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Fast Mesh Refinement in Pseudospectral Optimal
Control

N. Koeppen*, I. M. Ross†, L. C. Wilcox‡, R. J. Proulx§

Naval Postgraduate School, Monterey, CA 93943

Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy —

simply increase the order N of the Lagrange interpolating polynomial and the

mathematics of convergence automates the distribution of the grid points. Un-

fortunately, as N increases, the condition number of the resulting linear alge-

bra increases as N2; hence, spectral efficiency and accuracy are lost in prac-

tice. In this paper, we advance Birkhoff interpolation concepts over an arbi-

trary grid to generate well-conditioned PS optimal control discretizations. We

show that the condition number increases only as
√
N in general, but is inde-

pendent of N for the special case of one of the boundary points being fixed.

Hence, spectral accuracy and efficiency are maintained as N increases. The ef-

fectiveness of the resulting fast mesh refinement strategy is demonstrated by using

polynomials of over a thousandth order to solve a low-thrust, long-duration orbit

transfer problem.

I. Introduction

In principle, mesh refinement in pseudospectral (PS) optimal control[1] is embarrassingly easy

— simply increase the order N of the Lagrange interpolating polynomial. For instance, in a Cheby-

shev PS method[2, 3, 4], the Chebyshev-Gauss-Lobatto (CGL) mesh points are given by[2],

ti =
1

2

[
(tf + t0)− (tf − t0) cos

(
iπ

N

)]
, i = 0, 1, . . . , N (1)

where, [t0, tf ] is the time interval. Grid points generated by (1) for N = 5, 10 and 20 over a canon-

ical time-interval of [0, 1] are shown in Fig. 1. The production of these mesh points is as fast as

it takes to compute the cosine function. Furthermore, the mesh points are at optimal locations for

a Chebyshev PS method because their placement is dictated by well-established rules of approx-

imation theory[5]. The price for this speed and simplicity is an increase in the condition number

of the underlying linear algebra that governs the iterations[1, 2, 6]. In fact, as shown in Fig. 2, the

condition number associated with the PS discretization of the dynamical equations,

ẋ(t) = f (x(t),u(t), t) (2)
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Figure 1. Grid points for N = 5, 10 and 20 for a Chebyshev pseudospectral method.
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Figure 2. Illustrating O(N2)-growth in the condition number associated with (2) for various mesh

selections.

increases as N2. The plots in this figure are the condition numbers of the non-singular, inner,

square-portion of the various differentiation matrices[1, 2] associated with the indicated mesh se-

lections. Note that the Legendre-Gauss-Radau mesh has the worst performance of all the in-

dicated PS grid selections. An intuitive approach to manage the growth in the condition num-

ber is to break up the time interval into several segments and apply a PS method over each

segment[7, 8, 9, 10]. When the segments are non-overlapping and information across the seg-

ments is passed across a single point, it results in a PS knotting method[8, 10]; see Fig. 3. The

special nodes where information across segments is transmitted are called PS knots. In the spec-

tral algorithm for PS methods[10, 11], the number and location of the PS knots are determined

adaptively. The adaptation process is based on an analysis of the solution generated by the prior

iterate. Among other things, the analysis involves an estimation of the error and a determination
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Figure 3. An illustration of PS knots in a generic pseudospectral knotting method; adapted from [8].

of the frequency content of the system trajectory. Based on this analysis, either N per segment

is increased or new knots are placed near high frequency regimes[10, 11]. The entire process is

repeated for the next iterate or until all stopping criteria are met[1, 8, 10, 11].

Although the PS knotting method manages the growth in the condition number by simply lim-

iting the order of the approximating polynomial in a given segment, the price for this approach is

quite severe. First, there is an increase in the computation time to determine the number and loca-

tion of the knots; second, there is a significant reduction in the rate of convergence[12, 13, 14, 15]

that adds to the increase in computational time and effort. The convergence rate varies inversely

to the number of segments — the more the segments, the poorer the convergence rate. If the

order of the approximating polynomial is limited to low orders (e.g., N = 4), a PS method be-

comes theoretically equivalent to a Runge-Kutta method[16, 17, 18]. In fact, the “exponential”

rate of convergence of an unknotted PS method is chiefly due to the high orders (i.e., N ≫ 10)

of the approximating polynomials[2, 5]. In many aerospace applications[19, 20, 21, 22], including

flight implementations[1, 23, 24, 25, 26, 27, 28], very accurate solutions[29, 30] are generated for

N ≤ 100. In certain emerging areas of applications[31, 32, 33], there have been new requirements

to generate solutions for N ≫ 100. Because the unknotted PS method generates high condition

numbers, various types of preconditioning are often used to alleviate the problem[34, 35]. In re-

cent years, there have been major advancements in well-conditioned PS methods[36, 37, 38] for

ordinary differential equations. These methods offer a remarkable drop in the condition number

from O(N2) to O(1). In this paper, we adapt these advancements for PS optimal control using

Birkhoff interpolants[36]. The dramatic drop in the condition number allows us to generate solu-

tions for thousands of grid points (i.e., using approximating polynomials for state trajectories in

excess of a thousand degrees) thereby generating a very fast mesh refinement strategy. Numeri-

cal results for a sample low thrust trajectory optimization problem are presented to illustrate the

advancements.

The citation for the journal version of this paper is: J. Guid., Contr. & Dyn., 42/4, 2019,

pp. 711–722.
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II. A Brief Review of the State-of-the-Art in PS Optimal Control Methods

In order to provide a proper context for the issues in PS optimal control methods, we first

briefly review the state of the art. To this end, consider a generic optimal control problem given

by[39, 40, 41],

X = R
Nx U = R

Nu

x = (x1, . . . , xNx
) u = (u1, . . . , uNu

)

}
(preamble)

problem︷︸︸︷
(G)






Minimize J [x(·),u(·), t0, tf ] :=

E(x0,xf , t0, tf) +

∫ tf

t0

F (x(t),u(t), t) dt




 (cost)

Subject to ẋ = f (x(t),u(t), t)
}

(dynamics)

eL ≤ e(x0,xf , t0, tf ) ≤ eU
}

(events)

hL ≤ h(x(t),u(t), t) ≤ hU
}

(path)

where, the symbols denote the following:

• X and U are Nx- and Nu-dimensional real-valued state and control spaces respectively. We

assume Nx ∈ N
+ and Nu ∈ N

+.

• J is the scalar cost function. The arguments of J are the optimization variables.

• The optimization variables are:

– x(·): the Nx-dimensional state trajectory,

– u(·): the Nu-dimensional control trajectory,

– t0: the initial clock time, and

– tf : the final clock time.

• E is the scalar endpoint cost function. The arguments of E are the endpoints. In the classical

literature, E is known as the “Mayer” cost function.

• The endpoints are the initial state x0 ≡ x(t0), the final state xf ≡ x(tf ), the initial time t0
and the final time tf .

• F is the scalar running cost function. The arguments of F are the instantaneous value of the

state variable x(t), the instantaneous value of the control variable u(t) and time t.

• f is the Nx-dimensional “dynamics function,” or more appropriately the right-hand-side of

the dynamics equation. The arguments of f are exactly the same as the arguments of F .

• e is the Ne-dimensional endpoint constraint function. The arguments of e are exactly the

same as that of E.

• eL and eU are the Ne-dimensional lower and upper bounds on the values of e.

• h is the Nh-dimensional path constraint function. The arguments of h are exactly the same

as that of F .
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• hL and hU are the Nh-dimensional lower and upper bounds on the values of h.

As shown in [42], many key aspects of PS optimal control can be understood by considering a

distilled optimal control problem given by,

x ∈ R, u ∈ R, τ ∈ [−1, 1]

(P )





Minimize J [x(·), u(·)] = E(x(−1), x(1))
Subject to ẋ(τ) = f(x(τ), u(τ))

e(x(−1), x(1)) = 0
(3)

The PS results generated for Problem P easily generalize to Problem G, albeit with some tedious

bookkeeping. In order to avoid the distractions of bookkeeping, we limit many of our subsequent

discussions to Problem P while noting that all of the results – with appropriate reindexing – apply

to Problem G as well. See also [1] for a more thorough review and survey of the key results.

In PS optimal control theory, the state trajectory x(·) is expressed – in principle – as a general-

ized Fourier expansion,

x(τ) = x∞(τ) := lim
N→∞

xN (τ) := lim
N→∞

N∑

m=0

amPm(τ) (4)

where, am ∈ R is an unknown “spectral” coefficient of an mth-order polynomial Pm. Note that

(4) is an exact representation and not an approximation. The justification for (4) comes from the

classic Stone-Weierstrass theorem[43] which guarantees a polynomial representation for x(·) under

mild assumptions. For most aerospace applications, the “best” choices for Pm are the Legendre

and Chebyshev polynomials; hence, PS optimal control techniques resulting from these “big two”

polynomials are known as the Legendre and Chebyshev PS methods respectively. A key principle

in a generic PS method is that the spectral coefficients am are computed indirectly by transforming

(4) to an equivalent “pseudospectral” form[39, 44, 45],

xN(τ) :=
N∑

j=0

xN(τj)Lj(τ) (5)

where, τj , j = 0, 1, 2, . . . , N are discrete points in time, known as nodes, and Lj are Lagrange in-

terpolating polynomials. That is, Lj(τ), j = 0, 1, 2, . . . , N are such that they satisfy the Kronecker

relationship,

Lj(τi) = δij (6)

Equations (4) and (5) are known as the modal and nodal representations of x(·) respectively[39].

Let,

πN := [τ0, τ1, . . . , τN ] (7)

be an arbitrary grid (or “mesh”) of points (see Fig. 4) such that

− 1 ≤ τ0 < τ1 < · · · < τN−1 < τN ≤ 1 (8)

Note that (8) allows the extreme points of the grid, τ0 and τN , to be at or near the endpoints. A

nodal representation of the state trajectory over πN is given by,

xN (τ) :=

N∑

j=0

xjLj(τ) (9)
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candidate trajectory

τ-axis

Figure 4. Illustration of an arbitrary grid in the generic pseudospectral method developed in [44] and
[45].

Applying (6) to (9), it follows that xi = xN (τi), i = 0, . . . , N . Differentiating (9) and evaluating

xN (t) over the grid we get,

ẋN (τi) =
N∑

j=0

xjL̇j(τi) (10)

Define

D :=
(
L̇j(τi)

)

0≤i,j≤N
(11)

as the PS differentiation matrix, and let,

X := [x0, x1, . . . , xN ]
T (12)

Then, using (11) and (12), (10) can be written as a matrix-vector product given by,

Ẋ = DX (13)

Note that in sharp contrast to Runge-Kutta methods, PS methods rely almost entirely on an

accurate discretization of ẋ rather than f(x, u), the right-hand-side of the differential equa-

tion, (2).

A nodal representation of the control trajectory over πN is given by,

uN(τ) =

N∑

j=0

uj Cj(τ) (14)

where, Cj(τ) is some interpolating function.

Remark 1 Note that the control trajectory τ 7→ uN(τ) is not necessarily a polynomial.a That is,

Cj(τ) is any function that satisfies,

Cj(τi) = δij

The non-polynomial form of t 7→ uN(t) is exploited in [12, 13, 14, 15] for a strong proof of con-

vergence; that is, a convergence proof that does not rely on unnecessary assumptions[46] that are

typically not satisfied in many practical optimal control problems. Note as well that the Bellman

pseudospectral method[47, 48] also capitalizes on the non-polynomial form of t 7→ uN(t).

aUnfortunately, it is widely and erroneously reported in the optimal control literature that Cj is a polynomial.
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Substituting (9) and (14) in f(x, u), and evaluating f over πN we get,

f(xN(τ), uN(τ))
∣∣
πN = [f(x0, u0), f(x1, u1), . . . , f(xN , uN)]

It is convenient to reuse f as an overloaded function (see [39], page 8) defined by,

f(X,U) := [f(x0, u0), f(x1, u1), . . . , f(xN , uN)]
T

where,

U := [u0, u1, . . . , uN ]
T (15)

Setting Ẋ = f(X,U) and using (13), we define Problem PN according to,

X ∈ R
N+1, U ∈ R

N+1

(
PN

)




Minimize JN [X,U ] := E(x0, xN)
Subject to DX = f(X,U)

e(x0, xN) = 0
(16)

Comparing (3) and (16), it is clear that Problem PN is strikingly similar to Problem P . In fact,

one may view the production of Problem PN as simple as the process of replacing the continuous

operator d/dt in Problem P by the matrix D.

Remark 2 In the derivation of Problem PN , no assumption was made on the structure of the

grid πN ; hence, (16) represents a discretization of Problem P for all PS methods[45].

Remark 3 Once πN is chosen for a given Problem P , the theoretical performance of a PS method

depends only on the selection of the grid. The worst performance (i.e., rapid divergence) is char-

acterized by a uniform distribution of nodes while the best performance (i.e., rapid convergence)

requires node clustering at the end points[45].

Remark 3 is illustrated in Fig. 5. This figure was generated using the data and results from [45].

The parameter β (see Fig. 5 a)) denotes a measure of clustering: from optimal clustering (i.e.,

when β = 0) to a uniform node distribution (i.e., when β = 1). It is apparent from Fig. 5 b) that

optimal clustering is not required for convergence but is indeed critical for the rate of convergence.

Hence, it is desirable to maintain node clustering for a fast mesh refinement.

Remark 4 If πN is a convergent grid, many of the properties of the continuous-time operator d/dt
are faithfully represented by D. For instance, let z be a function that is not identically equal to

zero; then,

if
d

dt
(z) = 0 ⇒ DZ = 0 (17a)

if
d2

dt2
(z) = 0 ⇒ D2Z = 0 (17b)

From (17a), it follows that D must be singular to accurately represent d/dt. Note also that

D must be square so that higher-order derivatives can be properly represented analogous to a

repetitive application of d/dt as implied in (17b).
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Figure 5. Effect of node clustering on convergence of PS optimal control[45].

Remark 5 Node clustering is necessary for polynomial basis functions. It is possible to reduce

node clustering through the use of non-polynomial basis functions[2, 49, 50]; however, the condi-

tion number of the resulting linear algebra still grows with an increase in N .

Problem PN is solved by the spectral algorithm[1, 11]. A key procedure for mesh refinement in

the spectral algorithm for PS methods can be described as follows:

1. Select an initial sequence of integers N0 < N1 < · · · < Nm and generate a sequence of

problems PNk , k = 0, 1, . . . , m.

2. Solve Problem N0 using the relaxed elastic programming concept described in [11]. Set

i = 1.

3. Solve Problem Ni using the results from Problem Ni−1 by a joint application of PS conver-

gence theory for optimal control[13, 14, 15] and the covector mapping principle[39].

4. Evaluate the (decay of the) spectral coefficients for convergence and stopping criteria[10,

11]. Exit if all stopping criteria are met; else, set i = i+ 1, and go to Step 3.

Many of the advancements in the spectral algorithm are implemented in DIDO©[30, 39], a state-

of-the-art MATLABr optimal control toolbox for solving optimal control problems. As noted

earlier, the condition number of the linear matrix equations involved in the spectral algorithm

grows as N2
k , k = 0, 1, . . . , m; hence, there is a loss in spectral accuracy and convergence rate
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on those problems that require a finer mesh. Among many, one of the current remedies for this

problem is to use a pre-conditioner, M , such that the discretized differential equation in Problem

PN can be written as,

MDX = Mf(X,U) (18)

The matrix M must be chosen so that the condition number of the matrix equations resulting from

the product MD is lower than when M is the identity matrix. If M is not a diagonal matrix, then

the sparsity of the right-hand-side of (18) decreases leading to an increase in the computational

burden of the resulting linear algebra. Yet another remedy for managing the growth in the condi-

tion number is to use PS knots[8]. In fact, the full spectral algorithm incorporates an automatic

determination of the number and location of knots based on a detection of rapid changes in the

control function [10, 11]. As noted in Section I, this approach is far from satisfactory. Although

pre-conditioning and PS knots can be used jointly to mitigate the side-effects of both concepts,

the resulting algorithm involves too many tuning parameters and inconsistent performance results.

Clearly, there has been a lot of room for improvement in PS optimal control methods, particularly

for those problems that require fast and accurate solutions over a fine mesh. As will be apparent

shortly, the use of Birkhoff interpolating polynomials[51, 52] offers a new PS approach where

solutions over thousands of points can be generated in a fast and stable manner.

III. Birkhoff Interpolation Over an Arbitrary Grid

In contrast to a Lagrange interpolant which is based on interpolating the values of a function,

a Birkhoff interpolant is based on interpolating the values of a heterogenous mix of various orders

of derivatives of a function[51]. That is, a Birkhoff interpolant generalizes Lagrange and Her-

mite interpolants[52]. For second-order boundary value problems (BVPs) with Dirichlet boundary

conditions, a Birkhoff interpolation polynomial x̃N(τ) is given by[36],

x̃N (τ) := x(τ0)B0(τ) +

N−1∑

j=1

ẍ(τj)Bj(τ) + x(τN )BN(τ) (19)

where, [τ0, τ1, . . . , τN ] := πN is an arbitrary grid as before, and Bk, k = 0, . . . , N are polynomials

of order N or less such that, if they exist, must satisfy the interpolation requirements,

x̃N (τ0) = x(τ0), x̃N (τN ) = x(τN ), ¨̃x
N
(τj) = ẍ(τj), j = 1, . . . , N − 1 (20)

Equation (20) generates the following conditions for the Birkhoff polynomials,

B0(τ0) = 1 BN(τ0) = 0 Bj(τ0) = 0, j = 1, . . . , N − 1

B0(τN) = 0 BN (τN) = 1 Bj(τN) = 0, j = 1, . . . , N − 1

B̈0(τi) = 0 B̈N (τi) = 0 B̈j(τi) = δij i = 1, . . . , N − 1; j = 1, . . . , N − 1

(21)

That is, for a second-order BVP, a Birkhoff interpolating polynomial may be based on a mix of

the second derivatives of a function and its values at the boundary points. Because an optimal

control problem also generates a BVP (through an application of the necessary conditions), it

seems reasonable to simply rewrite (19) for first-order systems so that state-space representation

may be used. This simple adaptation generates a proposal for a Birkhoff interpolant given by,

xN(τ) := x(τ0)B0(τ) +

N−1∑

i=1

ẋ(τi)Bi(τ) + x(τN )BN(τ) (22)
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where, Bk, k = 0, . . . , N are polynomials (possibly different from those in (19)) that must satisfy,

xN(τ0) = x(τ0), xN(τN) = x(τN ), ẋ
N
(τi) = ẋ(τi) (23)

The conditions for (23) that are analogous to (21) are given by,

B0(τ0) = 1 BN(τ0) = 0 Bj(τ0) = 0, j = 1, . . . , N − 1

B0(τN) = 0 BN (τN) = 1 Bj(τN) = 0, j = 1, . . . , N − 1

Ḃ0(τi) = 0 ḂN (τi) = 0 Ḃj(τi) = δij i = 1, . . . , N − 1; j = 1, . . . , N − 1

(24)

The satisfaction of the conditions given by (24) has some well-known problems related to the

existence and uniqueness of a solution[51, 52]; hence, we do not pursue this further. If the condi-

tions on B0 or BN are removed from (24), then it can be shown that a unique Birkhoff interpolant

exists[53]. In doing the latter, a Birkhoff interpolant is given by,

Case (a): xN(τ) := x(τ0)B0(τ) +
N∑

j=1

ẋ(τj)Bj(τ) (25)

where, Bk, k = 0, . . . , N must now only satisfy,

xN (τ0) = x(τ0), ẋN (τj) = ẋ(τj), j = 1, . . . , N (26)

Equation (26) generates fewer conditions than (24); these are given by,

B0(τ0) = 1, Bj(τ0) = 0, j = 1, . . . , N

Ḃ0(τi) = 0, Ḃj(τi) = δij , i = 1, . . . , N
(27)

In the same manner, an equivalent Birkhoff interpolant is given by,

Case (b): xN (τ) :=

N−1∑

j=0

ẋ(τj)Bj(τ) + x(τN )BN(τ) (28)

where, Bk, k = 0, . . . , N are yet another set of polynomials that must satisfy,

xN (τN ) = x(τN ), ẋN (τj) = ẋ(τj), j = 0, . . . , N − 1 (29)

The conditions for Bk, k = 0, . . . , N in (28) are given by,

BN (τN) = 1, Bj(τN ) = 0, j = 0, . . . , N − 1

ḂN (τi) = 0, Ḃj(τi) = δij , i = 0, . . . , N − 1
(30)

It is easy to show that a Birkhoff interpolant exists for both cases given by (25) and (28).

Remark 6 The Birkhoff interpolants given by (25) and (28) are over an arbitrary grid, πN . End-

point node clustering is necessary for convergence (see Fig. 5). Consequently, Birkhoff interpolants

for Jacobi-Gauss-Lobatto, Jacobi-Gauss-Radau, and Jacobi-Gauss meshes follow from (25) and

(28) by an appropriate choice of πN .
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It will be apparent shortly that it is convenient to define two subsets of the grid πN given by,

πN
a := [τ1, . . . , τN ] (31a)

πN
b := [τ0, τ1, . . . , τN−1] (31b)

Thus, πN may be represented either by πN = [τ0, π
N
a ] or πN = [πN

b , τN ]. Furthermore, we define

the matrices,

Da :=
(
L̇j(τi)

)

1≤i,j≤N
Ba :=

(
Bj(τi)

)

1≤i,j≤N

Db :=
(
L̇j(τi)

)
0≤i,j≤N−1

Bb :=
(
Bj(τi)

)
0≤i,j≤N−1

(32)

where, Ba and Bb satisfy (27) and (30) respectively.

Theorem 1 (Wang-Samson-Zhao) Let ω ∈ {a, b}. Then,

DωBω = IN

where, IN is an N ×N identity matrix.

Proof. The proof of this result for ω = a is implied in [36] by Theorems 3.2 and 4.1. For

the purposes of completeness and clarity, we prove this theorem for an arbitrary grid by the same

procedures used in [36]. Furthermore, because the matrix Bb is not presented in [36], we first

prove this result for ω = b. The proof for ω = a follows by a trivial extension.

For any N th-order polynomial φ, we can write,

φ(τ) =

N∑

k=0

φ(τk)Lk(τ) ⇒ φ̇(τ) =

N∑

k=0

φ(τk)L̇k(τ) (33)

Setting φ(τ) = Bj(τ) in (33) and evaluating the resulting equation at τi, we get,

Ḃj(τi) =
N∑

k=0

Bj(τk)L̇k(τi) (34)

We can rewrite (34) for Case (b) evaluation as,

Ḃj(τi) =
N−1∑

k=0

Bj(τk)L̇k(τi) +Bj(τN )L̇N(τi) (35)

Using (30) to evaluate (35) we get,

δij =

N−1∑

k=0

Bj(τk)L̇k(τi), 0 ≤ i, j ≤ N − 1 (36)

From (32), it is clear that (36) is the same as DωBω = IN for ω = b. It is also apparent that the

proof for ω = a follows by a similar procedure. �
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IV. A Family of Well-Conditioned PS Optimal Control Methods

In computational optimal control, it is apparent that it is important to generate a reasonably

accurate control trajectory [t0, tf ] ∋ t 7→ u. Furthermore, it is more important to generate an

accurate value of the initial control than its final value because any error in u(t0) will be amplified

in terms of propagating the state trajectory through the dynamics ẋ = f(x,u(t)); see [30, 39]

for details. This implies that the constraint at the initial point ẋ(t0) = f (x(t0),u(t0)) must be

well-represented. In [36], initial value problems (IVPs) are solved using the matrix Ba and the

differential equation is not imposed at the initial point. Because this approach is not satisfactory

for optimal control applications, we need to modify existing results on Birkhoff interpolation for

optimal control applications.

A. Birkhoff PS Optimal Control Method Over an Arbitrary Grid Based on (25)

In applying the results of the previous section to Problem P , we set,

xN(τ) := x0B0(τ) +

N∑

j=1

vjBj(τ) (37)

where, x0 and vj , j = 1, . . . , N are the unknown optimization variables over an arbitrary grid πN ,

and Bk, k = 0, 1, . . . , N satisfy (27). Differentiating both sides of (37) we get,

ẋN (τ) = x0Ḃ0(τ) +

N∑

j=1

vjḂj(τ) (38)

Substituting (38) in the dynamic constraint ẋN (τ) = f(xN(τ), uN(τ)), we get,

x0Ḃ0(τ) +

N∑

j=1

vjḂj(τ) = f(xN (τ), uN(τ)) (39)

Evaluating (39) over the grid πN = [τ0, π
N
a ] we get,

Ia Va = f(x0, u0)− x0Ḃ0(τ0) (40)

Va = f(Xa, Ua) (41)

where, Ia, Va and Xa are given by,

Ia := [Ḃ1(τ0), . . . , ḂN(τ0)]

Va := [v1, . . . , vN ]
T

Xa := [xN(τ1), . . . , x
N(τN )]

T

(42)

The vector Xa can be evaluated using (37); this generates the constraint,

Xa = x0 b0 +BaVa (43)

where,

b0 :=




B0(τ1)
B0(τ2)

...

B0(τN)


 (44)
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Collecting all the relevant equations, we define

X ∈ R
N+1, U ∈ R

N+1, Va ∈ R
N

(PN
a )





Minimize JN
a [X,U, Va] := E(x0, xN )

Subject to Va = f(Xa, Ua)
Xa = x0 b0 +BaVa

Ia Va = f(x0, u0)− x0Ḃ0(τ0)
e(x0, xN) = 0

(45)

Remark 7 The Birkhoff equality constraint Ia Va + x0Ḃ0(τ0) − f(x0, u0) = 0 in Problem PN
a

imposes the differential equation ẋ(τ) = f(x(τ), u(τ)) at the initial point τ0. This Birkhoff

constraint is equivalent to imposing the same differential equation via the Lagrange condition∑N

j=0
xjL̇j(τ0)− f(xN(τ0), u

N(τ0)) = 0. This equivalency is proved as Proposition 1.

Proposition 1 Let xj = xN (τj). At τ = τ0, the Lagrange and Birkhoff interpolants satisfy the

condition,
N∑

j=0

xjL̇j(τ0) = x0Ḃ0(τ0) +
N∑

j=1

vjḂj(τ0) (46)

Proof. The derivative Ḃj(τi) can be obtained by an application of the PS differentiation matrix;

hence, we have,

Ḃj(τi) =
N∑

k=0

L̇k(τi)Bj(τk) (47)

Setting i = j = 0 in (47) we get,

Ḃ0(τ0) =

N∑

k=0

L̇k(τ0)B0(τk)

= L̇0(τ0)B0(τ0) +
N∑

k=1

L̇k(τ0)B0(τk)

= L̇0(τ0) +

N∑

k=1

L̇k(τ0)B0(τk) (48)

where, the last equality in (48) follows from the fact that B0(τ0) = 1; see (27).

Similarly, setting i = 0 in (47) we get,

Ḃj(τ0) =
N∑

k=0

L̇k(τ0)Bj(τk)

= L̇0(τ0)Bj(τ0) +

N∑

k=1

L̇k(τ0)Bj(τk)

=

N∑

k=1

L̇k(τ0)Bj(τk) (49)
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Evaluating the right-hand-side of (46) using (48) and (49) we have,

x0Ḃ0(τ0) +

N∑

j=1

vjḂj(τ0) = x0L̇0(τ0) +

N∑

k=1

x0L̇k(τ0)B0(τk) +

N∑

j=1

vj

N∑

k=1

L̇k(τ0)Bj(τk) (50)

Next, from (37), we have,

xk = x0B0(τk) +

N∑

j=1

vjBj(τk) (51)

Evaluating the left-hand-side of (46) using (51) we get,

N∑

k=0

xkL̇k(τ0) = x0L̇0(τ0) +

N∑

k=1

xkL̇k(τ0)

= x0L̇0(τ0) +
N∑

k=1

x0B0(τk)L̇k(τ0) +
N∑

k=1

N∑

j=1

vjBj(τk)L̇k(τ0) (52)

It is evident that the right-hand-sides of (50) and (52) are identical. �

B. Birkhoff PS Optimal Control Method Over an Arbitrary Grid Based on (28)

Although many of the results are similar to those resulting from (37), we provide a brief develop-

ment here to highlight the key differences between the two approaches. To this end, we set,

xN (τ) :=

N−1∑

j=0

vjBj(τ) + xNBN(τ) (53)

Substituting the (53) in the dynamic constraint we get,

N−1∑

j=0

vjḂj(τ) + xNḂN (τ) = f(xN (τ), uN(τ)) (54)

Evaluating (54) over the grid πN = [πN
b , τN ] we get,

Vb = f(Xb, Ub) (55)

Ib Vb = f(xN , uN)− xN ḂN(τN ) (56)

where, Ib, Vb and Xb are given by,

Ib := [Ḃ0(τN), . . . , ḂN−1(τN )]

Vb := [v0, . . . , vN−1]
T

Xb := [xN (τ0), . . . , x
N (τN−1)]

T

(57)

Using (53) to evaluate Xb we get,

Xb = BbVb + xN bN (58)
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where,

bN :=




BN (τ0)
BN (τ1)

...

BN (τN−1)


 (59)

Thus, we now have a new discretization of Problem P given by,

X ∈ R
N+1, U ∈ R

N+1, Vb ∈ R
N

(PN
b )





Minimize JN
b [X,U, Vb] := E(x0, xN)

Subject to Vb = f(Xb, Ub)
Xb = BbVb + xN bN

Ib Vb = f(xN , uN)− xNḂN (τN)
e(x0, xN ) = 0

(60)

Remark 8 In Problem PN
b , the differential constraint ẋ(τ)−f(x(τ), u(τ)) = 0 at the initial point

τ0 is imposed via the constraint Vb − f(Xb, Ub) = 0. The Birkhoff equality constraint Ib Vb +
xN ḂN(τN ) − f(xN , uN) = 0 imposes the differential constraint at the final time. This Birkhoff

condition is equivalent to imposing the same differential constraint via the Lagrange condition∑N

j=0
xjL̇j(τN )− f(xN(τN ), u

N(τN )) = 0. The proof of this equivalency is similar to Proposition

1; hence, it is omitted.

C. Several Pre-Conditioned Lagrange PS Optimal Control Methods

It is possible to develop several pre-conditioned Lagrange PS optimal control methods based on

using Birkhoff matrices as pre-conditioners. We first consider the case where we partition the mesh

πN as [τ0, π
N
a ].

1. Left-Preconditioned Lagrange PS Method Based on [τ0, π
N
a ] Partitioning

It is convenient to rewrite (9) as,

xN(τ) := x0L0(τ) +

N∑

i=1

xiLi(τ) (61)

Differentiating (61) and substituting the result in the dynamic constraint ẋ = f(x, u), we get,

x0L̇0(τ) +

N∑

i=1

xiL̇i(τ) = f(xN (τ), uN(τ)) (62)

Evaluating (62) over the grid πN = [τ0, π
N
a ] we get,

N∑

i=0

xiL̇i(τ0) = f(x0, u0) (63a)

DaXa = f(Xa, Ua)− x0 l0 (63b)
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where, Xa and Ua are defined in (42) and l0 is defined by,

l0 :=




L̇0(τ1)

L̇0(τ2)
...

L̇0(τN)


 (64)

Note that (63) is merely a partitioned version of the discrete differential constraint stipulated in

Problem PN defined in (16). Pre-multiplying both sides of (63b) by Ba and using Theorem 1 we

get,

Xa = Baf(Xa, Ua)− x0Bal0 (65)

As a result of (65), Problem PN transforms according to,

X ∈ R
N+1, U ∈ R

N+1

(Left-PN
a )





Minimize JN [X,U ] := E(x0, xN )

Subject to
∑N

i=0
xiL̇i(τ0) = f(x0, u0)

Xa = Baf(Xa, Ua)− x0Bal0
e(x0, xN) = 0

(66)

2. Right-Preconditioned Lagrange PS Method Based on [τ0, π
N
a ] Partitioning

Instead of pre-multiplying equations to achieve better conditioning, we can generate an alternative

method by post-multiplying only the left-hand-side of (63b) by Ba. To clarify this point, we

substitute (43) in (63b); this results in,

Va + x0Dab0 = f(Xa, Ua)− x0l0 (67)

Comparing (67) with (41), it is evident that we need to prove that x0Dab0 = −x0l0. This result is

proved as Proposition 2.

Proposition 2 Dab0 + l0 = 0

Proof. From (47), we have,

Ḃj(τi) = L̇0(τi)Bj(τ0) +
N∑

k=1

L̇k(τi)Bj(τk) (68)

Evaluating (68) for j = 0 and i = 1, . . . N , we get,




Ḃ0(τ1)
...

Ḃ0(τN)


 =




L̇0(τ1)
...

L̇0(τN )


B0(τ0) +Dab0 (69)

The left-hand-side of (69) is zero from (27); hence, the proposition follows from (64) and the fact

that B0(τ0) = 1 by definition. �
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As a result of Proposition 2, (67) simplifies to Va = f(Xa, Ua). Using Proposition 1 to replace

(63a), Problem PN now transforms to a “right-preconditioned” method given by,

X ∈ R
N+1, U ∈ R

N+1, Va ∈ R
N

(right-PN
a )





Minimize JN
a [X,U, Va] := E(x0, xN)

Subject to Ia Va = f(x0, u0)− x0Ḃ0(τ0)
Va = f(Xa, Ua)
Xa = x0 b0 +BaVa

e(x0, xN ) = 0

(70)

It is apparent that (70) is identical to Problem PN
a defined by (45). In other words, the Birkhoff-PS

method (for Case (a)) may be viewed as a right-pre-conditioned Lagrange-PS method.

Proposition 3 If the variable Va is eliminated from Problem right-PN
a , it reduces to Problem left-

PN
a .

Proof. Comparing (66) with (70), it follows that this proposition is proved if we can show that:

(1) Baf(Xa, Ua)− x0Bal0 = x0 b0 +BaVa, and

(2) the equation
∑N

i=0
xiL̇i(τ0) = f(x0, u0) is equivalent to Ia Va = f(x0, u0)− x0Ḃ0(τ0)

Hence, we prove this proposition in two parts.

Part (1):

Substituting (41) in (43), we get,

x0 b0 +BaVa = x0b0 +Baf(Xa, Ua)

= −x0Bal0 +Baf(Xa, Ua) (71)

where, the last equality in (71) follows from Proposition (2) and Theorem 1.

Part (2):

The proof of this part is a direct consequence of Proposition 1. �

Remark 9 It is clear that two additional left and right pre-conditioned Lagrange-PS methods can

be similarly obtained by using the (Case (b)) partitioning πN = [πN
b , τN ]. For the purposes of

brevity, these cases are not derived.

Remark 10 For Case (a), it is straightforward to show that B0(τ) = 1 for all τ ∈ [τ0, τN ].
Consequently, b0 defined in (44) is a vector of ones and Ḃ0(τ0) = 0. Similarly, for Case (b),

BN(τ) = 1 for all τ ∈ [τ0, τN ]; hence, bN defined in (59) is a vector of ones and ḂN(τN ) = 0.

Remark 11 All PS methods proposed in this section are for an arbitrary grid. It is possible to

generate a very large sub-class of each of these methods by choosing slightly different and well-

known grid points. Popular examples of such grid points are Chebyshev-Gauss-Lobatto (CGL),

Legendre-Gauss-Lobatto (LGL), Chebyshev-Gauss-Radau (CGR), Legendre-Gauss-Radau (LGR),

Chebyshev-Gauss (CG) and Legendre-Gauss (LG). See [1, 42, 45] for further details on advan-

tages and pitfalls associated with the choice of these mesh points as they apply to computational

optimal control problems.

Because it is possible to generate a very large family of PS methods based on the results of the

preceding subsections, we limit the scope of the present paper to illustrating only a small set of

these methods. A more extensive discussion of other options and numerical results are discussed

in [54]. Nonetheless, we note that a selection of the proper grid for optimal control problems is

largely based on whether or not the horizon is finite or infinite[39].
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V. A Numerical Demonstration of the Well-Conditioning of Birkhoff PS

Discretizations

A quick examination of (70) shows that the linear equation given by (43) is the only equation

in a Birkhoff PS method (for Case (a)) that is independent of the problem data functions E, e and

f . Consequently, if the original continuous-time problem is well-conditioned, the conditioning of

the discretized problem is driven by the condition numbers of the linear equation given by (43) for

Case (a), and by (58) for Case (b). Because all conclusions drawn with respect to the condition

number of Case (a) are identical to that of Case (b), we focus the entirety of our discussions in this

section to that of Case (a) only.

A very powerful statement on the condition number of the Birkhoff PS discretization can be

drawn for the special case of a known value of the initial condition, x0. In this case, we can re-write

(43) as,

BaVa −Xa = −x0 b0 (72)

where, the right-hand-side of (72) is a known quantity. Hence, the condition number of a Birkhoff

PS discretization is driven by the condition number of the (N × 2N)-matrix CBirk
N defined by,

CBirk
N :=

[
Ba,−IN

]
(73)

where IN is the N × N identity matrix. As evident from Fig. 6, the condition number of CBirk
N

101 102 103 104

number of nodes [N]

1

1.5

2

2.5

co
nd

iti
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 n
um

be
r 

[2
-n

or
m

]

Chebyshev-Gauss-Lobatto (Birkhoff)

Figure 6. Demonstrating O(1) variation in the condition number of the matrix CBirk
N defined in (73)

with evaluations over N CGL nodes.

is remarkably flat with respect to N ; i.e., of O(1). The condition number of a corresponding

Lagrange PS discretization may be obtained by multiplying both sides of (72) by Da and invoking

Theorem 1. This results in

DaXa − Va = x0Dab0 (74)

with the right-hand-side of (74) considered to be a known quantity. Hence, the condition number

of a Lagrange PS discretization is driven by the condition number of the (N × 2N)-matrix,

C
Lagr

N :=
[
Da,−IN

]
(75)
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Figure 7. O(N2)-growth in the condition number of the matrix C
Lagr
N defined in (75) with evaluations

over N CGL nodes.

It is clear from Fig. 7 that the condition number of C
Lagr

N is O(N2) and consistent with the plot

shown in Fig. 2.

In a generic optimal control problem, x0 is an optimization variable. In this general case, the

right-hand-side of (72) is not known; hence, we need to examine the condition number of the

N × (2N + 1)-matrix,

ABirk
N :=

[
Ba,−IN , b0

]
(76)

It is apparent from Fig. 8 that the condition number of ABirk
N varies only as O

(√
N
)

.
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100
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Chebyshev-Gauss-Lobatto
N

Figure 8. Demonstrating O
(√

N
)

-growth in the condition number of the matrix ABirk
N defined in (76)

with evaluations over N CGL nodes.

The condition numbers for other choices of grid selections (see Remark 11) have similar be-

havior; see, for example, Fig. 2. In this paper we largely focus on Lobatto-based grid selections
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because they are the correct choice for solving generic finite-horizon optimal control problems

(see for example, Ref. [1], Section 4.4.4 in Ross[39], and Ref. [42]). Radau-based mesh points

— first introduced in [55] and [56] for optimal control applications — are more appropriate for

infinite-horizon optimal control problems because the non-unit weight function associated with the

Legendre-Radau-grid vanishes at the +1 (or −1) point[1, 56]. Consequently, a Legendre-Radau

grid is mathematically justified only for some limited choices of boundary conditions in a finite-

horizon optimal control problem[1, 42]. Using a Radau mesh for finite-horizon optimal control

applications with arbitrary boundary conditions produces well-known convergence issues and

control-chatter problems[1, 39, 42]. Pure Gauss points are even more limiting with regards to

their suitability for solving generic optimal control problems[1, 42].

VI. An Illustrative Example

There are many emerging problems in aerospace trajectory optimization that require a fine

mesh[31, 32, 33, 57]. A detailed discussion of these problems is beyond the scope of this paper;

hence, we use a proxy low-thrust orbital maneuvering problem[47, 57] as a prototypical challenge

to illustrate the numerics of the new PS methods developed in the preceding sections. That is,

we choose this problem for illustrative purposes only and not necessarily to address the myriad of

issues that are associated with the specifics of low-thrust orbital maneuvering. To this end, consider

a minimum-time circle-to-circle continuous thrust orbit transfer problem (see Fig. 9) given by,

x = (r, θ, vr, vt) ∈ R
4, u = α ∈ R

(OXfer)






Minimize J [x(·),u(·), tf ] = tf

Subject to ṙ = vr

θ̇ =
vt
r

v̇r =
v2t
r

− µ

r2
+ A sinα

v̇t = −vrvt
r

+ A cosα

t0 = 0

(r0, θ0, vr0 , vt0) =
(
r0, 0, 0,

√
µ/r0

)

(
rf , vrf , vtf

)
=

(
rf , 0,

√
µ/rf

)

where, r is the radial position of the spacecraft, θ is the true anomaly, vr and vt are the radial and

transverse components of the spacecraft velocity, α is the thrust steering angle, µ is the gravita-

tional parameter and A is the magnitude of the constant thrust acceleration. What makes Problem

OXfer challenging is that if A is low and
(
rf/r0

)
is high, then the number of orbital revolutions

to attain the final orbit is high; hence, from an elementary application of the Nyquist-Shannon

sampling theorem, it is apparent that the number of nodes must be high. In principle, solving a

problem with a large number of nodes is not a significant technological hurdle[31, 39]. As an

elementary illustration of the technology requirements, we note that a million variables only re-

quires 8 MB of computer memory. What makes a high-node problem hard to solve is science and
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Figure 9. Schematic for Problem OXfer.

not technology; that is, the problem is the high condition number of the differentiation matrix as-

sociated with a PS method. For example, from Fig. 2, the condition number of a PS differentiation

matrix for N = 1000 is about 106; i.e., O(N2). Because it is equivalent to a right-preconditioned

Lagrange PS method (see (70)), a Birkhoff PS method mitigates the problem of high condition

numbers. For example, for N = 1000, we expect the condition number to be about 30; see Fig. 8.

To illustrate these features, we solve Problem OXfer using the following canonical units:

Distance Unit = r0

Speed Unit =
√
µ/r0

Time Unit =

√
(r0)3 /µ

Acceleration Unit = µ/
(
r0
)2

(77)

The boundary conditions for a representative LEO-to-GEO orbit transfer problem (in canonical

units) is given by,

(r0, θ0, vr0, vt0) = (1, 0, 0, 1)
(
rf , vrf , vtf

)
=
(
6, 0,

√
1/6

) (78)

A low-thrust solution (A = 5×10−4) resulting from an application of Birkhoff PS method is shown

in Fig. 10. This solution was obtained using a CGL mesh and the right preconditioning method

defined by (70). Results for other cases and problems including solutions from the vast variety of

other possible Birkhoff PS methods outlined in Remark 11 are discussed in [54]. In order to limit

the scope of this section, we only discuss this particular case.

The time to accomplish the maneuver shown in Fig. 10 was approximately 1187 time units;

this translates to approximately 13 days of continuous low-thrust maneuvering. The number of

CGL points was N = 1024. In other words, r(t) shown in Fig. 10 is given by a polynomial of over

a thousand degree! The “discrete” steering angle at 1024 CGL points is shown in Fig. 11. When

this steering angle is interpolated through the CGL mesh, we get the continuous function t 7→ α
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Figure 10. A Birkhoff PS solution for Problem OXfer and boundary conditions given by (78).
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Figure 11. A CGL-interpolated PS control solution t 7→ α(t) corresponding to the plot shown in

Fig. 10.

indicated by the solid line in Fig. 11. Using the interpolated function t 7→ α, the dynamical equa-

tions can be easily integrated using ode45 (from MATLAB) to generate a propagated trajectory.

This propagated trajectory is included in Fig. 10; however, this plot is not noticeable in this figure

because the differences are too small to be visually apparent. Consequently, we provide an error

plot in Fig. 12 as a matter of completeness.

VII. Conclusions

State trajectories in aerospace dynamical systems are absolutely continuous; hence, by an el-

ementary application of the Stone-Weierstrass theorem, they can be expressed to any arbitrary
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Figure 12. Error plots as measured by the difference between a Birkhoff PS solution and a Runge-
Kutta propagation through the CGL-interpolated solution shown in Fig. 11.

precision in terms of some finite-order polynomial. In using the big two polynomials, namely

Legendre and Chebyshev, pseudospectral (PS) optimal control theory has found numerous appli-

cations that include include flight implementations in aerospace engineering. In many practical PS

optimal control applications, very accurate solutions can be generated using polynomials of order

N ≤ 100, thanks to the spectral (i.e., near exponential) rate of convergence. Emerging applications

have sought to generate solutions in excess of N > 1000. The challenge with such high orders is

the high condition number
(
∼ O (N2)

)
of the associated differentiation matrix. This is largely

a science problem rather than a technological one. That is, a computer’s processing capability is

not a limiting factor because 8MB of memory for a million variables is no longer a technolog-

ical hurdle. New advancements in the science associated with Birkhoff interpolation provide a

dramatic drop in the condition number: from O (N2) to O
(√

N
)

or even O
(
1
)

in some cases.

In advancing these new ideas, the problem with condition numbers is now relegated to specific

applications and not to PS optimal control techniques. Nonetheless, a significant amount of new

research on Birkhoff PS methods remains to be done.
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