a high-order regularization can be seen

as an extension of the cubic regularization approach developed

by Nesterov [60].

7.2. Quadratic rate of convergence

The proposed inner-convex approximation of the Taylor se-

ries provides the SCP with a local superlinear rate of converge,

which can be proven to be quadratic when converging to a non-

degenerate minima.

It has been shown that a linearization-based SCP is super-

linearly convergent around its convergence point x(∞) [44]. As

the SCP converges,

lim
k→∞
δx = 0, (30)

making the high-order terms become increasingly small

f (xe)
cvx (x) = f (xe) + δxT∇ f (xe) + O

(

‖δx‖2
)

, (31)

and thus the Taylor-based convexification inherits the superlin-

ear convergence of linearization-based SCPs.

But as the Taylor-based convexification preserves the Hes-

sian, as long as H (x) ≻ 0, the resulting SCP exhibits a quadratic

rate of convergence for non-degenerate minima.

Theorem 2. The SCP exhibits a quadratic rate of convergence,

∥
∥
∥x(k+1) − x(k)

∥
∥
∥ ≤ γ(k)

∥
∥
∥x(k) − x(k−1)

∥
∥
∥

2
,

for some γ(k) > 0, around a non-degenerate local minima, H (x) ≻

0, of Problem P.

The cubic regularization approach proposed by Nesterov [60]

also has a quadratic rate of convergence, and the proof provided

here is based on the proof provided for that case.

Proof. Let us start by introducing some additional notation.

Let the spectrum of a of an n × n symmetric matrix A be de-

noted by {λi (H)}ni=1. Also, let’s assume that the eigenvalues are

ordered in a decreasing sequence:

λ1 (A) ≥ . . . ≥ λn (A) , (32)

and that the norm of a real symmetric matrix is defined with its

standard spectral form as [64, Chapter 5]

‖A‖ =

√

λ1

(

AT A
)

. (33)

Having introduced this notation, let us suppose that the optimal

dual variables at each iteration of the SCP are known, then, the

Lagrangian of the problem with the non-convex functions is

L(k) (x) = f0 (x) +

p∑

i=1

ν⋆(k)i fi (x) +

q∑

i=1

µ⋆(k),ihi (x). (34)

Solving the constrained problem P is equivalent to solving an

unconstrained problem with the Lagrangian in Eq. 34 as the

cost function (dual problem). Without any loss of generality,

let’s use this unconstrained version of the problem for the proof.

Further assume that the Hessian of the Lagrangian, HL is

locally Lipschitz continuous,

‖HL (x2) − HL (x1)‖ ≤ KL ‖x2 − x1‖ . (35)

Integrating both sides of the inequality yields:

‖∇L (x2) − ∇L (x1) − HL (x1) (x2 − x1)‖ ≤
KL

2
‖x2 − x1‖

2 .

(36)

Using the inner-convex approximations at iteration k + 1 the

convexified Lagrangian is,

L(k)
cvx (x) = f

(k)

cvx,0
(x)+

p∑

i=1

ν⋆(k+1),i f
(k)

cvx,i
(x)+

q∑

i=1

µ⋆(k+1),ihi (x), (37)

and, as a sum of convex and affine functions, L
(k)
cvx is convex

and takes the form of a convexified Taylor series as defined in

Eq. (28).

The stationary condition (see Eq. (1e)) imposes that the gra-

dient of the convexified Lagrangian L
(k)
cvx at the optimal point

x(k+1) is zero.

∇L(k)
cvx

(

x(k+1)

)

= 0. (38)

Expanding it as Taylor series yields

∇L
(

x(k)

)

+ H
+
L

(

x(k)

) (

x(k+1) − x(k)

)

+ . . . = 0. (39)

If it is further assumed that the current iterate x(k) is close to a

non-degenerate local minima with HL ≻ 0. With this assump-

tion, and noting that the high-order terms of L
(k)
cvx are all convex,

it follows that

∥
∥
∥x(k+1) − x(k)

∥
∥
∥ =
∥
∥
∥
(

HL

(

x(k)

)

+ . . .
)−1
∇L
(

x(k)

)∥∥
∥ ≤

∥
∥
∥∇L
(

x(k)

)∥∥
∥

λn

(

HL

(

x(k)

)) .

(40)
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Additionally, the Hessian of the convexified Lagrangian H
L

(k)
cvx

is locally Lipschitz continuous

∥
∥
∥
∥HL

(k)
cvx

(x) − H
L

(k)
cvx

(

x(k)

)
∥
∥
∥
∥ ≤ K

L
(k)
cvx

∥
∥
∥x − x(k)

∥
∥
∥ , (41)

allowing to bound the high order terms

L(k)
cvx (x) ≤ L

(

x(k)

)

+ ∇L
(

x(k)

) (

x − x(k)

)

+
(
x − x(k)

)T
HL

(
x(k)

) (
x − x(k)

)
+

K
L

(k)
cvx

6

∥
∥
∥x − x(k)

∥
∥
∥

3
. (42)

With this observation, the optimality condition in Eq. (40) yields

the following inequality:

∥
∥
∥∇L
(

x(k)

)

+ HL

(

x(k)

) (

x(k+1) − x(k)

)∥∥
∥ ≤

1

2
K

L
(k)
cvx

∥
∥
∥x(k+1) − x(k)

∥
∥
∥

2
.

(43)

Combining Eq. (36) with Eq. (43) and observing the triangle

inequality yields the following expression:

∥
∥
∥∇L
(

x(k+1)

)∥∥
∥ ≤

KL + K
L

(k)
cvx

2

∥
∥
∥x(k+1) − x(k)

∥
∥
∥

2
. (44)

Therefore it follows that

∥
∥
∥x(k+1) − x(k)

∥
∥
∥ ≤

∥
∥
∥∇L
(

x(k)

)∥∥
∥

λn

(

HL

(

x(k)

)) ≤

(

KL + K
L

(k)
cvx

)

2λn

(

HL

(

x(k)

))

∥
∥
∥x(k) − x(k−1)

∥
∥
∥

2
,

(45)

thus establishing the algorithm’s local quadratic rate of convergence

�

8. Application to a trajectory optimization problem

To illustrate the use of the proposed SCP procedure with

Taylor-based inner-convex approximations, an illustrative ex-

ample is offered. In this example, inspired by the one provided

in [46, 44], the trajectory of an aerial vehicle subject to drag,

control bounds, and a keep-out zone constraint is optimized.

The dynamics of the system is written as

r̈ =
1

m
(F − kd ‖ṙ‖ ṙ) , (46)

with r ∈ R
3 denoting the position of the vehicle, m its mass,

F ∈ R3 its thrust, and kd the vehicle’s drag coefficient.

The vehicle is subject to the following control constraint,

‖F‖ ≤ Fmax, (47)

and it must respect the following keep-out zone constraint,

(r2
1 + r2

2)2 + r4
3 − b4 − 10r3(r2

1r2 − r2
2r1) ≥ 0. (48)

The initial and final conditions, as well as the time to complete

the maneuver, t f , are specified:

r (0) = r0, ṙ (0) = ṙ0, (49a)

r
(

t f

)

= r f , ṙ
(

t f

)

= ṙ f . (49b)

The cost to be minimized is expressed as

J =

∫ t f

0

‖F‖ dt. (50)

This optimal control problem is discretized with a direct tran-

scription method with N nodes, applying a first-order-hold on

the accelerations r̈, and estimating the cost with a trapezoidal

integration scheme. The resulting non-convex programming

problem is:

minimize: J =

N−1∑

i=1

∥
∥
∥F[i+1]

∥
∥
∥ −
∥
∥
∥F[i]
∥
∥
∥

2

(

t[i+1] − t[i]
)

(51)

subject to: F[i] = mr̈[i] + kd

∥
∥
∥ṙ[i]
∥
∥
∥ ṙ[i], (46)

∥
∥
∥F[i]
∥
∥
∥ ≤ Fmax, (47)

(r
[i]2

1
+r

[i]2

2
)2−10r

[i]

3
(r

[i]2

1
r

[i]

2
−r

[i]2

2
r

[i]

1
)+r

[i]4

3
−b4≥0 (48)

r[1] = r0, ṙ[1] = ṙ0 (49a)

r[N] = r f , ṙ[N] = ṙ f (49b)

Note that this problem is of the class P with x =
{

r̈[1] . . . r̈[N−1]
}

.

The cost as well as the control and keep-out constraints are non-

convex functions.

For the cost and control constraints, the underlying non-

convex functions have a Taylor series expansion with infinite

terms and an inner-convex approximation truncated to order

|α| = 3 is used during the SCP. No regularization is added.

The keep-out zone constraint can be re-written as follows

−(r2
1 + r2

2)2 − r4
3 + b4

︸                    ︷︷                    ︸

sos-concave

+10r3(r2
1r2 − r2

2r1)
︸                 ︷︷                 ︸

non-convex

≤ 0. (52)

showing that it has a concave part—specifically sos-concave—

and a non-convex part. The Taylor series of the non-convex part

is finite, reaching fourth order. To obtain inner-convex approx-

imation of the non-convex part we convexify all the terms of

the Taylor series expansion up to fourth order. Once the non-

convex part of Eq. (52) has been convexified the function be-

comes d.c. and thus we know that the concave part needs to

be linearized to obtain an inner-convex approximation. This

example problem shows how different methods can be used to

generate inner-convex approximations.

A Monte Carlo analysis with a total of 1000 cases has been

conducted. The parameters used are provided in Table 1. Based

on the randomized initial and final conditions an initial guess is

analytically generated for each case. In particular, a bang-bang

type control keeping the acceleration at two different constant

values during the first and second halves of the maneuver is

used to generate the initial guess. This solution meets the initial

and final conditions but it may violate the thrust and/or keep-out

zone constraints. As a consequence, the initial guess may not

be an admissible solution of the non-convex problem. There-

fore, we cannot guarantee a recursively feasible SCP procedure

based on an inadmissible initial guess.

To generate an admissible solution from the initial guess a

penalty method is used. This step serves to illustrate how inner-

convex approximations can also be applied in conjunction with
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Table 1: Simulation parameters (non-dimensional).

Parameter Value

Problem

Mass m 1

Final time t f 15

Drag coefficient kd 0.25

Max. thrust Fmax 1.5

Keep-out zone parameter b 3.5

Number of nodes N 25

SCP stopping criterion ǫ 0.01 f0
(

x
⋆
(k)

)

Max. num. of SCP iterations 50

Monte Carlo

Number of cases 1000

Initial position r0 Random with ‖r0‖ = 6

Final position r f r f = −r0

Initial velocity ṙ0 Random with ‖ṙ0‖ = 1

Final velocity ṙ f Random with
∥
∥
∥ṙ f

∥
∥
∥ = 1

penalty methods and help obtain an admissible solution. In the

penalty method version of the problem, the maximum thrust

constraint is relaxed with a slack variable s,

∥
∥
∥F[i]
∥
∥
∥ − Fmax ≤ s[i], (53a)

s[i] ≥ 0. (53b)

and the cost function in Eq. (51) replaced by

J =

N∑

n=1

s[i]. (54)

The penalty method version of the problem is then solved using

the same SCP approach until an admissible solution is obtained.

Given that inner-convex approximations are used and that the

problem’s feasibility is guaranteed by the introduction of the

slack variable, the sequence is bound to converge. However,

the converged solution of the penalty version of the problem

may be an inadmissible point of the original problem.

When an admissible solution is found, the slack variable is

removed, the original cost function in Eq. (51) restored, and

the SCP continues. As an admissible solution is now used as a

seed, the remaining iterations of the SCP procedure are recur-

sively feasible and guaranteed to converge to a locally optimal

solution.

8.1. Illustrative result of one case

For illustration purposes, the results of one case with the ini-

tial and terminal conditions indicated in Table 2 are shown in

Figs. 1-3. The keep-out zone and the trajectories corresponding

to the initial guess, the first admissible solution, and the con-

verged solution are shown in Fig. 1. In this particular case, four

iterations with the penalty method were needed to produce an

admissible solution. Eight more iterations were then required to

converge down to the specified level, bringing the total number

of convex problems solved to 12. Figure 2 shows the decreas-

ing cost along with the inner-convex approximation of the cost,

Table 2: Initial and terminal condition of illustrative case.

Parameter Value

Initial position r0 r0 = [−2.61, 0.53, −5.38]T

Final position r f r f = −r0

Initial velocity ṙ0 ṙ0 = [−0.62, 0.77, −0.14]T

Final velocity ṙ f ṙ f = [0.64, 0.75, 0.15]T

which is always overestimating it. The non-convex thrust and

keep-out zone constraints are also overestimated by the inner-

convex approximation, f
(k−1)

cvx,i
− fi ≥ 0, as shown in Figs. 3a and

3b. In all of the SCP iterations within the 1000 cases, the thrust

was always overestimated, showing that when the Taylor series

is truncated a high order regularization may not be required in

all cases.

8.2. Results of the Monte Carlo analysis

Analyzing the Monte Carlo results provides further insight

into the proposed method, specifically with respect to its com-

putational properties.

Figure 4 shows the convergence of the proposed method on

this illustrative problem. The penalty method is able to find an

admissible solution in 98.1% of the cases. Once an admissible

solution is found the SCP enjoys guaranteed convergence, thus

achieving a 100 % success rate.

Figure 5 compares the cost of the solution offered by the

proposed SCP with the solution obtained with the pseudospec-

tral optimal control package GPOPS-II [65]. Here the GPOPS-

II solution is used as a proxy for the globally optimal solution.

When the cost of both methods are compared it can be argued

that the proposed SCP produces competitive solutions with only

minor overcosts. For example, 50% of the cases show an over-

cost below 5%, while the overcost of 90% of the cases is below

12%.

Where the proposed method shows one of its most remark-

able advantages is in its low computational cost. A single-

threaded C implementation of the proposed SCP has been tested

on a laptop and on two embedded computing platforms: an

NVIDIA TX2 and Raspberry Pi 3 B+ (RPi). To solve the con-

vex programming problems the interior-point solver IPOPT [66],

paired with HSL’s MA27 linear solver routine [67], is used.

Figure 6 shows an histogram of the computational time re-

quired to solve the problems on these three platforms, with

the solid lines indicating the averages. For reference, the av-

erage time taken by GPOPS-II on the laptop is also shown. The

GPOPS-II solution uses the default settings (with IPOPT used

as the underlying nonlinear programming solver). On a laptop

machine the proposed SCP is shown to be a 100 times faster

than GPOPS-II. Additionally the results on the two consumer-

grade embedded computers provide empirical evidence that the

proposed approach is suitable for implementation on embedded

computers and fast enough to be used for real-time applications.

Finally, Fig 7 shows how the time is spent solving each con-

vex program within the SCP. Percentages for each of the ma-

jor tasks are approximately the same across all platforms, but

8



(a) (b)

(c) (d)

Figure 1: Initial guess, first admissible solution, and converged trajectory at different viewing angles.
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Figure 2: Evolution of the cost during the SCP.

for readability they are only explicitly given for the RPi. What

Fig 7 shows is that the proposed Taylor-based approach to ob-

tain inner-convex approximations is computationally efficient,

taking less than 1.5% of the time per iteration. Also the time

taken to evaluate the nonlinear functions (i.e., Eq. (28)) is small,

just below 6.5%. The bulk of the time, > 92%, is used to solve

a linear system at each iteration of the IPOPT’s interior-point

method.

8.3. Applicability to other problems

The proposed SCP and Taylor-based convexification approach

can be applied to a wide range of problems. The example pro-

vided here is only one of these potential applications. The au-

thors have applied this optimization approach to other prob-

lems, namely to the spacecraft attitude maneuver [68].

9. Concluding remarks

When inner-convex approximations are used, a recursively

feasible, descending, and convergent sequential convex program-

ming (SCP) procedure is obtained for the wide class of non-

convex programming problems with linear equality constraints.

This SCP procedure avoids the common pitfalls of infeasible it-

erates and cost increases of linearization-based SCP procedures

without the need of trust regions. By convexifiying each term

of the Taylor series expansion of a non-convex function we ob-

tain a computationally efficient and widely applicable method

to generate inner-convex approximations. These Taylor-based

approximations preserve the positive semidefinite part of the

Hessian and thus provide a locally quadratic rate of conver-

gence when the local minima is non-degenerate. Given the at-

tractive computational properties of the proposed approach it

appears that the proposed SCP is suitable for onboard imple-

mentation and real-time use. The results obtained when solving

a trajectory optimization problem on two embedded computers

empirically substantiate this claim.
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